
Efficient Algorithms for Large-Scale Topology Discovery

Benoit Donnet ∗
Université Pierre & Marie Curie

Laboratoire LiP6–CNRS

Philippe Raoult
Université Pierre & Marie Curie

Laboratoire LiP6–CNRS

Timur Friedman
Université Pierre & Marie Curie

Laboratoire LiP6–CNRS

Mark Crovella
Boston University

Computer Science Department

ABSTRACT
There is a growing interest in discovery of internet topology
at the interface level. A new generation of highly distributed
measurement systems is currently being deployed. Unfortu-
nately, the research community has not examined the prob-
lem of how to perform such measurements efficiently and in
a network-friendly manner. In this paper we make two con-
tributions toward that end. First, we show that standard
topology discovery methods (e.g., skitter) are quite ineffi-
cient, repeatedly probing the same interfaces. This is a con-
cern, because when scaled up, such methods will generate so
much traffic that they will begin to resemble DDoS attacks.
We measure two kinds of redundancy in probing (intra- and
inter-monitor) and show that both kinds are important. We
show that straightforward approaches to addressing these
two kinds of redundancy must take opposite tacks, and are
thus fundamentally in conflict. Our second contribution is
to propose and evaluate Doubletree, an algorithm that re-
duces both types of redundancy simultaneously on routers
and end systems. The key ideas are to exploit the tree-
like structure of routes to and from a single point in order
to guide when to stop probing, and to probe each path by
starting near its midpoint. Our results show that Doubletree
can reduce both types of measurement load on the network
dramatically, while permitting discovery of nearly the same
set of nodes and links.

∗The authors are participants in the traceroute@home
project.This work was supported by: the RNRT project
Metropolis, NSF grants ANI-9986397 and CCR-0325701,
a SATIN European Doctoral Research Foundation grant,
the e-Next European Network of Excellence, and LiP6 2004
project funds. This work was performed while Mr. Crovella
was at LiP6, with support from the CNRS and Sprint Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’05, June 6–10, 2005, Banff, Alberta, Canada.
Copyright 2005 ACM 1-59593-022-1/05/0006 ...$5.00.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
topology

General Terms
Algorithms, Measurements

Keywords
network topology, traceroutes, cooperative systems

1. INTRODUCTION
Systems for active measurements in the internet are un-

dergoing a radical shift. Whereas the present generation of
systems operates on largely dedicated hosts, numbering be-
tween 20 and 200, a new generation of easily downloadable
measurement software means that infrastructures based on
thousands of hosts could spring up literally overnight. Un-
less carefully controlled, these new systems have the poten-
tial to impose a heavy load on parts of the network that
are being measured. They also have the potential to raise
alarms, as their traffic can easily resemble a distributed de-
nial of service (DDoS) attack. This paper examines the
problem, and proposes and evaluates an algorithm for con-
trolling one of the most common forms of active measure-
ment: traceroute [30].

There is a number of systems active today that aim to
elicit the internet topology at the IP interface level. The
most extensive tracing system, Caida’s skitter [16], uses 24
monitors, each targeting on the order of one million desti-
nations. Some other well known systems, such as the Ripe
NCC’s TTM service [14] and the NLanr AMP [22], have
larger numbers of monitors (between one- and two-hundred),
and conduct traces in a full mesh, but avoid tracing to out-
side destinations.

The uses of the raw data from these traces are numerous.
From a scientific point of view, the results underlie efforts
to model the network [2, 6, 12, 13, 21, 28]. From an en-
gineering standpoint, the results inform a wide variety of
protocol development choices, such as multicast and overlay
construction [25].

However, recent studies have shown that reliance upon a
relatively small number of monitors to generate a graph of
the internet can introduce unwanted biases. For instance,
the work by Faloutsos et al. [12] found that the distribution
of router degrees follows a power law. That work was based

upon an internet topology collected from just twelve trace-
route hosts by Pansiot and Grad [23]. However, Lakhina et
al. [20] showed that, in simulations of a network in which the
degree distribution does not at all follow a power law, trace-
routes conducted from a small number of monitors can tend
to induce a subgraph in which the node degree distribution
does follow a power law. Clauset and Moore [8] have since
demonstrated analytically that such a phenomenon is to be
expected for the specific case of the Erdös-Rényi random
graphs [11].

Removing spatial bias is not the only reason to employ
measurement systems that use a larger number of monitors.
With more monitors to probe the same space, each one can
take a smaller portion and probe it more frequently. Net-
work dynamics that might be missed by smaller systems can
more readily be captured by the larger ones while keeping
the workload per monitor constant.

The idea of releasing easily deployable measurement soft-
ware is not new. To the best of our knowledge, the idea of
incorporating a traceroute monitor into a screen saver was
first discussed in a paper by Cheswick et al. [7] from the
year 2000 (they attribute the suggestion to Jörg Nonnen-
macher). Since that time, a number of measurement tools
have been released to the public in the form of screen savers
or daemons. Grenouille [1], which is used for measuring
available bandwidth in DSL connections, was perhaps the
first, and appears to be the most widely adopted. More re-
cently, we have seen the introduction of NETI@home [26],
a passive measurement tool inspired by the distributed sig-
nal analysis tool, SETI@home [3]. In the summer of 2004,
the first tracerouting tool of this type was made available:
DIMES [24] conducts traceroutes and pings from, at the
time of this writing, 639 sites in 49 countries.

Given that much large scale network mapping is on the
way, contemplating such a measurement system demands at-
tention to efficiency, in order to avoid generating undesirable
network load. Unfortunately, this issue has not been yet suc-
cessfully tackled by the research community. As Cheswick,
Burch and Branigan note, such a system “would have to be
engineered very carefully to avoid abuse” [7, Sec. 7]. Trace-
routes emanating from a large number of monitors and con-
verging on selected targets can easily appear to be a DDoS
attack. Whether or not it triggers alarms, it clearly is not de-
sirable for a measurement system to consume undue network
resources. A traceroute@home system, as we label this class
of applications, must work hard to avoid sampling router
interfaces and traversing links multiple times, and to avoid
multiple pings of end systems.

This lack of consideration of efficiency for internet mon-
itoring system is in contrast with the work performed on
efficient monitoring of networks that are in a single admin-
istrative domain (see for instance, Bejerano and Rastogi’s
work [4]). However, the problem is completely different. An
administrator knows their entire network topology in ad-
vance, and can freely choose where to place their monitors.
Neither of these assumptions hold for monitoring the in-
ternet with highly distributed monitors. Since the existing
literature is based upon these assumptions, we need to look
elsewhere for solutions.

