
Low Complexity Link State Multipath Routing

Pascal Mérindol*
Université Catholique de Louvain (UCL)

Louvain la Neuve, Belgium
pascal.merindol@uclouvain.be

Jean-Jacques Pansiot and Stéphane Cateloin
LSIIT-CNRS, Université de Strasbourg (UdS)

Illkirch, France
{pansiot,cateloin}@unistra.fr

Abstract—Link state routing protocols such as OSPF
or IS-IS currently use only best paths to forward IP
packets throughout a domain. The optimality of sub-
paths ensures consistency of hop by hop forwarding
although paths, calculated using Dijkstra’s algorithm, are
recursively composed. According to the link metric, the
diversity of existing paths can be underestimated using
only best paths. Hence, it reduces potential benefits of
multipath applications such as load balancing and fast
rerouting. In this paper, we propose a low time complexity
multipath computation algorithm able to calculate at least
two paths with a different first hop between all pairs
of nodes in the network if such next hops exist. Using
real and generated topologies, we evaluate and compare
the complexity of our proposition with several techniques.
Simulation results suggest that the path diversity achieved
with our proposition is approximatively the same that the
one obtained using consecutive Dijsktra computations, but
with a lower time complexity.

I. INTRODUCTION

Routing is one of the key components of the Internet.
Despite the potential benefits of multipath routing (e.g.,
[3] or [4]), most backbone networks still use unipath
routing such as OSPF or IS-IS or their ECMP feature
(Equal Cost MultiPath). With these routing protocols, the
forwarding only changes upon topology variations and
not upon traffic variations. Dynamic multipath routing
(e.g., [13] or [12]) is able to provide several services
such as load balancing, to reduce delays and improve
throughput, and fast rerouting schemes in case of fail-
ures. The reliability of an IP network against failures
and congestion depends on the reaction time necessary
for the convergence of the underlying routing protocol.
Proactive multiple paths calculation allows to accelerate
this reaction time: pre-computed alternate paths can be

*Pascal Mérindol is partly funded by Trilogy, a research project
(ICT-216372) supported by the European Community under its
Seventh Framework Programme. The views expressed here are those
of the author(s) only. The European Commission is not liablefor any
use that may be made of the information in this document.

directly used as backup paths without waiting for the
routing protocol convergence. This proactive mechanism
can improve the network response in case of troubles
where such backup paths exist. To provide these func-
tionalities, the set of forwarding alternatives has to be
large enough to achieve a good path diversity. However,
current routers only support ECMP. This feature corre-
sponds to a simple variant of Dijkstra where equal cost
paths are inherited along the shortest path tree (SPT).
The optimality condition of sub-paths computed with
ECMP restricts the number of loopfree paths and so
reduces potential advantages of multipath routing.
Multipath routing protocols with hop by hop forwarding
needs to validate a set of next hops such that the
recursive composition between neighbor routers does not
create forwarding loops (see [11], [12] and [14]). The
first limitation is the complexity in time, space and the
number of messages exchanged to compute and validate
loopfree paths. In this paper, we propose a simple hop
by hop scheme that does not require a signaling protocol
to validate loopfree paths. If the validation procedure,
whose goal is to verify the absence of loops, is local
(without exchanging any message) and does not involve
all routers, then the deployment can be incremental. Our
approach is equivalent to ECMP in terms of time, space
and message exchange complexity but allows to compute
a greater diversity of forwarding alternatives.
In this paper, we propose the following contributions:

- two variants of the Dijkstra algorithm: Dijkstra-
Transverse and multi-Dijkstra-Transverse.

- a proof that they compute at least two distinct next
hops from the calculating node towards each node
of the graph if such next hops exist.

- an evaluation of the efficiency and the complexity
of our proposition compared to existing techniques.

II. N OTATIONS AND CONTEXT

Table I lists the graph definitions used in the paper.
G(N,E,w) denotes a directed graphG with a set of

nodesN , a set of edgesE and a strictly positive valu-
ation of edgesw. Notations are related to the multipath
hop by hop forwarding context: computed paths are
loopfree and first hop distinct. We order paths according
to an additive metricC, and we focus on the best paths
having distinct first hops. To distinguish equal cost paths,
we consider the lexicographical order of first hops.
For simplicity reasons we do not consider the multigraph
issue: a first hop is equivalent to a successor node, the
next hop. The valuationw denotes the weight of each
directed link used by the routing protocol.
Let us define a safety property for multipath routing.

