Interdomain routing with BGP4
Part 3/5

Olivier Bonaventure
Department of Computing Science and Engineering
Université catholique de Louvain (UCL)
Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve (Belgium)

URL: http://www.info.ucl.ac.be/people/OBJO

May 2003 © O. Bonaventure, 2003
Outline

- Organization of the global Internet
- BGP basics
- BGP in large networks
 - The needs for iBGP
 - Confederations and Route Reflectors
 - Scalable routing policies
 - The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks
BGP and IP
Second example

- Problem
 - How can R2 (resp. R4) advertise to R4 (resp. R2) the routes learned from AS10 (resp. AS30) ?
First solution
- Use IGP (OSPF/ISIS,RIP) to carry BGP routes

Drawbacks
- IGP may not be able to support so many routes
- IGP does not carry BGP attributes like ASPath!

There are regularly discussions on whether the redistribution of BGP routes in an IGP should be removed from BGP implementations. See e.g.
http://www.irbs.net/internet/nanog/0210/0140.html
The AS7007 incident

- The AS7007 incident

A single configuration error in two routers
- All routes learned from ASX on R1 were redistributed to R2 via IGP and R2 announced them to ASY
- Consequence
 - AS7007 advertised routes that almost all IP addresses were belonging to AS7007
 - These routes were shorter than the real routes ...
 - Two hours of disruption for large parts of the Internet!

Using the IGP to carry BGP routes can be useful in some very rare cases, but can cause large problems in most cases. For this reason, there are frequently proposals to disable this function on BGP routers or at least provide a warning or to ring an alarm when a network engineer tries to use an IGP to carry BGP routes.

For more information about the AS7007 incident, see:

http://answerpointe.cctec.com/maillists/nanog/historical/9704/msg00342.html

For an analysis of BGP misconfigurations, see:
Ratul Mahajan, David Wetherall and Tom Anderson, Understanding BGP Misconfiguration, Proc. ACM SIGCOMM2002,
• **Solution**
 - Use BGP to carry routes between all routers of domain
 - Two different types of BGP sessions
 - eBGP between routers belonging to different ASes
 - iBGP between each pair of routers belonging to the same AS
 - Each BGP router inside ASx maintains an iBGP session with all other BGP routers of ASx (full iBGP mesh)
 - Note that the iBGP sessions do not necessarily follow physical topology
iBGP versus eBGP

- **Differences between iBGP and eBGP**
 - **local-pref** attribute is only carried inside messages sent over iBGP session
 - Over an eBGP session, a router only advertises its best route towards each destination
 - Usually, import and export filters are defined for each eBGP session
 - Over an iBGP session, a router advertises only its best routes learned over eBGP sessions
 - A route learned over an iBGP session is *never* advertised over another iBGP session
 - Usually, no filter is applied on iBGP sessions
In some cases, it is useful to update the value of BGP next-hop when an UPDATE message is received over an eBGP session. Most BGP implementations support this feature with a command often called “next-hop-self”. Although this command is useful in some practical situations, we do not discuss its utilization in this course.
iBGP and eBGP
Packet Forwarding

BGP routing table of R2
194.100.0.0/23 via 195.100.0.1

IGP routing table of R2
195.100.0.0/30 West
195.100.0.4/30 via 195.100.0.9
195.100.0.8/30 South
194.100.0.4/23 via 195.100.0.9
194.100.2.0/23 North

BGP routing table of R4
194.100.0.0/23 via 195.100.0.1

IGP routing table of R4
195.100.0.0/30 via 195.100.0.10
195.100.0.4/30 East
195.100.0.8/30 North
194.100.2.0/23 via 195.100.0.10
194.100.0.4/23 West
The Forwarding table of a router is thus built on the basis of both the IGP table and the BGP table.
Using non-BGP routers

- Problem
 - What happens when there are internal backbone routers between BGP routers inside an AS?
 - iBGP session between BGP routers is easily established when IGP is running since iBGP runs over TCP connection
 - How to populate the routing table of the backbone routers to ensure that they will be able to route any IP packet?