Our first contribution, in this paper, is to evaluate the
extent to which classical topology discovery systems involve
duplicated effort. By classical topology discovery, we mean
those systems, such as skitter, tracing from a small number

of monitors to a large set of common destinations, such as
skitter. Duplicated effort in such systems takes two forms:
measurements made by an individual monitor that replicate
its own work, and measurements made by multiple mon-
itors that replicate each other’s work. We term the first
intra-monitor redundancy and the second inter-monitor re-
dundancy.

Using skitter data from August 2004, we quantify both
kinds of redundancy. We show that intra-monitor redun-
dancy is high close to each monitor. This fact is not sur-
prising given the tree-like structure (or cone, as Broido and
claffy describe it in [6]) of routes emanating from a single
monitor. However, the degree of such redundancy is quite
elevated: some interfaces are visited once for each destina-
tion probed (which could be hundreds of thousands of times
per day in a large-scale system). Further, with respect to
inter-monitor redundancy, we find that most interfaces are
visited by all monitors, especially when close to destinations.
This latter form of redundancy is also potentially quite large,
since this would be expected to grow linearly with the num-
ber of monitors in future large-scale measurement systems.

Our analysis of the nature of redundant probing suggests
more efficient algorithms for topology discovery. In partic-
ular, our second contribution is to propose and evaluate an
algorithm called Doubletree. We show that Doubletree can
dramatically reduce the impact on routers and final desti-
nations by reducing redundant probing, while maintaining
high coverage in terms of interface and link discovery. Dou-
bletree is particularly effective at removing the worst cases
of highly redundant probing that would be expected to raise
alarms.

Doubletree takes advantage of the tree-like structure of
routes, either emanating from a single source to multiple
destinations or routes converging from multiple sources to
a single destination, to avoid duplication of effort. Unfor-
tunately, general strategies for reducing these two kinds of
redundancy are in conflict. On the one hand, intra-monitor
redundancy is reduced by starting probing far from the mon-
itor, and working backward along the tree-like structure that
is rooted at that monitor. Once an interface is encountered
that has already been discovered by the monitor, probing
stops. On the other hand, inter-monitor redundancy is re-
duced by probing forwards towards a destination until en-
countering a previously-seen interface.

We show a means of balancing these conflicting strate-
gies in Doubletree. In Doubletree, probing starts at a dis-
tance that is intermediate between monitor and destination.
We demonstrate methods for choosing this distance, and we
then evaluate the resulting performance of Doubletree. De-
spite the challenge inherent in reducing both forms of redun-
dancy simultaneously, we show that probing via Doubletree
can reduce measurement load by approximately 76% while
maintaining interface and link coverage above 90%.

The remainder of this paper is organized as follow: Sec. 2
evaluates the extent of redundancy in classical topology trac-
ing systems. Sec. 3 describes and evaluates the Doubletree
algorithm. Finally, Sec. 4 concludes this paper and intro-
duces directions for future work.

2. REDUNDANCY
In this section we quantify and analyze the extensive mea-

surement redundancy that can be found in a classical topol-
ogy discovery system.

2.1 Methodology
Our study is based on skitter data from August 1st through

3rd, 2004. This data set was generated by 24 monitors lo-
cated in the United States, Canada, the United Kingdom,
France, Sweden, the Netherlands, Japan, and New Zealand.
The monitors share a common destination set of 971,080
IPv4 addresses. Each monitor cycles through the destina-
tion set at its own rate, taking typically three days to com-
plete a cycle. For the purpose of our studies, in order to
reduce computing time to a manageable level, we worked
from a limited destination set of 50,000, randomly chosen
from the original set.

Visits to host and router interfaces are the metric by which
we evaluate redundancy. We consider an interface to have
been visited if its IP address returned by the router appears,
at least, at one of the hops in a traceroute. Though it would
be of interest to calculate the load at the host and router
level, rather than at the individual interface level, we make
no attempt to disambiguate interfaces in order to obtain a
router-level information. The alias resolution techniques de-
scribed by Pansiot and Grad [23], by Govindan and Tang-
munarunkit [15], for Mercator, and applied in the iffinder
tool from Caida [19], would require active probing beyond
the skitter data, preferably at the same time that the skitter
data is collected. The methods used by Spring et al. [27], in
Rocketfuel, and by Teixeira et al. [29], apply to routers in the
network core, and are untested in stub networks. Despite
these limitations, we believe that the load on individual in-
terfaces is a useful measure. As Broido and claffy note [6],
“interfaces are individual devices, with their own individual
processors, memory, buses, and failure modes. It is reason-
able to view them as nodes with their own connections.”

How do we account for skitter visits to router and host
interfaces? Like many standard traceroute implementations,
skitter sends three probe packets for each hop count. An
IP address appears thus in a traceroute result if it replies,
at least, to one of the three probes sent (but it may also
response two or three times). If none of the three probes are
returned, the hop is recorded as non-responding.

Even if an IP address is returned for a given hop count,
it might not be valid. Due to the presence of poorly con-
figured routers along traceroute paths, skitter occasionally
records anomalies such as private IP addresses that are not
globally routable. We account for invalid hops as if they
were non-responding hops. The addresses that we consider
as invalid are a subset of the special-use IPv4 addresses de-
scribed in RFC 3330 [17]. Specifically, we eliminate visits
to the private IP address blocks 10.0.0.0/8, 172.16.0.0/12,
and 192.168.0.0/16. We also remove the loopback address
block 127.0.0.0/8. In our data set, we find 4,435 differ-
ent special addresses, more precisely 4,434 are private ad-
dresses and only one is a loopback address. Special ad-
dresses cover around 3% of the entire considered addresses
set. Though there were no visits in the data to the follow-
ing address blocks, they too would be considered invalid:
the “this network” block 0.0.0.0/8, the 6to4 relay anycast
address block 192.88.99.0/24, the benchmark testing block
198.18.0.0/15, the multicast address block 224.0.0.0/4, and

Figure 1: Quantiles key

the reserved address block formerly known as the Class E
addresses, 240.0.0.0/4, which includes the lan broadcast ad-
dress, 255.255.255.255.

We evaluate the redundancy at two levels. One is the
individual level of a single monitor, considered in isolation
from the rest of the system. This intra-monitor redundancy
is measured by the number of times the same monitor visits
an interface. The other, global, level considers the system
as an ensemble of monitors. This inter-monitor redundancy
is measured by the number of monitors that visit a given in-
terface, counting only once each monitor that has non-zero
intra-monitor redundancy for that interface. By separat-
ing the two levels, we separate the problem of redundancy
into two problems that can be treated somewhat separately.
Each monitor can act on its own to reduce its intra-monitor
redundancy, but cooperation between monitors is required
to reduce inter-monitor redundancy.

