
Revisiting Flow-Based Load Balancing:
Stateless Path Selection in Data Center Networks

Gregory Detala, Christoph Paascha, Simon van der Lindena, Pascal Mérindolb, Gildas Avoinea,
Olivier Bonaventurea

aICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium
bLSIIT, Université de Strasbourg, Strasbourg, France

Abstract

Hash-based load-balancing techniques are widely used to distribute the load over multiple for-
warding paths and preserve the packet sequence of transport-level flows. Forcing a long-lived,
i.e., elephant, flow to follow a specific path in the network is a desired mechanism in data center
networks to avoid crossing hot spots. This limits the formation of bottlenecks and so improves
the network use. Unfortunately, current per-flow load-balancing methods do not allow sources to
deterministically force a specific path for a flow.

In this paper, we propose a deterministic approach enabling end hosts to steer their flows over
any desired load-balanced path without relying on any packet header extension. By using an
invertible mechanism instead of solely relying on a hash function in routers, our method allows to
easily select the packet’s header field values in order to force the selection of a given load-balanced
path without storing any state in routers.

We perform various simulations and experiments to evaluate the performance and prove the
feasibility of our method using a Linux kernel implementation. Furthermore, we demonstrate
with simulations and lab experiments how MultiPath TCP can benefit from the combination of
our solution with a flow scheduling system that efficiently distributes elephant flows in large data
center networks.

Keywords: Load Balancing; Data Center Networks; Multipath TCP

1. Introduction

Load balancing plays a key role in enterprise, data center and ISP networks. It improves the
performance and the scalability of the Internet by distributing the load evenly across network
links, servers, or other resources. Load balancing allows to maximize the throughput [24], achieve
redundant connectivity [25] or reduce congestion [10]. Different forms of load balancing are deployed
at various layers of the protocol stack. At the datalink layer, frames can be distributed over parallel
links between two devices [4]. At the application layer, requests can be spread on a pool of servers.

Email addresses: gregory.detal@uclouvain.be (Gregory Detal), christoph.paasch@uclouvain.be
(Christoph Paasch), simon.vanderlinden@uclouvain.be (Simon van der Linden), merindol@unistra.fr
(Pascal Mérindol), gildas.avoine@uclouvain.be (Gildas Avoine), olivier.bonaventure@uclouvain.be
(Olivier Bonaventure)

Preprint submitted to Elsevier December 10, 2012



At the network layer, the most common technique, Equal-Cost Multi-Path (ECMP) [24, 13],
allows routers to forward packets over multiple equally-good paths. ECMP may both increase the
network capacity and improve the reaction of the control plane to failures [25]. Current ECMP-
enabled routers proportionally balance flows across a set of equal-cost next hops on the path to
their destinations. The most deployed next-hop selection method is solely based upon a hash
computed over several fields of the regular packet headers [1, 24]. Using a hash function ensures
a somewhat fair distribution of the next-hop selection [10] while preserving the packet sequence of
transport-level flows.

Data centers have been designed to run various types of applications [7]. During the last years,
many of the applications that are used in large commercial data centers have adopted a data flow
computation model. MapReduce [17], Dryad [26] and CIEL [38] among others implement such a
computation model. With this kind of applications, large amount of data need to be exchanged
between the nodes that implement the different processing stages. This is confirmed by several
studies that have analyzed data center traffic. For example, [20] reports that while 99% of the flows
carry fewer than 100 MBytes, more than 90% of all the bytes are transported in flows between 100
MBytes and 1 GBytes. Network operators therefore aim to maximize the network utilization in
order to improve the performance of these applications [12, 3]. To achieve this goal, data center
designs rely heavily on ECMP [2, 20, 21, 37] to spread the load among multiple paths and reduce
congestion. This form of load balancing is blind and naive, congestion can still occur inside the
data center and lead to reduced performance. Data center traffic contains both mice and elephant
flows [7, 28]. Mice flows are short and numerous but generally they do not cause congestion. Most
of the data is carried by a low fraction elephant flows. Based on this observation, several authors
have proposed traffic engineering techniques that allow to route elephant flows on non-congested
paths (see [8, 14, 3] among others). Those techniques often rely on OpenFlow switches [34] to
control the server-server paths. Unfortunately, the scalability of such approaches is limited, which
may lead to an overload of the flow tables on the OpenFlow switches [14, 15].

In this paper, we show that another design is possible to exploit the path diversity that exists
in data center networks without maintaining any state within the network. Current hash-based
implementations rely on the IP and TCP headers to select the load-balanced path over which each
flow is forwarded. It is therefore very difficult for a host to predict the path that a flow will follow.
We show in this paper that hash functions are not the only way to practically enable path diversity.
We propose a new deterministic scheme called Controllable per-Flow Load-Balancing (CFLB) that
allows hosts to explicitly select the load-balanced path they want to use for a specific flow.

CFLB is designed such that it meets the following requirements: all packets of the same flow
follow the same path; no overhead; transparent to non-CFLB aware sources; operate at line rate.
Thereby, CFLB allows sources to encode inside existing fields of the packet header the load-balanced
path that each packet should follow. An invertible function is used to encode and decode the path
present in the packets’ fields which can be implemented efficiently to enable line rate forwarding.
CFLB is transparent for applications that do not want to steer packets and does not require any
changes for non-CFLB-aware end hosts. CFLB does not require any extension in packet headers
and does not store any state in routers which perform only simple calculations. Instead, the state
is stored in end-hosts and conveyed using header fields in each steered packet.

To summarize, our key contributions are:
• A study of path diversity in data center networks;

• The design of a packet steering solution that is stateless for routers and does not require a

2



shim header;

• The evaluation of the benefits of combining such solution with Multipath TCP.
The remainder of this paper is organized as follows. We first recall in Sec. 2 current hash-

based load-balancing basics and discuss related work. We then provide a detailed description of
the operation mode of CFLB in Sec. 3. In Sec. 4, we analyze the performance of CFLB, we first
use trace-driven simulations to compare CFLB with existing hash-based techniques and, then, we
implement CFLB in the Linux kernel to evaluate its packet forwarding performance. We also
evaluate the benefits of CFLB for MultiPath TCP hosts. In Sec. 5, we discuss other possible
applications of CFLB.

2. Network-based Load Balancing in a Nutshell

In this section, we first provide an in depth overview of the network-layer load balancing using
hash based techniques as well as an evaluation of path diversity in data centers. We then discuss
other related work on network-based load balancing.

2.1. Path Diversity at the Network Layer
There exist several proposals to enable path diversity at the network layer [35]. In practice Equal-

Cost Multi-Path (ECMP) [24] is currently the mostly deployed one. ECMP is both a path selection
scheme and a load distribution mechanism. To enable path diversity, it uses paths that tie to ensure
loop-free forwarding. According to the level of resulting path diversity, routers then proportionally
balance packets over their multiple next hops. This proportional aspect is an arbitrary design choice
which is not in the scope of this paper. We focus on the practical implementation of the mapping
(packet → next-hop). Various next-hop mapping methods exist to practically balance packets over
load-balanced paths.

