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ABSTRACT
An understanding of the topological structure of the Internet is
needed for quite a number of networking tasks, e.g., making de-
cisions about peering relationships, choice of upstream providers,
inter-domain traffic engineering. One essential componentof these
tasks is the ability to predict routes in the Internet. However, the In-
ternet is composed of a large number of independent autonomous
systems (ASes) resulting in complex interactions, and until now no
model of the Internet has succeeded in producing predictions of
acceptible accuracy.

We demonstrate that there are two limitations of prior models:
(i) they have all assumed that an Autonomous System (AS) is an
atomic structure — it is not, and (ii) models have tended to over-
simplify the relationships between ASes. Our approach usesmulti-
ple quasi-routers to capture route diversity within the ASes, and is
deliberately agnostic regarding the types of relationships between
ASes. The resulting model ensures that its routing is consistent
with the observed routes. Exploiting a large number of observation
points, we show that our model provides accurate predictions for
unobserved routes, a first step towards developing structural mod-
els of the Internet that enable real applications.

Categories and Subject Descriptors: C.2.2 [Computer-Com-
munication Networks]: Network Protocols—Routing Protocols;
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet (e.g., TCP/IP)
General Terms: Algorithms, Experimentation, Measurement
Keywords: BGP, inter-domain routing, route diversity, routing
policies

1. INTRODUCTION
The Internet is composed of a large number of independently

administered Autonomous Systems (ASes) coupled by the Border
Gateway Protocol (BGP) into a single globe spanning entity.The
structure of this interconnected system has been of some interest for
a variety of reasons; most commonly, because its topology plays
a significant role in determining the performance of the Internet,
though pure scientific interest has played a substantial role in these
investigations. Now, we propose that more direct use be madeof
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this information to predict the behavior of the Internet under spe-
cific conditions.

In the past, high-level features of the inter-domain topology have
been used to make generic inferences about its behavior, e.g., power-
law distributions [1] have been used to imply important “central-
ized” nodes (see [2] for a discussion of this issue). These types
of generic inference are useful in terms of scientific understand-
ing of the Internet as it evolves, but do not allow one to answer
specific questions about the current Internet. We seek to be able
to answer specific what-if questions, e.g., what if a certainpeering
link was removed, or what-if we change policies thus? In principle,
knowledge of the Internet’s inter-domain topology can be used to
answer such questions, and the capability would provide great util-
ity for providers. This is particularly true given that the focus for
large providers has moved from simply providing connectivity, to
maintaining contractual or business relationships that may require
resilience despite changing traffic demands or link failures, in addi-
tion to supporting customers who demand more control over their
traffic flows [3,4].

Despite the requirements, current practice is quite limited. Of-
ten, the only available approach is “tweak and pray” [5, 6]; that is,
providers make changes with limited ability to predict the results,
and then observe to see if the desired effect occurred. We propose
to build an AS-routing model which enables us to predict unob-
served Internet paths with good accuracy.

It is known [7], that for the extracted model to be useful in pre-
diction, it must be substantially better than those tested so far. Un-
til now, models of the network structure have been predominantly
inter-domain level models that do not worry about the details of
the ASes [7–9]. However, ASes are not simple nodes in a graph
— they are comprised of routers. The internal structure of anAS
doesmatter. It influences inter-domain routing, for instance via
hot-potato routing [10, 11]. Furthermore, there are multiple con-
nections between ASes, typically from different routers, and this
adds to the diversity of known routes [12]. Even where policyis
uniform across an AS, internal features of the AS may result in
different route choices for each router — this is a feature ofBGP
that allows behaviors such as hot-potato routing. Such diversity
is commonly observed in public routing databases such as Route-
views [13]. An AS which is a single node must always choose a
single best path to pass to its neighbors, and therefore cannot rep-
resent this type of diversity.

In addition, inter-domain routing is controlled by diversepoli-
cies, decided locally by each AS, but acting globally across the
entire system [14]. Hence the topology of the inter-domain graph
is not, in itself, sufficient to make predictions about Internet rout-
ing. In addition, policies need to be considered. Many policy rela-
tionships may be described as “customer-provider” or “peer-peer”,



and in these simple cases policies are enacted using simple,well-
known filtering rules [15]. Several papers have discussed inference
of these simple policy rules [16–18], but unfortunately, not all poli-
cies fit these simple rules: for instance, in some cases of multiple
links between two ASes, the policies may vary even between links.
Our approach to all of these issues is to remain agnostic about what
practices occur or do not occur in the current Internet. We make
minimal assumptions about inter-domain routing, and let the data
speak for itself.

Of course, it is impossible to infer all of the internal details of an
AS’s policies. We are not seeking to reverse engineer the Internet.
Our model does not necessarily correspond to the policies actually
used by the ASes. Rather the results are analogous to the IGP (Inte-
rior Gateway Protocol) link weights inferred by Rocketfuel[19,20],
which do not correspond to those of the real networks investigated,
but are nevertheless useful in understanding intra-domaintopolo-
gies. In this paper, we introduce policies into our AS-routing model
with the goal of making predictions about the behavior of unob-
served paths.

Likewise, we do not seek to reproduce a Rocketfuel-like de-
tailed intra- and inter-domain connectivity map [20], as a signi-
ficant part of this information is not used in determining routes.
Rather, we shall build topological models incorporating intra- and
inter-domain information at the minimum level of detail needed to
explain the observed routing in the Internet. The resultingsimplic-
ity allows us to derive insight into the relationship between routing
policies, path diversity, and the actual choice of the pathspropa-
gated across the Internet without having to model the complexity
of the routing inside an AS [21]. It gives us the ability to determine
precisely where internal details matter, and how much.

Our approach is based on the idea of building a topology and
policy model that is consistent with the observed routing inthe In-
ternet. To this end we exploit BGP observations from more than
thirteen hundred observations points (including Routeviews [13],
RIPE [22], and a number of other sources). We separate these
into two datasets: a training dataset, and a validation dataset. The
training set is used to build a topology and policies consistent with
observed routing. We do so using a set of simulation-based itera-
tive refinement heuristics (described in Section 4) that introduce a
minimal set of topology and policy changes required to matchob-
served routing. We accommodate path diversity by creating multi-
ple quasi-routers within each AS. A quasi-router represents a group
of routers all making the same choice about best route, and so
the “quasi-router topology” does not represent the physical router
topology of a network, but rather the logical partitioning of its pol-
icy rules. Importantly, we try to minimize the assumptions we make
about “likely” policies, e.g., we do not assume that relationships
fall into neat categories. We find that we can build an AS-routing
model that matches the training setexactly. However, remember
this is not the real topology, and the fact that it can match the train-
ing set exactly is not sufficient to show that the results are of practi-
cal use. We test the usefulness of the model by making a set of pre-
dictions about routes, and validating them with the data excluded
from training. We find that we can match the predictions down
to the final BGP tie break in more than 80% of the test cases, see
Section 5.

This paper is not (principally) concerned with modeling Internet
routing dynamics. The dynamics are clearly important, but consid-
erable effort has already gone into such modeling e.g., [14,23–27].
In our first prototype for predicting Internet behavior we model the
equilibrium behavior of this system, for the (vastly) predominant
case that a stable routing solution exists. It is these equilibrium be-
haviors that are of most interest for the questions posed earlier. At-

Figure 1: Operation of a BGP router.

tempting to model, and incorporate dynamic information into our
predictions is a worthwhile goal (for example see [28]), butbeyond
the scope of this paper.