2.2 Description of the Plots
In this section, we plot interface redundancy distributions.

Since these distributions are generally skewed, quantile plots
give us a better sense of the data than would plots of the
mean and variance. There are several possible ways to cal-
culate quantiles. We calculate them in the manner described
by Jain [18, p. 194], which is: rounding to the nearest inte-
ger value to obtain the index of the element in question, and
using the lower integer if the quantile falls exactly halfway
between two integers.

Fig. 1 provides a key to reading the quantile plots found
in Figs. 2 and 3 and figures found later in the paper. A
dot marks the median (the 2nd quartile, or 50th percentile).
The vertical line below the dot delineates the range from the
minimum to the 1st quartile, and leaves a space from the 1st

to the 2nd quartile. The space above the dot runs from the
2nd to the 3rd quartile, and the line above that extends from
the 3rd quartile to the maximum. Small tick bars to either
side of the lines mark some additional percentiles: bars to
the left for the 10th and 90th, and bars to the right for the
5th and 95th.

In the case of highly skewed distributions, or distributions
drawn from small amounts of data, the vertical lines or the
spaces between them might not appear. For instance, if
there are tick marks but no vertical line above the dot, this
means that the 3rd quartile is identical to the maximum
value.

In the figures, each quantile plot sits directly above an
accompanying bar chart that indicates the quantity of data
upon which the quantiles were based. For each hop count,
the bar chart displays the number of interfaces at that dis-
tance. For these bar charts, a log scale is used on the vertical

axis. This allows us to identify quantiles that are based upon
very few interfaces (fewer than twenty, for instance), and so
for which the values risk being somewhat arbitrary.

In addition, each plot has a separate bar to the right, la-
beled “all”, that shows the quantiles for all interfaces taken
together (upper part of the plot) and the amount of discov-
ered interfaces (lower part of the plot).

2.3 Intra-monitor Redundancy
Intra-monitor redundancy occurs in the context of the

tree-like graph that is generated when all traceroutes origi-
nate at a single point. Since there are fewer interfaces closer
to the monitor, those interfaces will tend to be visited more
frequently. In the extreme case, if there is a single gateway
router between the monitor and the rest of the internet, the
single IP address of the outgoing interface belonging to that
router should show up in every one of the traceroutes.

We measure intra-monitor redundancy by considering all
traceroutes from the monitor to the shared destinations,
whether there be problems with a traceroute such as ille-
gal addresses, as described in Sec. 2.1, or not.

Having calculated the intra-monitor redundancy for each
interface, we organize the results by the distance of the in-
terfaces from the monitor. We measure distance by hop
count. Since the same interface can appear at a number of
different hop counts from a monitor, for instance if routes
change between traceroutes, we arbitrarily attribute to each
interface the hop count at which it was first visited. This
process yields, for each hop count, a set of interfaces that
we sort by number of visits. We then plot, hop by hop, the
redundancy distribution for interfaces at each hop count.

2.3.1 Results
Fig. 2 shows intra-monitor redundancy quantile distribu-

tions for two representative skitter monitors: arin and cham-

pagne.
Looking first at the histograms for interface counts (lower

half of each plot), we see that these data are consistent with
distributions typically seen in such cases. If we look at a plot
on a linear scale (not shown here) these distributions dis-
play the familiar bell-shaped curve typical of internet inter-
face distance distributions. The distribution for champagne

(shown in Fig. 2(b)) is fairly typical of all monitors1. It rep-
resents the 92,354 unique IP addresses discovered by that
monitor. This value is shown as a separate bar to the right
of the histogram, labeled “all”. The interface distances are
distributed with a mean at 17 hops corresponding to a peak
of 9,135 interfaces that are visited at that distance.

The quantile plots show the nature of the intra-monitor
redundancy problem. Looking first to the bar at the right
hand of each chart, we can see that the distributions are
highly skewed. The lower quantile and the median interface
have a redundancy of one, as evidenced by the lack of a
gap between the dot and the line representing the bottom
quarter of values. However, for a very small portion of the
interfaces there is a very high redundancy. The maximum
redundancy in each case is 150,000 — equal to the number
of destinations multiplied by the three probes sent at each
hop.

Looking at how the redundancy varies by distance, we
see that the problem is worse the closer one is to the moni-

1A full version of this paper, including more plots, is avail-
able online [10]

106

104

102

100

all 35 30 25 20 15 10 5 0

nu
m

be
r o

f i
nt

er
fa

ce
s

hop

106

105

104

103

102

101

100

all

re
du

nd
an

cy

(a) arin

106

104

102

100

all 35 30 25 20 15 10 5 0

nu
m

be
r o

f i
nt

er
fa

ce
s

hop

106

105

104

103

102

101

100

all

re
du

nd
an

cy

(b) champagne

Figure 2: Skitter intra-monitor redundancy

tor. This is what we expect given the tree-like structure of
routing from a monitor, but here we see how serious the phe-
nomenon is from a quantitative standpoint. For the first two
hops from each monitor, the median redundancy is 150,000.
A look at the histograms shows that there are very few inter-
faces at these distances. Just one interface for arin, and two
(2nd hop) or three (3rd hop) for champagne. These interfaces
are only visited three times, as represented by the presence
of the 5th and 10th percentile marks (since there are only
two data points, the lower values point is represented by the
entire lower quarter of values on the plot).

Beyond three hops, the median redundancy drops rapidly.
By the eleventh hop, in both cases, the median is below
ten. However, the distributions remain highly skewed. Even
fifteen hops out, some interfaces experience a redundancy on
the order of several hundred visits. With small variations,
these patterns are repeated for each of the monitors.

From the point of view of planning a measurement sys-
tem, the extreme values are the most worrisome. It is clear
that there is significant duplicated effort, but it is especially
concentrated in selected areas. The problem is most severe
on the first few interfaces, but even interfaces many hops
out receive hundreds or thousands of repeat visits. Beyond

Destinations
Responding 59.7%
Not responding 40.3%

Probes
Interface discovery 10.9%
Invalid addresses 1.5%
No response 0.7%
Redundant 86.6%

Table 1: Additional statistics for champagne

the danger of triggering alarms, there is a simple question
of measurement efficiency. Resources devoted to reprobing
the same interfaces would be better saved, or reallocated to
more fruitful probing tasks.

Table 1 presents additional statistics for champagne. The
first part of the table indicates the portion of destinations
that respond and the portion that do not respond. Fully
40.3% of the traceroutes do not terminate with a destination
response. The second part of the table describes redundancy
in terms of probes sent, rather than from an interface’s per-
spective. Only 10.9% of probes serve to discover a new in-
terface. (Note: in the intra-monitor context, an interface is
considered to be new if that particular monitor has not pre-
viously visited it.) An additional 2.2% of probes hit invalid
addresses, as defined in Sec. 2.1, or do not result in a re-
sponse. This leaves 86.6% of the probes that are redundant
in the sense that they visit interfaces that the monitor has
already discovered. The statistics in this table are typical of
the statistics for every one of the 24 monitors.

