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ABSTRACT

Network-wide migrations of a running network, such as
the replacement of a routing protocol or the modification of
its configuration, can improve the performance, scalability,
manageability, and security of the entire network. However,
such migrations are an important source of concerns for net-
work operators as the reconfiguration campaign can lead to
long and service-affecting outages.

In this paper, we propose a methodology which addresses
the problem of seamlessly modifying the configuration of
commonly used link-state Interior Gateway Protocols (IGP).
We illustrate the benefits of our methodology by consider-
ing several migration scenarios, including the addition or the
removal of routing hierarchy in an existing IGP and the re-
placement of one IGP with another. We prove that a strict
operational ordering can guarantee that the migration will
not create IP transit service outages. Although finding a safe
ordering is NP-complete, we describe techniques which effi-
ciently find such an ordering and evaluate them using both
real-world and inferred ISP topologies. Finally, we describe
the implementation of a provisioning system which automat-
ically performs the migration by pushing the configurations
on the routers in the appropriate order, while monitoring
the entire migration process.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Algorithms, Management, Reliability

Keywords: Interior Gateway Protocol (IGP), configura-
tion, migration, summarization, design guidelines

1. INTRODUCTION
Among all network routing protocols, link-state Interior

Gateway Protocols (IGPs), like IS-IS and OSPF, play a crit-
ical role. Indeed, an IGP enables end-to-end reachability
between any pair of routers within the network of an Au-
tonomous System (AS). Many other routing protocols, like
BGP, LDP or PIM, also rely on an IGP to properly work.
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As the network grows or when new services have to be de-
ployed, network operators often need to perform large-scale
IGP reconfiguration [1]. Migrating an IGP is a complex pro-
cess since all the routers have to be reconfigured in a proper
manner. Simple solutions like restarting the network with
the new configurations do not work since most of the net-
works carry traffic 24/7. Therefore, IGP migrations have
to be performed gradually, while the network is running.
Such operations can lead to significant traffic losses if they
are not handled with care. Unfortunately, network operators
typically lack appropriate tools and techniques to seamlessly
perform large, highly distributed changes to the configura-
tion of their networks. They also experience difficulties in
understanding what is happening during a migration since
complex interactions may arise between upgraded and non-
upgraded routers. Consequently, as confirmed by many pri-
vate communications with operators, large-scale IGP migra-
tions are often avoided until they are absolutely necessary,
thus hampering network evolvability and innovation.

Most of the time, network operators target three aspects
of the IGP when they perform large-scale migrations. First,
they may want to replace the current protocol with another.
For instance, several operators have switched from OSPF
to IS-IS because IS-IS is known to be more secure against
control-plane attacks [2, 3]. Operators may also want to
migrate to an IGP that is not dependent on the address
family (e.g., OSPFv3, IS-IS) in order to run only one IGP
to route both IPv4 and IPv6 traffic [4, 3], or to change IGP
in order to integrate new equipments which are not compli-
ant with the adopted one [5]. Second, when the number of
routers exceeds a certain critical mass, operators often intro-
duce a hierarchy within their IGP to limit the control-plane
stress [6, 7]. Removing a hierarchy might also be needed, for
instance, to better support some traffic engineering exten-
sions [8]. Another reason operators introduce hierarchy is to
have more control on route propagation by tuning the way
routes are propagated from one portion of the hierarchy to
another [1]. Third, network operators also modify the way
the IGP learns or announces the prefixes by introducing or
removing route summarization. Route summarization is an
efficient way to reduce the number of entries in the routing
tables of the routers as IGP networks can currently track
as many as 10,000 prefixes [9]. Route summarization also
helps improving the stability by limiting the visibility of lo-
cal events. Actually, some IGP migrations combine several
of these scenarios, such as the migration from a hierarchi-
cal OSPF to a flat IS-IS [2]. There have also been cases
where, after having performed a migration, the network no



longer met the original requirements, forcing the operators
to fallback to the initial configuration [10]. Finally, given
the recent trend of deploying virtual networks [11, 12], we
believe that the need for reconfiguring the IGP will become
more frequent.

In this paper, we aim at enabling seamless IGP migra-
tions, that is, progressive modifications of the IGP config-
uration of a running network without loosing packets. Our
main contribution is threefold. First, we analyze in detail
the various scenarios of link-state IGP migrations and ex-
plain problems that can arise. In particular, we show that
long-lasting forwarding loops can appear, both theoretically
and practically, when modifications are made to the IGP
hierarchy and when route summarization is introduced or
removed. To deal with all the identified migration prob-
lems, we propose a generic IGP model. Second, we show
that, in real-world networks, it is possible to find an order-
ing for the configuration changes that prevents forwarding
loops. Although finding such an ordering is an NP-complete
problem, we propose algorithms and heuristics and we show
their practical effectiveness on several ISP networks. Fur-
thermore, we describe how our techniques can be extended
to prevent congestion and deal with network failures. Third,
we describe the design and the evaluation of a complete
system that automates the whole migration process. Our
system generates router configurations, assesses the proper
state of the network and updates all the routers in an ap-
propriate sequence.

The rest of the paper is structured as follows. Section 2
provides a background on link-state IGPs and presents our
abstract model. Section 3 formalizes the IGP migration
problem and describes the migration scenarios we tackle.
Section 4 presents our methodology. Section 5 proposes algo-
rithms to compute a loop-free migration ordering. Section 6
presents our implementation. Section 7 evaluates our migra-
tion techniques on both inferred and real-world topologies.
Section 8 defines design guidelines that make IGP migra-
tions easier. Section 9 presents related work. Section 10
discusses the limitation of the approach and the impact on
BGP. Finally, Section 11 contains the conclusions.