In this example, the iBGP session between R2 and R4 would be established over a TCP connection. The packets of this connection with source/dest R2 or R4 would be routed from R2 to R4 and the opposite via R5 by using the IGP table. Thus, the IP addresses of the routers must be distributed by the IGP.
First solution

- Use tunnels between BGP routers to encapsulate interdomain packets
 - GRE tunnel
 - Needs static configuration and be careful with MTU issues
 - MPLS tunnel
 - Can be dynamically established in MPLS enabled backbone

The solution of using tunnels inside an AS to forward transit packets was discussed in the BGP4 applicability RFC:

Y. Rekhter, P. Gross (Eds.), Application of the Border Gateway Protocol in the Internet, RFC1772, March 1995

However, it only became widespread with the deployment of MPLS. It should be noted that today IP tunnels could also be used inside ASes to transit packets.
MPLS in large ISP networks

- Only one BGP table lookup inside the AS
- Use a hierarchy of labels
 - top label is used to reach egress router
 - second label is used to reach eBGP peer

Egress Border router
- packets are label switched

Ingress Border router
- Maintains full BGP routing table
- Attach two labels based on routing table
Using non-BGP routers (3)

- Second solution
 - Use IGP (OSPF/IS-IS - RIP) to redistribute interdomain routes to internal backbone routers
- Drawbacks
 - Size of BGP tables may completely overload the IGP
 - Make sure that BGP routes learned by R2 and injected inside IGP will not be re-injected inside BGP by R4!
Using non-BGP routers (4)

- Third solution
 - Run BGP on internal backbone routers
 - Internal backbone routers need to participate in iBGP full mesh
 - Internal backbone routers receive BGP routes via iBGP but never advertise any routes
 - Remember: a route learned over an iBGP session is never advertised over another iBGP session
The roles of IGP and BGP

- **Role of the IGP inside AS20**
 - Distribute internal topology and internal addresses (R2-R4-R5)

- **Role of BGP inside AS20**
 - Distribute the routes towards external destinations
 - IGP must run to allow BGP routers to establish iBGP sessions
The iBGP full mesh

- Drawback
- \(N^*(N-1)/2 \) iBGP sessions for \(N \) routers

![Diagram showing iBGP sessions in full mesh](image)
Outline

- Organization of the global Internet
- BGP basics
 - BGP in large networks
 - The needs for iBGP
 - Confederations and Route Reflectors
 - Scalable routing policies
 - The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks
How to scale iBGP in large domains?

- **Confederations**
 - Divide the large domain in smaller sub-domains
 - Use iBGP full mesh inside each sub-domain
 - Use eBGP between sub-domains

- Each router is configured with two AS numbers
 - Its confederation AS number
 - Its Member-AS AS number

- Usually, a single IGP covers the whole domain

BGP confederations are discussed in:
- On the eBGP session between R2 and RX, R2 belongs to AS20
- On the eBGP session between R5 and RY, R5 belongs to AS20
- On the eBGP session between R1 and R6, R1 belongs to AS65020 and R6 belongs to AS65021
When propagating an UPDATE via eBGP to another router of the same confederation, R1 inserts its Member-AS number in the AS_PATH.

Note that to distinguish between the parts of the AS_Path learned from external peers and the parts belonging to the current confederations, there are several types of path segments inside the AS_Path attribute.

Without confederations, two types of path segments can appear:

1. **AS_SET**: unordered set of ASs a route in the UPDATE message has traversed

2. **AS_SEQUENCE**: ordered set of ASs a route in the UPDATE message has traversed

Inside confederations, two additional path segment types are used:

3. **AS_CONFED_SEQUENCE**: ordered set of Member AS Numbers in the local confederation that the UPDATE message has traversed

4. **AS_CONFED_SET**: unordered set of Member AS Numbers in the local confederation that the UPDATE message has traversed

Some Ases rely on BGP confederations. In practice, they are particularly useful when two companies or two distinct Ases from the same company must be merged in a single AS.
Route reflectors
An alternative to confederations

- Route reflectors
 - A route reflector is a special router that is allowed to propagate the routes learned over iBGP sessions on other iBGP sessions

Normal iBGP full mesh

iBGP with one route reflector

Route reflectors are defined in:

Behavior of a Route Reflector

- Two types of iBGP peers of a route reflector

RR clients peers (do not participate in iBGP full mesh)

Non-clients peers (participate in iBGP full mesh)
Behavior of a Route Reflector

- Route received from an eBGP session or a client peer
 - Select best path
 - Advertise to
 - All client peers
 - All non-client peers

- Route received from non-client peer
 - Select best path
 - Advertise to:
 - All client peers

