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ABSTRACT
Today, the Internet depends on the interactions of dozens of
control planes protocols (such as routing and signaling pro-
tocols) in order to provide reachability to hundreds of mil-
lions of hosts. Yet, despite their critical importance, control
plane protocols have been developed organically without any
reference architecture to structure their organization and in-
teractions. As a consequence, control plane protocols end
up implementing the same basic services (e.g., failure detec-
tion, neighbor discovery) in different ways, thus increasing
the overall complexity and severely impacting manageabil-
ity. Moreover, this lack of organization is also the root cause
of many networking problems such as forwarding loops or
traffic loss.

By analyzing several existing protocols, we identified a
set of ground principles that every control plane protocol
should respect and designed a first modular architecture around
them. We describe seven reusable modules and report our
experience with a prototype implementation. We believe that
protocol designers using such architecture will be able to de-
velop new control plane protocols efficiently reusing the ex-
isting modules in novel ways.

1. INTRODUCTION
The network layer plays a key role in today’s Internet.

This layer can be conceptually divided in two different planes.
The data plane includes all the functions that are necessary
to process and forward data packets. These functions in-
clude header processing, checksum verification, packet for-
warding, generation of error messages, etc. The data plane
functions are well defined on both endsystems and routers :
endsystems generate and receive packets while routers for-
ward packets towards their destination based on informa-
tion stored in their routing and forwarding tables.The con-
trol plane includes all the routing, signalling and manage-
ment protocols that are responsible for the maintenance of
all the data structures that enable routers to forward pack-
ets towards their final destination. The Internet control plane
protocols, including BGP, OSPF, IS-IS, PIM, RSVP-TE or
LDP among many others, play a key role in the operation of
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the global Internet.
During the 1970s and early 1980s, there were many ar-

chitectural debates on how to best organise a protocol stack.
This debate lead to the development of the layered reference
models such as the OSI 7 layers model [36] or the refer-
ence model used by the TCP/IP protocol suite [6] (left part
of figure 1). These reference models serve as a reference
to protocol designers. They define the services provided by
each layer and the interactions among the different layers.
Although there are many interactions between control plane
protocols, there is no reference model or architecture that
defines the services provided by each control plane protocol
nor the services that it can use from other protocols. The
lack of a control plane architecture is best illustrated in [16]
and reproduced in figure 1.

The absence of a reference architecture for control plane
protocols has several implications. First, there are many
complex interactions among different protocols of the con-
trol plane. Some of these interactions can result in packet
losses or forwarding loops while others increase the com-
plexity of configuring a network. Second, the designer of
a new control plane protocol is often forced to include in
his/her protocols mechanisms that already exist in other con-
trol plane protocols (e.g. neighbour discovery, failure detec-
tion, reliable delivery). This is inefficient and increases the
complexity of the entire control plane.

Figure 1: The layered data plane and the unorganised
control plane in the Internet (from [16])

Our contribution in this paper is twofold. First, we anal-
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yse several of the problems that are due to the absence of a
control plane architecture and identify several guiding prin-
ciples for a control plane architecture (section 2). Second,
we describe the core modules that should be included in a
control plane architecture (section 3) and report our experi-
ence in developing a first prototype implementation of sev-
eral of these modules to support three unicast routing proto-
cols (section 4).

2. ISSUES WITH CONTROL PLANE PRO-
TOCOLS

As illustrated in figure 1, the Internet control plane con-
tains several dozens of different protocols. In this section,
we mainly discuss unicast routing protocols. These proto-
cols were the first protocols of the control plane and they
are still among the most important ones in today’s Inter-
net. We consider both intradomain routing protocols (RIP,
OSPF and IS-IS) and the Border Gateway Protocol (BGP).
We sometimes mention issues with multicast routing (PIM)
and MPLS protocols (LDP and RSVP-TE).

In the remainder of this section, we provide examples of
four classes of problems that arise in the control plane due
to the lack of a reference architecture. Based on these prob-
lems, we identify four principles that should guide the de-
velopment of a control plane architecture.