An ECMP load balancer should fairly share the load over the next hops. Since flows vary widely
in terms of number of packets and volume, this is not that easy [24, 10]. Most load-balancing
methods that meet these requirements are based on a hash function [10, 1]. They compute a hash
over the fields that identify the flow in the packet headers. These fields are usually the source
and destination IP addresses, the protocol number and the source and destination ports, i.e. the
5-tuple. The computed hash can then be used in various ways to select a next hop. The simplest
and most deployed method is called Modulo-N (see Fig. 3a). If there are N available next hops,
the remainder of dividing the hash by N is used as an identifier of the next hop to use. In [10],
Cao et al. use trace-driven simulations to compare the performance of several hash functions and
show that CRC-16 provides the best cost/performance tradeoff.

Due to the non-determinism property of hash functions, forcing a path in a load-balanced
network is hard. In general hosts can only vary the transport header fields to try to influence the
path selection.

2.2. Path Diversity in Data Center Networks
ECMP is widely used in data centers. Several recent data center proposals have been optimized

to support it [39, 37]. To demonstrate the potential presence of ECMP load balancers, we analyze
the topology and the resulting routing base of several data center networks. We consider the
path diversity between pairs of servers. We use three generic models: Fat-Tree [2], VL2 [20], and
BCube [21]. For each model, we instantiate a representative topology with approximately 600

3



Figure 1: More than 80% of the server pairs in
popular models of data center topologies have
two or more paths between them.

Figure 2: On average, for 70% of destinations,
routers and switches have multiple next hops.

servers. Since the simple spanning tree at the link layer also tends to be replaced by multipath-
capable routing [42], we also consider switches as load balancers1.

We observe in Fig. 1 that more than 80% of pairs of servers in these data center networks have
at least two paths between them. They have up to 64 paths in BCube. Moreover, Fig. 2 shows that
for 70% of destinations the switches and routers have at least a destination for which there are two
next hops or more. The maximum number of next hops is 10.

2.3. Related Work
Several researchers have evaluated the performance of dynamic load-balancing techniques. Menth

et al. consider in [32] dynamic load balancing at the network layer not solely based on static for-
warding ratio [10]. Kandula et al. propose another dynamic load-balancing technique in [27].

Network-layer load balancing is not limited to the use of ECMP, other forms of multipath routing
have also been proposed. BANANAS [29], Routing Deflections [45], Path Splicing [36], and Pathlet
Routing [19] are examples of scalable routing primitives that allow end systems to use non-shortest
paths as an alternative to explicit source routes. These solutions rely on the utilization of a shim
header in addition to the IP header to allow end hosts to exploit the path diversity. Otherwise, the
packet is forwarded along the normal route.

Xi et al. proposed in [44] Probe and RerOute Based on ECMP (PROBE). This technique
combines path probing, similar to Paris-traceroute [5], to discover the ECMP paths and uses a
NAT technique on the hosts to reroute the flows.

Recent proposals have focused on ways to distribute the flows inside data centers [14, 3, 37].
SPAIN [37] is a proposal that configures multiple static VLANs in data centers to expose to end
hosts the underlying network paths. In the case of SPAIN either the hosts or the switches must be
modified to allow selecting a path for each flow.

Other solutions have looked at how dynamically allocate flows to paths, Al-Fares et al., among
others, show that it is possible to avoid generating such hot-spots by efficiently utilize aggregate
network resources by using Hereda, a dynamic flow scheduling system [3]. The idea behind this
solution is to assign large flows to lightly loaded paths by querying a scheduler that possesses
informations about the current network load. Hereda stores state in the switches, i.e., flow entries
in OpenFlow [34], in order to ensure that flows follows the desired path. However, as pointed out
by Curtis et al. in [14], there currently does not exist any OpenFlow switch that can support the
required number of flows at each rack switch.

1In BCube models, servers not only act as end hosts, they also act as relay nodes for each other.

4



IPsrc IPdst Proto Portsrc Portdst

Hash(.) % Nk next hop

(a) Regular ECMP.

IP
src

IP
dst Proto Port

src
Port

dst

CFLB next hop

Controllable fieldsUncontrollable fields

TTL

(b) CFLB.

Figure 3: Overview of load-balancing mechanisms.

3. Controllable per-Flow Load-Balancing

CFLB enables hosts to select a load-balanced path among the diversity offered by the network
layer. Compared to a source routing solution, it allows CFLB-aware sources to steer their packets
inside the network without requiring any header extension. Fig. 3 presents the overview of the
mechanisms ECMP and CFLB use to select a next hop when several are possible. The mechanisms
are quite similar: for IPv4 networks both apply an operation on the 5-tuple to select a next hop.
ECMP uses a hash-modulo operation while CFLB uses a more complex operation that will be
detailed in the remainder of this section. CFLB uses an additional field of the packet header,
the Time to Live (TTL), as a way to “identify routers”. CFLB is not only limited to layer-3
routing, it can work in any environment where a hop count is used (e.g., TRILL [42], MPLS, IPv6,
etc.). CFLB decomposes those header fields in two categories: controllable and uncontrollable. The
controllable fields are the fields that can be selected by the source, e.g., the source and destination
TCP ports2 while the remaining fields are uncontrollable, i.e., the protocol number and the source
and destination addresses. In short, the controllable fields are used to convey the path selector
while the uncontrollable fields are used to add randomness for non-CFLB aware flows. The CFLB
mechanism can be decomposed in four separate operations:

1. The desired path is specified by the source as a sequence of next-hop selections, that we call
a path selector ;

2. This path selector is then encoded by the source inside the controllable header fields;

3. Each router recovers from these controllable fields the encoded path selector;

4. The path selector is then used to extract the next-hop selection the routers need to apply to
load-balance each packet.

This section is organized to help understand the design choices behind CFLB. We first describe
the path selector. We then describe operations (1) and (4) and finally operations (2) and (3).

2We see in Sec. 4.2 how the destination port can be controlled.

5



3.1. Path Selector
In a network offering path diversity, there exist multiple paths having the same cost between a

source and a destination. We call these load-balanced path. Fig. 4 shows all load-balanced paths
between a source S and a destination D in a simple network. As only load-balanced paths are
shown, Fig. 4 does not show links that are not used to route packets to the destination D. In this
example there exist five different load-balanced paths between nodes S and D. Table 1 lists the
notations used in this paper and their definitions.