Definition: Loopfree routing property at the router
level. A multipath routing protocol is loopfree if it
always converges to a stable state such that when any
router s forwards a packet to any next hop v towards
any destination d, this packet never comes back to s.

With unipath or ECMP routing, the sub-path optimal-
ity condition guarantees the correctness of next hop com-
position. With hop by hop link state multipath routing
using multiple unequal cost paths, two phases may be
necessary to ensure loopfree routing: a path computation
algorithm and a validation process. We do not consider
validation processes using a signaling protocol (such as
it can be done with distance vector routing messages).
To increase the number of valid alternatives, the simplest
rule to select a valid next hopv on a routers (such that
v ∈ succ(s)) is the downstream criteria which can be
expressed as follows: C1(v, d) < C1(s, d) (1)
This rule is referenced in the IS-IS standard ISO 8473, is
used in OSPF-OMP [11] and is denoted LFI in [12] (with
the particularity of avoiding routing loops in transient
periods of topology changes). This rule is calledone hop
vision in [14] where Yang and Wetherall introduce a set
of rules whose flexibility allows to increase the number
of valid neighbors thanks to atwo hops vision. This set
of rules is more complex: the forwarding mechanism is
specific to the incoming interface and allows forwarding
loops at the router level but not at the link level. A packet
is never forwarded twice through the same link but it can
enter the same router twice.
In order to perform loopfree routing, the validation
process needs to compute a set of candidate next hops.
A candidate next hop is a first hop of a computed path
which is not yet validated for loopfree routing. On a
given calculating node (a root nodes), the simplest way
to obtain an exhaustive candidate set is to compute the
SPT of all neighbor nodes. Thus, routers can use the best
costs information of its neighborhood. This approach is

Notations Definitions

e = (e.x, e.y) edgee ∈ E connecting nodex to nodey
k−(x), k+(x) incoming and outgoing degrees of nodex

succ(x) set of neighbors of nodex (|succ(x)| = k+(x))
Pj(s, d) = jth best loopfree path linkings to d
(e1, ..., em) This is the best path whose first edge is distinct

from the first edge of thej − 1 first best paths
Cj(s, d) = cost of the pathPj(s, d)∑m

i=1
w(ei) 1 ≤ j ≤ k+(s), 0 < m < |N |

NHj(s, d) jth best next hop computed ons towardsd
This is the first hope1.y of Pj(s, d)

TABLE I: Notations

denotedkD in the following, and our analysis uses this
technique as a reference. The complexity of kD depends
on the number of neighbors:k+(s) + 1 instances of the
Dijkstra algorithm are necessary to compute the local
and neighborhood best costs. If a router has a large
number of interfaces, the computation time can be too
long. Even if this calculation is typically done offline,
when a congestion or a failure occurs during this period,
the router is unable to perform the traffic switching.
Another way is to use an enhanced SPT algorithm
to locally compute multiple paths for each destination.
For example, algorithms and implementations presented
in [9] are designed to compute the set ofK-shortest
loopfree paths, but do not guarantee that these paths are
first hop distinct. TheK-shortest loopfree paths problem
is not suited for simple hop by hop forwarding. Indeed,
in order to forward packets via theseK explicit paths,
a signaling protocol is necessary to mark routes from
the ingress router towards each egress router. Here we
focus on distinct first hops computation (K ≤ k+(s)),
and paths are implicity stored as candidate next hops.
The objective of our approach is to compute a set of
loopfree first hop disjoint paths with a lower complexity
than kD. For this purpose, we calculate a set of costs
{Cj(s, d)} ∀d∈N containing at least two entries for each
destination noded in the graph. With an enhanced SPT
algorithm able to compute such a set, rule (1) becomes:

Cj(s, d)− w(s, v) < C1(s, d) (2)
If v = NHj(s, d) satisfies rule (2), then(s, v) is a valid
next hop. Thus, thejth next hopv can be used bys
to reachd: it satisfies the loopfree routing property at
the router level. Note that∀d ∈ N,Cj(s, d)−w(s, v) ≥
C1(v, d). Our approach follows these three steps:

1) it uses an unmodified link state routing protocol to
obtain topological advertisements,

2) it uses a multipath computation algorithm instead
of Dijkstra to compute candidate next hops,

3) it uses condition (2) to select valid next hops.

s

d

c

b

n

1 2

3

4

5

6 7

8

9

10

11

i

t1

t2

internal edge
transverse edge

branch edge
first hop edge

Fig. 1: Edge partition example

III. C ANDIDATE NEXT HOPS COMPUTATION

This section describes our path computation algo-
rithms and an original edge partition analysis. Given a
root nodes, the set of edges of a graph can be partitioned
into four subsets (we consider edges in both directions):

- Edges corresponding to first hops of primary paths.
- Edges belonging to thebranches.
- Transverse edges connecting two distinct branches

or connecting the roots and a branch without being
the first hop of a primary path.

