
A Prototyping Environment for Wireless
Multihop Networks

Fehmi Ben Abdesslem1, Luigi Iannone2, Marcelo Dias de Amorim1, Katia
Obraczka3, Ignacio Solis4, and Serge Fdida1

1 Université Pierre et Marie Curie – Paris 6
2 Université Catholique de Louvain

3 University of California at Santa Cruz
4 Palo Alto Research Center

Abstract. Relative to the impressive number of proposals addressing
the multitude of challenges raised by IEEE 802.11-based wireless net-
works, few have known real implementation. In wireless networks, due
especially to the unpredictable nature of the wireless channel, bridging
theory and practice is far from trivial. In this paper, we advocate includ-
ing prototyping in the design process of wireless protocols. The goal is
to speed up the design process and to help validating novel solutions un-
der real conditions. To this end, we introduce Prawn, a tool that allows
rapid prototyping of wireless network protocols. The basic idea behind
Prawn is to provide a set of basic building blocks that implement common
functionalities needed by a wide range of wireless protocols (e.g., neigh-
bor discovery, link quality assessment, message transmission and recep-
tion). Besides these ready-to-use blocks, Prawn also provides a standard
API that allows protocol designers easy access to the Prawn primitives.
Through a number of examples, we showcase Prawn as a simple, yet
powerful tool for fast prototyping of wireless network protocols.

1 Introduction

Designing protocols for wireless networks poses countless technical challenges
due to a variety of factors such as node mobility, node heterogeneity, and power
limitations. Furthermore, the characteristics of the wireless channel are non-
deterministic and can be highly variable in space and time. This implies that
testing and evaluating such protocols under real operating conditions is crucial
to ensure adequate functionality and performance.

In fact, the networking research community has already acknowledged the
importance of testing and evaluating wireless protocol proposals under real-
world conditions. As a result, over the last few years, a number of testbeds, such
as Orbit [1], Roofnet [2], and MiNT-m [3], as well as implementation tools, such
as Click [4] and XORP [5], have been developed to support the deployment and
evaluation of wireless protocols under realistic scenarios.

When designing communication systems, and before the final version, there
are mainly three evaluation methodologies commonly used, namely mathemat-
ical analysis, simulation, and emulation, all of them using a synthetic virtual

Table 1: Introducing a prototyping step.

Implementation Emulation Simulation Prototyping

Code Real Real Synthetic Synthetic

Medium Real Synthetic Synthetic Real

Examples Click, Roofnet Empower NS-2 Prawn

environment. Evaluation in real environment is done by producing a real im-
plementation of the protocol, with or without the help of implementation tools.
Moving to this second step requires non-negligible programming skills and time.

In this paper, we go a step further and advocate including rapid prototyp-
ing as an integral part of the design process (cf., Table 1). We postulate that
what is needed is a tool that makes prototyping as quick, easy, and effortless as
possible. To this end, we introduce Prawn (PRototyping Architecture for Wire-
less Networks), a novel software environment for prototyping high-level (i.e.,
network layer and above) wireless network protocols.5 On the one hand, rapid
prototyping is complementary to current testbeds and tools, which are typically
used to produce a beta version of the final implementation. On the other hand,
rapid prototyping enables performing correctness verification, functionality, and
performance tests under real operating conditions early enough in the design
cycle that resulting feedback and insight can be effectively incorporated into the
design.

Prototypes implemented with Prawn are not expected to be optimized, of-
fering edge performance. Rather, our focus with Prawn is on obtaining, quickly
and with little effort, a complete and fully functional instantiation of the system,
in order to gain a first insight into its behavior in real conditions. Prawn makes
prototyping as simple as writing network simulation scripts, with the difference
that testing is done under realistic conditions. Assessing these conditions is done
through the Prawn Engine, which runs as a background process that proactively
performs tasks such as neighbor discovery and link quality assessment. This fea-
ture allows Prawn to provide accurate and up-to-date feedback from the wireless
interface.