To summarize our contributions: We present a methodology for
deriving an AS-routing model that can reproduce all observed AS-
paths, and predict unobserved routes with reasonable accuracy. Fur-
thermore we show the importance of considering more than one
router per AS and accommodate a wide range of policies. Another
major distinction of our work is that we use simulations to refine
our model based on a large set of BGP data from diverse vantage
points but evaluate the results using a separate set of BGP vantage
points.

2. REVIEW OF INTER-DOMAIN ROUTING
BGP routers exchange routing information over BGP sessions.

External BGP (eBGP) sessions are established over inter-domain
links, i.e., links between two different ASes (BGP peers), while
internal BGP (iBGP) sessions are established between the routers
within an AS. Through its BGP sessions, each router receivesand
propagates BGP routes for destination prefixes. A BGP routerpro-
cesses and generates route advertisements as shown in Figure 1.
Administrators specify input filters per BGP peer, which areused to
discard unacceptable incoming BGP advertisements. Once a route
advertisement is accepted by the input filter, it is placed together
with the routes originated at this router in the incoming Routing
Information Base (RIB-In) for the peer, possibly after someof the
route attributes have been modified according to the local routing
policies. Next, the BGP decision process is used to select the best
route for each prefix from among the available routes. This route
is then placed into the BGP routing table, which we will also re-
fer to as theRIB-Out. Finally, administrators may specify output
filters for each peer, which are used to decide which best routes to
propagate to a BGP neighbor.

The BGP decision process consists of a sequence of elimination
steps. Its final goal is to select a single best route for any given pre-
fix. For this purpose the BGP decision process considers several
of the BGP routes attributes. One of the first attributes islocal-
preference(in short, local-pref). As local-pref is a non-transitive
attribute, it can be used to locally rank routes. The next BGPat-
tribute examined by the BGP decision process is theAS-path. An
AS-pathcontains the sequence of ASes that a route crossed to reach
the current AS. Routes with shorter AS-paths are preferred.Next
in the evaluation process is themulti-exit-discriminator(in short,
med). This attribute is used to rank routes received from the same
neighbor AS, but it can also be used across neighbors. Then the de-
cision process ranks routes according to the IGP cost of the intra-
domain path towards thenext-hop, preferring routes with smaller
IGP cost. This rule implements hot-potato routing [29]. Finally, if
there is still more than a single route left, the router breaks ties, for
example by selecting the route to the neighbor which has the lowest
router-id (typically one of its IP addresses).



Given a set of filters and policies, it is possible to simulatethe
propagation of BGP routes using simulators such as C-BGP [30].
C-BGP’s model for the inter-domain routing protocol relieson the
computation of the paths that routers know once the BGP routing
has converged [23]. For this purpose, it models the propagation
of BGP messages and reproduces the selection performed by each
router [31].

3. DOMAINS AS SIMPLE NODES
In this section, we use measured routing data to illustrate the

need to go beyond treating ASes as simple nodes in a graph. We
first analyze the degree of route diversity present in the current In-
ternet and then examine the limitations of single-node AS models
for predicting path choices throughout the Internet accurately. The
data shows that one must have a way to capture some internal de-
tails of routing at least for a subset of ASes.

3.1 BGP data set
There are many different techniques for collecting BGP feeds

from an AS. One of the most common technique is to rely on a
dedicated workstation running a software router that peerswith a
BGP router inside the AS. We refer to each peering session from
which we can gather BGP data as anobservation point, and the AS
to which we peer as theobservation AS.

We use BGP data from more than 1,300 BGP observation points
including those provided by RIPE NCC [22], Routeviews [13],
GEANT [32], and Abilene [33]. The observation points are con-
nected to more than 700 ASes, and in 30% of these ASes we have
feeds from multiple different locations. As we are currently not
yet interested in the dynamics of BGP we use a static view of the
routes at a particular point in time. The table dumps provided by
the route monitors are each taken at slightly different times. We use
the information provided in these dumps regarding when a route
was learned to extract those routes that were valid table entries on
Sun, Nov., 13, 2005, at 7:30am UTC, and that were stable in the
sense that they have not changed for at least one hour. In the future
we are planning to also incorporate the AS-path informationfrom
BGP updates. Our dataset contains routes with 4,730,222 differ-
ent AS-paths1 between 3,271,351 different AS-pairs. We derive an
AS-level topology from the AS-paths. If two ASes are next to each
other on a path we assume that they have an agreement to exchange
data and are therefore neighbors in the AS-topology graph. We are
able to identify 58,903 such edges. We identify level-1 providers
by starting with a small list of providers that are known to betier-1.
An AS is added to the list of level-1 providers if the resulting AS-
subgraph between level-1 providers is complete, that is, wederive
the AS-subgraph to be the largest clique of ASes including our seed
ASes. This means that the AS-graph contains edges for all level-
1 AS-pairs. This results in the following 10 ASes being referred
to as level-1 providers (174, 209, 701, 1239, 2914, 3356, 3549,
3561, 5511, 7018). Note, this list is not complete. However,all
found ASes are well-known tier-1 provider. There are 7,994 ASes
that are neighbors of alevel-1 provider in the BGP graph. We
refer to these aslevel-2. All other 13,174 ASes are grouped
together into the classother. Of the 21,178 ASes 3,486 provide
transit for some prefixes in the sense that they appear at least once
in the middle of an AS-path. Among those ASes that do not pro-
vide transit, called stub-ASes, we distinguish between those that
are observed to have a single upstream provider (are single-homed)
and those that have multiple providers (are multi-homed). We find

1We removed AS-path prepending to prevent distraction from the
task of route propagation.
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Figure 2: Histogram of # of distinct AS-paths.

that there are 6,611 single-homed and 11,077 multi-homed ASes.
Single-homed ASes that do not provide transit only add limited in-
formation about the AS-topology as long as any path information
gathered from prefixes originated at such stub-ASes is transfered
to a prefix originated at its AS neighbor. Removing single-homed
stub-ASes and AS-paths with loops from the AS-topology results
in a graph with 14,563 nodes and 52,288 edges. Note, our data
does not cover the complete AS topology [34] since not all AS re-
lationships are observable in our data. There are relatively more
observation points in the level-1 and level-2 ASes than in the other
ASes. Therefore it is likely that AS-relationships involving level-2
providers are missing. Yet, their impact with regards to routing can
be expected to be less significant.

3.2 Route diversity in the Internet
To investigate the significance of route diversity in the Internet

we examine how many different routes can be seen for each origi-
nating and observation AS pair (over all prefixes advertisedby the
origin). Figure 2 plots a histogram of the number of distinctAS-
paths using a logarithmic y-axis. Note, that for more than 30% of
the AS-pairs we see more than one AS-path. Indeed, there are more
than 5,000 pairs with more than 10 different paths.

Each AS may originate multiple prefixes and an AS-path may be
used by many prefixes. Indeed, we find that there are very popu-
lar AS-paths used by more than 1,000 different prefixes while the
number of AS-paths that are only used by a single prefix is less
than 50%. When plotting the histogram of how many prefixes are
propagated along an AS-path on a log-log plot, one can see a linear
relationship (plot not shown). In terms of route diversity,we ob-
serve that most prefixes are only propagated through a singleAS-
path. Yet, there are quite a number of prefixes whose propagation
samples the full path diversity between two ASes.