2.4 Inter-monitor Redundancy
Inter-monitor redundancy occurs when multiple monitors

visit the same interface. The degree of such redundancy is of
keen interest to us when increasing the number of monitors
by several orders of magnitude is envisaged.

We calculate the inter-monitor redundancy for each inter-
face by counting the number of monitors that have visited
it. A monitor can be counted at most once towards an inter-
face’s inter-monitor redundancy, even if it has visited that
interface multiple times. For a given interface, the redun-
dancy is calculated just once with respect to the entirety of
the monitors: it does not vary from monitor to monitor as
does intra-monitor redundancy. However, what does vary
depending upon the monitor is whether the particular in-
terface is seen, and at what distance. In order to attribute
a single distance to an interface, a distance that does not
depend upon the perspective of a single monitor but that
nonetheless has meaning when examining the effects of dis-
tance on redundancy, we attribute the minimum distance at
which an interface has been seen among all the monitors.

106

104

102

100

all 35 30 25 20 15 10 5 0

nu
m

be
r o

f i
nt

er
fa

ce
s

hop

0

5

10

15

20

25

all

re
du

nd
an

cy

Figure 3: Skitter inter-monitor redundancy

2.4.1 Results
Fig. 3 shows inter-monitor redundancy for the skitter data.
The distribution of interfaces by hop count differs from the

intra-monitor case due to the difference in how we account
for distances. The mean is closer to the traceroute source (9
hops), corresponding to the peak of 19,742 interfaces that
are visited at that distance.

The redundancy distribution also has a very different as-
pect. Considering, first, the redundancy over all of the in-
terfaces (at the far right of the plot), we see that the me-
dian interface is visited by nearly all 24 monitors, which is
a subject of great concern. The distribution is also skewed,
though the effect is less dramatic since the vertical axis is a
linear scale, with only 24 possible values.

We also see a very different distribution by distance. Inter-
faces that are very close in to a monitor, at one or two hops,
have a median inter-monitor redundancy of one. The same
is true of interfaces that are far from all monitors, at dis-
tances over 20, though there are very few of these. What is
especially notable is that interfaces at intermediate distances
(5 to 13) tend to be visited by almost all of the monitors.
Though their distances are in the middle of the distribution,
this does not mean that the interfaces themselves are in the
middle of the network. Many of these interfaces are in fact
destinations. Recall that every destination is targeted by
every host.

3. ALGORITHM
In this section, we present the Doubletree algorithm, our

method for probing the network in a friendly manner while
discovering nearly all the interfaces and links that a classical
tracerouting approach would discover.

Sec. 3.1 describes how Doubletree works. Sec. 3.2 dis-
cusses the results of varying the single parameter of this
algorithm. Sec. 3.3 shows the extent of intra- and inter-
monitor redundancy reduction when using the algorithm.
Finally, Sec. 3.4 describes some features about how Double-
tree could be implemented in reality.

(a) Monitor-rooted

(b) Destination-rooted

Figure 4: Tree-like routing structures

3.1 Description
Doubletree takes advantage of the tree-like structure of

routes in the internet. Routes lead out from a monitor to-
wards multiple destinations in a tree-like way, as shown in
Fig. 4(a), and the manner in which routes converge towards
a destination from multiple monitors is similarly tree-like, as
shown in Fig. 4(b). The tree is an idealisation of the struc-
ture encountered in practice. In reality, paths can separate
and reconverge. Loops can arise. But a tree may be a good
enough first approximation on which to base a redundancy
reduction technique.

A probing algorithm can reduce its redundancy by track-
ing its progress through a tree, as it probes from the direc-
tion of the leaves towards the root. So long as it is probing
in a previously unknown part of the tree, it continues to
probe. But once it encounters a node that is already known
to belong to the tree, it stops. The idea being that the re-
mainder of the path to the root must already be known. In
reality, there is only a likelihood and not a certainty that the
remainder of the path is known. The redundancy saved by
not reprobing the same paths to the root may nonetheless
be worth the loss in coverage that results from not prob-
ing the occasional different path. This is especially true
if lower redundancy allows more frequent probing, increas-
ing the number of network snapshots that can be captured
per unit time. A series of snapshots might capture route
changes, mitigating the effect of missing nodes or links due

to routing changes in the midst of any individual snapshot.
The gains from more frequent snapshots are a subject for
future work.

Doubletree uses both the monitor-rooted and the destination-
rooted trees. When probing backwards from the destina-
tions towards the monitor, it applies a stopping rule based
upon the monitor-rooted tree. The goal in this case is to
reduce intra-monitor redundancy. When probing forwards,
the stopping rule is based upon the destination-rooted tree,
with the goal being to reduce inter-monitor redundancy.
There is an inherent tension between the two goals.

Suppose the algorithm were to start probing only far from
each monitor. Probing would necessarily be backwards. In
this case, the destination-based trees cannot be used to re-
duce redundancy. A monitor might discover, with desti-
nation d at hop h, an interface that another monitor also
discovered when probing with destination d. However this
does not inform the monitor as to whether the interface at
hop h − 1 is likely to have been discovered as well. So it
is not clear how to reduce inter-monitor redundancy when
conducting backwards probing. Further, exclusive use of
backwards probing would mean that destinations will be hit
each time, increasing the risk of probing appearing to be a
DDoS attack.

Similarly, when conducting forwards probing (of the clas-
sic traceroute sort), it is not clear how intra-monitor redun-
dancy can be avoided. Paths close to the monitor will tend
to be probed and reprobed, for lack of knowledge of where
the path to a given destination might diverge from the paths
already seen.

In order to reduce both inter- and intra-monitor redun-
dancy, Doubletree starts probing at what is hoped to be
an intermediate point. For each monitor, there is an initial
hop count h. Probing proceeds forwards from h, to h + 1,
h + 2, and so forth, applying the stopping rule based on
the destination-rooted tree. Then it probes backwards from
h − 1 to h − 2, h − 3, etc., using the monitor-based tree
stopping rule. In the special case where there is no response
at distance h, the distance is halved, and halved again until
there is a reply, and probing continues forwards and back-
wards from that point.