2.1 Starting and stopping control plane pro-
tocols

Although a router typical runs several control plane pro-
tocols, each protocol defines its own mechanism to detect
neighbouring routers and create adjacencies with them. OSPF,
IS-IS use special hello packets, LDP sends UDP segments
while BGP relies on manual configuration. Each protocol
must include a discovery mechanism since there is no con-
trol plane protocol that allows a router to discover the control
plane protocols that are supported by each of its neighbours.

When a router boots, there are several transient problems
that may occur while its control protocols start. For example
consider a router on which a BGP session and an IS-IS adja-
cency start. When the IS-IS adjacency has been brought up,
the router is part of the IGP and it can receive packets from
other routers. However, its FIB might not yet be complete
and it therefore will blackhole packets towards the destina-
tion that it does not already know [22]. This problem can be
solved by setting the overload bit IS-IS until the router has
learned all BGP routes [22]. Similar issues arise with PIM
and LDP that also suffer from black-hole problems [23, 10].

Another example is when a router needs to be upgraded,
e.g. to install a new version of the router’s operating system
or to change some of its interfaces. Most operators perform
such upgrades by shutting down the router during a main-
tenance window. The router is then quickly upgraded and
restarted. Unfortunately, control plane protocols have not
been designed to allow a router to gracefully stop their op-
eration. There are some protocol specific techniques that

can be used to gracefully shutdown some control plane pro-
tocols [12, 13], but most router reboots cause a network
disruption. On some platforms, it is possible to perform
some types of upgrades while continuing to forward pack-
ets. This requires special restart extensions for each control
plane protocol used by the router [29, 4, 25, 30]. However,
each of these restart mechanisms has been defined indepen-
dently and restarting several control planes at the same time
could create the same issues as when a router boots.

The examples above show that the transient problems that
arise when a control plane protocol starts or stops are impor-
tant.

Principle 1 : A control plane architecture should include
mechanisms to start, stop and restart control plane protocols
without causing unnecessary packet losses.

2.2 Securing control plane messages
Security and authentication of control plane messages are

an important concern for network operators. Over the years,
control plane protocols have evolved to include authentica-
tion information to allow routers to authenticate received
control plane messages. Some mechanisms such as setting
the TTL to 255 for packets exchanged between directly con-
nected neighbours [1] are applicable to several protocols.
However, this solution does not solve all authentication is-
sues. Each protocol has defined its own authentication mech-
anism and there are subtle differences between the different
mechanisms [34]. This forces network operators to define
authentication keys in the configuration of each control plane
protocol.

Securing each control plane protocol independently is far
from satisfying for several reasons. First, this adds com-
plexity to the configuration of each control plane protocol
[20]. Second, the security extensions have several weak-
nesses from a security viewpoint. Manral et al. list in [20]
administrative and technical issues that affect the existing se-
curity extensions to control plane protocols. The main issues
are the ability to use different cryptographic algorithms and
to regularly exchange keys. As of this writing, the syntax
of control plane messages allows keys to roll, but no roll-
over mechanism has been defined besides out-of-band tech-
niques.

Principle 2 : A control plane architecture should include
mechanisms that enable to secure all control plane protocols.

2.3 Failure detection
Most control plane protocols need to detect when a link

or adjacency has failed. Although this problem is common,
each protocol includes its own failure detection mechanism.
RIP detects that a neighbour is not reachable anymore after
some period without receiving messages from it. OSPF [24],
PIM [7] and IS-IS [35] use regular exchanges of HELLO
messages to detect neighbours and failures. BGP [27] runs
above TCP and considers the session to be down after some
period without receiving any Keepalive message.
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Using different mechanisms to detect link failures cre-
ates several problems. First, each router must implement
the failure detection technique that is specific to each pro-
tocol, even if it can quickly detect link failures thanks to
physical or datalink layers triggers [11]. Second, different
protocols running on the same router may not detect a fail-
ure at the same time. One protocol may consider that a link
has failed while another protocol assumes that the link is still
up and continues to advertise it. Such inconsistencies may
cause transient problems including packet losses, deflections
or forwarding loops.