As shown by the several case studies presented in this paper, Prawn proto-
types can be used for functional assessment as well as both absolute and compar-
ative performance evaluation. Once the prototype has been extensively tested
and thoroughly validated, and its functional design tuned accordingly, it is then
ready for final implementation (which is out of the scope of Prawn).

The remainder of this paper is organized as follows. We put our work on
Prawn in perspective by reviewing related work in the next section. Section 3
provides an overview of Prawn, while in Sections 4 and 5 we describe Prawn’s
two main components in detail. Then we present in Section 6 a number of case

5 Currently, Prawn targets IEEE 802.11 networks, although its design can be extended
to run atop other wireless network technologies.

studies showing how Prawn makes prototyping rapid and simple. Finally, we
present our concluding remarks and directions for future work in Section 7.

2 Related Work

Simulations are perhaps the most widely used methodology for evaluating net-
work protocols. They allow designers to evaluate the system at hand under a
wide range of parameters like different mobility models and node heterogene-
ity, but only under synthetic channel models. Simulation has the advantage of
allowing the exploration of the design space by enabling designers to vary in-
dividual protocol parameters (e.g., timers) and combinations thereof. Finally,
they are instrumental for scalability analysis and they offer reproducibility. Ex-
amples of well-known simulation platforms include NS-2 [11], GloMoSim [12],
and OPNET [13].

Emulation tries to subject the system under consideration to real inputs
and/or outputs. Environments like EMPOWER [14] or Seawind [15] emulate the
wireless medium by introducing packet error rates and delays. Other emulators
like m-ORBIT [16] also emulate node mobility by space switching over a testbed
of fixed nodes. A key advantage of emulation in the context of wireless/mobile
networks is to facilitate testing by avoiding, for example, geographic and mobility
constraints required for deployment.

More recently, a number of projects have pioneered the field of wireless proto-
col evaluation under real conditions. They include testbeds such as Orbit [1], and
Roofnet [2] as well as tools that support protocol implementation like Click [4]
and XORP [5]). As previously pointed out, such tools and Prawn have different
goals, address different phases of the design process, and are therefore comple-
mentary. While tools like Click and XORP targets the implementation at the
final stages of protocol design, Prawn focuses on prototyping a research proposal
at the very early stages of the design process. Therefore, through Prawn, pro-
tocol designers can very quickly and easily generate a fully functional, although
non-optimized, implementation for live testing in real scenarios.

3 Basic design

Prawn targets prototyping protocols and services at the network layer and above.
Simplicity was a major goal we had in mind when designing Prawn; we wanted
to ensure that learning how to use Prawn would be as intuitive and immediate as
possible requiring only basic programming expertise. Our focus was to provide:
(1) a concise, yet complete set of functions to realize high-level protocols and (2)
a simple, easy-to-use interface to provide access to Prawn’s functionalities.

Architecture. Prawn consists of two main components: (i) the Prawn Library
(cf., Section 4), which provides high-level primitives to send and receive mes-
sages, retrieve information from the network, etc; and (ii) the Prawn Engine
(cf., Section 5), which implements the primitives provided by the Prawn Library.

Fig. 1: Prawn graphic user interface.

Prawn is distributed under GPL license. The current implementation runs
on Linux atop IP for backward compatibility with the global Internet. The inter-
action between the Prawn Engine and the physical wireless device relies on the
Wireless Tools [6]. This set of tools allows retrieving information from most wire-
less devices as well as setting low-level parameters. Furthermore, it is available
with most Linux distributions.

Prawn’s functionalities are accessible through the Prawn Library. Messages
and requests received from the library are then processed by the Prawn Engine.
The Prawn Library and the Prawn Engine communicate with each other through
the loop-back interface using a simple request/reply mechanism. This choice
simplifies modularity and portability.

Using Prawn. Running Prawn requires only few basic steps. First, it needs to
be configured and installed on the machines that will be used in the experiments.
In particular, in the Prawn configuration file it is necessary to set the names of
the wireless interface and network (e.g., the ESSID). Optionally an IP address
can be specified. Otherwise, Prawn will randomly generate an IP address in a
default subnetwork.