2. LINK-STATE INTERIOR GATEWAY

PROTOCOLS
In this section, we summarize the most important fea-

tures of link-state IGPs. Then, we present the model we use
throughout the paper.

2.1 Background
An IGP is a protocol that routers use to decide how to

forward packets within an AS. IGPs are divided in two
main families: distance-vector and link-state protocols. Al-
though some enterprise networks still use distance-vector
protocols, most ISPs and large enterprises deploy link-state
IGPs, namely OSPF [13] or IS-IS [14]. In this paper, we
focus on network-wide migrations of link-state IGPs.

Link-state IGPs can be configured either in a flat or in a
hierarchical mode. In flat IGPs, every router is aware of the
entire network topology and forwards IP packets according
to the shortest-paths towards their respective destinations.
In hierarchical IGPs, routers are not guaranteed to always
prefer the shortest paths. Hierarchical IGP configurations
break the whole topology into a set of zones (called areas in

OSPF and levels in IS-IS), which we denote as B, Z1, . . . , Zk.
B is a special zone, called backbone, that connects all the
other peripheral zones together, such that packets from a
router in the network to a destination inside a different zone
always traverse the backbone. IGP routers establish adja-
cencies, that could be represented as links in a logical graph.
Each link in the logical graph belongs to only one zone. By
extension, we say that a router is in a zone if it has at least
one link in that zone. We call internal routers the routers
that are in one zone only and Zone Border Routers (ZBRs)
(e.g., ABRs in OSPF and L1L2 systems in IS-IS) the routers
that are in more than one zone, among which there must be
the backbone. Both internal routers and ZBRs prefer intra-
zone over inter-zone paths. This means that, to choose the
path on which to forward packets towards a certain destina-
tion, each router prefers a path in which all the links belong
to the same zone over a path containing at least one link
belonging to a different zone, no matter the weight of the
two paths.

Moreover, in hierarchical IGPs, ZBRs can be configured to
perform route summarization. In this configuration, ZBRs
hide the internal topology of a zone Z to routers in dif-
ferent zones, advertising aggregated prefixes outside Z. In
practice, they announce their ability to reach groups of des-
tinations with paths of a certain weight. The weight an-
nounced by a ZBR is the same for all the destinations in an
aggregated prefix and either it is customly configured or it
is decided on the basis of the actual weights of the preferred
paths towards that destinations (e.g., picking the highest
one [13]).

2.2 An Abstract Model for IGPs
In this section, we aim at capturing IGP configurations

and forwarding behavior of routers in a model that abstracts
protocol-specific details. Transient IGP behaviors are not
modeled since we ensure that both the initial and the final
IGPs have converged before starting the migration process
(see Section 4).

We formally define an IGP configuration as a tuple <

p, G, D, w, m >. In such a tuple, p is the identifier of an
IGP protocol, e.g., OSPF or IS-IS, and m is the mode in
which the protocol is configured, namely flat or hierarchi-
cal. G = (V, E) is the logical graph, i.e., a directed graph
that represents the IGP adjacencies among routers partici-
pating in p. Each node in V represents an IGP router, and
each edge in E represents an adjacency on which the two
routers are allowed to exchange protocol-specific messages.
Edges are labeled with additional information. In hierarchi-
cal configurations they are labeled with the name of zones
they belong to. Moreover, D ⊆ V is a set of IGP desti-
nations for traffic that flows in the network. We associate
each destination to a single node in G, assuming that each
IP prefix is announced by one router only. This assumption
is without loss of generality, as we can use virtual nodes to
model peculiarities of the considered IGP (see [15]). To be
as generic as possible, we consider as destinations a subset of
the IGP routers. Finally, the function w : E → N associates
a positive integer, called weight, to each edge in G.

Packets destined to one router d ∈ D follow paths on G.
A forwarding path or simply path P on G is denoted as
P = (s r1 . . . rk d), where s is the first router in G that
is required to forward packets destined to d, and routers ri,
with i = 1, . . . , k, are routers traversed by the traffic flow.



The weight of a path is the sum of the weights of all the
links in the path.

According to the IGP configuration, each router chooses
its preferred path towards each destination and forwards
packets to the next-hops in such preferred paths. To capture
this behavior, we define the next-hop function nh, and the
actual path function π(u, d, t). We denote with nh(u, d, t)
the set of successors (next-hops) of u in the paths router u

uses at time t to send traffic destined to destination d. Notice
that |nh(u, d, t)| is not guaranteed to be equal to 1, since our
model encompasses the case in which routers uses multiple
paths to reach the same destination, e.g., Equal Cost Multi-
Path (ECMP). The paths actually followed by packets sent
by u towards d at time t can be computed as a function
π: π(u, d, t) is the set of paths resulting from a recursive
concatenation of next-hops. More formally, π(u, d, t) is a
function that associates to each router u the set of paths
{(v0 v1 . . . vk)}, such that v0 = u, vk = d and vi+1 ∈
nh(vi, d, t), ∀i ∈ {0, . . . , k − 1}. Notice that the actual path
function does not always coincide with the preferred path of
each router, since deflections can happen in the middle of a
path [16]. A series of deflections can even build a forwarding
loop, as shown in different examples described in Section 3.1.
More formally, we say that there exists a forwarding loop, or
simply a loop, for a certain destination d at a certain time t

if ∃r such that π(r, d, t) = (r v0 . . . vj r), with j ≥ 0.
By appropriately tuning the next-hop function, our model

is able to represent specific details of IGP configurations such
as the corresponding forwarding rules in hierarchical and flat
mode, and route summarization. In Section 3.1, we provide
some examples of next-hop functions, actual path functions,
and migration loops in different migration scenarios.