Obviously, one router per AS is not sufficient to capture the full
diversity imposed by intra-domain routing. A single routercan only
propagate the route it chooses as best. With multiple routers each
router within the AS can select its own best route and propagate it.

To motivate the need for modeling ASes with several routers,
let us consider a concrete example from our data for the prefix
202.94.48.0/20 at AS 5511 shown on Figure 3.

AS 24249, which originates this prefix, is multi-homed to two
ASes: AS 4694 and AS 4716. From these two providers the route is
propagated to five level-1 providers: AS 2914, AS 3356, AS 3549,
AS 3561, and AS 7911. Since AS 3356 propagates multiple AS-
paths to AS 3356 it needs to be modeled by at least two different
routers. Which route is propagated can depend on the specificsetup
within the AS. Yet, path diversity within the ASes is only partially
responsible for the route diversity. Another reason is the large in-



Figure 3: Example of path diversity.

Percentile 25 50 75 90 95 98 99 100

max # of
unique AS-path 1 2 4 5 7 10 10 23

Table 1: Maximum route diversity received for all ASes.

terconnectivity in the core of the Internet; in this case 5 out of 8
AS-paths. Still AS 3356 needs eight routers to propagate allpaths
further downstream.

To judge how much of the path diversity is due to multiple routes
per ASes rather than multiple routes from different ASes we deter-
mine the distribution of the maximum number of distinct unique
paths each AS receives towards any destination prefix. This value
is a lower bound on how many routers are needed inside an AS to
propagate all these paths to downstream ASes. Table 1 shows the
larger quantiles of this distribution. We observe that morethan 50%
of the ASes receive two unique AS-paths for at least one destina-
tion prefix, 10% more than 5, and 2% more than 10, respectively.
This highlights the importance of not loosing such path diversity.

3.3 Route diversity in single router models
In the past, large-scale models of routing in the Internet fre-

quently assume that each AS consists of a single router, e.g., [7].
To judge how appropriate this is for answering practical questions
we now examine how accurately it can predict AS-path choices
throughout the Internet.

We use the BGP simulator C-BGP [30] to compute AS-level
paths on the AS-level graph after eliminating the stub-ASes. We
originate one prefix per AS, resulting in 14,563 prefixes. Origi-
nating multiple prefixes per AS does not provide more information
since at this point we do not consider per-prefix specific policies.
To evaluate the quality of the model we compare the predictedand
observed AS-paths. Table 2 summarizes the results. Not surpris-
ingly we have agreement for only 23.5% of the AS-paths. The
main problem is again that for slightly less than 50% of the pre-
fix/observation point combinations the observing AS does not even
learn the “correct” AS-path. For the remaining 50.6% only 4.7%
of the incorrect decisions occur due to the shortest-path step of the
BGP-decision process (Figure 1). If a router learns the “correct”
route it seems to be able to choose the “correct” one in roughly
50% of the cases.

Today’s Internet does not use shortest-AS-path routing as we
assumed above. Most BGP peerings come with routing policies
of which the most common ones can be classified as customer-
provider and/or peering relationships. Relying on the BGP data
we use a simple heuristic for inferring customer-provider relation-

Shortest Customer/
Path Peering

Criteria Policies

AS-Paths which agree 23.5% 12.5%
AS-Paths which disagree 76.4% 87.5%

due to
AS-path not available 49.4% 54.5%
shorter AS-path exist 4.7% 5.7%
lowest neighbor ID 22.2% 27.3%

Table 2: Agreement between predicted and observed AS-paths
(single router per AS).

ship utilizing the valley-free assumption [15, 16, 18]. We start by
declaring all links between the level-1 ASes as peering and then it-
eratively infer customer-provider relationships. We verify our clas-
sification by using data from several ASes whose peering policy
we have access to. This results in 34,087 customer-provider peers,
7,290 peering relationships, and 640 siblings. All other edges can-
not be classified. We then realized appropriate policies based on
the local-pref BGP attribute and route filters2 in the simulator and
rerun the simulations. The results are fairly discouragingwith only
12.5% agreement on the AS-paths. The main problem is that for a
lot of the prefix/observation point combinations the observing AS
does not learn the “correct” path. Overall, this indicates alow accu-
racy for AS-path prediction, if an AS-routing model is solely based
on AS-relationship inference.

Unfortunately, an agreement of less than 1/4 for the selected best
AS-paths and just above 1/2 for the available AS-path, while not
too bad, is not sufficient to answer, e.g., what-if questionssuch as
how the routing in the Internet would change if a peering is added
or de-peering of some provider occurs. Accordingly, we in this
paper tackle the task of deriving more accurate models. In order to
account for route diversity and to predict unobserved Internet paths,
we allow for routing policiesas well as formultiple routersinside
ASes.

4. METHODOLOGY
The goal of this section is to propose a methodology for build-

ing an AS-routing topology model that captures the outcome of
the routing policies and the internal structure of all ASes from ob-
served BGP data in order to answer practical questions aboutrout-
ing. The example question we use to highlight the capabilities of
our model concerns predicting Internet path choices for previously
unobserved AS-paths.

We consciously choose an approach which allows for multiple
routers, so called quasi-routers, within an AS, and that is agnostic
about inferred relationships such as customer-provider and/or peer-
ing relationships. After all, the real world knows many variants of
such relationships [35]. We take the approach of modeling what
we actually observe. In this manner we can avoid many potential
pitfalls that arise from incomplete assumptions or trying to press
BGP into some fixed schema.

In the following we first introduce the components of our AS-
routing model and then show how one can evaluate its predictive
capabilities. Next, we introduce our principle approach and then
give an example of how to use it for deriving an AS-routing model
from gathered BGP data. Finally, we discuss how to use the model
for predicting previously unconsidered AS-paths, and how to im-
prove it for previously unconsidered prefixes.

2We treat siblings in the same manner as peerings relationships
and set the same local-preference for unknown AS edges as for
peerings.



4.1 Components of the AS-routing model
The AS-routing model should be capable of predicting AS-level

paths, as used in the Internet, and so it needs to have a notionof
inter-domain connectivity. Since it should capture the impact of
intra-domain routing it needs to account for the diversity and con-
nectivity within each AS. Furthermore, as BGP is used to imple-
ment policies, we must accommodate this in our model.

Based on these criteria and the fact that we do not yet consider
BGP dynamics, we propose to use a class of topology models that
can also be used as input to the C-BGP simulator [21, 30]. C-BGP
is designed for studying the propagation of routing information
along a topology model that consists of multiple ASes. It allows
multiple routers within an AS, the setup of BGP sessions between
any pair of routers, and supports iBGP as well as eBGP. To prop-
agate routing information, C-BGP models the propagation ofBGP
messages and executes the BGP decision process based on routing
policies. Hence, C-BGP’s routing model addresses all our require-
ments. Since C-BGP only computes the steady-state choice ofthe
BGP routers after the exchange of the BGP messages has converged
and not the whole state machine of the BGP routing protocol, it is
thus possible to perform large-scale simulations for single prefixes
on topologies with more than 16,500 routers split among 14,500
ASes in 2 – 45 minutes with 200 MB – 2 GB memory consump-
tion depending on the complexity of the routing policies. C-BGP’s
capability of simulating large-scale propagation of BGP routes not
only allows us to test how accurately the model can answer ourex-
ample question, it also enables us to refine an AS-routing model
incrementally.