Using Prawn itself only requires two operations: executing the Prawn Engine
and including the Prawn Library in the prototype code. The Prawn Engine
(described in detail in Section 5) is launched as a command line program on
machines connected in “ad hoc” mode. Prawn is supposed to run in daemon

mode, but can run in console mode for debugging purposes. As stated before,
Prawn provides a number of options that can be set/configured at the execution
of the Prawn Engine. They are listed in Table 2. Other options are tunable in
the prawn.cfg configuration file.

The Prawn Library (described in detail in Section 4) is composed of a set
of primitives that are linked to the prototype through standard include files.
Currently, prototypes can be developed either in C, Perl, or Java. For C devel-
opment, the file prawn.h should be included in the header of the prototype code.
Similarly, the file prawn.pl is to be included for prototypes developed in Perl,
and the Prawn class methods can be used for prototypes developed in Java.

A graphic user interface is also available to monitor the neighborhood and
to edit/run Perl scripts of Prawn prototypes (Figure 1).

Example. To illustrate the use of Prawn, we describe how to implement a simple
“hello world” prototype using Prawn’s Perl library. In this example we send a
message from Bob to Alice.

1. Launch Prawn with “prawn -d -N Bob” in the first machine and “prawn
-d -N Alice” in the second machine.

2. Get the first machine ready to receive messages by executing the following
Perl script:
require "prawn.pl";
while(!@Message){
@Message=Prawn Receive();
}
print ’Received : ’.$Message[4].’ from ’.$Message[2]."\n";

3. On the other machine launch the following Perl script:
require "prawn.pl";
Prawn Send("Hello World!","Bob");

The result is trivial: Alice sends a “Hello World” message to Bob, and Bob
prints “Received: Hello World from Alice” on the screen. This simple exam-
ple aims at showing the level of abstraction provided by Prawn, where low-level
system knowledge (e.g., sockets, addressing) is not required. More elaborated
examples, using the advanced features of Prawn, will be presented in Section 6.

4 The Prawn Library

The Prawn Library, currently implemented in C, Perl and Java, provides a set of
high-level communication-oriented functions. They hide from protocol designers
lower-level features such as addressing, communication set-up, etc. Their syntax
is quite simple and intuitive. Prawn’s current set of primitives addresses basic
functions required when prototyping a high-level communication protocol. Nev-
ertheless, Prawn was designed to be easily extensible allowing new primitives to
be implemented and integrated. The primitives currently available are:

Table 2: Prawn’s command line options.

Option Parameter Default

-N name node ID hostname

-b period beacon period in ms 10000

-h help –

-d daemon mode –

-v verbose mode –

-vv more verbose –

-p port neighbor port 3010

-c port client port 3020

-i I uses wireless interface I ath0

-P set transmit power level –

-n no power control features –

-W window window size for PER 5

-V version –

– Prawn Info(): Returns information on the configuration of the local Prawn
Engine. Basically, it consists of the list of settings chosen when launching
the daemon (cf., Table 2). Some examples are the node’s ID, interface port
number, and beacon period.

– Prawn Neighbors(): Returns the list of the node’s one-hop and two-hop
neighbors as well as statistics concerning the quality of the respective links.
In Section 5, a thorough explanation of the information returned by the
Prawn Engine will be given.

– Prawn Send(Message, ID, TX Pwr): Sends Message to node ID; the optional
argument TX Pwr can be used to explicitly set the transmit power to be used
during the transmit. Message can be a string, a number, a data structure,
or any other data or control message, depending on the prototyped protocol

– Prawn Send Broadcast(Message, TX Pwr): Sends a broadcast message con-
taining Message; in a similar way to Prawn Send(), the optional argument
TX Pwr allows to set the transmit power.

– Prawn Receive(): Checks if a message has been received; if so, the message
is returned. This primitive is non-blocking: if no message has been received,
it just returns zero.

5 The Prawn Engine

The Prawn Engine is event-driven, i.e., its main process remains asleep waiting
for an event to occur. An event can be triggered by a request from the Prawn
Library (coming through the loop-back interface) or by a message received on
the wireless interface. Meanwhile, local neighborhood discovery is performed
through beacon and feedback packets.