- Internal edges linking nodes of the same branch
without belonging to this branch.

These four subsets exhaustively describeE because the
set of branches contains all nodes (except the root node
s) in the graph. Fig. 1 illustrates an edge partition on a
simple graph. In this graph (we considerw as a constant
function), there are three branches (black, gray and white
nodes), twotransverse edges (dashed arcs denotedt1 and
t2) and oneinternal edge (dotted arc denotedi). Edges
(s, n), (s, 1) and(s, 6) correspond to the three first hops
(red arcs) linkings to the three branches.
With multipath hop by hop routing, theprimary path
denotes the optimal path depending on a given metric
and a lexicographic order to rank equal cost paths. Thus,
for a given pair(s, d), analternate path is a path whose
first edge is distinct from the first one of the primary path
P1(s, d). More generally, if the forwarding mechanism
is distributed such as with hop by hop routing, then all
alternate paths are first hop distinct.
Our algorithms compute transverse paths (see Table II
for related definitions). The path(s, 1, b, c) is simple
transverse and the path(s, 1, b, c, n) is backward trans-
verse. PathsP = (s, 1, b, c, n, 11, d) andP ′ = (s, 6, 1, b)
are bothforward transverse. However,P contains a sub
path (s, 1, b, c, n) ∈ Pbt(s, n) whereasP ′ contains a

Terms Definitions

branchh(s) subtree of the SPT rooted at a neighborh of s
transverse edge an edge is transverse if it connects

two distinct branchesbranchh(s) and
branchh′(s) or if it connects the roots

and a noden 6= h in a branchh(s)
internal edge an edgee is internal if it connects two nodes

e.x ande.y belonging to a givenbranchh(s)
and such thate /∈ branchh(s)

k-transverse a path is k-transverse if it contains exactly
path k transverse edges and no internal edge

Simple a 1-transverse path(e1, ..., em)
transverse path such that(e1, ..., em−1) = P1(s, em−1.y)
P ∈ Pt(s, d) andem is a transverse edge (em.y = d)
Backward a 1-transverse path(e1, ..., em) such that for

transverse path a z, (1≤z<m),(e1,...,ez) ∈ Pt(s, ez.y)
P ∈ Pbt(s, d) and (e−1

m , ..., e−1
z+1) = P1(d, ez+1.y)

Forward a 1-transverse path(e1, ..., em) such that for
transverse path a z, (e1, ..., ez) ∈ Pt(s, ez.y) ∨ Pbt(s, ez.y)
P ∈ Pft(s, d) and (ez+1, ..., em) = P1(ez+1.x, d)

TABLE II: Multipath terminology

sub path(s, 6, 1) ∈ Pt(s, 1). The routing information
base cannot directly use the set of candidate next hops
corresponding to the first hops of1-transverse path
to perform forwarding, since routing loops may occur.
Our approach needs a validation mechanism to select
valid next hops among candidate next hops in order to
guarantee the safety of forwarding. For that purpose, we
consider the downstream criteria, the rule (2).

A. DT and mDT algorithms

In [7], we have proposed and described the Dijkstra-
Transverse algorithm (DT). Here, we focus on DT prop-
erties that we have not presented in [7] (see section III-B)
and on a DT improvement that we call multi-DT (mDT).
However, the basics of DT and mDT are similar.
To sum up, DT and mDT compute a multipath cost
matrix on a given root node (denoteds in the following).
A multipath cost matrixMc contains an overestimation
of best costs for all (|N | − 1) destinations and via
all possible (k+(s)) neighbors ofs. The goal of our
algorithms is to calculate a set of candidate next hops
associated to path costs via each neighbor.
The calculation consists in two main stages:

1- Compute the best path tree andtransverse edges.
2- Computebackward and forward transverse paths.