3. THE IGP MIGRATION PROBLEM
In this section, we study the problem of seamlessly mi-

grating a network from one IGP configuration to another.
Both configurations are provided as an input (i.e., by net-
work operators) and are loop-free.

Problem 1. Given a unicast IP network, how can we re-
place an initial IGP configuration with a final IGP configu-
ration without causing any forwarding loop?

Assuming no congestion and no network failures, solving
this problem leads to seamless migrations. These assump-
tions are reasonable, since management operations are typi-
cally performed during convenient time slots, in which traf-
fic is low. Moreover, our approach is time efficient, reducing
the opportunities for failures during the migration process.
Also, we discuss how to extend our techniques to remove
these assumptions in Section 5.2.

In the rest of the paper, we call router migration the
replacement of nhinit with nhfinal on one router. For-
mally, we define the operation of migrating a router r at
a certain time t̄, the act of configuring the router such that
nh(r, d, t) = nhfinal(r, d), ∀d ∈ D and ∀t > t̄. Since only
one IGP can be configured to control the forwarding of each
router (i.e., either the initial or the final), routers cannot be
migrated on a per-destination basis. We call router migra-
tion ordering the ordering in which routers are migrated. A
network migration is completed when all routers have been
migrated.

Throughout the paper, we consider only migration loops,
that is, loops arising during an IGP migration because of

scenario IGP configuration changes
protocol protocol replacement
flat2hier zones introduction
hier2flat zones removal
hier2hier zones reshaping

summarization summarization introduction/removal

Table 1: IGP Migration Scenarios.

a non-safe router migration ordering. Migration loops are
not-protocol dependant, and can be longer and more harm-
ful than loops that arise during protocol convergence, since
migration loops last until specific routers are migrated (e.g.,
see Section 3.1). Observe that, if the nh function does not
change, the π function does not change either, hence any
migration order does not create loops during the migration.

3.1 IGP migration scenarios

Table 1 presents the IGP migration scenarios we address
in this paper. We believe that those scenarios cover most
of the network-wide IGP migrations that real-world ISPs
can encounter. Each scenario concerns the modification of
a specific feature of the IGP configuration. Moreover, dif-
ferent scenarios can be combined if more than one feature
of the IGP configuration have to be changed. We do not
consider the change of link weights as a network-wide mi-
gration. Since traffic matrices tend to be almost stable over
time [17], ISPs can prefer to progressively change the weight
of few links at a time. Effective techniques have been already
proposed for the graceful change of few link weights [18, 19,
20, 21, 22]. Nevertheless, our generalized model and the
techniques we present in Section 5 can also be used when
link weights have to be changed. In the following, we de-
scribe the issues that must be addressed in each scenario
using the notation introduced in Section 2.2.

Protocol replacement

This migration scenario consists of replacing the running
IGP protocol, but keeping the same nh function in the ini-
tial and in the final configurations. A classical example of
such a scenario is the replacement of an OSPF configuration
with the corresponding IS-IS configuration [1]. Since the nh

function is the same in both IGPs, routers could be migrated
in any order without creating loops.

Hierarchy modification

Three migration scenarios are encompassed by the mod-
ification of the IGP hierarchy. First, a flat IGP can be re-
placed by a hierarchical IGP by introducing several zones.
Second, a hierarchical IGP can be migrated into a flat IGP
by removing peripheral zones and keeping only one zone.
Third, the structure of the zone in a hierarchical IGP can
be changed, e.g., making the backbone bigger or smaller. We
refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.

Unlike to protocol replacement, changing the mode of the
IGP configuration can require a specific router migration
ordering. Indeed, the nh function can change in hierarchy
modification scenarios because of the intra-zone over inter-
zone path preference rule applied by routers in hierarchi-
cal IGPs (see Section 2). Hence, forwarding loops can arise



Figure 1: Bad Square Gadget. When the IGP
hierarchy is modified, a given migration ordering
is needed between B1 and E1 to avoid forwarding
loops.

due to inconsistencies between already migrated routers and
routers that are not migrated yet. Consider for example the
topology depicted on the left side of Fig. 1. In a flat2hier
scenario, some routers change their next-hop towards desti-
nations E1 and E2. In particular, the right side of Fig. 1
shows the next-hop function for all the routers when the des-
tination is E2. During the migration process, a forwarding
loop arises for traffic destined to E2 if B1 is migrated before
E1. Indeed, B1 reaches E2 via E1 in hierarchical mode, and
E1 reaches E2 via B1 in flat mode. Hence, for each time t

where B1 is already migrated and E1 is not, the forward-
ing path used by B1 is π(B1, E2, t) = {(B1 E1 B1)}, since
nhfinal(B1, E2) = {E1} and nhinit(E1, E2) = {B1}. No-
tice that such a loop lasts until E1 is migrated. A symmet-
ric constraint holds between routers B2 and E2 for traffic
destined to E1. A loop-free migration can be achieved by
migrating E1 and E2 before B1 and B2.