0 15 16 31
+--------+--------+--------+--------+
| Type | Power | |
+--------+--------+ +
| |
+ Transmitter ID +
| |
+ +--------+--------+
| | Beacon Period |
+--------+--------+--------+--------+
| MAC Address |
+ +--------+--------+
| | Sequence Number |
+--------+--------+--------+--------+

Fig. 2: Prawn beacon packet format.

0 15 16 31
+--------+--------+--------+--------+
| Type | Unused | |
+--------+--------+ +
| |
+ Destination ID +
| |
+ +--------+--------+
| |Min T.P.|Max RSSI|
+--------+--------+--------+--------+

Fig. 3: Prawn feedback packet format.

5.1 Beaconing

To build and maintain the list of neighbors, each node running Prawn broad-
casts 24-byte beacons periodically. The beacon period is configurable depending
on the requirements of the prototype under development. By default, the Prawn
Engine is configured to test connectivity under different power levels (useful for
instance to prototype topology control algorithms based on power control [7,8]).
The Prawn Engine applies a round-robin policy to continuously change the trans-
mit power. A beacon is first broadcast with the lowest power value. The transmit
power level is successively increased for each beacon; up to the maximum trans-
mit power. We call this sequence of beacons a cycle. The different values of the
transmit power are either obtained from the interface or set by the user. This
cycle is then repeated at every beacon period. This way, the time elapsed be-
tween two beacons sent with the same transmit power is equal to the beacon
period.

The power control feature is optional, depending on the designer’s needs. If
this feature is disabled, each cycle is then composed of only one beacon, sent at
the default transmit power level. The number of transmit power levels and their
values are customizable, depending on the power control features provided by
the wireless interface under utilization.

The beaconing packet format, which is illustrated in Figure 2, includes the
following fields:

– Type: This field is set to ‘1’.
– Transmit Power: Transmit power used to send the beacon.
– Transmitter ID: Sender identifier.
– Beacon Period: Time period between two beacons transmitted with the

same power level.
– MAC Address: MAC address of the transmitter.
– Sequence Number: Sequence number of the beacon.

Upon the reception of a beacon (or sequence of beacons if different transmit
powers are used), various statistics can be derived. For instance, a node A can

determine, at a given point in time, the minimum transmit power that B should
use to send messages to A. This value corresponds to the lowest transmit power
among all the beacons received by A from B. Of course, the minimum transmit
power may change over time, and will be updated along the successive cycles.

Configuring Prawn is important to achieve an adequate balance between
performance and overhead. For example, sending beacons too frequently would
generate high overhead. On the other hand, limiting the number of beacons is
likely to result in out-of-date measures. For these reasons, the beaconing period
is one of Prawn’s customizable parameters and its value is carried in the header
of each beacon sent. A beacon is considered lost when the beaconing period
(included in previous received beacons) times out. By default, a neighbor is
removed from a node’s neighbor table when three consecutive beacons from this
neighbor have been lost (or when three consecutive beacons for every transmit
power have been lost).

5.2 Replying to Beacons

Nodes reply to beacons using 16-byte feedback packets, as shown in Figure 3.
Feedback packets summarize neighborhood– and link quality information as per-
ceived by the receiver of the beacons. This feature allows verifying the bidirec-
tionality of links. Feedback packets are sent to every neighbor after a complete
cycle.6 Prawn keeps sending feedback packets also in the case where a neighbor
is considered lost (a unidirectional link may still exist between the two nodes).
Feedback packets contain the following fields:

– Type: This field is set to ‘3’.
– Destination ID: Identifier of the neighbor concerned by the feedback.
– Minimum Received Transmit Power: Is the transmit power of the beacon

received with the weakest signal strength from that particular neighbor.
– Maximum Received Power Strength (in dBm): Is the maximum signal strength

measured when receiving beacons from that particular neighbor.

The rationale for reporting the transmit power of the weakest beacon received
from a particular neighbor is that it allows to roughly characterize the quality
of the corresponding link. This estimation is also confirmed using the maximum
received signal strength measured within a cycle.