At each iteration, our algorithms compute the best1-
transverse paths depending on the first hop. Without an
optimized structure to implement the best costs vector
(the priority queue, denotedTc), the complexity of
DT for each calculating nodes is in the worst case:

O(|N |2 + |E|+ |N | × k+(s)) = O(|N |2)
DT adds a time complexity proportional to the outgoing

degree of the given root nodes compared to Dijkstra.
With a Fibonacci heap [5] to implementTc, it is possible
to reduce the time complexity to:

O(|N |log2|N |+ |E|+ |N | × k+(s))
The minimum extraction has an unitary cost whereas
the minimum suppression has an amortized cost in
O(log2(|N |)). For simplicity reasons, evaluations results
presented in this paper only rely on array lists.
The set of candidate next hops computed with DT
does not always include all next hops corresponding
to equal best cost paths. mDT (the complete algorithm
is described in the techreport [8]) is able to solve
this problem. With mDT, only the first computation
phase of DT is modified by using a next hop matrix
denotedTp. This matrix represents the existence of
a next hop per neighbor for each destination.Tp is
updated at each edge exploration. Candidate next hops
recording follows a transitive rule:Tp(k, y)← Tp(k, x)
with y ∈ succ(x), k ∈ succ(s). Initially, if x = s

then Tp(y, y) ← y. With ECMP, the update ofTp is
performed only ifTc(x) + w(x, y) ≤ Tc(y). We have
chosen to generalize this approach to improve the upper
bound on the cost offorward transverse paths composed
with a backward transverse path. This generalization
increases the number of validated next hops. Indeed,
during the exploration of the set of successors of node
x, if node y is not already marked, it inherits all
forwarding alternatives ofx, including when(x, y) is an
internal edge. In this case, the next hop inheritance is not
restricted to branches as with DT:y is not theson of x

on a primary path. mDT allows to use all forwarding
alternatives already computed towardsx. This set of
paths is not limited to1-transverse alternatives, it can
contain alternate paths with several internal or transverse
edges. The mDT computation is based on the order of
node exploration which depends on the rank of costs
stored inTc. With mDT, the first computation phase is
able to calculate all candidate next hops corresponding
to ECMP alternatives. Recursively, the cost inheritance
takes into account all the sets of equal best cost paths
for all marked nodes. The complexity of mDT is slightly
greater than the one of DT: for each iteration of the
main loop, k+(s) operations are necessary to execute
the inheritance of next hops and their costs. The worst
case complexity of mDT is inO(|N |2 + E × k+(s))
without an optimized structure forTc.

B. Properties of DT and mDT

Our algorithms are able to compute at least one
alternate path towards each destination if such alternative

exists. Proofs are given in the mDT techreport [8].

Property 1. DT computes all 1-transverse paths, and
mDT computes all paths computed with DT and all equal
best cost paths.

The proof of these properties relies on next hops
inheritance performed by DT and mDT (see [7]).
Now, let us define a major property of1-transverse paths.
The demonstration of this property relies on two lemmas.

Property 2. If there exists an alternate path P (s, d),
then there exists a 1-transverse path between s and d.

Lemma 1. If there exists an alternate path P from s

to d, then there exists a path from s to d whose cost is
not greater than the one of P and containing only one
transverse edge.

Figure 1 illustrates lemma 1. Let◦ be the operator
representing the path concatenation. The2-transverse
pathP = (s, 6, 1, b, c) betweens andc via the neighbor
node 6 usesbranch1(s) to reach the transverse edge
(b, c). There exists an alternate simple transverse path
P ′ = P1(s, b) ◦ ((b, c)). Note that the existence of an
alternate pathP with several transverse edges implies
that DT and mDT implicitly record a1-transverse path
P ′ in the cost matrixMc with a cost lower or equal to
the cost ofP.

Lemma 2. If there exists an alternate path from s to d

with one transverse edge, then there exists a 1-transverse
path linking s and d.

Figure 1 illustrates lemma 2. Although the alternate
path (s, 1, b, c, 11, d) is not 1-transverse because it con-
tains an internal edgei = (c, 11), there exists a forward
transverse path(s, 1, b, c, n, 11, d). In this case, the in-
ternal edgei is bypassed with a backward composition
followed by a forward composition. It allows to compute
the alternate next hop1 to reachd.
Thanks to the backward and forward composition, if
there exists a1-transverse path, then DT finds it. These
two phases allow to use edges of the SPT in both
directions. Moreover, DT considers all transverse edges
because, as it is the case for the classical Dijkstra
algorithm, all edges must be explored in order to mark all
nodes. The difference is that DT implicitly stores longer
or equal cost paths in the cost matrix.