Symbol Definition
B The radix of the path selector, i.e., the numeral base to encode the path selector.
ni The next-hop selection of the ith positioned router.
L The length of the path selector, i.e., number of next-hop selections that can be encoded in it.
Nk The number of load-balanced next hops available at a router k (for the sake of clarity, we

ignore the destination prefix).
F (x) The invertible function applied on x.
H(x) The Hash function applied on x.
cf The controllable fields used.
uf The uncontrollable fields used.
Ei(ni) The function applied on a next-hop selection, it adds “randomness” using uf .
Di(x) The function that performs the inverse of Ei, i.e., Di(Ei(x)) = x, ∀x ∈ [0,B[.
A∣∣B The concatenation of A and B.

Table 1: General notations.

CFLB allows sources to control the next-hop selection in routers when they have more than one
possible next hop for a destination. For example, router R4 has 3 potential next hops for destination
D. By knowing the number Nk of available next hops towards a destination for each router k in
the network, next-hop selections can be mapped to a number ni ∈ [0,Nk[, where n indicates the
index of the next hop which should be selected. Using such mapping, if source S wants to follow
the highlighted path in Fig. 4, the next-hop selection for router R4 is 2. Note that only routers
having multiple load-balanced next hops to forward a packet must be controlled by the source if
the latter wants to follow a path in the network.

To specify the next-hop selection a router needs to performs, it must be identifiable by the
source. As we only want to rely on existing fields of the packet header, to identify the position of a
router inside the path selector we use the TTL field present in each packet. The TTL is set by the
source and decremented when the packet is forwarded by a router. The field can thus be used by a
router to identify its relative position compared to the initial TTL value and thus to represent its
position inside the path selector. Therefore, we define the position of each router within the path
selector to be i = ttl mod L where ttl is the TTL value of the packet received at the router and L
is the number of next-hop selection that can be encoded in the path selector. The source can, by
knowing the initial TTL of the packets3, encode the next-hop selections of each CFLB router on
the path at their corresponding position inside the path selector.

Let us assume that the source S uses an initial TTL of 64, that the length of the path selector is
L = 20 and that the source wants his packets to follow the bold path in Fig. 4. The positions of the
next-hop selections of routers R1 and R4 inside the path selector are respectively 4 (64 mod 20)

3Most operating systems use a system wide default TTL.

6



S R1

R2

R3

R4

R5

R6

R7

R8

D

0

1
0
1

0
1
2

Figure 4: The load-balanced paths between S and D.

and 2 (62 mod 20). The complete load-balanced path can therefore be expressed as the following
sequence of next-hop selections: {(4 → 0), (2 → 2)} where the notation (x → y) refers to a router
at position x which should select its yth next hop.

3.2. Representation and Extraction
CFLB stores a path selector as a positional base-B unsigned integer, where B is known as the

radix and shared by all the nodes in the network. This maximizes the number of next-hop selections
that can be encoded inside the path selector, while minimizing the number of bits used. As the
potential value of ni is bounded by the radix B, one should choose a B value so that it is the
maximum of the number of available next hops Nk towards each destination in every routers of the
network. In practice, most routers have a hardcoded upper bound on the number of next hops they
can use for a destination, most of them support up to of 16 next hops [5].

Representation. A path selector p can be generalized as:

p =
L−1
∑
i=0 ni ×Bi (1)

Where ni is an unsigned integer in base B that represents the next-hop selection of the router
having the ith position within the path selector. If a source wants its packets to follow the same
path for different services then it might cause a path selector collision. To overcome this issue, CFLB
generates multiple path selectors to describe the same load-balanced path using two solutions that
can be combined. First, the unused positions inside the path selector can be filled with random
values (as for R2 and R7 in Fig. 4). Second, by changing the initial TTL, the position of each router
in the path selector changes and thus the path selector value.

Extraction. A router receiving a path selector p can extract the forwarding decision ni by first
extracting the ttl of the packet and then computing i = ttl mod L. Finally, ni can be extracted by
applying Eq. 2.

ni = ⌊ p

Bi
⌋ mod B (2)

The integer division by Bi removes all load-balanced next-hop selections of upstream routers while
the modulo operation removes all load-balanced next-hop selections of downstream routers.

7



Example. Let us now illustrate how CFLB works in the simple network shown in Fig. 4. Assume
that the source uses an initial TTL of 64, wants this packet to follow the bold path in Fig. 4. That
radix B is 3 and L is 20. The path selector computed by the source based on Eq. 1 can therefore
be expressed as:

p = {(4→ 0), (2→ 2)} = 0 × 34 + 2 × 32 = 18

Note that this implies encoding a next-hop selection of 0 for all other positions inside the path
selector. This value is then encoded inside the packet header (we discuss how the path selector
is encoded and decoded in the header fields in Sec. 3.3). R1 retrieves from the packet header the
same path selector and the TTL to compute its position inside the path selector, i.e., 4. It then
computes the next-hop selection it needs to apply on the packet by using Eq. 2:

n4 = ⌊18
34

⌋ mod 3 = 0

R1 decrements the TTL of the packet and forwards it to the next hop labeled 0, i.e., R2. R2

does not have load-balanced next hops. It forwards the packet to R4 and decrements the TTL. R4

applies the same operation as R1. R4 computes:

n2 = ⌊18
32

⌋ mod 3 = 2

The packet is therefore forwarded to R7 and then to D as R7 only has one next hop to forward the
packet.

3.3. Encoding and Decoding
CFLB uses the controllable fields of the packet header in order to convey the path selector

from routers to routers. These fields must not change during the forwarding process. We use
an invertible function F to encode the path selector. The function F must exhibit the avalanche
effect [43]. Indeed, a simple bijective function might end up in a poor distribution of the non-
controlled traffic [10]. For instance, if only the port numbers are used as controllable fields, we
do not want that all web traffic goes through the same next hop. Therefore, we require that the
invertible function exhibits the avalanche effect, that is for a small variation of the input (different
source-ports) a large variation of the output is observed. Based on this requirement, block ciphers
such as Skip324 or RC5 [40] are good candidates to implement this invertible function when 32
bits are controllable. When more bits are available, we recommend to use a block cipher mode of
operation as Format-Preserving Encryption (FPE) construction, such as the eXtended CodeBook
(XCB) mode of operation [33] that accepts arbitrarily-sized blocks, provided they are as large as the
blocks of the underlying block cipher. Depending on the number of bits that are controllable in the
packet header, different types of block ciphers can be used with XCB, from 32-bit symmetric-key
block cipher to most common ones such as DES, 3DES or AES. Furthermore, efficient hardware-
based implementations of such block ciphers exist [16, 23]. Using such functions to encode the path
selector enables a router to apply the inverse of this function on the controllable fields of the packet
header to retrieve the path selector.

4http://www.qualcomm.com.au/PublicationsDocs/skip32.c.