Although destined to a single neighbor, feedback packets are broadcast and
thus overheard by all one-hop neighbors. This way, nodes can obtain information
on two-hop neighborhood (cf., Figure 4).

5.3 Getting Information from Prawn

When a node calls the Prawn Neighbors() primitive, the Prawn Engine returns
a data structure with information about the node’s neighborhood. This informa-
tion can be also obtained by running Prawn in console mode, e.g., for debugging
6 Note that if the power control feature is disabled, then the cycle is unitary.

=================== Neighbor List for node BOB ====================

===

2F6D Active 00:40:96:A9:2F:6D Beacon period : 10000 JOHN

 Weakest beacon received by this neighbor : 1 mW

 1mW Active @9860 R 0 S 9 B 9 [0.015848932 nW (-78 dBm)] 4/5

12mW Active @9861 R 0 S 9 B 9 [0.079432823 nW (-71 dBm)] 4/5

21mW Active @9863 R 0 S 9 B 10 [0.199526231 nW (-67 dBm)] 5/5

29mW Active @9865 R 0 S 9 B 10 [0.501187234 nW (-63 dBm)] 5/5

60mW Active @9856 R 0 S 8 B 10 [1.995262315 nW (-57 dBm)] 5/5

2hop-Neighbors : ALICE (1 mW, -55 dBm) JACK (1 mW, -62 dBm)

===

===

30A7 Active 00:40:96:A9:30:A7 Beacon period : 10000 ALICE

 Weakest beacon received by this neighbor : 1 mW

 1mW Active @9857 R 0 S 9 B 9 [0.158489319 nW (-68 dBm)] 5/5

12mW Active @9859 R 0 S 9 B 10 [0.794328235 nW (-61 dBm)] 5/5

21mW Active @9860 R 0 S 9 B 10 [1.995262315 nW (-57 dBm)] 5/5

29mW Active @9862 R 0 S 9 B 10 [3.981071706 nW (-54 dBm)] 5/5

60mW Active @9863 R 0 S 9 B 10 [12.58925412 nW (-49 dBm)] 5/5

2hop-Neighbors : JACK (1 mW, -49 dBm) JOHN (1 mW, -56 dBm)

===

Neighbor 1

Detailed

Information

Neighbor 2

Neighbor 1

Neighbor 2

Detailed

Information

2-hop

Neighbors

List

2-hop

Neighbors

List

Beacons'

Statistics

Beacons'

Statistics

Fig. 4: Information provided by Prawn for a node whose ID is “BOB”.

purposes. Figure 4 shows a snapshot of the information returned by the Prawn
Engine running in console mode on a node named “Bob”. This snapshot shows
a list of Bob’s neighbors, along with statistics on last beacons received by each
neighbor for every transmit power. Basically, Bob has two active neighbors, John
and Alice. The link between Bob and Alice has, on average, better quality than
the one between Bob and John; indeed for beacons sent at 1 mW and 12 mW,
only 4/5 of them have been received.

As previously described, neighborhood information is obtained through bea-
cons and feedback packets. More specifically, broadcast beacons are used to build
the list of direct neighbors. This list is established by gathering the transmitter
ID of each received beacon. Moreover, data included in beacons and feedback
packets inform each node what is the minimum transmit power required to reach
a neighbor. Such information is of primary importance in assessing link quality.
Another prominent link characteristic is the error rate, which is determined ac-
cording to the beacon period included in each beacon transmitted. The Prawn
Engine considers a beacon as lost when it is not received within the beacon pe-
riod indicated by the corresponding neighbor. The size of the receiving window
used to compute the error rate is customizable. For instance, in Figure 4, the
error rate for John’s packets transmitted at 12 mW is 1/5, because over the 5
most recent 12 mW beacons transmitted by John, only 4 have been received.

When receiving a beacon, the Prawn Engine stores the received signal strength.
Along with the transmit power of the beacon (which is also included in the bea-
con), the received signal strength returned by the Prawn Engine helps to evalu-
ate the signal attenuation. The difference between the transmitted power level
indicated in the beacon and the signal strength measured when the beacon is
received can also be used by a protocol to characterize link quality.