Nevertheless, there are also cases in which it is not possible
to avoid loops during the migration. Consider, for example,
the topology represented in Fig. 2. In this topology, sym-
metric constraints between B1 and B2 for traffic destined
to E2 and E3 imply the impossibility of finding a loop-free
ordering. We refer the reader to the central and the right
parts of Fig. 2 to visualize the next-hop functions in flat and
hierarchical modes.

Similar examples can be found for hier2flat and hier2hier
migrations. They are omitted for brevity. Observe that
problems in hierarchy modification scenarios are mitigated
in protocols such as IS-IS that natively support multiple
adjacencies [14]. In fact, multiple adjacencies belonging to
different zones decrease the number of cases in which the nh

function changes during the migration. However, migration
loops can still arise, depending on the initial and the final
configurations.

Route summarization

Introducing or removing route summarization (i.e., summ
scenarios) in a network can lead to forwarding loops. For
example, consider the topology represented in the left part
of Fig. 3. The right part of the figure visualizes the nh

functions before and after the introduction of route summa-
rization. It is evident that the introduction of route summa-
rization on B1 and B2 can lead to a forwarding loop between
B3 and B4 for traffic destined to E2. Indeed, before sum-
marizing routes, B3 and B4 prefer to send traffic destined
to E2 via B2. On the other hand, when summarization is
introduced, B1 and B2 propagate one aggregate for both E1
and E2 with the same weight. Hence, B3 and B4 change

Figure 3: Route summarization gadget. When sum-
marization is introduced or removed, a specific mi-
gration ordering is needed between B3 and B4 to
avoid forwarding loops.

Steps for a Seamless IGP Migration

1. Compute a loop-free order in which routers can
be migrated without creating loops.

2. Introduce the final IGP configuration network-
wide. In this step, routers still forward packets
according to the initial IGP configuration only.

3. Monitor the status of the IGP configurations.
Wait for the convergence of the final IGP config-
uration.

4. Migrate routers following the pre-computed
loop-free order. Migrating a router means con-
figuring it to forward packets according to the
final IGP configuration.

5. Remove the initial IGP configuration from all
the routers.

Figure 4: Proposed methodology for seamless IGP
migrations.

their next-hop since the path to B1 has a lower weight than
the path to B2.

As for hierarchy modifications, no loop-free ordering exists
in some cases. An example of such a situation can be built by
simply replicating the topology in Fig. 3 so that symmetric
constraints on the migration order hold between B3 and B4.

4. METHODOLOGY
Fig. 4 illustrates the main steps of our methodology. In

the first step, we pre-compute an ordering in which to seam-
lessly migrate routers, with no packet loss (Section 5). When
such an ordering does not exist, we use technical fallback so-
lutions (see [15]). Fallback solutions are only exploited as a
backup since they make the whole migration process slower
and harder to pilot. As we always could find an ordering for
all the ISP topologies we analyzed (Section 7), we believe
that fallback solutions will be rarely needed in practice.

The actual migration process begins in the second step
of our methodology. As a basic operation, we exploit a
known migration technique called ships-in-the-night [1, 2, 4],
in which both the initial and the final IGP configurations are
running at the same time on each router in separate rout-
ing processes. Routing processes are ranked on the basis of
their priority, the Administrative Distance (AD). When a



Figure 2: Loop Gadget. No migration ordering is loop-free for flat2hier and hier2flat scenarios because of
contradictory constraints between B1 and B2.

route for a given prefix is available from several processes,
the one with the lowest AD is installed in the FIB. In this
step, we set the AD of the routing process running the final
IGP configuration to 255, since this setting ensures that no
route coming from that process is installed in the FIB [23].
All ISP routers typically support this feature.

In the third step of the migration, we wait for network-
wide convergence of the final IGP configuration. After this
step, both IGPs have reached a stable routing state. In the
fourth step, we progressively migrate routers following the
ordering pre-computed in the first Step of the methodology.
For this purpose, we lower the AD of the routing process
running the final IGP such that it is smaller than the AD
of the process running the initial configuration. Doing so,
the router installs the final routes in its FIB. Since a rout-
ing entry change takes about 100ms before being reflected
in the FIB [24], we wait for a given amount time (typically
few seconds) before migrating the next router in the order-
ing. This step ensures a loop-free migration of the network.
Notice that switching the AD and updating the FIB are loss-
less operations on ISP routers [25]. Lowering the AD on all
the routers at once is not a viable solution in practice as
it can generate protocol-dependent loops and control-plane
traffic storms concerning all the protocols (BGP, LDP, PIM,
etc.) that rely on the IGP. Moreover, this approach prevents
operators from controlling the migration process and from
backtracking to a previously working state when a problem
is detected, e.g., a router that does not receive an intended
command. All the discussions that we had with network op-
erators further confirm that they prefer to gradually migrate
their network to have full-control of the process.

In the last step, we remove, in any order, the initial IGP
configuration from the routers. This is safe since all of them
are now using the final IGP to forward traffic.

5. LOOP-FREE MIGRATIONS
In this section, we study the problem of migrating a net-

work from one link-state IGP configuration to another with-
out creating any loop. Firstly, we present the algorithms we
use to compute a loop-free router migration ordering. Then,
we discuss how to adapt the algorithms to address conges-
tion and network failures.