8

http://www.qualcomm.com.au/ PublicationsDocs/skip32.c.


Uncontrollable fields. CFLB is designed based on the properties of hash-based load balancers. It
must be transparent to sources that do not need to control the load-balanced path taken by their
packets. In this case, the controllable fields are random and do not encode a path selector. CFLB
must still distribute such packets efficiently among the available load-balanced next hops. As Cao
et al. showed in [10], the most efficient packet distribution is achieved when all the headers fields
identifying a flow is used as input to the load balancing function. CFLB therefore uses also the
uncontrollable fields, source and destination addresses and the protocol number, as input. For that,
the way the path selector is encoded slightly changes from Eq. 1:

Ei(ni) = (ni +H(uf)) mod B (3)

p =
L−1
∑
i=0 Ei(ni) ×Bi (4)

where, H is a hash function and uf contains the uncontrollable fields of the packet header. This
allows to efficiently distribute packets over available next hops of each router, while still allowing
routers to recover the next-hop selections encoded by the sources.

Eq. 4 can be inverted to find the next-hop selection ni to apply on the router whose position is
i by applying the following operation on the path selector extracted from the packet header:

Di(x) = (x −H(uf)) mod B (5)

ni =Di(⌊
p

Bi
⌋) (6)

Next-hop selection. The next-hop selection ni is a value comprised between 0 and B − 1. To select
a next hop, CFLB applies a mapping between ni and a value between 0 and Nk − 1. However, as
Nk ≤ B, an issue arises when using a simple modulus operation when B is not a multiple of Nk.
In this case, the load balancing distribution might be poor. For instance, if Nk = 2 and B = 3, if
the input is uniformly distributed, then the router ends up forwarding 75% of the incoming packets
to the first next hop. To resolve this problem, CFLB computes the next-hop selection ni for the
packet as follows :

ni =
⎧⎪⎪⎨⎪⎪⎩

Di(⌊ p
Bi ⌋), if Di(⌊ p

Bi ⌋) < Nk

H(cf ∣∣uf) mod Nk, otherwise.
(7)

The intuition behind Eq. 7 is that CFLB must distinguish whether the packet was controlled
by a source or not. If the packet was indeed controlled, the next-hop selected, ni, must be the one
encoded in the path selector. However, the non-controlled packets must be distributed randomly
among the Nk available next hops. In Eq. 7, if the packet to forward is a controlled one, then the
resulting next hop to select should be lower than Nk (the number of next hops in the routing table
for the packet’s destination), the decision encoded at the source is correctly taken. Otherwise, it
means that the packet is not a controlled one, resulting in a random distribution of the packet on
one of the Nk available next hops.

In case of topological changes (transient or permanent), a CFLB-router will renumber indexes,
i.e., update the ni → Rj mapping andNk, of its current available next hops towards each destination.
In such a case, while new flows are “aware” of the new state and are so correctly controlled, previous
existing ones may be impacted. Indeed, when the desired next hop does not exist anymore or if its

9



index has changed, the resulting path will change. In CFLB, the impacted controlled flows (i.e.,
the elephants ones) will fall back to a random load balancing and so will be distributed similarly
to classic hash-based load balancing. We consider that such topological changes should be quite
marginal (at a time scale greater than flows duration) and new subflows may be created if impacted
ones share a common bottleneck.

3.4. Summary
In the previous section, we have explained all the design decisions behind the CFLB algorithm.

For clarity, we provide in this section the detailed pseudocode of CFLB.

IPsrc IPdst Proto TTL Portsrc Portdst

Uncontrollable

fields

H

h

Controllable

fields

F−1

p = ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ. . .+ai ×Bi+ . . .+aL ×BL

i = TTL mod L

−
mod B ni

Figure 5: The complete mode of operation of a CFLB router.

Network-wide constant: B = The radix in use in the network.
Network-wide constant: X = The number of bits that are controllable in the packet header.
Input: pckt = The packet to forward.
Output: The next-hop selection to apply on pckt.
1: L← ⌊logB(2X)⌋
2: cf ← ExtractControllableFields(pckt)
3: uf ← ExtractUncontrollableFields(pckt)
4: ttl ← ExtractTTL(pckt)
5: p← F−1(cf )
6: ni ← (⌊ p

B(ttl mod L) ⌋ −H(uf )) mod B

7: if ni < Nk then
8: return ni

9: else
10: return H(uf ∣∣cf ∣∣RouterID) mod Nk

11: end if

Algorithm 1: Pseudocode showing operations performed by a CFLB router.

Fig. 5 and Alg. 1 show respectively the operations and the pseudocode performed by a CFLB
router to forward a packet among load-balanced next hops. The first operation is to extract the
controllable and the uncontrollable fields and the TTL from the packet header. Operation F−1 is
the inverse of the invertible function that extracts the path selector from the controllable fields. In
Alg. 1, after having retrieved the next-hop selection ni, the router performs the operation introduced
in Sec. 3.3, i.e., an if-then-else on the value ni, to determine whether the packet was controlled by
the source. The ai value, in Fig. 5, corresponds to the addition modulo B of the next-hop selection
performed at position i and the hash computed on the uncontrollable fields. This ai value was
inserted by the source at the ith position inside the path selector. The router can thus retrieve it

10



Network-wide constant: B = The radix in use in the network.
Network-wide constant: X = The number of bits that are controllable in the packet header.
Input: path = A sequence (ttli, ni), where ttli is the TTL of the packet when received by router i and ni the next-hop that

should be selected by router i.
Input: uf = The uncontrollable fields the source needs to use.
Output: The controllable fields (cf ) to use to force a packet to follow the load balanced path path.
1: L← ⌊logB(2X)⌋
2: p← 0
3: for (ttli, ni) ∈ path do
4: p← p + ((ni +H(uf )) mod B) ×B(ttli mod L)
5: end for
6: return F(p)

Algorithm 2: Pseudocode showing the path selector construction.

and compute the subtraction modulo B with the same hash value, to finally retrieve the next-hop
selection ni.

Alg. 2 shows the pseudocode used by sources to construct a path selector. The source needs to
first compute the length of the path selector. This is needed because the routers position themselves
inside the path selector by using the TTL and the length of the path selector. Thus, this length has
to be taken into consideration to find the path selector. Then, the source iterates over all routers
on the path (with a TTL ttli and a next-hop selection ni) to compute the path selector.

4. Evaluation

In this section, we evaluate the performance of CFLB compared to hash-based load-balancing.
We use the source and destination port numbers as controllable fields and the IP addresses are used
as the uncontrollable fields for CFLB. Our goal is twofold: first, evaluate its load-balancing and
forwarding performances, and second, show through simulations and experiments how MultiPath
TCP can benefit from CFLB to exploit the underlying path diversity.