5.4 Sending and Receiving Messages

Two other key functions performed by the Prawn Engine are transmission and
reception of data (triggered by the Prawn Send() and Prawn Receive() primi-
tives, respectively). The Prawn Engine is in charge of the communication set up,
namely opening sockets, converting the receiver identifier to a valid IP address,
encapsulating/decapsulating packets, and adjusting the transmit power before
transmission. Figure 5 shows the structure of the data packets, which contain
the following fields.

– Type: This field is set to ‘2’.
– Transmit Power: Power used to send the packet.
– Payload Size: Size of the payload field.
– Payload: Data being sent.

0 15 16 31

+--------+--------+--------+--------+

| Type | Pwr | Payload Size |

+--------+--------+--------+--------+

| Payload |

~ ~

| |

+--------+--------+--------+--------+

Fig. 5: Prawn data packet.

require "prawn.pl";
while(1){

while(!@Message){
$Message = Prawn Receive();

}
$msgID = unpack("N",$Message[4]);
if (!grep(/$msgID/,@ID list)){

push(@ID list,$msgID);
Prawn Send Broadcast($Message[4]);

}
@Message = ();

}

Fig. 6: Perl code of a flooding prototype.

Data packets are sent using UDP to the corresponding IP address. This
explains why their header does not need to include the destination ID.7 On
the receiver side, the Prawn Engine listens on an open socket for any incoming
packets. Packets are then decapsulated and sent to the prototype, which retrieves
them by using the Prawn Receive() primitive.

6 Prototyping with Prawn

Prawn is intended to be a tool for prototyping a wide range of communication
algorithms for heterogeneous wireless networks. In this section, we first illustrate
the use of Prawn through a number of case studies, highlighting its range of
applicability and ease of use as well as how it can be employed to evaluate and
test protocols.
7 Note that the same method cannot be used for beacons, since beacons are always

sent broadcast at IP level and thus contain the broadcast address.

6.1 Example 1: Flooding

Flooding is the simplest possible routing algorithm. Its basic operation is as
follows: upon receiving a packet, each node sends it once to all its neighbors. 8

Thus the only requirement to implement this algorithm is to be able to receive
and broadcast packets.

Prawn makes this algorithm easier to implement even for inexperienced
programmers, since they do not need to know lower-level functions like sock-
ets, ports, addressing, etc. Flooding can be implemented simply by using the
Prawn Receive() and Prawn Send Broadcast() functions.

Figure 6 shows how short and simple the flooding prototype using the Prawn
Library is. This 12-line piece of code has been running successfully on our
testbed. The behavior of the flooding algorithm is very different from simula-
tions. Even more, Cavin et al. [9] tried to simulate the flooding algorithm using
three different simulators namely, NS-2, OPNET, and GloMoSim, with exactly
the same parameters and scenarios. Surprisingly, the results were considerably
different, depending on the simulator used.

6.2 Example 2: Network Coding

While the previous section illustrates the use of Prawn to prototype one of the
simplest protocols, we show, in this section, that Prawn can also be used to
prototype more complex protocols. In particular, we show case the use of Prawn
to prototype the COPE [10] network coding algorithm. Our goal here is to show
that some evaluation of network coding proposals could be easily done without
requiring a fully functional implementation of the algorithm.

For clarity, we briefly explain the essence of network coding through a very
simple example. In traditional forwarding, when a node A and a node B want
to exchange data via a third node C, both send their packets to C, and then
C forwards the packets to A and to B. Exchanging a pair of packets requires 4
transmissions. Using network coding, instead of sending separate packets to A
and B, node C combines (using the XOR function) both packets received from
A and B, and broadcasts the encoded packet. Since A knows the packet it has
sent, it can decode the packet sent by B (applying again the XOR function)
from the encoded packet received from C. Similarly, B can decode the packet
sent by A from the same packet received from C. Thus, with this method, only 3
transmissions, instead of 4, are required.