5.1 Migration Ordering Computation
We now study the following problem from an algorithmic

perspective.

Problem 2. Given an initial and a final next-hop func-
tions, a logical graph G, and a set of destinations D, compute
a router migration ordering, if any, such that no forwarding
loop arises in G for any d ∈ D.

1: loop enumeration run(G = (V, E),D,nhinit,nhfinal)
2: CS ← ∅
3: for d ∈ D do

4: Ḡd = (V, Ē), with Ē = {(u v)} such that v ∈ nhinit(u, d)
or v ∈ nhfinal(u, d)

5: for each cycle L in Ḡd do

6: Vinit,L = {u ∈ L : ∃v, (u v) ∈ L, v ∈ nhinit(u, d) but
v 6∈ nhfinal(u, d)}

7: Vfinal,L = {u ∈ L : ∃v, (u v) ∈ L, v ∈ nhfinal(u, d)
but v 6∈ nhinit(u, d)}

8: CS ← CS ∪ {u0 ∨ · · · ∨ uk < v0 ∨ · · · ∨ vl}, where
ui ∈ Vinit,L ∀i = 0, . . . , k, and vj ∈ Vfinal,L ∀j = 0, . . . , l.

9: end for

10: end for

11: LP ← new LP problem
12: for u0 ∨ · · · ∨ uk < v0 ∨ · · · ∨ vl ∈ CS do

13: add to LP the following constraints
14: tu0

− MAX INT × Y1 < tv0

15: . . .
16: tu0

− MAX INT × Yl < tvl

17: tu1
− MAX INT × Yl+1 < tv0

18: . . .
19: tuk

− MAX INT × Yl×k < tvl

20: tu0
, . . . , tuk

, tv0
, . . . , tvl

integer
21: Y1, . . . , Yl×k binary
22:

P

1<i<=l×k Yi < l × k

23: end for

24: return solve lp problem(LP )

Figure 5: Loop Enumeration Algorithm.

Even the problem of deciding if a loop-free router migra-
tion ordering exists, that we call RMOP, is an NP-complete
problem. Indeed, a reduction from the well-known 3-SAT
problem [26] can be built in polynomial time. The complete
proof is described in [15].

In the following, we present an algorithm to find a loop-
free ordering (when it exists). Because of the complexity of
the problem, the algorithm is inefficient and can take several
hours to run on very large ISP networks (see Section 7). We
also propose an efficient heuristic that is correct but not
complete.

Loop Enumeration Algorithm

The Loop Enumeration Algorithm (Fig. 5) enumerates all
the possible migration loops that can arise during a migra-
tion, and outputs the sufficient and necessary constraints
that ensure that no loop arises. To identify all possible mi-
gration loops, for each destination d, the algorithm builds
the graph Gd (line 4) as the union of the actual paths in
the initial and in the final configuration. Gd contains all the
possible combinations of paths followed by traffic destined to
d for any migration order. Then, all the cycles are enumer-



c0

c1

c3
c2

nhinit

nhfinal

LEGEND

c1 ∈ Vinit,L

c2, c3 ∈ Vfinal,L

Figure 6: Abstract representation of a migration
loop.

ated and for each cycle, the algorithm outputs the constraint
(line 8) of migrating at least one router that participates in
the loop in the initial configuration before at least one router
that is part of the loop in the final configuration (lines 5-
8). In the example of Fig. 6, indeed, migrating c1 before
at least one among c2 and c3 avoids the loop. In the algo-
rithm, Vinit,L represents the set of routers that participate
in the loop when they are in the initial configuration (line
6), and Vfinal,L contains only routers that participate in the
loop when they are in the final configuration (line 7). The
constraints identified by the algorithm are encoded in an In-
teger Linear Program (lines 12-22), where the variables tui

represent the migration steps at which routers can be safely
migrated (lines 14-19). Finally, the algorithm tries to solve
the linear program and returns a loop-free ordering, if one
exists (line 24).

We now prove that the loop enumeration algorithm is cor-
rect and complete. This depends on the fact that the con-
straints it outputs encode the sufficient and necessary con-
ditions to prevent loops during the migration.

Lemma 1. Let u0∨· · ·∨uk < v0∨· · ·∨vl be the ordering
constraint that the Loop Enumeration Algorithm identifies
for a loop L concerning traffic destined to d ∈ D. Then, L

does not arise during the migration if and only if the con-
straint is satisfied.

Proof. Let L = (c0 c1 . . . ck c0). We prove the state-
ment in two steps.

If the loop does not arise then the constraint is satisfied.
Suppose by contradiction that the constraint is not satis-
fied. Then, there exists a time t̄ such that all the routers
in Vfinal,L are migrated while all the routers in Vinit,L are
not migrated. Consider c0. If c0 ∈ Vfinal,L, then it is al-
ready migrated, i.e., nh(c0, d, t̄) = nhfinal(c0, d), hence c1 ∈
nh(c0, d, t̄), by definition of Vfinal,L. If c0 ∈ Vinit,L, then
nh(c0, d, t̄) = nhinit(c0, d) and c1 ∈ nh(c0, d, t̄). Finally, if
c0 6∈ Vinit,L and c0 6∈ Vfinal,L, then c1 ∈ nh(c0, d, t) ∀t. In
any case, c1 ∈ nh(c0, d, t̄). Iterating the same argument for
all the routers in L, we conclude that ci+1 ∈ nh(ci, d, t̄),
with i = 0, . . . , k and ck+1 = c0. Thus, L arises at time t̄.