While deriving the model we make the simplification that we
only originate one prefix per AS. This allows us to address ques-
tions regarding path diversity while keeping the model manageable.
For similar reasons we again exclude stub-ASes but keep their AS-
path to ensure that we do not loose any path information.

We capture the inter-domain connectivity via an AS-topology
graph as extracted from the BGP data. In order to represent the
intra-domain routing diversity we allow each AS to consist of mul-
tiple quasi-routers. Aquasi-router represents a group of routers
within an AS all making the same choice about best route, and so
the “quasi-router topology” does not represent the physical router
topology of a network, but rather the logical partitioning of its pol-
icy rules. Each edge (AS 1, AS 2) of the AS-topology is realized
by establishing a BGP session between one or more quasi-routers
from AS 1 to one or more quasi-routers from AS 2. Propagation
of routes can be restricted by applying route filters and/or by intro-
ducing other routing policies.

4.2 Evaluating prediction
C-BGP enables us to predict, using an AS-routing model as in-

put, the AS-path along which the routing information for anypre-
fix, originated at any node, is propagated to any other node.

For a fair evaluation we need one dataset to derive the AS-routing
model, calledtraining, and another separate one, calledva-
lidation, to evaluate the quality of the AS-routing model. We
divide the available BGP data randomly into two subsets by as-
signing observation points to either subset. This placesall paths,
observed at an observation point, into one of the two subsets. The
training set is then used to derive the AS-routing model while
thevalidation set is used for evaluation purposes.

An alternative way of slicing the data is to split the set of AS-
paths according to the originating ASes into two subsets. One can
then compare how well an AS-routing model derived from a subset
of the prefixes predicts the AS-paths for another set of prefixes.
Furthermore, one can combine both approaches and partitionthe
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paths observed in BGP data
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AS 2 2-7-6, 2-8-6 2-8-6 2-7-6
AS 3 (router 1) 3-2-7-6 3-8-6 3-2-7-6
AS 3 (router 2) 3-8-6 3-8-6 3-8-6

Figure 4: Metrics - Example.

obtainedtraining or/andvalidation subsets according to
the originating AS.

The evaluation proceeds by executing a C-BGP simulation for
each prefix and then comparing the predicted AS-path according
to the AS-routing model with the actual observed AS-path in the
Internet. In this manner we can evaluate the predictive capabilities
of the model. Since routing decisions are determined independently
for each prefix we run a separate simulation for each prefix.

After the simulation runs one has access to the routing informa-
tion base (RIB) of all quasi-routers. Therefore, we can now com-
pare for each AS the AS-path that is recorded in the BGP data to
the AS-paths chosen in the simulation. Some mismatches haveto
be expected. We measure the degree of mismatch by determining if
a route with the AS-path is received by a quasi-router withinan AS
(RIB-In), if it is selected by a quasi-router (RIB-Out), or if it could
have been selected but was not due to an “unlucky” decision in
the last step of the BGP decision process, the tie-breaker (potential
RIB-Out). More precisely we use the following metrics:

RIB-In match: The observed route at an observation point is con-
tained in the simulated RIB-In for at least one quasi-router
in the observed AS. Note, this does not say that the simu-
lated and observed RIB-Ins are the same. as the observation
point only sees the best routes advertised by the monitored
AS. The metric provides an upper bound on the prediction
accuracy — we can only expect a RIB-Out match if we have
a RIB-In match. A RIB-In match is a necessary but not suf-
ficient condition for a RIB-Out match.

Potential RIB-Out match: A RIB-In match where in the process
of choosing a best route the observed route is eliminated in
the last tie-breaking step of the BGP decision process in the
simulation (“Lowest Neighbor IP address”).

RIB-Out match: At least one quasi-router in the AS has selected
the route with the observed AS-path as its best route and
propagates it to its neighbors.

Furthermore we count for how many prefixes we find RIB-Out
matches for at least 50%, 90%, or 100% of their respective unique
AS-paths.

To visualize the various possibilities Figure 4 shows a toy ex-
ample with 8 ASes, three observation points (at AS 1, AS 2, and



AS 3) and one prefixp originated at AS 6. The dashed arrows3

indicate the traffic flows along the observed AS-paths while the
dotted arrows indicate the paths chosen by the simulation. Con-
sider first AS 1 — its RIB-In contains the learned routes1-7-6,
and1-4-5-6 to reach AS 6. The path1-7-6 is chosen instead of
1-4-5-6, which has been observed in BGP data. This represents
a RIB-In match, but no RIB-Out match. Since the observed AS-
path is longer than the simulated path, the used policies areclearly
wrong. Next, consider AS 2. Once again, we see that there is a
RIB-In match (neighbor AS 8 propagates the “correct” suffix path
to AS 2). But there is no RIB-Out match. In this case, the best
path is chosen “wrongly” in the final BGP tie-break. We call this
a potential RIB-Out match, because the choice is made based on
the tie-breaker. This mismatch is due to an unlucky decisionin the
simulation, rather than using incorrect policies. In real routing IGP
weights, etc., are also used to break these ties. Finally, AS3 has
a RIB-Out match: simulation and observation agree for router 2 of
AS 3.

4.3 Deriving an AS-routing model
In this section, we introduce the details of our iterative approach

for constructing an AS-routing model based on atraining set
of BGP data from multiple vantage points in the Internet.

We start from the simplest AS-model possible. It consists of
one quasi-router per AS and contains one edge between any two
connected ASes of the AS-level graph. Accordingly, this model
only includes information that is easy to derive from the input data
set. Then we determine for thetraining set, where the AS-
paths predicted by the current AS-routing model differ fromthose
observed in the Internet (those in thetraining set). This can be
due to two reasons: First, the model prefers the shortest AS-path
in the absence of more complex policies. Second, the quasi-routers
inside an AS do not suffice to capture the required route diversity.

To reduce the discrepancies between the observed AS-paths and
those predicted by the model, wealter the model iteratively by ei-
ther adding routing policies or quasi-routers. Adding quasi-routers
enables us to propagate more than one best route to the next AS, a
necessity as the data analysis shows (see Section 3.2).4 By adding
policy rules we ensure that the appropriate AS-path is selected and
can be propagated, even though it may not be the shortest one.

We do not aim at inferring the actual policies used by the ASes.
Rather, it is our goal to derive an AS-routing model where the
simulated AS-paths correspond to the observed AS-paths forthe
training set. By doing so we hope to, and indeed do, improve
the predictive capabilities of the AS-routing model over the models
discussed in Section 3.3. We are in this way capable of removing
the limitations of the “one router per AS” model of the Internet.

In effect each iteration of the heuristic, see Figure 6, consists
of comparing the AS-paths predicted by the model to those in the
training data. Based on the results, changes to the model (new
quasi-routers or changes to the policies) are determined and the
path propagation is re-simulated for all prefixes that are effected
by the changes. This cycle is repeated until the desired level of
agreement for thetraining set is achieved. In the following, we
present more details about the initial model and how the iterative
refinement proceeds.