4.1. Performance Evaluation
4.1.1. Load-Balancing for Non-Controlled Flows

Our first requirement evaluates whether a router having multiple next hops for a given desti-
nation uniformly distributes the load [10] for non-controlled flows. If there exist N next hops for a
given destination prefix, the load balancer should distribute 1

N of the total traffic to each next hop.
CFLB enables sources to steer controlled packets while also acting as a classic load balancer

for non-controlled packets (e.g., mice flows). To compare the hash-based load balancing techniques
and CFLB, we simulated each method using realistic traces and evaluated the fraction of packets
forwarded to each next hop. We based our simulations on the CAIDA passive traces collected in
July 2008 at an Equinix data center in San Jose, CA [41].

To analyze how CFLB balances the non-controlled traffic compared to hash-based techniques,
we first simulated 10 million packets (extracted from the CAIDA traces) forwarded through one
load balancer performing a distribution among N = 2 next hops. Fig. 6a shows the result of this
simulation (computed every second). There are three observations resulting from Fig. 6a. First,
using CRC16 as a hash-based load balancer gives a rather poor distribution of packets. Second, as
the maximum deviation value never goes up to 4% of packets, the load distribution among the two
output links is close to an equal 50/50 % repartition of traffic for all evaluated techniques except
CRC16. Third, CFLB, whatever the block cipher used, achieves an equivalent load distribution as

11



0 1 2 3 4 5 6 7 8 9
Load repartition [% packets]

0

20

40

60

80

100

C
D

F
[%

]

CFLB-Skip32
CFLB-RC5
MD5
CRC16

(a) After one load balancer.

0 1 2 3 4 5 6 7
Load repartition [% packets]

0

20

40

60

80

100

C
D

F
[%

]

CFLB-Skip32
CFLB-RC5
MD5

(b) After 4 load balancers.

Figure 6: Deviation from an optimal distribution amongst two possible next-hops.

0 5 10 15 20
20

22

24

26

28

30

Time [sec]

%
pa

ck
et

s

(a) MD5 Hash-Based

0 5 10 15 20
20

22

24

26

28

30

Time [sec]

%
pa

ck
et

s

(b) RC5 CFLB

Figure 7: Packet distribution computed every second amongst four possible next hops.

a hash-based load balancer using MD5. We did not observe a significant impact on the quality of
the load distribution according to the value of B used.

We also evaluated the load balancing performance considering a sequence of several load bal-
ancers. Fig. 6b shows the cumulative distribution of the maximum deviation of the load distribution
after crossing four subsequent load balancers (computed every half second). The same observation
as for Fig. 6a applies, CFLB performs at least as good as a classical hash-based load balancing
technique.

Another performance factor is how the load distribution varies over time. Fig. 7a and Fig. 7b
show, for respectively a hash-based load balancer using MD5 and CFLB using RC5, the load
balancing distribution of packets over time when N = 4. We analyze here the case of a router
having four outgoing links toward a given destination. A perfect load balancer would send 25%
of the packets on each link. We can notice that there are no significant differences between the
two techniques, as they behave in the same way over time. They both slightly fluctuate within the
same tight interval [22%,28%] and their median is close to 25%. Simulations with other traces and

12



400K 500K 600K 700K

100K

200K

300K

400K

500K

600K

Sent pps

Fo
rw

ar
de

d
pp

s

Linux R-R
CRC16

CFLB-RC5
CFLB-Skip32

Figure 8: CFLB gives equivalent forwarding performance as hash-based load balancers.

different values of N provide similar results.

4.1.2. Forwarding Performances
The second requirement is the forwarding performance. In order to evaluate it, we implemented

the forwarding path of CFLB as a module in the Linux kernel 2.6.38 5. The basic behavior of the
Linux kernel when dealing with multiple next hops for a given destination is to apply a round
robin distribution of packets based on their IP addresses, therefore performing a pure layer-3 load
balancing. As this is not comparable to the hash-based load-balancing behavior introduced in
Sec. 2.1, we extended the Linux kernel to take into consideration the 5-tuple of the packets and then
apply a hash function to select a next-hop (only CRC like functions are available). To implement
CFLB in the kernel, we extend the previously mentioned hash function to enable the deterministic
selection of a next hop as described in Sec. 3. We used two different 32-bit block ciphers to implement
the invertible function: RC5 and Skip32. The implementation of these two block ciphers has not
been optimized, the goal is solely to prove the feasibility of our solution (various techniques could
be used to improve its performance [31, 22]). Note that CFLB also computes a CRC function over
the uncontrollable fields to add randomness for non-controlled flows.

We deploy a testbed of three computers to evaluate the performance of the forwarding path of a
Linux router. The computer acting as a load balancer is an Intel Xeon X3440 @2.53GHz, and both
sender and receiver are AMD Opteron 6128 @2GHz. The sender is connected through a 1Gbps link
to the load balancer which balances traffic amongst two 1Gbps links to the receiver. The traffic
was generated using 8 parallel iperf 6 generators, creating UDP-packets with a payload of 64 Bytes,
in order to overload the load balancer. The result of this experiment is given in Fig. 8.

The classic Linux Round-Robin on the IP-addresses obviously performs the best (it only requires
a lookup of the destination IP address in the routing cache to forward the packet). It forwards
approximatively 600,000 packets per second. Not far below, both the classical hash-based technique
using CRC16 and CFLB using RC5 are able to forward respectively 570,000 and 560,000 packets
per seconds. This performance decrease compared to the standard Linux Round-Robin is mainly
due to the more complex hash-algorithm that selects the next hop. Finally, CFLB using Skip32
forwards up to 500,000 packets per seconds. We can conclude that CFLB, even using non-optimized
block ciphers, comes with a marginal additional cost as it gives equivalent forwarding performances
as classical hash-based techniques.

5More information can be found at: http://inl.info.ucl.ac.be/cflb.
6http://iperf.sourceforge.net/

13

http://inl.info.ucl.ac.be/cflb
http://iperf.sourceforge.net/


4.2. MPTCP improvements with CFLB
Multipath TCP (MPTCP) is an extension to TCP that splits a data stream over multiple TCP

subflows while still presenting a standard TCP socket API to applications [6]. The subflows can
be established using the same IP address pair and different ports [39] or just using distinct IP
addresses of the same end hosts [18]. Raiciu et al. evaluated MultiPath TCP inside data centers
in [39]. Simulations and measurements show that performance improves when MultiPath TCP is
allowed to use multiple subflows in such data centers. However, the non-deterministic nature of the
hash function does not guarantee that subflows will follow distinct paths inside the data center.
Therefore a large number of subflows are needed to increase the probability to use disjoint paths
and thus utilize all the available network resources. Using a large number of subflows comes with a
cost in CPU cycles and network resources. With CFLB, Multipath TCP is guaranteed to efficiently
use the network resources as subflows can be deterministically mapped to paths.