Using Prawn, we implemented a prototype of the algorithm described above.
As shown in the Perl code running on node C (Figure 7), the first received packet
is stored in a standby variable ($Stdby), then the next packet is stored as $Msg.
If the two stored packets are not received from the same node, then they are
XORed and broadcast. If, instead, both packets are from the same node, it does
not make sense to XOR them. In this case, the packet stored in standby is sent
as a normal unicast packet, and the latest packet goes to the standby queue.
8 Of course, more elaborated variations of flooding exist, but here we consider it in its

simplest form.

require "prawn.pl";
my @Stdby=();
my @Msg=();

while(!@Stdby) {@Stdby = Prawn Receive();}
while(1){
@Msg = Prawn Receive();
if (@Msg){
if ($Msg[2] ne $Stdby[2]){
$xored="";
for ($i=0;$i<=1400;$i++){
substr($xored,$i,1,substr($Msg[4],$i,1)^substr($Stdby[4],$i,1));
}
Prawn Send Broadcast($xored);
@Stdby=();
while(!@Stdby) {@Stdby = Prawn Receive();}
}
else{
if ($Stdby[2] eq "NodeA") {Prawn Send($Stdby[4], "NodeB");}
else {Prawn Send($Stdby[4],"NodeA");}
@Stdby=@Msg;
}

@Msg=();
}
}

Fig. 7: Perl code of a network coding algorithm.

We also implemented a prototype of a traditional forwarding algorithm. We
compare both implementations to measure the performance gains achieved by
network coding when A sends 10,000 packets of 1,400 bytes each to B and vice-
versa. Without network coding, the amount of data transmitted was 54 MB
on both links. With network coding, only 44 MB were sent. With this code
as a starting point, network coding protocol designers can test and tune their
algorithms on real platforms under real conditions.

6.3 Example 3: Topology Control

Topology control algorithms require updated information about neighbors. Se-
lecting good neighbors is often beneficial for the whole network. Prawn supports
varied neighbors selection criteria relying on cross-layer information. For in-
stance, in order to save energy and reduce interference, neighbors with lowest
required transmit power can be selected. Conversely, neighbors with the highest
signal strength received could be chosen. Many recent research efforts relying on
cross-layer approaches would benefit from Prawn’s lower layer information.

The code in Figure 8 shows how to get in 7 lines a list of neighbors sorted
according to their receive signal strength. This code is running successfully on our
testbed consisting of heterogeneous nodes. An important point here is that the
received signal strength value retrieved from the wireless driver can be different
depending on the wireless device model. If the neighbors do not have all the same
wireless cards, the selection could be biased. This is an example of practical issue

require "prawn.pl";
$Neighbor = Prawn Neighbors();
for ($i=1; $i<=$Neighbor[0]; $i++){

push(@rx power list, [$i,$Neighbor[$i]{MAX POW}]);
}
@sorted list = sort {($b)−>[1]<=>($a)−>[1]} @rx power list;
@Selected Neighbors=@sorted list[0. .1];

Fig. 8: Perl code of a topology control prototype.

that cannot be taken into account from simulations. Using Prawn, designers can
evaluate their proposal taking into account the features and performance of off-
the-shelf hardware and drivers.

7 Summary and outlook

In this paper we proposed Prawn, a novel prototyping tool for high-level network
protocols and applications. Prawn’s main goal is to facilitate the prototyping of
wireless protocols so that prototyping becomes an integral part of the design
process of wireless systems.

Prawn is not an alternative to simulation or any other evaluation method.
Instead, it stands as a complementary approach that goes beyond simulation
by taking into account real-world properties. Prawn surfs the wave of recent re-
search efforts toward making implementation easier (e.g., Click and XORP), but
as a preliminary phase in this process. The designer has to keep in mind, how-
ever, that the performance of a prototype does not always match exactly with
the performance of a final and optimized implementation. Specifically, Prawn
performs operations that may not appear in the final implementation (e.g., bea-
cons, feedbacks, data encapsulation). However, first measures of this overhead
incurred by Prawn are encouraging. For instance, using a Pentium M 733 (1.1
GHz) laptop, the additional delay to send a packet when using Prawn is only
140 µs (averaged over 10,000 packets), whereas the bandwidth loss is around
1.8 percent.