4.4 Example: refining an AS-routing model
Since any simple AS-routing model with just one quasi-router

per AS is unlikely to match reality, we now illustrate with anex-

3In all figures routes are directed according to the flow of traffic.
4Keep in mind that a quasi-router does not have to correspond to
an actual router. It is just an entity responsible for routes.

ample how to use routing policies and topology diversification to
improve the model. Suppose there are five ASes, interconnected as
shown in Figure 5 (a), with two prefixesp1 originated at AS 3 and
p2 at AS 4, and one observation point at AS 1 which observes a
route with AS-path1-4-3 for p1 and routes with paths1-4 and
1-5-4 for p2. These AS-paths are visualized via dashed lines.
The AS-paths currently chosen after a simulation run are paths
1-2-3 for p1 and1-4 for p2 (dotted lines).

Starting with prefixp1, the heuristic detects that in the simula-
tions the path1-2-3 is chosen instead of the path1-4-3 at AS 1.
This mismatch is due to the fact that in our setup the quasi-router
of AS 2 has a lower IP address than the quasi-router at AS 4. To
correct this “wrong” tie-break decision, our heuristic sets up a pol-
icy at the quasi-router in AS 1 to prefer routes learned from AS 4
for prefix p1. We re-simulate, and now the path1-4-3 is selected
instead of the path1-2-3 (see Figure 5(b)).

Next, consider the two AS-paths observed for prefixp2 at AS 1.
A route with the shorter AS-path1-4 is already selected by the
quasi-router in AS 1; therefore no changes are required. Yet, in
order to account for the AS-path1-5-4, a second quasi-router in-
side AS 1 is needed. Therefore, a new quasi-routerb is created
as an identical copy of the existing quasi-routera with the same
neighbors as quasi-routera (see Figure 5(c)). Thus, quasi-router
b will have a RIB-In match for a route with AS-path1-5-4, but
does not select it as best route (the AS-path1-4 is shorter). In or-
der to correct this at routerb of AS 1, two policy rules are used. A
filter at AS 4 prevents routes for prefixp2 from being propagated
to quasi-routerb of AS 1 and a ranking policy is set to prefer routes
for p2 announced by AS 4. This ensures that quasi-routerb of AS 1
can select the route with AS-path1-5-4 as its best route.

4.5 Initial model
To derive the initial model we useall available BGP feeds,trai-

ning as well asvalidation, to derive an AS-graph from the
AS-path information. Such an AS graph is likely to be incomplete,
as it is probable that there are other peerings that are not used by
any of the AS-paths recorded at our vantage points. It is possible to
further improve the coverage of the AS-graph by adding additional
observation points or information from the routing policy database
or traceroute data. Yet, as these additional data sources come with
some uncertainties [36], we only focus on data from our observa-
tion points.

Initially, all ASes consist of a single quasi-router, and peerings
are established according to the edges of the AS graph. Next,we
assign IP address to each quasi-router. This choice is important as
the IP address is used as the final tie-breaker in the BGP decision
process. (In case of a tie a quasi-router prefers the AS-paths an-
nounced by the quasi-router with the lower IP address.) Therefore,
this choice can directly influence the quality of the prediction pro-
cess. We choose to use IP addresses such that the high order 16bits
are set to the AS number and the low order bits are a unique ID for
each quasi-router within the AS.

4.6 Iterative refinement
The goal of the iterative refinement process, see Figure 6, isto

modify the AS-routing model until one achieves the desired level
of agreement between the predicted AS-paths and the observed
AS-paths. Accordingly, we now introduce ourrefinement heuris-
tic which, by adding quasi-routers and BGP policy rules, reduces
the discrepancies between the simulated and observed AS-paths for
a set of prefixes.

We have two main reasons for using an iterative process in-
stead of trying to correct the discrepancies in a single step. First,
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ITERATIVE REFINEMENT
run simulations for prefixesp (initial model)
repeat until RIB-out match for all observed AS-paths

apply heuristic, compute changes
restart simulations

HEURISTIC (1 ITERATION)
foreach prefix p

foreach AS a
O = (suffixes of) AS-paths forp observed at ASa
foreach o∈ O

if RIB-Out match
no change
mark the quasi-router as used

else ifRIB-In match
duplicate a quasi-router if necessary
add policies: filtering, ranking (MED)
mark the quasi-router as used

elseskip

Figure 6: Model refinement – methodology.

route propagation itself is an iterative process. For the AS-path of
1-2-3-4 from the origin (AS 4) to be observable at the obser-
vation point (AS 1), AS 3 first has to select an appropriate route
and propagate it to AS 2. Then AS 2 has to select this route as its
best one and propagate it to the observation point. To reproduce
this step-by-step process in the AS-routing model we move from
the origin of the route towards the observation points and change
the policies or the topology at the AS where the path chosen inthe
model differs from the one observed in thetraining set. The
change ensures that the desired route is propagated one AS further
towards the observation point in the next iteration. This isreason-
able since this is a local decision and one does not have to determine
how the changes influence the overall route propagation beyond the
local changes. This task is delegated to C-BGP. Accordingly, our
second motivation for the iterative approach is that we do not have
to reimplement the full routing logic of C-BGP to determine the
necessary changes to the AS-routing model. Note that it is not nec-
essary to proceed AS-hop by AS-hop. Rather in each iterationone
determines the AS which is closest to the originating AS witha dis-
crepancy between the observed AS-path and the selected bestroute
and fixes this discrepancy at this AS.

In the following we first introduce our principle approach; then
explain how the policies are adjusted; and finally how they may
have to be corrected.

Refinement heuristic – principle approach:
The heuristic proceeds prefix-wise starting with the results of all
C-BGP simulations runs for all prefixes of the respectivetrai-
ning set based on the initial or previous AS-routing model. For
each prefixp with AS-pathP of thetraining set and each AS
a on the path it checks the following conditions and if necessary
takes appropriate actions:

RIB-Out match:

Condition: The observed path up to this AS (the suffix up to
a) is selected as best route by at least one quasi-router
inside the AS.

Action: We choose among this set of quasi-routers the one
with the lowest quasi-router ID and mark/reserve this
quasi-router as being responsible for this AS-path and
not available for matching another observed AS-path
for the same prefix.

RIB-In match but no RIB-Out match:

Condition: There is at least one quasi-router which learns
the observed AS-path up to this AS. But none of the
quasi-routers has selected it as best route and none of
these quasi-routers are already reserved for other routes
for this prefix.

Action: We choose among this set of quasi-routers the one
with the lowest router ID and mark/reserve it as being
responsible for this AS-path. Then we adjust this pre-
fix’ BGP policy at this quasi-router by either adding
filters or setting MED values as described below.

Condition: Same as above but all quasi-routers are already
reserved for other routes for this prefix.

Action: In this case we choose to “duplicate” one quasi-
router with a RIB-In match. The new quasi-router has
the same neighbors and policies as the copied one to
ensure that it also has a RIB-In match for the prefixp.
Then the BGP policy for this prefix is adjusted as in the
previous case.



No RIB-In match:

Condition: No quasi-router at the current AS has learned a
route with the observed AS-path.

Action: No action as a route with an appropriate AS-path
first has to be propagated to this AS.