In the following section, we evaluate the advantages of using MPTCP hosts conjointly with
a CFLB-enabled network. We first simulate a data center environment to show that when using
CFLB, MPTCP establishes fewer subflows for elephant connections than with a probabilistic ap-
proach. Finally, we also show in a small testbed that MPTCP can benefit from the usage of CFLB
to avoid crossing hot spots.

4.2.1. Data Center Simulations
We performed simulations of MPTCP-enabled data centers and evaluate the performances

achieved when a simple central flow scheduling algorithm allocates elephant flows. The sched-
uler that we use for simulations simply consists in minimizing the number of flows going through
each link of the data center. In practice, hosts can use a similar technique as in [14] to detect
whether one connection corresponds to an elephant flow, and if so query the scheduler to establish
additional subflows. The scheduler then specifies to the host the TCP ports to be used to setup a
new subflow. The required TCP ports are computed using the CFLB mode of operation allowing
to map a subflow to a specific path in the network. We refer to this combination of MultiPath TCP
and CFLB in the remaining of this section as MPTCP-CFLB.

To evaluate the benefits of CFLB with MPTCP in data centers, we first enhanced the htsim
packet-level simulator used in [39] to support path selection with CFLB. We consider exactly
the same Fat-Tree datacenter topology as discussed in Fig. 2 of [39]. This simulated datacenter
has 128 MPTCP servers, 80 eight-port switches and uses 100 Mbps links. The traffic pattern
is a permutation matrix, meaning that senders and destinations are chosen at random with the
constraint that destinations do not sink more than one connection. The regular MPTCP bars
of Fig. 9 are the same as Fig. 2 of [39]. It shows the throughput achieved by MPTCP when
MPTCP subflows are load-balanced using ECMP. The MPTCP-CFLB bars show the throughput
that MPTCP is able to obtain when CFLB balances the MPTCP subflows over the less loaded
paths. The simulations show that with only 2 subflows, MPTCP-CFLB is much closer to the
optimum than MPTCP with hash-based load balancing. Even with only one subflow (smartly
allocated by the scheduler), improvements are considerable and MPTCP-CFLB achieves a good
utilization of the network. This can be explained by the fact that relying on a random distribution
of subflows ends in a poor use of available resources.

Similar results have been observed on other data center topologies such as VL2 and BCube. We
also performed simulations for an overloaded data center and observed that using MPTCP-CFLB
conjointly with a flow scheduler focusing on less congested paths offers more fairness amongst the
different connections.

14



0 1 2 3 4 5 6 7 8 9
No. of MPTCP subflows

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(%
of

op
ti

m
al

)

MPTCP-CFLB
regular MPTCP

Figure 9: MPTCP needs few subflows to get a good Fat Tree utilization when using CFLB.

4.2.2. Testbed Experiments
We modified the MPTCP Linux kernel 2.6.36 implementation [6] to add the deterministic

selection feature offered by CFLB. We created a netlink interface to the kernel so that a user-space
module can interact with MPTCP and announce to the kernel the subflows to create. The CFLB
functionality has been implemented in user-space. Our prototype allows a source to control the
source and destination TCP ports to follow a specific path inside an IPv4 network. The two block
ciphers (RC5 and Skip32) were also implemented inside the kernel crypto library.

A python library pycflb was developed to provide a simple API for interacting with the user-
space CFLB. We also developed an RPC server to show the feasibility to centralize the computation
of CFLB in a server. This server has information about the network topology and is the only one
that interacts with the pycflb library. pycflb can be configured with the cipher and key parameters
in use in the network. Sources only query it to retrieve the ports to use or to recover the path
taken by a specific flow. These three implementations (Linux MPTCP netlink-interface, user-space
CFLB and pycflb library) allow a source to deterministically map subflows to paths and represent
approximatively 4,000 lines of code.

When MultiPath TCP runs on a single homed server, additional subflows are created by mod-
ifying the port numbers in a random manner. Since MultiPath TCP relies on tokens to identify
to which MPTCP connection a new subflow belongs, both the source and destination TCP ports
can be used to add entropy. Combining CFLB and MultiPath TCP in the Linux MPTCP imple-
mentation provides a significant benefit because the subflow 5-tuple can be selected in such a way
that the underlying path diversity offered by the network can be easily exploited. We evaluate the
benefit of this technique in a small testbed with a client and a server (AMD Opteron 6128 @2GHz)
and two CFLB-capable routers (Xeon X3440 @2.53GHz).

In the first experiment, each host is connected to one router via a 1Gbps link. The routers
are directly connected via seven 100 Mbps links. These 7 links offer 7 different distinct paths
between the client and the server. If seven MPTCP-subflows are created, an optimal usage of the
network should result in about 700 Mbps of throughput. To evaluate this, we ran iperf between
the hosts, creating traffic during one minute. The experiment has been repeated 400 times to
collect representative results. Fig. 10 provides the probability distribution function of the number

15



1/7 2/7 3/7 4/7 5/7 6/7 7/7
Proportion of paths used

0

20

40

60

80

100

P
D

F
(i

n
%

)

MPTCP-CFLB
regular MPTCP

Figure 10: Regular MPTCP is unlikely to use
all paths. MPTCP-CFLB on the other hand
always manages to use all the paths.

2 3 4 5 6 7 8 9 10
Number of MPTCP-Subflows

0

20

40

60

80

100

120

140

160

180

200

A
ve

ra
ge

G
oo

dp
ut

in
M

bp
s

MPTCP-CFLB
regular MPTCP

Figure 11: Regular MPTCP has a very small
probability of using link A of Fig. 12 and is thus
suboptimal compared to MPTCP-CFLB.

Source
Destination

Router

Load Balancer

1 Gbps 100 Mbps

100 Mbps6 x 100 Mbps

Figure 12: Testbed – The maximum throughput available between S and D is at 200 Mbps due to
the bottleneck link between the router and the destination.

of distinct paths used by the classical MPTCP and our enhanced MPTCP-CFLB implementation.
Fig. 10 raises the following observation: as expected, using seven subflows, MPTCP-CFLB is

able to take the full benefit of the seven paths while the classical MultiPath TCP cannot efficiently
utilize them. Indeed, the performance of MPTCP-CFLB is completely deterministic as the MPTCP
connection balances exactly its seven subflows over the seven paths. Among the 400 experiments,
when paths are randomly selected, only two experiments were able to use the seven paths. This
can be confirmed by the probability that k subflows go through k different paths amongst the l
paths available, which can be written as:

Pm(k,l) = l!

(l − k)! ×mk
(∀ k, l,m ∈ N ∣ k ≤ l ≤m)

Therefore, covering the whole 7 load-balanced paths with 7 subflows probability is P 7(7,7) = 0.6% ≈
2

400 which explains the poor result of MPTCP. Most of the experiments result in four or five paths
being used. This implies that two or three paths carry two competing TCP subflows from the same
MPTCP connection.