Rather than maintaining detailed information on tree struc-
tures, it is sufficient for the stopping rules to make use of
sets of (interface, root) pairs, the root being the root of
the tree in question, either monitor-rooted or destination-
rooted. We call these sets stop sets. A Doubletree monitor
takes into account one of two different stop sets, depending
on the direction in which it is probing. When probing back-
wards, it uses a stop set B , called the backwards tracing
stop set, or more concisely, the local stop set. As backwards
probing concerns the monitor-rooted tree, the item root of
the pairs is implicit (i.e. it is the monitor itself) and it is
thus not necessary to record it in the local stop set. There-
fore, the local stop set can be more efficiently stored as a
set of interfaces. When probing backwards from a destina-
tion d, encountering an interface in B causes the monitor
to stop and move on to the next destination. Each monitor
also receives another stop set, F , called the forwards tracing
stop set, or more concisely, the global stop set, that con-
tains (interface, destination) pairs. When probing forwards
towards destination d and encountering an interface i, for-
wards probing stops if (i, d) ∈ F . Communication between
monitors is needed in order to share this second stop set.

Algorithm 1 Doubletree

Require: F , the global stop set received by this monitor.
Ensure: F updated with all (interface,destination) pairs

discovered by this monitor.

1: procedure Doubletree(h, D)
2: B ← ∅ . Local stop set
3: for all d ∈ D do . Destinations
4: h← AdaptHValue(h) . Initial hop
5: TraceForwards(h, d)
6: TraceBackwards(h − 1, d)
7: end for
8: end procedure

9: procedure AdaptHValue(h)
10: while ¬response(vh) ∧ h 6= 1 do . vh the interface

discovered at h hops
11: h← h

2
. h an integer

12: end while
13: return h
14: end procedure

15: procedure TraceForwards(i, d)
16: while vi 6= d ∧ (vi, d) /∈ F ∧ ¬halt() do
17: F ← F

S
(vi, d)

18: i + +
19: end while
20: end procedure

21: procedure TraceBackwards(i, d)
22: while i > 1 ∧ vi /∈ B ∧ ¬halt() do
23: B ← B

S
vi

24: F ← F
S

(vi, d)
25: i −−
26: end while
27: end procedure

Only one aspect of Doubletree has been suggested in prior
literature. Govindan and Tangmunarunkit [15] employ back-
wards probing with a stopping rule in the Mercator system,
in order to reduce intra-monitor redundancy. However, no
results have been published regarding the efficacy of this ap-
proach. Nor have the effects on inter-monitor redundancy
been considered, or the tension between reducing the two
types of redundancy (for instance, Mercator tries to start
probing at the destination, or as close to it as possible,
which, as we have seen, is highly deleterious to inter-monitor
redundancy). Nor has any prior work suggested a manner
in which to exploit the tree-like structure of routes that con-
verge on a destination. Finally, no prior work has suggested
cooperation among monitors.

Algorithm 1 is a formal definition of the Doubletree algo-
rithm. It assumes that the following two functions are de-
fined. The response() procedure returns true if an interface
replies to at least one of the probes that were sent. halt() is
a primitive that checks if the probing must be stopped for
different reasons: a loop is detected or a gap (five successive
non-responding nodes) is discovered.

This algorithm has only one tunable value: the initial hop
count h. In the remainder of this section, we explain how to
set this value in terms of a parameter that we call p.

We wish for each monitor to be able to determine a rea-

 0.00
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70
 0.80
 0.90
 1.00

 0 5 10 15 20 25 30 35 40

cu
m

ul
at

iv
e

m
as

s

path length

Figure 5: Lengths of paths from monitor apan-jp

sonable value for h: one that is far enough from the monitor
to avoid excess intra-monitor redundancy, yet not so far as
to generate too much inter-monitor redundancy. Since each
monitor will be positioned differently with respect to the
internet, what is a reasonable hop count for one monitor
might not be reasonable for another. We thus base our rule
for choosing h on the distribution of path lengths as seen in-
dividually from the perspective of each monitor. The general
idea is to start probing at a distance that is rich in inter-
faces, but that is not so far as to exacerbate inter-monitor
redundancy.

Based upon our intra-monitor redundancy studies, dis-
cussed above, we would expect an initial hop distance of
five or more from the typical monitor to be fairly rich in
interfaces. However, we also know that this is a distance at
which inter-monitor redundancy can become a problem. We
are especially concerned about inter-monitor redundancy at
destinations, because this is what is most likely to look like
a DDoS attack.

One parameter that a monitor can estimate without much
effort is its probability of hitting a responding destination at
any particular hop count h. For instance, Fig. 5 shows the
cumulative mass plot of path lengths from monitor apan-jp.
If apan-jp considers that a 0.1 probability of hitting a re-
sponding destination on the first probe is reasonable, it must
chose h = 10. The shape of this curve is very similar for
each of the 24 skitter monitors, but the horizontal position
of the curve can vary by a number of hops from monitor
to monitor. So if we are to fix the probability, p, of hit-
ting a responding destination on the first probe, there will
be different values h for each monitor, but that value will
correspond to a similar level of incursion into the network
across the board.

We have chosen p to be the single independent parameter
that must be tuned to guide Doubletree. In the following
section, we study the effect of varying p on the tension be-
tween inter- and intra-monitor redundancy, and the overall
interface and link coverage that probing with Doubletree
obtains.

3.2 Tuning the Parameter p
This section discusses the effect of varying p. Sec. 3.2.1 de-

scribes our experimental methodology, and Sec. 3.2.2 presents
the results.

3.2.1 Methodology
In order to test the effects of the parameter p on both

redundancy and coverage, we implement Doubletree in a
simulator. We examine the following values for p: between 0
(i.e., forwards probing only) and 0.2, we increment p in steps
of 0.01. From 0.2 to 1 (i.e., backwards probing in all cases
when the destination replies to the first probe), we increment
p in steps of 0.1. As will be shown, the concentration of
values close to 0 allows us to trace the greater variation of
behavior in this area.

To validate our results, we run the simulator using the
skitter data from early August 2004. We assume that Dou-
bletree is running on the skitter monitors, during the same
period of time that the skitter data represents, and imple-
menting the same baseline probing technique described in
Sec. 2.1, of probing up to three times at a given hop dis-
tance. The difference in the application of Doubletree lies
in the order in which Doubletree probes the hops, and the
application of Doubletree’s stopping rules.

A single experiment uses traceroutes from all 24 monitors
to a common set of 50,000 destinations chosen at random.
Each data point represents the mean value over fifteen runs
of the experiment, each run using a different set of 50,000
destinations randomly generated. No destination is used
more than once over the fifteen runs. We determine 95%
confidence intervals for the mean based, since the sample
size is relatively small, on the Student t distribution. These
intervals are typically, though not in all cases, too tight to
appear on the plots.