It should be noted that when a route reflector advertises its best path to client or non-client peers, it does not change the nexthop of the advertised route.
Fault tolerance of route reflectors

- How to avoid having the RR as a single point of failure?
- Solution
 - Allow each client peer to be connected at 2 RRs

```
            RR clients peers
            R1        R2        ...        RN
            iBGP      iBGP      iBGP      iBGP
            R1        R2
```

- Issue
 - Configuration errors may cause redistribution loops
 - ORIGINATOR_ID used to carry router ID of originator of route
 - CLUSTER_LIST contains the list of RR that sent the UPDATE message inside the current AS
Route reflectors: an example

- R2 and R3 are clients of Route Reflector RR1
- RR1 and RR6 are in iBGP full mesh
- R5 is client of Route Reflector RR6
Route reflectors: an example (2)

- RR1 will select its best path towards 1.0.0.0/8 and will re-advertise it by adding the ORIGINATOR_ID and the CLUSTERID
RR1 prefers the path to 1.0.0.0/8 via RX-R2
- RR1 advertises this path to its client peer (R3)
- the path is not advertised to R2 since R2 already received it
- RR1 advertises this path to its non-client peer (RR6)
Route reflectors: an example (4)

- RR6 advertises the path to 1.0.0.0/8 via RX-R2 to its client peer R5.
- R5 will remove ORIGINATOR_ID and CLUSTER_ID before advertising the path to RY via eBGP.
Hierarchical route reflectors

- In large domains, a hierarchy of route reflectors can be built

In this figure, the following relationships exist on the iBGP sessions:
- R1, R2, and R3 are clients of route reflectors RR1 and RR2
- RR1 and RR2 are clients of route reflectors RRA and RRB
- R4 and R5 are clients of route reflector RRA
- R6 is a client of route reflectors RR4 and RR5
- RRA, RRB, and RRC are fully meshed in the iBGP mesh

A common deployment of BGP route reflectors in large ISPs is as follows:
- Inside each POP, create a full mesh of iBGP sessions to ensure that routing is optimal inside the POP
 - some small access routers inside the POP may be route-reflectors
 - clients of the route reflectors in the POP
- Two routers of the POP serve as route reflectors. Those route reflectors are fully meshed with the route reflectors of the other POPs
- If the network becomes too large, then a hierarchy with additional levels can be used
<table>
<thead>
<tr>
<th>Confederations</th>
<th>Route reflectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Solves iBGP scaling</td>
<td>• Solves iBGP scaling</td>
</tr>
<tr>
<td>• Redundancy with iBGP full-mesh inside each MemberAS</td>
<td>• Redundancy by using Redundant RRs</td>
</tr>
<tr>
<td>• Possible to run one IGP per Member AS</td>
<td>• Usually a single IGP for the whole AS</td>
</tr>
<tr>
<td>• Requires manual router configuration</td>
<td>• Requires manual router configuration</td>
</tr>
<tr>
<td>• Can be used when merging domains</td>
<td>• Can lead to some routing oscillations</td>
</tr>
<tr>
<td>• Can lead to some routing oscillations</td>
<td></td>
</tr>
</tbody>
</table>

Note that besides route reflectors and confederations, some companies are developing proprietary solutions to solve the iBGP full mesh problem.

See e.g.

Outline

- Organization of the global Internet
- BGP basics
 - BGP in large networks
 - The needs for iBGP
 - Confederations and Route Reflectors
 - Scalable routing policies
 - The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks
The Community attribute

- Principle
 - Optional transitive attribute containing a set of communities
 - each community acts as a marker
 - one community is represented as a 32 bits value
 - usually routes with same marker are treated same manner

- Standardized communities
 - NO_EXPORT (0xFFFFF01)
 - NO_ADVERTISE (0xFFFFF02)

- Delegated communities
 - 65536 communities have been delegated to each AS
 - ASX65536 ASX:0 through ASX:65535

The BGP community attribute is defined in:

Its utilization was first described in:

An extended community attribute is defined in:

A survey of the utilization of the community attribute may be found in:
Common utilisations of the BGP community attribute
O. Bonaventure and B. Quoitin
Internet draft, draft-bonaventure-quoiting-bgp-communities-00.txt work in progress, June 2003