Our second evaluation (Fig. 12) still offers 7 distinct paths from the source to the destination,
but this time the destination has two 100 Mbps links. One is a direct link from the load balancer to
the destination and the second is attached to the router. With only two subflows, MPTCP-CFLB is
able to saturate the two 100 Mbps interfaces of the destination. Fig. 11 compares the performance of
MPTCP and MPTCP-CFLB when the number of subflows varies. Each measurement with MPTCP
was repeated 100 times and Fig. 11 provides the average measured goodput. These measurements
clearly show that when using random TCP port numbers, MPTCP is unable to efficiently use the

16



two different 100 Mbps links. Increasing the number of subflows slowly increases the performance,
but adding a subflow to an MPTCP connection comes with a significant cost. Thus, the less TCP
sublows are established, the best it is. MPTCP-CFLB is able to cover all the available paths with
the minimal cost.

5. Discussion

In this paper, we have mainly focused on the utilization of CFLB in data centers networks
carrying TCP/IPv4 packets. CFLB could be applied to other problems in different networking
technologies. Extending CFLB to support another networking technology can be done by selecting
the controllable and the uncontrollable fields of the packet header that are used as input to the
load-balancing algorithm.

A first natural extension of CFLB would be to deploy it in IPv6 networks. In an IPv6 network,
CFLB could also rely on the source and destination ports, but IPv6 packets contain a 20 bits flow
label field. The semantics of this field is still being debated within the IETF [11]. IPv6 sources
could leverage CFLB to encode a path selector in the flow label field of their packets.

Although we illustrated the benefits of CFLB with MultiPath TCP, the same could be applied
for single TCP/UDP flows, in this case only the source port could be controlled as applications
running on top of those transport protocols require to specify the destination port.

A CFLB network has other benefits. One of the side effect benefits is the monitorability of the
load-balanced paths. Commercial networks often deploy monitoring tools that probe network paths
to verify whether their network meets the stringent SLAs that are requested by their customers.
Unfortunately, when there are load-balanced paths, it is very difficult for the monitoring station to
steer packets on a specific path, which complicates network monitoring. This operational problem
is one of the reasons why the MPLS-TP architecture prohibits the utilization of ECMP [9]. With
CFLB, this problem disappears since a monitoring station can easily steer packets along specific
paths through CFLB routers.

MPLS networks often use ECMP to load balance the traffic. To enable MPLS routers to support
ECMP even when carrying non-IP packets, router vendors have proposed the utilization of special
MPLS entropy labels [30] to identify flows that can be load-balanced. CFLB could easily exploit
these entropy labels and ensure that flows are both well balanced and that paths can be efficiently
monitored.

6. Conclusion

Most data centers networks rely on hash-based load-balancing to distribute the load over multi-
ple paths. Hash-based techniques are able to efficiently spread the load but it is difficult to predict
and force the next hop selection that such load balancers will take. In this paper, we have shown
that it is possible to achieve both efficient load-balancing while enabling hosts to explicitly select
the paths of their flows without storing any state in the network. This open new ways to enable
hosts and load balancers to interact.

Controllable per-Flow Load-Balancing relies on invertible functions, such as block ciphers, in-
stead of solely using classical hash-based selection. Thanks to an invertible operation, it is possible
to preserve the best properties of currently used hash functions with the added benefit of enabling
CFLB-aware sources to steer elephant flows over selected load-balanced paths. We envision a data
center where mice flows are distributed using the classical load balancing model while elephant

17



flows are deterministically allocated to less congested paths. Our simulations indicate that CFLB
is as efficient as classical hash-based techniques to achieve an optimal load distribution. Perfor-
mance measurements in our lab have shown that our prototype implementation in the Linux kernel
achieves almost the same performance as the default per-destination load balancing. Furthermore,
we have shown that by coupling CFLB with Multipath TCP it is possible to greatly improve the
utilization of data center networks offering path diversity between pairs of servers.

We hope that CFLB will encourage other researchers and network manufacturers to reconsider
the utilization of blind hash functions in various types of load balancers.

Acknowledgment

Simon van der linden is supported by a FRIA grant. This work was partially supported by the
FP7 EU project CHANGE. We particularly thank Sébastien Barré for his work on MPTCP. We
would like to thank Costin Raiciu for his MPTCP simulator. We also thank Jean-Jacques Pansiot
and Damien Saucez for their useful comments.

References

[1] Load balancing with Cisco Express Forwarding. Tech. rep., Cisco Systems, Inc., 1998.
[2] Al-Fares, M., Loukissas, A., and Vahdat, A. A scalable, commodity data center network architecture.

ACM SIGCOMM CCR 38 (Aug. 2008), 63–74.
[3] Al-fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. Hedera: Dynamic flow

scheduling for data center networks. In Proc. USENIX NSDI (2010).
[4] Association, I. S. IEEE Std 802.1AX-2008 IEEE Standard for Local and Metropolitan Area Networks - Link

Aggregation. 2008.
[5] Augustin, B., Friedman, T., and Teixeira, R. Measuring Load-balanced Paths in the Internet. In Proc.

ACM IMC (2007), vol. 6.
[6] Barré, S., Paasch, C., and Bonaventure, O. MultiPath TCP: From Theory to Practice. In IFIP Net-

working, Valencia (May 2011).
[7] Benson, T., Akella, A., and Maltz, D. A. Network traffic characteristics of data centers in the wild. In

Proc. ACM IMC (Melbourne, 2010), pp. 267–280.
[8] Benson, T., Anand, A., Akella, A., and Zhang, M. The case for fine-grained traffic engineering in data

centers. In Proc. of INM/WREN (2010), pp. 2–2.
[9] Bocci, M., Bryant, S., Frost, D., Levrau, L., and Berger, L. A Framework for MPLS in Transport

Networks. RFC 5921, IETF, July 2010.
[10] Cao, Z., Wang, Z., and Zegura, E. Performance of Hashing-Based Schemes for Internet Load Balancing.

In Proc. IEEE INFOCOM (2000).
[11] Carpenter, B., and Amante, S. Using the IPv6 flow label for equal cost multipath routing and link

aggregation in tunnels. Internet draft, draft-carpenter-flow-ecmp-05, IETF, July 2011.
[12] Chowdhury, M., Zaharia, M., Ma, J., Jordan, M. I., and Stoica, I. Managing data transfers in

computer clusters with orchestra. In Proc. ACM SIGCOMM (2011), pp. 98–109.
[13] Cisco. Server Cluster Designs with Ethernet. http://www.cisco.com/en/US/docs/solutions/Enterprise/

Data_Center/DC_Infra2_5/DCInfra_3.html.
[14] Curtis, A., Kim, W., and Yalagandula, P. Mahout: Low-overhead datacenter traffic management using

end-host-based elephant detection. In INFOCOM (2011), IEEE, pp. 1629–1637.
[15] Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., and Banerjee, S.