Refinement heuristic – policy adjustment:
Two ideas are central to our refinement process: First, new quasi-
routers are added to account for path diversity. Yet, contrary to the
routers in the Internet we do not establish iBGP sessions between
the quasi-routers within an AS. Experiments with such an approach
have shown that it is extremely difficult to control route selection,
in particular to install different routes at neighboring iBGP routers.
Therefore, we choose to use quasi-routers instead of routers. Each
new quasi-router receives the appropriate routes by duplicating the
BGP sessions to the neighboring ASes but remains isolated from
other quasi-routers inside the AS. In effect we short-circuit the
intra-AS route propagation process. As a result each AS can con-
sist of multiple separate quasi-routers which do not exchange their
reachability information.

Second, we use policy rules on a per-prefix basis to filter and
rank routes at each selected quasi-router such that the route with
the desired AS-path can be selected as the best route. Suppose
that a quasi-router learns a route with the correct (suffix) path for a
certain prefix, yet it does not select it as its best route (RIB-In match
but no RIB-Out match). This can happen at any one of the steps
in the BGP decision process, see Figure 1. At the same time this
multi-step decision process provides us with many different ways in
which we can change the decision: by either adding a policy atthe
current quasi-router or through a filter at the announcing neighbor
which ensures that a route is no longer available at the current qua-
si-router. At this point our goal is not to infer the specific routing
policy used by the AS. Rather we want to account for all possible
weird routing policies.

The first step in the decision process is based on the BGP at-
tribute local-pref. It has been shown in [37] that the preference of
routes with longer AS-paths over those with shorter ones canlead
to divergence. Attempts to uselocal-pref for building our rout-
ing model resulted in divergence problems which are very hard to
debug. Therefore, we choose to not rely on this attribute. Rather
we use BGP filters to ensure that routes with shorter AS-pathsthan
the route we are looking for are not propagated to the currentquasi-
router. This is achieved by setting a filter policy for this prefix at the
announcing neighbor. To avoid further reduction of route diversity
we do not filter those routes that have the same AS-path lengthas
the one we are looking for. Instead, we take advantage of the next
step in the BGP decision process that relies on theMED attribute.
If two routes have the same local-pref and the same AS-path length
the one with the lower MED value is selected. We assign a lower
MED value to routes announced by the AS from which the ob-
served AS-path is learned. We require that MED values are always
compared during the BGP decision process, even for routes learned
from different neighbor ASes. Since quasi-routers inside an AS are
not connected in our model, no iBGP divergence can arise [38].
Simply changing the ID of the router does not work as this would
affect all routes.

It should be noted that our choice of BGP policies - filtering and
MED values - is arbitrary and in general does not correspond to the
policies actually used in the Internet. Infering the actualpolicies
will be addressed in future work. In the Internet, local-preference
is often used to implement business relationships and for traffic en-
gineering. Yet, prioritizing AS-paths via MED is also not uncom-
mon, as MED allows the realization of cold-potato routing [39].
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Figure 7: Necessity of filter deletion.

However, as noted above we are not concerned about reverse engi-
neering real policies: rather we aim at understanding the impact of
routing policy on route diversity.

Refinement heuristic – filter deletion:
If one could process all AS-paths in a single step it would be easy
to determine when an AS needs multiple quasi-routers to propa-
gate AS-paths of different length. Using the iterative process this is
not possible. It can happen that a filter is set while processing the
“shorter AS-path” which stops the “longer AS-path” from being
propagated. This filter has thus to be removed in a later iteration,
see Figure 7.

Assume that observation point AS 1 observes two routes with
AS-paths1-2-3-4 and1-7-6-5-4 for prefix p, originated by
AS 4. Neither of the two AS-paths is selected as best route when
simulating the initial model. The quasi-router at AS 1 chooses a
route with AS-path1-7-4 to reach prefixp (dotted arrow from
AS 1 to AS 4). However, the heuristic detects a RIB-In match
for 1-2-3-4 at AS 1 during the first iteration. To prevent the
shorter AS-path1-7-4 from being propagated to AS 1, a filter at
the egress of AS 7 to AS 1 is set. Restarting the simulations results
in a RIB-Out match for AS-path1-2-3-4.

With regards to the second AS-path1-7-6-5-4, the quasi-
router at AS 7 does not select the correct suffix as best path until
a later iteration. However, when it does select it as best route, it
cannot propagate it to its neighbor AS 1 due to the egress filter set
during the first iteration. As a consequence, AS 1 does not learn
a route with the observed AS-path1-7-6-5-4. When we do not
find a RIB-Out or RIB-In match for a suffix of an observed AS-
path, we check for a RIB-Out match at all announcing neighbor
ASes. Provided that there is a RIB-Out match at this AS we re-
move any filter rule that prevents the propagation of the observed
AS-path towards the observation point.

The removal of the filter in Figure 7 leads to the creation of a
new quasi-router at AS 1 for a route with AS-path1-7-6-5-4.
After the next iteration the route with this path is selectedas best
route by AS 1 and the above problem is circumvented and progress
is ensured and no cycles will occur. Perfect RIB-Out matchesare
achieved after a total number of iterations that is a multiple of the
maximum AS-path length.

4.7 Using the AS-routing model for predic-
tions for other prefixes

At this point we can use the AS-routing model derived from a
training set as input to the C-BGP simulator and predict likely
AS-path choices for the prefixes of thetraining set to previ-
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Figure 8: Transfer of policies across prefixes.

ously not considered observation points.
But as the policies are determined on a per-prefix basis it is un-

clear so far how to take advantage of the AS-routing model forpre-
dicting AS-paths for prefixes that arenot part of thetraining
set but for which we have AS-path information for some observa-
tion points. One approach is to use multiple iterations of the re-
finement heuristic with the drawback of ignoring the routingpolicy
information accumulated in the AS-routing model derived from the
training set.

To overcome this limitation we introduce thereuse policy heu-
ristic. The key assumption behind this heuristic is that most ASes
specify their policy rules on a per-peer basis — reflecting the eco-
nomic relationship between peering ASes — and not on a per-prefix
basis. Accordingly, independent of the success of this heuristic, we
can improve our understanding of the correlation between routes
for different prefixes, i.e., whether different prefixes aretreated
equally or differently by the policies within an AS. In the following,
we explainfrom whereandwhichpolicy rules are reused.

In order to determine from where policy rules are transferred we
again proceed prefix by prefix. For each of the new prefixes and
observation points we have an observed AS-patho. For each such
AS-path thereuse policy heuristictries to find an AS-patha that
satisfies the following conditions:

1. The AS-patha is part of thetraining set, i.e., the input
to the refinement heuristic and the AS-routing model shows
a RIB-Out match fora.

2. Both AS-paths end at the same observation points, i.e., the
first ASes of both AS-paths are identical. Furthermore we
require that both AS-paths share at least the first two edges.
The underlying assumption is that the policies applied for the
“new” prefix are the same as for the “old” prefix.

3. There is no other AS-pathx that satisfies the first two condi-
tions that is longer thana.

The example shown in Figure 8 illustrates this process for a sim-
ple topology that consists of five ASes. AS 1 is again our obser-
vation point. Prefixp is originated by AS 4,q1 by AS 3, andq2
by AS 5. We assume that the AS-paths for prefixesq1 (1-2-3)
andq2 (1-2-3-4-5) result in RIB-Out matches after using the
refinement heuristic to derive an AS-routing model. The goalis to
find a sensible policy for prefixp with AS-path1-2-3-4. Since
both AS-paths (1-2-3 and1-2-3-4-5) satisfy the first two con-
ditions, the longer path is selected. In the absence of this AS-path
the shorter one would have been chosen.