An even more extended community attribute has recently been proposed, but it still under discussion
A. Lange, Flexible BGP Communities, Internet draft, draft-lange-flexible-bgp-communities-00.txt, work in progress, Dec. 2002
Scalable routing policies with communities

- Principle
 - attach same community value to all routes that need to receive the same treatment

The RPSL policy of AS1 could be as follows:
RPSL policy for AS1
aut-num: AS1
import: from Cust1
 set localpref=1000; community.append(AS1:Cust);
 accept Cust1
 from Peer1
 set localpref=500; community.append(AS1:Peer);
 accept Peer1
 from Prov1
 set localpref=100; community.append(AS1:Prov);
 accept ANY
export: to Cust1
 announce ANY AND
 (community.contains(AS1:Cust) OR community.contains(AS1:Peer) OR community.contains(AS1:Prov))
 to Peer1 announce ANY AND community.contains(AS1:Cust)
 to Prov1 announce ANY AND community.contains(AS1:Cust)

Instead of using the community attribute to indicate the type of peer from which a route has been learned, another possibility is to utilize one community value per type of peer to which the route should be learned. In this case, AS1, would utilize AS1:ToProvider to indicate that a route should be advertised to a provider, ... A route received from a customer site would be tagged with community values AS1:ToProvider, AS1:ToPeer, AS1:ToCustomer so that this route would be advertised over all eBGP sessions.
More complex routing policies with communities

- Other utilizations of communities
 - Research ISP providing two types of services
 - Access to research networks for universities
 - Access to the commercial Internet for universities and government institutions
 - Solution
 - Tag routes learned from research network and commercial Internet
 - Only announce the universities to research network
 - Only advertise research network to universities

- Commercial ISP providing several transit services
 - Full transit service
 - Announce all known routes to all customers
 - Advertise customer routes to all peers, customers, providers
 - Client routes only
 - Only advertise to those customers the routes learned from customers, but not the routes learned from peers
 - Advertise the routes learned from those customers only to customers
Other utilizations of communities

- **Communities used for tagging**
 - Community attached by router that receives route to indicate country where route was received
 - Example (Eunet, AS286)
 - 286:1000 + countrycode for Public peer routes
 - 286:2000 + countrycode for Private peer routes
 - 286:3000 + countrycode for customer routes
 - Another example (C&W, AS3561)
 - 3561:SRCC
 - S: Peer or Customer
 - R: Regional Code
 - CC: ISO3166 country code

- **Community to indicate IX where route was learned**
 - Example: AS12369 (Global Access Telecommunications)
 - 13129:2110: route learned at DE-CIX
 - 13129:2120: route learned at INXS
 - 13129:2130: route learned at SFNX
Issues with communities

- Issues
 - A router may easily add community values
 - The community attribute is optional and transitive
 - A community value added by one router could be propagated to the global Internet
 - In Jan 2003, 50% of the BGP routes contained communities
 - Some routes may contain several tens of communities
 - The semantics of communities is defined locally
 - Some ASes advertise the semantics of their communities by using RPSL
 - Most of the community values that a router receives are useless, but they consume memory and some CPU and may cause BGP UPDATEs to be widely distributed

- Best Current Practice
 - If you use communities, make sure that they are not advertised uselessly to the entire Internet...
Outline

- Organization of the global Internet
- BGP basics
 - BGP in large networks
 - The needs for iBGP
 - Confederations and Route Reflectors
 - Scalable routing policies
 - The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks
The dynamics of BGP

- Ideally, BGP routes should be stable and a BGP router should seldom receive messages
- On the global Internet, things are less simple

The data shown above was collected by Steve Uhlig in February and March 2003 on an eBGP feed received from BELNET (AS2611). Only the BGP UPDATE and WITHDRAW messages are shown in this figure.

Other studies of the dynamics of BGP include:
Zhuoqing Morley Mao, Ramesh Govindan, George Varghese and Randy Katz, "Route Flap Damping Exacerbates Internet Routing Convergence", SIGCOMM 2002

See also the BGP beacon project that tries to better understand the dynamics of BGP:

http://www.psg.com/zmao/BGPBeacon.html
A closer look at the BGP messages

- One month study of a client of AS2611
 - Captured all outgoing traffic sent to AS2611
 - Captured all BGP messages received from AS2611

- Some findings
 - Received advertisements for 103,853 # AS Paths
 - But
 - 50% of those AS Paths appeared in our BGP routing table for less than 9 minutes
 - Other studies have shown that a small number of prefixes were responsible for most BGP messages
 - Only 31,151 AS Paths were actually used to send packets
 - 95% of all the traffic sent by the stub AS was transmitted over 13,000 AS Paths that were stable for more than 99% of time

This study considered all the eBGP messages received by a customer of BELNET (AS2611) during February and March 2003. The data was collected by a zebra router connected over an eBGP session to one Belnet router. The analysis was done by Vincent Magnin.