Fortunately, during the last years, router vendors have de-
veloped the BFD protocol [19] as a generic mechanism to
monitor links and detect failures. Existing control plane pro-
tocols can be configured to use BFD to quickly detect fail-
ures instead of using their own failure detection mechanism.
Future control plane protocols should rely on the services
provided by BFD instead of defining their own failure detec-
tion mechanism.

Principle 3 : Failure detection should be one of the ser-
vices provided by a control plane architecture to the control
plane protocols.

2.4 Interactions among control plane proto-
cols

The Internet control plane protocols interact sometimes
in unintended ways. A first problematic interaction is be-
tween intradomain and interdomain routing. BGP relies on
the intradomain routing protocol to detect when a nexthop
becomes unreachable. In the past, routers performed this
verification by scanning the intradomain routing table every
bgp-scan-time seconds [31]. More recent implementations
receive notifications from the intradomain routing protocol
when the reachability of a nexthop changes [21]. Similar
issues arise with multicast routing protocols such as PIM
that depend on the intradomain routing protocol to select the
shortest path to build their multicast trees.

Another source of problems is iBGP. The first deploy-
ments of iBGP assumed that transit Autonomous Systems
would use a full-mesh of iBGP sessions. This ensures that all
the BGP routers in the AS receive all the interdomain routes
that border routers use to forward packets. In this case, in-
terdomain packets are correctly forwarded by the transit AS.
Large transit ASes often use route reflection [3] to scale their
iBGP. Unfortunately, in this case the iBGP signalling graph
is not necessarily congruent with the forwarding graph built
by the IGP and deflections, forwarding loops or oscillations
can happen [15]. These problems can occur either because
the iBGP organisation is incorrect or after a link or router
failure has jeopardised a correct iBGP organisation.

Besides these explicit interactions, there are also some un-
intended interactions. Consider a router that runs two rout-
ing protocols, say BGP and OSPF. If this router learns a
route towards prefix P from both BGP and OSPF, e.g. due
to misconfiguration, it will not be able to install both routes

in its FIB. The BGP and OSPF specifications do not define
how a router should behave in this case. Current router im-
plementations use an administrative distance to prefer one
route over the other. However, two major router operating
systems disagree on whether a control plane protocol should
advertise a route that has not been installed inside its FIB.
By default, the BGP implementation of one vendor [18] does
not advertise these inactive routes while another vendor ad-
vertises them [5]. This can lead to problems that are difficult
to debug.

The examples above illustrate some of the problems that
occur when the interactions between different control plane
protocols have not been carefully studied and specified.

Principle 4 : The interactions among the control plane
protocols must be explicitly defined in the control plane ar-
chitecture.

3. MODULAR CONTROL PLANE
Based on the problems identified above, and as a first step

towards an architecture for the Internet control plane proto-
cols, we propose to organise the control plane around seven
core modules. We identify the key functions provided by
each module and explain their roles.

1. The RIB module is an optimised data-structure that
stores all the information of the control plane proto-
cols. It performs all interactions with the FIB on behalf
of the control plane protocols.

2. The Information module converts the objects that are
handled by the control plane protocols to and from
their binary representation on the wire.

3. The Neighbour Discovery module is a specialised pro-
tocol that allows a router to detect the control plane
protocols that are supported by each of its neighbours.

4. The Failure Detection module monitors all the links
attached to the router (and the reachability of some re-
mote routers) to inform the control plane protocols of
link and router failures.

5. The Security module is responsible for securing the
messages that are exchanged.

6. The Transport module contains the protocols of the
data plane that are use to exchange control plane mes-
sages between routers.

7. The Management module provides all the mechanisms
that are required to monitor and configure the control
plane protocols.

Figure 2 illustrates the organisation of the different mod-
ules and their interactions.