Policies, that allow the propagation of AS-path1-2-3-4-5,
are likely to ensure the propagation of the similar path1-2-3-4,
too. The underlying assumption is that policies in the Internet are in
general specified for complete BGP sessions (neighbor-basis) and
not on a per-prefix basis.

In the example of Figure 8, we transfer policies from the sub-
path1-2-3-4 of 1-2-3-4-5 to the current one forp. If there
is a policy (MED, filter) for prefixq2 along1-2-3-4, it is con-
verted into a policy rule for prefixp. In contrast to the refinement
heuristic, no new quasi-routers are added.

5. RESULTS
In this section we evaluate therefinementandreuse policy heuris-

tics by using them to derive an AS-routing model for various sets
of training data, and evaluate their effectiveness using separate
validation data.

Data:
Of the 1,300 BGP observation points, see Section 3.1, we randomly
assign 2/3 to thetraining set and the remainder ones to the
validation set. We sub-select the AS-path information from
1,000 ASes and their corresponding paths from both thetrai-
ning and thevalidation sets to derive our base AS-routing
model. In order to ensure a reasonable coverage of the AS-graph
we include all level-1 ASes as well as randomly selected ASes
of the groups level-2 and other. We refer to this set of prefixes
and their AS-paths aspsetA. To evaluate the effectiveness of the
reuse policy heuristicwe select two other disjoint sets of prefixes
and their AS-paths in a similar manner. These sets, referredto as
psetB andpsetC, again consist of 1,000 randomly chosen pre-
fixes.

Training:
The inference of the AS-routing model uses an iterative process
that incrementally refines the model with the goal of achieving an
exact match between the AS-paths predicted by the model and the
training set. Figure 9(a) shows the progress of the heuristic
with each iteration as measured in terms of RIB-In matches, po-
tential RIB-Out matches and RIB-Out matches. The length of the
longest AS-path is 10, and 11 iterations happen to suffice to achieve
our goal of perfect RIB-Out matches. Notice that the early progress
of the heuristic is excellent. Just one iteration more than doubles
the percentage of RIB-Out matches from 24.5% to 59.3%, and in-
creases the potential RIB-Out matches and RIB-In matches tomore
than 70% and 85% respectively. Given that the average lengthof
the AS-paths is about 4.3 it is not surprising that we achieve RIB-
Out matches for all but 5% of the AS-paths after five iterations

Further inspection of the data reveals that matching the AS-paths
for some prefixes and some observation points requires more pol-
icy adjustments than for others. After the fifth iteration westart to
see a significant number, 238 out of the 1000 prefixes with RIB-
Out matches for all observation points. This number increases with
the next iterations via 481 and 683 to 969 after the eighth iteration.
This means that at this point we only have a very small percent-
age of unmatched AS-paths. Note that if we do require RIB-Out
matches for 90% of the AS-paths for each prefix, already more than
40% of the prefixes satisfy this condition after two iterations. For
the other two subsets of prefixes,psetB andpsetC, even faster
improvements are observable

Validation:
Given an AS-routing model we can now evaluate its predictiveca-
pabilities for our example question for a different set of observa-
tion points. We find, based on the subset ofvalidation for
psetA, that we improve our prediction capabilities from 25.5%
(without routing policies) to 63% for RIB-Out matches, and if we
ignore the final tie-breaking rule of the decision process, from 50%
to more than 80% (see Figure 9(b)). For RIB-In matches we see
an improvement from 55% to 93%. Let us point out that the major
improvements happen during the first six iterations.

To judge the qualitative improvement of our results vs. those re-
ported by Mao et al. [7] we point out that our results hold across
more than 300 observation points rather than 3 ASes and are sig-
nificantly better. In terms of RIB-Out matches which correspond to
exact matcheswe have 63% vs. their 35%, 10%, and 3%; in terms
of RIB-In matches which correspond tomatcheswe have 93% vs.



+

+

+
+

+
+ + + + + + +

0 2 4 6 8 10

0
20

40
60

80
10

0

iteration

pe
rc

en
t (

%
)

x

x

x
x x

x x x x x x x

x
+

RIB−In
Potential RIB−Out
RIB−Out

+

+
+

+ + + + + + + + +

0 2 4 6 8 10

0
20

40
60

80
10

0

iteration

pe
rc

en
t (

%
)

x

x x x x x x x x x x x

x
+

RIB−In
Potential RIB−Out
RIB−Out

(a) Progress fortraining (psetA) (b) Progress forvalidation (psetA)

Figure 9: Refinement heuristic– Results
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Figure 10: # of quasi-routers per AS (ignoring 14,305 ASes
with one quasi-router)

their 82%, 64%, and 16%. To better compare the results we focus
on the same three ASes (7018, 2152, 8121) as Mao et al. moving
them from thetraining to thevalidation set and rerunning
the refinement heuristic for 200 prefixes ofpsetA. We find perfect
RIB-In matches for AS 7018, almost perfect matches for AS 2152,
and 44.2% for AS 8121.

Characteristics of the inferred AS-routing model:
The main reason for the effectiveness of our refinement heuristic is
that an AS can, if necessary, consist of multiple quasi-routers. This
raises the question how many of these quasi-routers are needed.
Figure 10 shows a histogram of the number of quasi-routers per AS
for psetA (for those ASes with more than one quasi-router). For
almost all ASes (14,305) one quasi-router suffices. For 71 we need
two. Yet, there are 138 ASes that need more than 9 quasi-routers.
Note, not all of these quasi-routers are needed for all prefixes. Not
surprisingly, we find that our level-1 ASes are among the ASeswith
many quasi-routers. After all, level-1 ASes offer peeringsat quite
a number of peering locations, peer with and provide serviceto
many other ASes, and have a sizable backbone network. Most of
the others are level-2 ASes, but there are also some in the “other”
group. The average number of quasi-routers for level-1 ASesis
17.1, while for all other ASes it is 1.03.

Effectiveness of thereuse policy heuristic:
Given an AS-routing model, we can now evaluate its predictive
capabilities for our example question for a different set ofpre-
fixes. We find, based on the subset oftraining for psetB

(psetC), that we improve our prediction capabilities by almost
a factor of two from 24.6% (23.7%) (without routing policies) to
46.6% (45.5%) for RIB-Out matches. If we ignore the final tie-
breaking rule of the decision process, the number of Potential RIB-
Out matches increases from 48.3% (46.7%) to 59.0% (58.3%).
This implies that the assumption that policies are well captured by
the AS-routing model and that thereuse policy heuristiccan take
advantage of this capability. In addition it shows that someof the
policies are applicable on a per-peer basis. Yet, as we do notget
perfect matches one should restrain from over-generalizations.