If the constraint is satisfied then the loop does not arise.
Assume, without loss of generality, that cu ∈ Vinit,L is mi-
grated at time t′, while at least one router cv ∈ Vfinal,L

is migrated at t′′ > t′. Then, L cannot arise ∀t < t′′, since
nh(cv, d, t) = nhinit(cv, d) implies that cv+1 6∈ nh(cv, d, t) by
definition of Vfinal,L. Moreover, L cannot arise ∀t > t′, since
nh(cu, d, t) = nhfinal(cu, d) implies that cu+1 6∈ nh(cu, d, t)
by definition of Vinit,L. Since t′′ > t′, no time exists such
that L arises during the migration.

1: routing trees run(G = (V, E),D,nhinit,nhfinal)
2: C ← ∅
3: for d ∈ D do

4: Sd ← greedy run(V ,d,nhinit,nhfinal)

5: V̄d ← {vi : nhinit(vi, d) 6= nhfinal(vi, d)}
6: Gd = (V, E′), with E′ = {(u, v) : v ∈ nhfinal(u, d)}
7: for P = (v0 . . . vk), with vk = d, (vi, vi+1) ∈ E′, and

predecessors(v0) = ⊘ do

8: last ← Null
9: for u ∈ P ∩ V̄d and u 6∈ Sd do

10: if last 6= Null then

11: C ← C ∪ {(u, last)}
12: end if

13: last ← u
14: end for

15: end for

16: end for

17: Gc ← (V, C)
18: return topological sort(Gc)
19:
20: greedy run(V ,d,nhinit,nhfinal)
21: Sd ← ∅
22: N ← {d}
23: while N 6= ∅ do

24: Sd = Sd ∪ N
25: N = ∅
26: for u ∈ V , u 6∈ Sd do

27: if nhinit(u, d) ∪ nhfinal(u, d) ⊆ Sd then

28: N = N ∪ {u}
29: end if

30: end for

31: end while

32: return Sd

Figure 7: Routing Trees Heuristic.

Theorem 1. The Loop Enumeration Algorithm is correct
and complete.

Proof. The statement follows by Lemma 1, since the
linear program encodes all the sufficient and necessary con-
ditions for any migration loop to not arise.

It is easy to verify that the algorithm requires exponential
time. Indeed, the algorithm is based on the enumeration of
all the cycles in a graph, and the number of cycles in a graph
can be exponential with respect to the number of nodes.

Routing Trees Heuristic

The Routing Tree Heuristic is illustrated in Fig. 7. As the
first step, for each destination d ∈ D, the heuristic exploits
a greedy procedure to compute a set Sd of nodes that are
guaranteed not to be part of any loop (line 4). The greedy
procedure (lines 20-32) incrementally (and greedily) grows
the set Sd, adding a node to Sd at each iteration if and only
if all the next-hops of the node in the initial and in the final
configurations are already in Sd (lines 27-28). After this
step, the Routing Trees Heuristic builds the directed acyclic
graph Gd

1 containing only the actual paths followed by
packets to reach d in the final configuration (line 6). Then, it
generates a constraint for each pair of routers (u, v) such that
(u . . . v . . . d) ∈ πfinal(u, d), and both u and v do not belong
to Sd and change at least one next-hop between the initial
and the final configuration (lines 7-15). In particular, among
the routers that change one or more next-hops during the

1Gd is an acyclic since the final configuration is loop-free
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Figure 8: In some migration scenarios, the Routing
Trees Heuristic generates unnecessary constraints.

migration (set V̄d at line 5), each router is forced to migrate
after all its successors in the actual path towards d (line 11).
In the final step, the heuristic tries to compute an ordering
compliant with the union of the constraints generated for all
the destinations (lines 17-18).

It is easy to check that the algorithm is polynomial with
respect to the size of the input. We now prove that the
algorithm is correct. First, we show that the routers in Sd

can be migrated in any order without creating loops towards
d, hence it is possible not to consider them in the genera-
tion of the ordering constraints. Then, we prove that the
constraints are sufficient to guarantee that the ordering is
loop-free.

Lemma 2. If the greedy procedure adds a router u to Sd,
then u cannot be part of any migration loop towards desti-
nation d ∈ D.

Proof. Suppose, by contradiction, that there exists a
router u added to Sd by the greedy procedure at a given it-
eration i, such that (u v0 . . . vk u) ∈ π(u, d, t), with k ≥ 0,
at a given time t and for a given migration ordering. By
definition of the algorithm, one router is added to Sd if and
only if all its next-hops w0, . . . , wn (in both the initial and
final IGP configurations) are already in Sd, since each node
in {w0, . . . , wn} is added to Sd at a given iteration before i.
Hence, vk 6∈ Sd at iteration i, because u is one of the next-
hops of vk and it is added to Sd at iteration i by hypothesis.
Iterating the same argument, all routers vh 6∈ Sd at iteration
i, ∀h = 0, . . . , k. As a consequence, Greedy does not add
u to Sd at iteration i, which is a contradiction.

Theorem 2. Let S = x1, . . . , xn be the sequence com-
puted by the Routing Tree Heuristic. If the routers are mi-
grated according to S, then no migration loop arises.