Doubletree requires communication of the global stop set
from one monitor to another. We therefore choose a random
order for the monitors and simulate the running of Double-
tree on each one in turn. Each monitor adds to the global set
(interface, destination) pairs that it encounters, and passes
it to the subsequent monitor. This is a simplified scenario
compared to the way in which a fully operational coopera-
tive topology discovery protocol might function, which is to
say with all of the monitors probing and communicating in
parallel (see Sec. 3.4). However, we feel that the scenario
allows greater realism in the study of intra-monitor redun-
dancy. The typical monitor in a large, highly distributed
infrastructure will begin its probing in a situation in which
much of the topology has already been discovered by other
monitors. The closest we can get to simulating the experi-
ence of such a monitor is by studying what happens to the
last in our random sequence of monitors. All Doubletree
intra-monitor redundancy results are for the last monitor
in the sequence. (Inter-monitor redundancy, on the other
hand, is monitor independent.)

3.2.2 Results
Since the value p has a direct effect on the redundancy

of destination interfaces, we initially look at the effect of p
separately on destination redundancy and on router inter-
face redundancy. We are most concerned about destination
redundancy because of its tendency to appear like a DDoS
attack, and we are concerned in particular with the inter-
monitor redundancy on these destinations, because a vari-
ety of sources is a prime indicator of such an attack. The
right-side vertical axis of Fig. 6 displays destination redun-
dancy. With regards router interface redundancy, which is
displayed on the left-side vertical axis, we are concerned with
overall load, and so we consider a combined intra- and inter-

 300

 350

 400

 450

 500

 550

 600

 0 0.2 0.4 0.6 0.8 1
 0

 5

 10

 15

 20

 25

ro
ut

er
 g

ro
ss

 re
du

nd
an

cy

de
st

in
at

io
n

re
du

nd
an

cy

p

interface
destination

Figure 6: Doubletree redundancy, 95th percentile.
Inter-monitor redundancy on destinations, gross re-
dundancy on router interfaces.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

co
ve

ra
ge

 in
 c

om
pa

ris
on

 to
 s

ki
tte

r

p

nodes
links

Figure 7: Link and nodes coverage in comparison to
classic probing

monitor redundancy measure that we call gross redundancy,
that counts the total number of visits to an interface. For
both destinations and router interfaces, we are concerned
with the extreme values, so we consider the 95th percentile.

As expected the 95th percentile inter-monitor redundancy
on destinations increases with p. Values increase until p =
0.5, at which point they plateau at 24. The point p = 0.5
is, by definition, the point at which the probe sent to a dis-
tance h hits a destination in 50% of the cases. Doubletree
allows a reduction in 95th percentile inter-monitor redun-
dancy when compared to classical probing for lower values
of p. The maximum reduction is 84% when p = 0, implying
pure forward probing.

As opposed to destination redundancy, the 95th percentile
gross router interface redundancy decreases with p. The 95th

percentile for the internal interface gross redundancy using
the classical approach is 1340. Doubletree thus allows a
reduction between 59.6% (p = 0) and 72.6% (p = 1).

This preliminary analysis suggests that Doubletree should
employ a low value for p, certainly below 0.5, in order to re-
duce inter-monitor redundancy on destinations. This is a
very different approach than that taken by Mercator, which
attempts to hit a destination every time. On the other hand,
too low a value will have a negative impact on router inter-
faces. We now examine other evidence that will bear on our
choice of p.

105

106

107

108

 0 0.2 0.4 0.6 0.8 1

nu
m

be
r o

f p
ro

be
s

se
nt

p

min probes for interface discovery

min probes for link discovery

nb probes for skitter

Figure 8: Number of probes sent

Fig. 7 illustrates the effects of p on the node and link cov-
erage percentage in comparison to classic probing. As we
can see, the coverage increases with p but a small decrease
is noticed for values of p greater than 0.7. The maximum
coverage is reached approximatively when p = 0.7: Dou-
bletree discovers 92.9% of links and 98.1% of nodes. The
minimum of coverage appears when p = 0: 76.8% of links
and 89.3% of nodes. However, link coverage grows rapidly
for p values between 0 and 0.4. After that point, a kind of
plateau is reached, before a small decrease.

Fig. 7 shows that the information (i.e. links and nodes)
discovery of our algorithm is relatively high, especially for
non zero values of p.

Fig. 8 shows the effects of p on the number of probes sent.
The horizontal axis indicates the value for p. The vertical
axis represents the number of probes sent. If we consider an
ideal system in which each probe sent visits a new interface
(i.e., there is no redundancy), the number of probes sent
to discover all the interfaces will be 131,476 (i.e., the mean
number of different interfaces in the data set). This bound
is shown by the lowest horizontal line. If, on the other hand,
the ideal system is also able to discover links without any
link redundancy, but incurring the necessary interface re-
dundancy, then it should send, on average, 279,799 probes.
This is the second horizontal line shown in the plot. At
the other extreme, if our system works like skitter, it sends
54,634,841 probes. This is represented by the highest hori-
zontal line. With Doubletree, the number of probes needed
varies between 32,652,958 (i.e., a reduction of 40.3% in com-
parison to the classical approach) and 13,230,106 (i.e., a re-
duction of 75.8% in comparison to the classical approach).
This minimum is reached when p = 0.15.

The results presented in this section are important in the
case of a highly distributed measurement tool. They demon-
strate that it is possible to probe in a network friendly man-
ner while maintaining a very high level of topological infor-
mation gathered by monitors.

The results in this section permit us to identify a range
of values for which a good compromise between redundancy
reduction and high level of coverage is possible. For the
remainder of this paper, we consider p values in the range
from 0.05 to 0.2.

106

104

102

100

all 35 30 25 20 15 10 5 0

nu
m

be
r o

f i
nt

er
fa

ce
s

hop

106

105

104

103

102

101

100

all

re
du

nd
an

cy

Figure 9: Intra-monitor redundancy for the
champagne monitor with p = 0.05.

3.3 Redundancy Reduction
In this section, we study the effects of Doubletree on

the intra- and inter-monitor redundancy compared to re-
dundancy in skitter, as presented in Sec. 2. Sec. 3.3.1 de-
scribes our methodology. Sec. 3.3.2 presents the intra- and
Sec. 3.3.3 the inter-monitor redundancy reduction.

3.3.1 Methodology
We use the simulator to study the effects of Doubletree on

intra- and inter-monitor redundancy. Again, for comparison
reasons, we use the same data set as in Sec. 2.

The plots are presented in the same way as in Sec. 2.
However, the lower part of the graphs, the histograms, con-
tain additional information. The bars are now enveloped by
a curve. This curve indicates, for each hop, the quantity
of nodes discovered while using the classical method. The
bars themselves describe the number of nodes discovered us-
ing Doubletree. Therefore, the space between the bars and
the curve represents the quantity of nodes exploration with
Doubletree misses.