Devoflow: scaling flow management for high-performance networks. In Proc. ACM SIGCOMM (2011), pp. 254–
265.

[16] De Cannière, C., Dunkelman, O., and Knežević, M. KATAN and KTANTAN – A family of small and
efficient hardware-oriented block ciphers. In Proc. CHES 2009 (2009), 272–288.

[17] Dean, J., and Ghemawat, S. MapReduce: simplified data processing on large clusters. Commun. ACM 51
(Jan. 2008 pages = 107–113,).

18

http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3.html


[18] Ford, A., Raiciu, C., Handley, M., and Bonaventure, O. TCP Extensions for Multipath Operation
with Multiple Addresses. Internet draft, draft-ietf-mptcp-multiaddressed-04, IETF, July 2011.

[19] Godfrey, P. B., Ganichev, I., Shenker, S., and Stoica, I. Pathlet Routing. In Proc. ACM SIGCOMM
(Aug. 2009).

[20] Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A., Patel,
P., and Sengupta, S. VL2: a scalable and flexible data center network. In Proc. ACM SIGCOMM (2009).

[21] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., and Lu, S. BCube: a high
performance, server-centric network architecture for modular data centers. In Proc ACM SIGCOMM (2009),
pp. 63–74.

[22] Han, S., Jang, K., Park, K., and Moon, S. Packetshader: a gpu-accelerated software router. In Proc.ACM
SIGCOMM (2010), pp. 195–206.

[23] Hodjat, A., and Verbauwhede, I. A 21.54 Gbits/s Fully Pipelined AES Processor on FPGA. In Proc IEEE
Symp. Field-Programmable Custom Computing Machines (2004), pp. 308–309.

[24] Hopps, C. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, IETF, Nov. 2000.
[25] Iannaccone, G., Chuah, C., Bhattacharyya, S., and Diot, C. Feasibility of IP Restoration in a Tier-1

Backbone. IEEE Network 18, 2 (Mar. 2004).
[26] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. Dryad: distributed data-parallel programs

from sequential building blocks. ACM SIGOPS Operating Systems Review 41, 3 (2007), 59–72.
[27] Kandula, S., Katabi, D., Sinha, S., Berger, A., and Roughan, M. Dynamic Load Balancing Without

Packet Reordering. ACM SIGCOMM CCR 37, 2 (Mar. 2007), 51–62.
[28] Kandula, S., Sengupta, S., Greenberg, A., Patel, P., and Chaiken, R. The nature of data center

traffic: measurements & analysis. In Proc. ACM SIGCOMM IMC (2009), pp. 202–208.
[29] Kaur, H., Kalyanaraman, S., Weiss, A., and Kanwar, S. BANANAS: An Evolutionary Framework for

Explicit and Multipath Routing in the Internet. In Proc. ACM SIGCOMM FDNA Workshop (2003).
[30] Kompella, K., Drake, J., Amante, S., Henreickx, W., and Yong, L. The Use of Entropy Labels in

MPLS Forwarding. Internet draft, draft-ietf-mpls-entropy-label-00, IETF, May 2011.
[31] Kounavis, M. E., Kang, X., Grewal, K., Eszenyi, M., Gueron, S., and Durham, D. Encrypting the

internet. In Proc. ACM SIGCOMM (2010), pp. 135–146.
[32] Martin, R., Menth, M., and Hemmkeppler, M. Accuracy and Dynamics of Multi-Stage Load Balancing

for Multipath Internet Routing. In Proc. IEEE ICC (June 2007).
[33] McGrew, D. A., and Fluhrer, S. R. The Extended Codebook (XCB) Mode of Operation. Cryptology

ePrint Archive, Report 2004/278, 2004.
[34] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,

Shenker, S., and Turner, J. Openflow: enabling innovation in campus networks. SIGCOMM CCR 38
(March 2008), 69–74.

[35] Mérindol, P., Francois, P., Bonaventure, O., Cateloin, S., and Pansiot, J.-J. An efficient algorithm
to enable path diversity in link state routing networks. Computer Networks 55, 1 (April 2011), 1132–1149.

[36] Motiwala, M., Elmore, M., Feamster, N., and Vempala, S. Path Splicing. In Proc. ACM SIGCOMM
(Oct. 2008).

[37] Mudigonda, J., Yalagandula, P., Al-Fares, M., and Mogul, J. C. SPAIN: COTS data-center Ethernet
for multipathing over arbitrary topologies. In Proc. USENIX NSDI (2010), pp. 18–18.

[38] Murray, D., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A., and Hand, S. Ciel: a
universal execution engine for distributed data-flow computing. In Proceedings of the 8th USENIX conference
on Networked systems design and implementation (2011), USENIX Association, p. 9.

[39] Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., and Handley, M. Improving
datacenter performance and robustness with multipath tcp. In Proc. SIGCOMM (August 2011).

[40] Rivest, R. L. The RC5 Encryption Algorithm. In Proc. FSE (1994), vol. 1008, pp. 86–96.
[41] Shannon, C., Aben, E., Claffy, K., and Andersen, D. The CAIDA Anonymized 2008 Internet Traces –

2008-07-17 12:59:07 - 2008-07-17 14:01:00. http://www.caida.org/data/passive/passive_2008_dataset.xml.
[42] Touch, J., and Perlman, R. Transparent Interconnection of Lots of Links (TRILL): Problem and Applica-

bility Statement. RFC 5556, IETF, May 2009.
[43] Webster, A. F., and Tavares, S. E. On The Design Of S-Boxes. In Proc. CRYPTO (1986), pp. 523–534.
[44] Xi, K., Liu, Y., and Chao, J. Enabling flow-based routing control in data center networks using probe and

ecmp. In INFOCOM Workshop on cloud computing (2011), pp. 614–619.
[45] Yang, X., and Wetherall, D. Source Selectable Path Diversity via Routing Deflections. In Proc. ACM

SIGCOMM (2006).

19

http://www.caida.org/data/passive/passive_2008_dataset.xml

	Introduction
	Network-based Load Balancing in a Nutshell
	Path Diversity at the Network Layer
	Path Diversity in Data Center Networks
	Related Work

	Controllable per-Flow Load-Balancing
	Path Selector
	Representation and Extraction
	Encoding and Decoding
	Summary

	Evaluation
	Performance Evaluation
	Load-Balancing for Non-Controlled Flows
	Forwarding Performances

	MPTCP improvements with CFLB
	Data Center Simulations
	Testbed Experiments


	Discussion
	Conclusion