Proof. Suppose by contradiction that migration is per-
formed according to S but migrating a router u creates a
loop for at least one destination d. In that case, there
exists a set of routers Ṽ = {v1, . . . , vk}, such that C =
(u v0 . . . vk u) ∈ π(u, d, t), at a certain time t. By Lemma 2,
all vi 6∈ Sd. By definition of the heuristic, all routers vi are
such that nh(vi, d, t) = nhfinal(vi, d), with i = 0, . . . , k, be-
cause either they do not change their next-hop between the
initial and the final configuration or they precede u in S.
Hence, at time t, both u and all the routers vi ∈ Ṽ are
in the final configuration. This is a contradiction, since we
assumed that the final IGP configuration is loop-free.

Note that the heuristic is not complete; while the con-
straints it generates are sufficient to guarantee no forwarding
loops, they are not necessary. Indeed, for each destination
d, it imposes specific orderings between all the routers (not
belonging to Sd) that change one of their next-hops towards

Figure 9: System architecture.

d, even if it is not needed. For instance, in the scenario of
Fig. 8, the heuristic mandates v to be migrated before u and
u before z. However, no loop arises also if v is migrated be-
fore z and z before u. Generating unnecessary constraints
prevents the heuristic from identifying a loop-free migration
ordering every time it exists. Nonetheless, if state of the art
best practices for PoP design are followed [27], such cases
are rare. In Section 7, we show that the heuristic found an
ordering in most of our experiments on realistic topologies.

5.2 Dealing with Congestion and Failures
Even if there is no congestion in both the initial and the fi-

nal IGP configurations, congestion could transiently appear
during the migration because of forwarding paths in tem-
porary states in which only some routers are migrated. To
deal with congestion, we can add constraints (e.g., routers u

and v must not be migrated both before z) that the al-
gorithms must take into account in looking for a proper
router migration ordering. Assuming that the traffic ma-
trix does not consistently change during the migration, such
constraints can be statically computed, given the traffic ma-
trix, the capacity of the links, and the nh function. Note
that the assumption on the stability of the traffic matrix is
reasonable since traffic shifts are rare for the most popular
destinations [17] and our approach requires a short time to
complete the migration process (see Section 7).

On the other hand, link or node failures modify the topol-
ogy, hence they may modify the nh function and the loop-
free migration ordering to be followed. Thanks to the high
time efficiency of our heuristic (see Section 7), we can pre-
compute loop-free router orderings and the corresponding
ordering constraints that are needed for seamless migrations
in the most important failure scenarios (e.g., all possible
single link failures). When a failure happens, we can use
such constraints to minimize the duration of the loops gen-
erated by the failure, and to dynamically adapt the order in
which migration steps are performed. Because of the high
efficiency of the heuristic on small and medium-sized topolo-
gies, we can even directly recompute the ordering just after
the failure, taking into account the fact that some routers
could have already been migrated.

6. THE PROVISIONING SYSTEM
We implemented a software system which is able to com-

pute and automate all the required steps for a seamless mi-
gration. The main architectural components of our system
are represented in Fig. 9. In the following, we describe how
data flow through the system (dashed lines in the figure),
by stressing the role of each component.



In order to assess the properties of the initial and the final
IGPs, we rely on a monitoring system which collects the IGP
Link-State Advertisements (LSAs) circulating in the net-
work. The IGP LSA Listener component parses the LSAs,
continuously filling a database (DB) with data on the IGP
adjacencies, on the weight of the links, and on the announced
IP prefixes. We implemented the IGP LSA Listener by using
packet-cloning features available on routers [28]. The IGP
State Asserter component is responsible for querying the DB
and assessing properties of the monitored IGPs state. The
current implementation of the IGP State Asserter is able to
check an IGP for convergence completion by evaluating the
stability over time of the IGP adjacencies and of the pre-
fixes announced by each router. A custom time threshold
can be set to assess the stability of the IGP. Moreover, the
IGP State Asserter is able to verify the announcement of a
given set of prefixes in an IGP, and the equivalence of two
IGPs, i.e., the equivalence of the logical graph, and of the
forwarding paths towards a given set of destinations.

The IGP State Asserter is triggered at specific moments
in time by the Migration Controller, which is the central
component of the system, responsible for tasks’ coordina-
tion. Before the actual migration process starts, it delegates
the computation of a loop-free router migration ordering to
the Ordering Component. This component implements the
ordering algorithms described in Section 5.1. Then, the Mi-
gration Controller runs the IGP LSA Listener. When needed
(see Section 4), the Migration Controller asks the IGP State
Asserter to assess whether it is possible to safely modify the
configuration of the devices in the network without incurring
transient states. This boils down to checking the stability of
the current IGP. At each step of the migration process the
controller also requires the Configuration Manager to prop-
erly update the configuration on the routers as described
in Section 4. Based on a network-wide model, the Config-
uration Manager generates the necessary commands to be
sent to routers for each migration step. The Configuration
Manager is based on an extended version of NCGuard [29].

7. EVALUATION
In this section, we evaluate the ordering algorithms and

the provisioning system. The system is evaluated on the
basis of a case study in which a network is migrated from a
flat to a hierarchical IGP.