Through several case studies, we showcased the use of Prawn in the context
of a wide range of network protocols. But the possibilities of Prawn are not re-
stricted to the examples given in this paper. Other experiments where Prawn can
be useful include: evaluating existing protocols for wired networks in the wire-
less context, implementing new routing protocols, testing overlay approaches in
wireless multi-hop networks, evaluating distributed security algorithms, testing
new naming mechanisms over IP, testing incentive mechanisms for communi-
ties, implementing localization algorithms, measuring wireless connectivity in
both indoor and outdoor scenarios, evaluating peer-to-peer algorithms, testing
opportunistic forwarding mechanisms.

We hope our work will provide a starting point for an improved design
methodology as prototyping provides both easy and accurate evaluation of wire-

less protocols and services under real conditions. This paper has demonstrated
that this is feasible – Prawn is a fully functional tool that responds to the needs
of early protocol evaluation. Finally, we expect that Prawn’s simplicity will al-
low researchers to adopt it. To help this becoming true, ongoing work includes
adding new prototyping facilities (TCP data packets, automatic update of the
OS routing table, more physical values retrieved from the driver, etc) and porting
Prawn to other operating systems such as FreeBSD and Microsoft Windows.

References

1. D. Raychaudhuri, M. Ott, and I. Seskar, “Orbit radio grid tested for evaluation of
next-generation wireless network protocols.” in Proceedings of Tridentcom, 2005,
pp. 308–309.

2. MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). MIT
roofnet. [Online]. Available: http://pdos.csail.mit.edu/roofnet/doku.php

3. P. De, A. Raniwala, R. Krishnan, K. Tatavarthi, J. Modi, N. A. Syed, S. Sharma,
and T. cker Chiueh, “Mint-m: an autonomous mobile wireless experimentation
platform.” in Proceedings of ACM/USENIX Mobisys, 2006, pp. 124–137.

4. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297, 2000.

5. M. Handley, O. Hodson, and E. Kohler, “XORP: an open platform for network
research,” Computer Communications Review, vol. 33, no. 1, pp. 53–57, 2003.

6. Wireless Tools for Linux. [Online]. Available:
http://hpl.hp.com/personal/Jean Tourrilhes/ Linux/Tools.html

7. D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “The k-neighbors approach to
interference bounded and symmetric topology control in ad hoc networks,” IEEE
Transactions on Mobile Computing, vol. 5, pp. 1267–1282, Sep. 2006.

8. N. Li and J. Hou, “Localized topology control algorithms for heterogeneous wireless
networks,” IEEE/ACM Transactions on Networking, vol. 13, pp. 1313–1324, Dec.
2005.

9. D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy of manet simulators,” in
In proceedings of POMC’02, Toulouse, France, Oct. 2002.

10. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft, “XORs in
the air: practical wireless network coding,” in Proceedings of ACM Sigcomm, Pisa,
Italy, 2006.

11. The Network Simulator NS-2. [Online]. Available: http://www.isi.edu/nsnam/ns/
12. X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library for parallel simula-

tion of large-scale wireless networks,” in Proceedings of Workshop on Parallel and
Distributed Simulation, Banff, Canada, May 1998.

13. OPNET Modeler. [Online]. Available: http://www.opnet.com/products/modeler/
14. P. Zheng and L. Ni, “EMPOWER: A network emulator for wireless and wireline

networks,” in Proceedings of IEEE Infocom, San Francisco, CA, Apr. 2003.
15. M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. O. Alanko, and K. E. E.

Raatikainen, “Seawind: a wireless network emulator,” in GI/ITG Conference on
Measuring, Modelling and Evaluation of Computer and Communication Systems,
Aachen, Germany, Sep. 2001.

16. K. Ramachandran, S. Kaul, S. Mathur, M. Gruteser, and I. Seskar, “Towards large-
scale mobile network emulation through spatial switching on a wireless grid,” in
Proceedings of ACM Sigcomm, Philadelphia, PA, Aug. 2005.