Thereuse policy heuristicgives an AS-routing model forpsetB
andpsetC which utilizes the results ofpsetA. If one wants to
derive an AS-routing model forpsetB/psetC one can either start
from thepsetA AS-routing model or start from scratch using the
refinement heuristic. With regards to potential RIB-Out matches
we have forpsetB after thereuse policy heuristic46.6% vs. 24.6%
for the initial model, after the first iteration 65.8% vs. 55.3%, and
after the second iteration 83.2% vs. 81.0%. We note that the ad-
ditional information frompsetA helps both in terms of progress
during the early iterations as well as with regards to the predictive
capabilities after the initial iterations. Yet, of course the AS-routing
model that utilizes thereuse policy heuristic, is based on a much
larger knowledge base that has needed significant computation time
to derive.

Revisiting the effectiveness of the refinement heuristic:
Even though the heuristics are very effective in terms of predicting
AS-paths we also need to investigate how and why they may fail.
First we point out that it is quite possible for an AS-path to be
contained both in thetraining as well as thevalidation set.
This can occur since we have multiple observation points in some
ASes. We happen to have at least one observation point in bothsets
for 168 ASes. As a result we find that 22.2% of all AS-paths for
psetA are in both. For the subset of these AS-paths in thevali-
dation set we have RIB-Out matches by design, in this case for
49% of the paths in thevalidation set ofpsetA.

If the AS-path is not contained in both thetraining and the
validation sets then, even though we hope to have configured
the appropriate policies, the heuristics may have failed topropagate
the route along the observed AS-path. A route may not be propa-
gated in the AS-routing model either due to another policy decision
or due to a missing policy. Given that we do not have training data
from all ASes we have to predict policy choices to some degree,
especially if the data used to derive the AS-routing model (trai-
ning set) does not include an AS-path for all AS-edges. We refer
to such AS-edges as uncovered.



# paths RIB-In Pot. RIB-Out Not
Path class RIB-Out found
# uncovered
0 AS-edge 9,486 90.0% 59.1% 43.3% 10.0%
1 AS-edge 43,823 86.3% 74.2% 25.9% 13.7%
2 AS-edges 5,624 34.2% 26.3% 6.6% 65.8%
3 AS-edges 45 0.0% 0.0% 0.0% 100.0%

Table 3: Effectiveness of refinement heuristic by uncoveredAS-
edges.

Table 3 shows the effectiveness of the refinement heuristic by un-
covered edges, considering only AS paths contained in thevali-
dation set but not in thetraining set ofpsetA. We find that
the majority of these AS-paths contain at most one uncoveredAS-
edge. No AS-path includes more than three uncovered AS-edges.
Of these uncovered AS-edges almost all, 93.4% to be precise, occur
next to the observation point.

As the number of uncovered edges on an AS-path increases,
the likelihood of achieving a RIB-In match for these paths de-
creases. For AS-paths with 0 uncovered edges we have 90.0%
RIB-In matches. For paths with 1 uncovered edge we get 86.3%
RIB-In matches which further decreases to 34.2% and 0% for 2
and 3 uncovered AS-edges, respectively. Similar observations hold
for potential RIB-Out and RIB-Out matches. As shown in Table3,
the percentages of RIB-In matches do not decrease as fast as the
ones for RIB-Out matches when there are uncovered AS-edges on
the path. This is not surprising as RIB-In matches are not as sen-
sible to the specific policy choices. These results agree with the
intuition behind Mao’s et al. [7] approach. If one can determine
the first hop then the uncertainty about the remaining AS-path is
reduced.

In order to predict how good our results can be for arbitrarily
chosen observation points, we randomly select a set of 6,000 ASes
and compute for all possible originating ASes how many uncovered
AS-edges one may have to predict. We find that for 0.7% there is
no uncovered edge. For 54.8%, 36.7%, 6.6% there are one, two,
and three, respectively. Only 1.2% require more than three. These
numbers are a bit more pessimistic than for our data sets. Yet, as
shown above we can expect reasonable results, when just one or
two AS-edges are uncovered.

6. RELATED WORK
Improving our understanding of routing dynamics has been a

topic of huge interest over the last few years, e.g. [23,24,27,40–42].
Most of the attention has been given to the dynamics of the BGP
protocol, e.g., to understand why convergence time of BGP can be
rather long [23,24,40]. Oscillations in BGP [43] can occur;see [44]
for a review of their possible causes. Apart from the aspectsrelated
to the time required for BGP to converge, divergence anomalies as
defined in [44], are permanent failures of BGP to converge towards
a stable path. Divergence anomalies stem from two typical causes:
conflicting eBGP policies [14], and iBGP oscillations [43].The
first can be explained within a model that only contains one router
per AS, the second cannot.

Recent work has investigated the interactions of routing ontraffic
within an AS. Based on data gathered from the Sprint network [45],
it was shown that the impact of external BGP events on its traffic
matrix is limited. Still hot-potato disruptions [10, 11] can have a
significant impact on transit ASes. This highlights that routing dy-
namics can be complex, even when just looking at a single AS.

AS-level topology inference [15,16,18] provides another dimen-
sion to the complexity of routing in the Internet. Routing policies

are typically partitioned into a few classes which capture the most
common practices in use today [46]. Unfortunately it is alsoknown
that the reality of routing policies [17] and peering relationships is
far more complex than those few typical classes [46, 47]. Current
approaches for AS-level topology inference rely on a top-down ap-
proach. They first define a set of policies and then try to match
those policies with their observations of the system. Yet, policies as
used by ISPs have to realize high-level goals [46]. Assumingany
kind of consistency of such policies across ASes is questionable,
especially as in practice, policies are often configured on aper-
router, or per-peering basis [46]. This means that observedBGP
routes do not even have to be consistent with the high-level poli-
cies of the AS.

Traceroute is one of the most widely used tools for discovering
end-to-end paths and can be used in combination with other tools
to derive AS-level paths [8,9]. These tools require networkaccess.
To overcome this problem Mao et al. [7] proposed a first method-
ology for inferring AS-level paths based on presumed BGP routing
policies. They find that the accuracy of the estimation depends on
the precision of the AS relationship inference and the ability to in-
corporate additional information regarding the first hop.

7. CONCLUSION
This paper makes four fundamental contributions. Firstly,we

show that AS topologies using a single router are limited – they
cannot hope to capture all kinds of route diversity in the Internet
today. This is in contrast to the majority of prior work on modeling
the large scale structure of the Internet. Secondly, we showhow
to use simulation-based heuristics to iteratively build anAS model
that is consistent withall observed paths. Thirdly, we show that the
model can be used to predict previously unobserved AS-paths. The
accuracy is in practice limited to around 63% due to policy deci-
sions on parts of the network that we have not previously observed
in our data, and tie-break decisions that are inherently hard to pre-
dict. Ignoring tie-breaks we reach an accuracy of more than 80%.
Finally, our results provide some insights about the structure of the
Internet.

Obviously, we shall continue to work on improved heuristicsto
increase the accuracy of our methods. However, there are many
other areas for interesting future work. In particular, we have only
considered how well our model answers one type of question. How-
ever, there are many questions an operator might wish to ask,for
instance, what-if they change a policy, or peering arrangement. We
wish to study such questions in future work both to provide prac-
tical solutions to operators, and because the results will provide
insight into how policies are affecting the current Internet.

Furthermore, the ability to refine instances of our model allows
to gain insight into what information has to be present in thereal
routing system to account for the observed state. This understand-
ing of the relationships between topology and policies and how
routing information propagates may be useful input for designing
the next inter-domain routing system (e.g., [48]).
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