See:

Other studies on the stability of BGP include:

Why so many BGP messages?

- The Internet is large and complex
- A small remote event may result in sending BGP messages to all BGP routers

Interdomain link goes up/down
Prefix is reachable/non-reachable
Each IGP transition causes AS20 to transmit a new BGP message

BGP session restarted
Software upgrade
Policy change
Changes in BGP policies

- How to change the import/export policies used by one BGP router?

Naive solution
- Change import/export filters
- Stop BGP sessions
 - Peers may need to send lots of Withdraw messages!
- Reestablish BGP sessions
 - BGP router will receive and process lots of Update messages!

Various changes to the import and export policies are possible. For example, the setting of local-pref in the import policy may change for some specific routes or some AS may stop being accepted.
How to smoothly change export filters?

- **Principle**
 - Update export filters that need to be changed
 - For each BGP session using a modified filter
 - Scan BGP routing tables to determine the BGP messages to be sent according to the new filter
 - Send the required BGP messages

This way of changing the export filters is often called outbound soft reconfiguration by router vendors.
How to smoothly change import filters?

- First solution
 - Store all UPDATE messages (unmodified) received from each peer before applying the import filter
 - When an import filter changes
 - Apply the new filter to the stored UPDATE messages
- Drawback
 - Memory consumption

This way of changing the export filters is often called inbound soft reconfiguration by router vendors.
How to smoothly change import filters (2) ?

- Second solution
 - Do not store received UPDATE messages
 - When an import filter changes
 - Send the ROUTE_REFRESH BGP message to request the concerned peer to send again all his messages
 - Apply the new filter to BGP messages received after the transmission of the ROUTE_REFRESH

The utilization of the ROUTE_REFRESH message is defined in:

The utilization of the route refresh capability is negotiated between the two peers at BGP session establishment.
Another reason for the BGP messages

- In some cases, BGP may try several paths

 Routers will process the withdraw message and ... advertise alternate routes to their peers
Another reason for the BGP messages (2)

- C processes first the withdraw

Routing table of C
1/8 via A (Path: A-R)
1/8 via B (Path: B-R) (best)

Routing table of A
1/8 via B (Path: B-R) (best)
1/8 via C (Path: C-R)
 - A learns a worse (but valid) route towards 1/8
 - C sends withdraw to B since previous advertised path (C-R) is not available anymore and C has chosen route via B

Routing table of B
1/8 via A (Path: A-R)
R via C (Path: C-R) (best)

This example assumes that each BGP router performs sender-side loop detection. This is not mandated by the BGP specification, but hopefully implemented by many vendors.
Another reason for the BGP messages (3)

- B sends announcements

Routing table of C
1/8 via A (Path: A-R)
1/8 via B (Path: B-R) (best)

Routing table of A
1/8 via B (Path: B-R) (best)
1/8 via C (Path: C-B-R)

- C learns a longer path towards 1/8
- B sends a withdraw to A since its only route is via A
Another reason for the BGP messages (4)

- A sends announcements

Routing table of C
R via A (Path: A-R)

Withdraw
•Prefix: 1.0.0.0/8

Routing table of A
1/8 via C (Path: C-B-R)
• A can only send a withdraw to C and B since they both appear in the ASPath of their route to reach 1/8
• B and C learn that their route via A is invalid
How to reduce the number of unnecessary BGP messages?