In Sec. 3.2, we identify a range of p values for which re-
dundancy is relatively low and coverage is relatively high.
We run simulations for p = 0.05, p = 0.1, p = 0.15 and
p = 0.2 and study the effects on inter- and intra-monitor
redundancy reduction. Having found the the differences be-
tween the results for these values of p to be small, we present
only the results for p = 0.05 in this section.

3.3.2 Intra-monitor
Fig. 9 shows intra-monitor redundancy when using Dou-

bletree with p = 0.05 for a representative monitor: champagne.
First of all, we note that, using Doubletree, champagne

is able to elicit 97% of the interfaces in comparison to the
classical method.

Looking to the right part of the plot first, we note that
the median redundancy is 3. It is somewhat higher than
for the classical method. As in the classical approach, for a
very small number of interfaces there is a high redundancy.
With Doubletree the maximum is only 750. Compared to
the 150,000 in the classical approach, there is a reduction of
99.5%.

Looking now at how the redundancy varies by distance,
we note a strong reduction for Doubletree with respect to

106

104

102

100

all 35 30 25 20 15 10 5 0

nu
m

be
r o

f i
nt

er
fa

ce
s

hop

0

5

10

15

20

25

all

re
du

nd
an

cy

Figure 10: Inter-monitor redundancy with p = 0.05.

classical approaches for the median values close to the mon-
itor. (see, for comparison, Fig. 2(b)). Somewhat further
out, the reduction is somewhat less pronounced Finally, we
note that high quantiles for hops far from the source have
somewhat higher values than for the classical method. The
strong drop in redundancy close to the monitor thus comes
at the expense of some increased redundancy further out.
The overall effect is one of smoothing the load.

3.3.3 Inter-monitor
Fig. 10 shows inter-monitor redundancy when using Dou-

bletree with p = 0.05.
We first analyse the lower part of the graph. The distri-

bution of hop counts for interfaces shows that most of the
undiscovered interfaces are far from the source. As most of
these nodes are only visited by a single monitor (see Fig. 3),
due to the nature of the global stop set and the stop rule, the
risk of missing them is very high. Probably, with a higher
value for p, probing with Doubletree would have elicited
them. However, this solution would raise the redundancy
for destinations, as explained in Sec. 3.2.2. Those undiscov-
ered nodes are, in a certain sense, the price to pay to reduce
the redundancy. This demonstrates the inherent tension in
the topology discovery problem.

If we compare Fig. 10 with Fig. 3, we can see that the
redundancy is strongly reduced. The highest value for the
median is only 6. For the classical method, it is equal to
23. Furthermore, the highest quantiles between hop 4 and
13 are more dissipated.

Finally, the right part of the graph, called all, indicates
that the median value is 2. If we compare with Fig. 3, where
the median equals 22, we note that Doubletree allows a very
strong reduction in inter-monitor redundancy.

3.4 Deploying Doubletree
Until now, we have considered a simplified application of

Doubletree, where each monitor probes the destination list
in turn and, at the end of the process, sends its global stop
set to the next monitor. This round robin process is not nec-
essarily what one might wish in reality because it is too re-
strictive and too slow. Further, for our simulations, we had,
a priori, full knowledge of path lengths, making possible an
accurate choice for each monitor of the h value correspond-
ing to the chosen p. In practice, such knowledge would need
to be learned. In this section, we aim to explain the way

Doubletree can be implemented in reality. We also indicate
how to improve the communication between monitors.

The round robin process of exploring path is not suitable.
It is preferable that all monitors perform their exploration
in parallel. However, how would one manage the global stop
set if it were being updated by all the monitors at the same
time, with the attendant risk of re-exploring paths?

An easy way to tackle this problem is to divide the des-
tinations list into subsets. Each subset is investigated by
a different monitor. When a monitor finishes probing its
destination subset, it sends its global stop set back to a cen-
tralized server. The centralized server merges all the global
stop sets and distributes it to all monitors. Next, the mon-
itors exchange their destinations subsets. This process is
performed until each monitor has probed each destination
subset.

An operational system implementing Doubletree cannot
choose the value h as a function of p a priori, as we did in
our experiments. It can be, however, easily compute h in the
beginning by using an iterative process before probing the
destinations. It simply needs to ping a certain number (high
enough) of destinations to get path lengths, compute the
cumulative mass distribution based on this sample and then,
decide the h value according to a value of p belonging to the
range [0.05, 0.2]. This method implies a small additional
load on destinations. A trade-off must be made between the
accuracy of the parameter h and the load on destinations.

One possible obstacle to successful deployment of Double-
tree concerns the communication overhead from sharing the
global stop set among monitors. Tracing from 24 monitors
to just 50,000 destinations with p = 0.05 produces a set of
2.7 million (interface, destination) pairs. As pairs of IPv4
addresses are 64 bits long, an uncompressed stop set based
on these parameters requires 20.6MB.

A way to reduce this communication overhead is to use
Bloom filters [5] to implement the global stop set. A Bloom
filter summarizes information concerning a set in a bit vec-
tor that can then be tested for set membership. An empty
Bloom filter is a vector of all zeroes. A key is registered in
the filter by hashing it to a position in the vector and setting
the bit at that position to one. Multiple hash functions may
be used, setting several bits set to one. Membership of a key
in the filter is tested by checking if all hash positions are set
to one. A Bloom filter will never falsely return a negative
result for set membership. It might, however, return a false
positive. For a given number of keys, the larger the Bloom
filter, the less likely is a false positive. The number of hash
functions also plays a role.

In an extension [9] of the work described here, we show
that, when p = 0.05, using a bit vector of size 107 and five
hash functions allow nearly the same coverage level as a list
implementation of the global stop set while reducing only
slightly the redundancy on both destinations and internal
interfaces and yielding a compression factor of 17.3.

4. CONCLUSION
In this paper, we quantify the amount of redundancy in

classical internet topology discovery approaches by taking
into account the perspective from the single monitor (intra-
monitor) and that of the entire system (inter-monitor). In
the intra-monitor case, we find that interfaces close to the
monitor suffer from a high number of repeat visits. We
also show that only 10.9% of probes serve to discover a new

interface. Concerning inter-monitor redundancy, we see that
a large portion of interfaces are visited by all monitors.

In order to scale up classical approaches such as skit-
ter, we have proposed Doubletree, an algorithm that sig-
nificantly reduces the duplication of effort while discovering
nearly the same set of nodes and links. Doubletree simulta-
neously meets the conflicting demands of reducing intra- and
inter-monitor redundancy. We describe how to tune a single
parameter for Doubletree in order to obtain an acceptable
trade-off between redundancy and coverage.

For a range of p values, Doubletree is able to reduce mea-
surement load by approximately 76% while maintaining in-
terface and link coverage above 90%.