IV. EVALUATION

We have used the Network Simulator 2 (ns2, [2]) to
compare several routing approaches. We have extended

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20 40 60 80 100 120 140 160 180 200

C
om

pu
ta

tio
n

ra
tio

Number of nodes

EC/kD
DT/kD

mDT/kD

Fig. 2: Number of candidate next hops (Igen topologies)

(see [1]) the link state routing module of ns2 to support
DT, mDT, kD and the downstream criteria.

A. Topologies and simulations setup

We present results obtained on three different kinds
of topologies. The first category of networks are real
topologies with actual IGP weights (for confidentiality,
we approximate their size in Table III). Topologies de-
noted ISP1 and ISP2 are commercial networks covering
an European country. ISP3 and ISP4 are Tier-1 ISP
networks. The second category of networks were chosen
among the Rocketfuel inferred set of maps (see [6]).
We have also used the Igen topology generator ([10])
to generate 10 topologies containing between 20 and
200 nodes using the K-medoid parameter, the delay-
triangulation heuristic and a 2-sprint pop design. The
K parameter that determine the number of routers per
cluster is chosen such that K=|N |

10
. Each cluster contains

approximatively 10 routers for each generated topology.
These parameters offer a great physical diversity to
measure the relevance of our proposition to achieve
the same level of diversity as computed withkD. The
link valuation used for this third category is the inverse
of the link capacity. The mean degree, denotedk, is
approximatively the same for each generated topology:
k ∼ 4. These networks represent access backbones and
contain two kinds of links:155Mbps for access links and
10Gbps for backbone links.

B. Results

First, we have measured the path diversity (see Fig.2).
We have calculated the total number of candidate next
hops obtained with ECMP (denoted EC), DT, mDT, and
multiple Dijkstra computations (kD). Results are repre-
sented as a performance ratio between the considered
technique and kD for all routers of a given network. kD
provides the best diversity but with a higher computation

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 20 40 60 80 100 120 140 160 180 200

N
um

be
r

of
 in

st
ru

ct
io

ns

Number of nodes

EC
DT

mDT
kD

|N|2

Fig. 3: Number of operations (Igen topologies)

cost. We observe that DT and mDT are able to compute
approximatively90% of candidate next hops obtained
with kD, while ECMP obtains a performance ratio only
between60% and80%.
Then, we have compared the time complexities of the
fore mentionned algorithms (see Fig. 3). We have rep-
resented the execution time measured in number of
operations needed by DT, mDT and kD to compute their
set of candidate next hops. The number of operations is
an average computed for each router. This value takes
into account all operations necessary to extract themin

of Tc and perform update ofTc, Mc andTp. We notice
that the time saved with DT or mDT is really significant
compared to kD. The number of operations needed by
kD is approximativelyk × |N |2 whereas mDT and DT
need approximatively|N |2 operations. This complexity
is equivalent to the worst case of an ECMP computation.
The time complexity upper bound is reached because
some routers have a high degree of connectivity.
Finally, we have compared the number of validated next
hops that are selected with the downstream criteria (rule
2) depending on the computation algorithm (see Fig. 4).
We remark that mDT allows to validate as many next
hops as kD. This result can be explained by the specific
valuation of our set of generated topologies: there are
only two very different weights used in these networks.

Results given in Table III illustrate the same eval-
uation of performance ratios and complexity on the
set of real and inferred topologies. For these sets of
topologies, Table III also shows candidate and valid
next hops average per destination obtained with kD.
Diversity ratio results are similar to the ones obtained
with Igen although degrees and weights distributions are
completely different. The main difference comes from
the time complexity evaluation. On these topologies,
the maximum degree of nodes is two times lower than

Candidate next hops Validated next hops Number of operations
Network Size mean ratio/kD (%) mean ratio/kD (%) mean ratio/kD (%)

name |N | |E| kD EC DT mDT kD EC DT mDT kD EC DT mDT

ISP1 25 50 1.46 76 97 97 1.10 97 100 100 489 60 66 75
ISP2 50 200 3.58 43 93 97 1.79 69 89 94 6730 30 32 32.5
ISP3 110 350 2.70 55 89 92 1.45 82 97 99 8079 38 41 43.5
ISP4 210 880 3.73 44 86 88 1.81 72 96 99 41747 27 28 31