- Avoid transmitting messages too frequently
 - Two UPDATE messages sent by the same BGP peer and advertising the same route should be separated by at least $\text{MinRouteAdvertisementInterval (MRAI)}$ seconds
 - Default value for MRAI: 30 seconds
 - Advantage
 - Reduces the number of unnecessary BGP messages
 - Drawback
 - May delay the propagation of BGP messages and thus decrease the convergence time
 - For this reason, MRAI is usually disabled on iBGP sessions

The MRAI timer is part of the base BGP4 specification. A perfect implementation would maintain one timer per route to determine whether a new BGP message can be sent, but this would consume lots of memory. As noted in the BGP4 specification:

Two UPDATE messages sent by a BGP speaker to a peer that advertise feasible routes and/or withdrawal of unfeasible routes to some common set of destinations MUST be separated by at least $\text{MinRouteAdvertisementInterval}$. Clearly, this can only be achieved precisely by keeping a separate timer for each common set of destinations. This would be unwarranted overhead. Any technique which ensures that the interval between two UPDATE messages sent from a BGP speaker to a peer that advertise feasible routes and/or withdrawal of unfeasible routes to some common set of destinations will be at least $\text{MinRouteAdvertisementInterval}$, and will also ensure a constant upper bound on the interval is acceptable.

For a discussion of the impact of the MRAI timer, see:

BGP dampening

Observation
- Most routes do not change frequently
- A small fraction of the routes are responsible for most of the BGP messages exchanged
 - Can we penalize those unstable routes to preserve the more stable routes?

Principle
- Associate a penalty counter to each route
 - Increase penalty counter each time route changes
 - Use exponential decay to slowly decrease penalty counter with time
- Routes with a too large penalty are suppressed

Studies of the BGP stability may be found in:

BGP route flap dampening is defined in:

Zhuoqing Morley Mao, Ramesh Govindan, George Varghese and Randy Katz, "Route Flap Damping Exacerbates Internet Routing Convergence", SIGCOMM 2002

http://www.ripe.net/ripe/docs/routeflap-damping.html
BGP Dampening parameters

- Main parameters of BGP dampening
 - Penalty per BGP message
 - Penalty per withdraw message
 - Penalty per attribute change in Update message
 - Penalty per Update message
 - Cutoff threshold
 - Penalty value above which route is suppressed
 - Reuse threshold
 - Minimum penalty value required to reuse a route
 - Half-time
 - For the exponential decay
 - Maximum suppress time
 - A route cannot be suppressed longer than this time

Default values used by implementations:
Cisco
- Withdraw penalty: 1000
- Readvertisement penalty: 0
- Attributes change penalty: 500
- Cutoff threshold: 2000
- Reuse threshold: 750
- Half-life: 15 minutes
- Maximum suppress time: 60 minutes

Juniper
- Withdraw penalty: 1000
- Readvertisement penalty: 1000
- Attributes change penalty: 500
- Cutoff threshold: 3000
- Reuse threshold: 750
- Half-life: 15 minutes
- Maximum suppress time: 60 minutes

Source:
Route Flap Damping Exacerbates Internet Routing Convergence, Zhuoqing Morley Mao, Ramesh Govindan, George Varghese, and Randy Katz. SIGCOMM 2002

Other guidelines can be found in:
http://www.ripe.net/ripe/docs/routeflap-damping.html
In this example, we assume the Cisco configuration defaults.
Evaluation of BGP Dampening

- **Advantages**
 - Only penalizes unstable routes without affecting usually stable routes

- **Issues**
 - What are the best configurations values to use?
 - No definite scientific answer today
 - ISPs often don't apply dampening on all sessions
 - No dampening on iBGP sessions
 - No dampening on eBGP sessions with customers
 - No dampening for the root/GTLD DNS prefixes
 - Some propose to use more aggressive dampening parameters for longer prefixes

For a discussion of the impact on BGP dampening, see:

Route Flap Damping Exacerbates Internet Routing Convergence, Zhuoqing Morley Mao, Ramesh Govindan, George Varghese, and Randy Katz. SIGCOMM 2002

The RIPE recommended guidelines may be found in:
http://www.ripe.net/ripe/docs/route flap-damping.html
In practice, those guidelines are probably be too aggressive

Sample configurations guidelines for several router vendors and including the list of prefixes from the root/GTLD DNS servers may be found in:

http://www.cymru.com/Documents/secure-bgp-template.html
Summary

- iBGP versus eBGP
 - EBGP distributes routes between domains
 - IBGP distributes interdomain routes inside a domain
- iBGP sessions inside a domain
 - Full mesh (unscaleable)
 - Route reflectors (change iBGP processing rule)
 - Confederations (useful when merging domains)
- Scalable routing policies with communities
- The dynamics of BGP
 - A few sources produce most BGP UPDATEs
 - How to reduce the churn
 - MRAI timer
 - Dampening
 - Route refresh capability