Doubletree introduces communication between monitors.
We pointed out that the communication cost required may
be a brake to the wide deployment of Doubletree. To address
the problem of bandwidth consumption, we introduce an
extension [9] to this work in which we propose to encode
this communication through the use of Bloom filters.

Our extension to this work also considers the fact that a
probing technique that starts probing at a hop h far from the
monitor has a non zero probability p of hitting a destination
with its first probe. This has serious consequences when
scaling up the number of monitors. Indeed, the average
impact on destinations will grow linearly as a function of
m, the number of monitors. As m increases, the risk that
probing will appear to be a DDoS attack will grow. We
started to investigate techniques for dividing up the monitor
set and the destination set into subsets that we call clusters
[9]. For future work, we aim to investigate a process where
this affectation will be based on topological criteria.

This implies, however, to have a topology with a larger
number of monitors. To achieve that, we are starting to
implement Doubletree in order to test it on a middle-size
infrastructure (on the order of a few hundred monitors).

Finally, we plan to improve Doubletree in order to allow
topology discovery at the IP interface level guided by BGP.
We believe that a Doubletree monitor can profitably make
use of higher level information, such as the AS topology.

Acknowledgments
Without the skitter data provided by kc claffy and her team
at CAIDA, this research would not have been possible. They
also furnished much useful feedback. Marc Giusti and his
team at the Centre de Calcul MEDICIS, Laboratoire STIX,
Ecole Polytechnique, offered us access to their computing
cluster, allowing faster and easier simulations. Finally, we
are indebted to our colleagues in the Networks and Perfor-
mance Analysis group at LiP6, headed by Serge Fdida, and
to our partners in the traceroute@home project, José Ig-
nacio Alvarez-Hamelin, Alain Barrat, Matthieu Latapy and
Alessandro Vespignani, for their support and advice.

5. REFERENCES
[1] A. Schmitt et al. La météo du net, ongoing service.

See: http://www.grenouille.com/.

[2] S. Agarwal, L. Subramanian, J. Rexford, and R. Katz.
Characterizing the internet hierarchy from multiple
vantage points. In Proc. IEEE INFOCOM, June 2002.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@home: An experiment in
public-resource computing. Communications of the

ACM, 45(11):56–61, Nov. 2002. See also the
SETI@home project:
http://setiathome.ssl.berkeley.edu/.

[4] Y. Bejerano and R. Rastogi. Robust monitoring of
link delays and faults in IP networks. In Proc. IEEE
Infocom, Mar. 2003.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[6] A. Broido and k. claffy. Internet topology:
Connectivity of IP graphs. In Proc. SPIE
International Symposium on Convergence of IT and
Communication, 2001.

[7] B. Cheswick, H. Burch, and S. Branigan. Mapping
and visualizing the internet. In Proc. USENIX Annual
Technical Conference, 2000.

[8] A. Clauset and C. Moore. Traceroute sampling makes
random graphs appear to have power law degree
distributions. arXiv:cond-mat/0312674 v3 8 Feb. 2004.

[9] B. Donnet, T. Friedman, and M. Crovella. Improved
algorithms for network topology discovery. In Proc. of
Passive and Active Measurement Workshop (PAM),
Mar. 2005.

[10] B. Donnet, P. Raoult, T. Friedman, and M. Crovella.
Efficient algorithms for large-scale topology discovery.
2004. arXiv:cs.NI/0411013. See also the
traceroute@home project:
http://www.tracerouteathome.net/.

[11] P. Erdös and A. Rényi. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17–61,
1960.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proc. ACM SIGCOMM, 1999.

[13] L. Gao. On inferring autonomous system relationships
in the internet. In Proc. IEEE Global Internet
Symposium, Nov. 2000.

[14] F. Georgatos, F. Gruber, D. Karrenberg,
M. Santcroos, A. Susanj, H. Uijterwaal, and
R. Wilhelm. Providing active measurements as a
regular service for ISPs. In Proc. PAM, 2001. See also
the RIPE NCC TTM service:
http://www.ripe.net/test-traffic/.

[15] R. Govindan and H. Tangmunarunkit. Heuristics for
internet map discovery. In Proc. IEEE Infocom, 2000.

[16] B. Huffaker, D. Plummer, D. Moore, and k. claffy.
Topology discovery by active probing. In Symposium
on Applications and the Internet, Jan. 2002.

[17] IANA. Special-use IPv4 addresses. RFC 3330, Internet
Engineering Task Force, Sep. 2002.

[18] R. K. Jain. The Art of Computer Systems
Performance Analysis. John Wiley, 1991.

[19] K. Keys. iffinder. A tool for mapping interfaces to
routers. See http:

//www.caida.org/tools/measurement/iffinder/.

[20] A. Lakhina, J. Byers, M. Crovella, and P. Xie.
Sampling biases in IP topology measurements. In
Proc. IEEE Infocom, 2003.

[21] D. Magoni and J. J. Pansiot. Analysis of the
autonomous system network topology. ACM
SIGCOMM Computer Communication Review,
31(3):26 – 37, Jul. 2001.

[22] A. McGregor, H.-W. Braun, and J. Brown. The
NLANR network analysis infrastructure. IEEE
Communications Magazine, 38(5):122–128, May 2000.
See also the NLANR AMP project:
http://watt.nlanr.net/.

[23] J. J. Pansiot and D. Grad. On routes and multicast
trees in the internet. ACM SIGCOMM Computer
Communication Review, 28(1):41–50, Jan. 1998.

[24] Y. Shavitt. DIMES. Distributed Internet
Measurements & Simulations. See:
http://www.netdimes.org/.

[25] R. Siamwalla, R. Sharma, and S. Keshav. Discovering
internet topology. Technical report, Cornell University,
July 1998.

[26] C. R. Simpson, Jr. and G. F. Riley. NETI@home: A
distributed approach to collecting end-to-end network
performance measurements. In Proc. PAM, 2004. See
also the NETI@home project:
http://www.neti.gatech.edu/.

[27] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP topologies with Rocketfuel. In Proc. ACM
SIGCOMM, 2002.

[28] H. Tangmunarunkit, J. Doyle, R. Govindan, S. Jamin,
and S. Shenker. Does AS size determine degree in AS
topology? In ACM SIGCOMM Computer
Communication Review, volume 31, Oct. 2001.

[29] R. Teixeira, K. Marzullo, S. Savage, and G. Voelker.
In search of path diversity in ISP networks. In Proc.
Internet Measurement Conference (IMC), 2003.

[30] V. Jacobsen et al. traceroute. man page, UNIX, 1989.
See source code:
ftp://ftp.ee.lbl.gov/traceroute.tar.gz, and
NANOG traceroute source code:
ftp://ftp.login.com/pub/software/traceroute/.