The RIB module contains the data-structures that allow
to store efficiently the routes that are learned by the control
plane protocols. Such data-structures are already found in
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Figure 2: A modular architecture for the control plane

existing router implementations [37, 17]. A RIB module
should not only allow the control plane protocols to store and
retrieve information from its data-structures, but also register
notifications to track modifications to some specific routes.
The RIB module manages all the interactions with the FIB,
including the utilisation of multiple nexthops to support load
balancing or fast-reroute.

The Information module is a presentation layer that has
been optimised to support control plane protocols. It re-
ceives objects from the control plane protocols and converts
them in a binary representation before sending them through
the network. We expect that providing a standard and effi-
cient mechanism to encode control plane messages will ease
the development of new control plane protocols. This is in
contrast with today’s control plane protocols, except SNMP,
that define their own encoding. This forces protocol imple-
menters to write a new parser for each protocol. Unfortu-
nately, writing safe parsers is not simple and several imple-
mentation have suffered from parsing attacks in the past 1.
At this stage, we have not yet chosen one technique to en-
code control plane messages.

The Neighbour Discovery module discovers the neigh-
bouring routers and the control plane protocols that they use.
It includes a neighbour discovery protocol that can be reused
by any control plane protocol. This protocol can also be used
to negotiate options for each control plane protocol. Each
router maintains a neighbour discovery session with each of
its direct neighbours. This session is used when a new con-
trol plane protocols is activated on a router and also when a
control plane protocol needs to be restarted.

The Failure Detection module contains all the mecha-
nisms that are necessary to detect link and router failures.
It provides notifications to control plane protocols when a
link or router failure is detected. This module combines two
types of mechanisms. First, a link failure can be detected
locally by the physical or datalink layers. Second, BFD [19]

1See e.g. the CERT vulnerabilities 929656 989406 or 936177 at
http://www.kb.cert.org/vuls/id/.

can be used to monitor all the links attached to neighbouring
routers. BFD multihop [19] can also be used to monitor the
reachability of remote routers, e.g. those that terminate BGP
sessions.

The Security module contains all the cryptographic mech-
anisms that are necessary to secure control plane messages.
We expect that each router will be configured with a public-
key pair and a certificate as proposed for the 4D architecture
[14]. This certificate will allow a router to sign the neigh-
bour discovery messages that it sends. Once the control
plane session has been established, cryptographic keys can
be exchanged and a key rollover mechanism can be used.
This module could be built above the IPSec protocols or in-
clude specific security protocols. We intend to leverage on
the work performed with the KARP working of the IETF [2]
to improve the authentication module.

The Transport module manages all the interactions be-
tween the control plane protocols and the transport and net-
work layers of the data plane. This module provides ab-
stractions that allow control plane protocols to efficiently
exchange information without having to handle all the lower
layer details. For example, on a point-to-point link, there is
no benefit in using explicit acknowledgements inside each
control plane protocol instead of relying on TCP or SCTP.
On Local Area Networks, the Transport module should lever-
age multicast to avoid wasting bandwidth. The Neighbour
Discovery module should allow to negotiate which transport
protocol will be used to exchange the control plane messages
between two routers. We expect that several control plane
protocols will use the same transport layer and possibly the
same connection to exchange control plane messages. In
case of congestion, the Transport module should be able to
prioritise some control plane messages over others. These
priorities should be explicitly indicated by the control plane
protocols (e.g. a BGP update is urgent while a link-state
that refresh is not urgent). This contrasts with the current
Internet protocols where control plane messages of different
importance compete for both bandwidth and CPU resources.

Finally, the Management module should allow the op-
erator to configure the control plane protocols and retrieve
statistics about their operation.

4. PROTOTYPE IMPLEMENTATION
To evaluate the feasibility of such a modular architecture,

we have developed a first prototype in python. Our prototype
includes three control plane protocols: a distance-vector pro-
tocol similar to RIP, a link-state routing protocol similar to
OSPF and a path-vector protocol similar to BGP. The com-
plete implementation contains about 5000 lines of code and
is described in more details in [8].