Exodus 79 294 3.58 44 88 96 1.73 58 94 99 5569 29 34 37
Ebone 87 322 3.49 46 90 96 1.76 77 93 99 9698 30 33 36
Telstra 104 304 2.30 72 92 95 1.30 90 98 99 6526 54 57 59
Above 141 748 5.29 34 86 97 2.50 58 89 99 40143 18.5 20 23
Tiscali 161 656 3.68 54 91 97 1.97 74 92 97 31044 27 29 32

TABLE III: Evaluation results on real and inferred topologies

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

20 40 60 80 100 120 140 160 180 200

V
al

id
at

io
n

ra
tio

Number of nodes

EC/kD
DT/kD

mDT/kD

Fig. 4: Number of validated next hops (Igen topologies)

with Igen topologies. The measured complexity is far
away from the theoretical worst case. More generally,
parameters such as the valuation functionw or the
degree distribution may strongly influence complexity or
performance measures. For example, ifw is a constant
function, rule (2) is equivalent to ECMP. Thus, in this
case, the number of valid next hops is the same for
mDT, kD and ECMP. Another key point is the fact
that the alternate paths which are not computed with
mDT have a cost generally much greater than the one
of the primary path. That is why the ratio of loopfree
alternatives between mDT and kD is close to100%.

V. CONCLUSION

Multipath routing enhances the network reachability
and allows load balancing to circumvent congestions
or failures. However, the overhead imposed by sig-
naling messages, the time and space complexity can
hamper its deployment. In this paper, we propose a
simple scheme that is able to generate a greater path
diversity than ECMP with an equivalent overhead. Our
path computation algorithms, Dijkstra-Transverse, and
its improvement multi-DT, allow to compute at least

two candidate next hops between all pairs of routers if
such next hops exist. To validate candidate next hops in
a distributed manner, we have considered the simplest
loopfree routing rule, the downstream criteria. Our eval-
uations suggest that the gain of time is very significant.
We show that the number of next hops validated with
the downstream criteria is slightly the same using mDT
or a Dijkstra computation per neighbor. Moreover, our
proposition can be incrementally integrated in OSPF
or IS-IS by replacing the path computation algorithm
without any change in the protocol.

REFERENCES

[1] “Implementation of dt and mdt in ns2,” http://www-r2.
u-strasbg.fr/∼merindol/uploads/Research/DT.tar.gz.

[2] “The network simulator- ns2,” http://www.isi.edu/nsnam/ns.
[3] R. Banner and A. Orda, “Multipath routing algorithms for

congestion minimization,”IEEE/ACM Trans. Netw., 2007.
[4] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of multi-path

routing,” IEEE/ACM Trans. Netw., vol. 7, no. 6, 1999.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 2nd ed. The MIT Press, 2001.
[6] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “In-

ferring link weights using end-to-end measurements,” inACM
SIGCOMM Internet Measurement Workshop, 2002.

[7] P. Mérindol, J.-J. Pansiot, and S. Cateloin, “Path computation
for incoming interface multipath routing,” inECUMN, 2007.

[8] P. Merindol, J.-J. Pansiot, and S. Cateloin, “The mdt algorithm,”
LSIIT-UdS, arXiv:0904.0217v1 RR-PM01-09, 2009.

[9] M. Pascoal, “Implementations and empirical comparisonfor
k shortest loopless path algorithms,” inThe Ninth DIMACS
Implementation Challenge: The Shortest Path Problem, 2006.

[10] B. Quoitin, “Topology generation through network design
heuristics,” http://www.info.ucl.ac.be/∼bqu/igen/.

[11] C. Villamizar, “Ospf optimized multipath (ospf-omp):draft-ietf-
ospf-omp-02.txt,” IETF, Draft, Feb. 1999.

[12] S. Vutukury, “Multipath routing mechanisms for trafficengi-
neering and quality of service in the internet,” Ph.D. disserta-
tion, 2001.

[13] H. Wang and al., “Cope: traffic engineering in dynamic net-
works,” in SIGCOMM, 2006.

[14] X. Yang and D. Wetherall, “Source selectable path diversity via
routing deflections,” inSIGCOMM, vol. 36, 2006.