Our implementation follows the event-driven programming
paradigm, supported by the Twisted framework [33]. It con-
tains many objects that are observable. Objects called ob-
servers may be registered to observable objects. This allows
us to trigger a callback function when an even occurs.
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Our RIB module aggregates the routing tables of our three
routing protocols. Each protocol maintains one or more rout-
ing tables and registers each of them in the RIB, associated
with an administrative distance. Other protocols can access
the content of the RIB or any routing table and register ob-
servers to be notified of route addition and removal. Each
route contains a destination network, a metric, and either
an interface or a next hop. The RIB module contains the
logic to select the best route to be installed in the FIB when
there are several routes towards the same destination. The
basic decision process is to select the least-cost route, which
is sufficient for our distance vector and link-state protocols.
For our path-vector protocol, it uses a subclass of the routing
table which stores routes with additional attributes (e.g. AS
path) and implements a decision process similar to BGP’s.

In our Information module, we have explored different
techniques to marshall and unmarshall objects. Our mod-
ule currently uses XDR [9] for elementary types such as in-
tegers, sets and sequences and the Python struct mod-
ule [26] for IP addresses and network prefixes. Each mes-
sage sent on the wire includes the type of the marshalled
object. Each control plane protocol must register functions
to pack and unpack their objects. Filters can be installed to
filter out and operate on incoming and outgoing messages.
For example, We implemented a compression filter, using
zlib. Using compression level 6, we observed an average
80% reduction in message size for our path vector protocol.
We intend to explore other marshalling techniques such as a
marshaller that takes a description of the message format as
input, written in an XML language similar to NetPDL [28]
for example or using compressed XML.

Our Transport module manages sockets and connections.
It allows protocols to send objects to neighbours by using
unicast or multicast transmission. Sockets are integrated
within Twisted’s event loop. TCP listening sockets are asso-
ciated with a protocol factory, while established TCP sockets
and UDP sockets are associated with an object whose meth-
ods get called upon data arrival. To send and receive mes-
sages, routing protocols use and observe objects represent-
ing IP interfaces that manage the aforementioned protocols
and protocol factories.

Our Security module supports message authentication. It
is implemented as a filter that appends a MAC to every out-
going message and checks the authenticity of each incoming
message. If the MAC is not valid, the message is discarded.
A Security Association (SA), provided by the control plane
protocol, specifies the hash function to use with HMAC and
the key. In order to allow routers to progressively update
their SAs, multiple SAs can be used at the same time for in-
coming messages, thanks to a SA identifier carried along the
MAC.

Our Neighbour Discovery module contains a table with
pieces of information about the neighbours that are associ-
ated to each interface. Each neighbour has a unique identi-
fier in the routing domain, e.g. the address of its loopback

interface, and an address in the local network. Protocols may
register observers to be notified of neighbour discovery and
failures. Our discovery protocol allows each control plane
protocol to advertise arbitrary data (key-value pairs) in the
neighbour discovery messages. Protocols may use this to
advertise and negotiate options. As soon as a piece of data
change, it is advertised again to the neighbours.

Our prototype does not contain a Failure Detection mod-
ule yet. For now, control plane protocols can rely on the
Neighbour Discovery module to be notified when a neigh-
bour disappear. Our further work will be to integrate a BFD
implementation such as [32].

5. CONCLUSION AND FURTHER WORK
Control plane protocols, such as routing or signalling, play

a key role in the Internet. Despite of their importance, these
protocols have been developed organically without a refer-
ence architecture to structure them and their interactions.

In this paper, we have listed some of the problems that
are caused by the lack of organisation of the control plane.
Based on an analysis of existing protocols, we have identi-
fied seven core modules. Each of these modules can pro-
vide services to several control plane protocols. With such
an architecture in place, protocol designers will be able to
develop new control plane protocols by reusing the services
provided by existing modules like Internet applications reuse
the transport and network layers of the data plane.

Realising this architecture requires further work in sev-
eral directions. First, other protocols should be analysed to
evaluate how they fit in this architecture. Second, each mod-
ule should be specified in details. Third, a fully functional
implementation should be written to evaluate the feasibility
of using such a modular architecture to support new control
plane protocols.
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