7.1 Data Set and Methodology
Our data set contains both publicly available and confi-

dential data relative to commercial ISP topologies. Con-
cerning publicly available topologies, we used the inferred
topologies provided by the Rocketfuel project [30]. Rocket-
fuel topologies represent ISPs of different sizes, the smallest
one having 79 nodes and 294 edges while the biggest one
contains 315 nodes and 1944 edges. In addition, some net-
work operators provided us with real-world IGP topologies.
In this section, we discuss the result of our analyses on all
the Rocketfuel data and on the anonymized topologies of
three ISPs, namely tier1.A, tier1.B and tier2. tier1.A is
the largest Tier1, and its IGP logical graph has more than
1000 nodes and more than 4000 edges. tier1.A currently
uses a flat IGP configuration. The other two ISPs are one
order of magnitude smaller but use a hierarchical IGP.

On this data set, we performed several experiments. We
considered the introduction of summarization, as well as
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Figure 10: CDF of the number of loops that can
arise on Rocketfuel topologies.

flat2hier and hier2hier scenarios. Since most of the topolo-
gies in our data set are flat, we artificially built a hierarchy
(i.e., the separation in zones) in order to consider scenarios in
which hierarchical configurations are needed. In particular,
we grouped routers according to geographical information
present in the name of the routers. Doing so, we built two
hierarchical topologies out of each flat topology. In the first
one, zones are defined per city. In the second one, zones
are defined per-continent. In both topologies, we built the
backbone by considering routers connected to more than one
zone as ZBRs and routers connected only to ZBRs as pure
backbone routers. To simulate a hier2hier scenario, we arti-
ficially enlarged the backbone by adding to it a fixed number
(from 1 up to 32) of links. Such links were randomly cho-
sen among the links between a ZBR and a router that does
not participate in the backbone. For the summarization
scenario, we aggregated all the destinations inside the same
zone into a single prefix. This was done for all the zones
but the backbone. Our hierarchy construction methodology
and the way prefixes are summarized follow the guidelines
proposed in [31]. All the tests were run on a Sun Fire X2250
(quad-core 3GHz CPUs with 32GB of RAM). We omit the
results of some experiments due to space limitations.

7.2 Ordering Algorithms
We first evaluate usefulness and efficiency of the Loop

Enumeration Algorithm and of the Routing Tree Heuris-
tic. Fig. 10 shows the cumulative distribution function of
the number of loops that can arise in Rocketfuel topologies.
Different migration scenarios are considered. Each point in
the plot corresponds to a specific topology and a specific sce-
nario. In flat2hier, up to 80 different loops can arise in the
worst case and at least 30 loops can arise for 4 topologies
out of 11. Other scenarios follow similar trends. Observe
that, in the hier2hier scenario (curves “adding x links to
the backbone”), the number of possible loops significantly
increases with the number of links which change zone. In all
the scenarios, almost all the loops involve two routers, with a
few exceptions of three routers loops. Also, the vast major-
ity of loops concerns traffic destined to routers that do not
participate in the backbone. These routers are at the bor-
der of the network (e.g., BGP border routers or MPLS PEs)
and normally attract most of the traffic in ISP networks. It
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Figure 11: Percentage of routers involved in the or-
dering in flat2hier (Rocketfuel topologies). Results
for other scenarios are similar.

is, thus, important to compute an ordering in which they
are not involved in loops. The number of migration loops
is topology dependent, hence it can be influenced by our
design approach. However, these results clearly show that
migrating routers in a random order is not a viable option in
arbitrary networks. Additionally, it is desirable that migra-
tions of world-wide networks be carried out on a per-zone
basis, that is, migrating all the routers in the same zone (e.g.,
a continent) before routers in other zones. We observe that
this is indeed possible since all the loops that occur, in both
Rocketfuel and real-world topologies, arise between routers
in the same zone or between backbone routers and routers
in a peripheral zone. Thus, it is often possible to compute
per-zone orderings. These considerations further motivate
our effort to find a router migration ordering which is guar-
anteed to be loop-free. We found slightly different results
on the real ISP topologies we analyzed. For the two hier-
archical ISPs, none or few migration loops can arise in the
considered scenarios. This is mainly due to a sensible design
of the hierarchy. We discuss simple design guidelines that
ease IGP migrations in Section 8. On the other hand, we
found that huge number of problems could arise in a mi-
gration from a poor design to a neat one. In the hier2flat

scenario, more than 2000 loops, involving up to 10 routers,
might arise within the tier1.A. Such a large number of loops
is mainly a consequence of the way we built the hierarchy.

As a second group of experiments, we ran the ordering
algorithms on the Rocketfuel topologies. In the following,
we present results for the flat2hier scenario but similar re-
sults and considerations hold for the other scenarios. Fig. 11
shows for each topology the percentage of routers that need
to be migrated in a specific order according to each algo-
rithm (implying that other routers can be migrated in any
order). When a point is missing, it means that the corre-
sponding algorithm was not able to find a loop-free ordering
for the topology. The enumeration algorithm was always
able to find a loop-free ordering in all situations. In the
worst case, the computed ordering involves more than 20%
of the routers in the network. We believe that finding order-
ing constraints for such a number of routers is not practical
at a glance. This stresses the importance of our algorithms.
The Routing Trees Heuristic, instead, found a loop-free or-
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Figure 12: Time taken to compute an ordering in
flat2hier (Rocketfuel topologies). Results for other
scenarios are similar.

dering on 9 topologies out of 11. Fig. 11 also highlights the
gain of relying on the greedy subprocedure, as the heuristic
could find a solution for only 6 topologies without it.

Fig. 12 plots the median of the computation time taken
by each algorithm over 50 separated runs. Standard devia-
tion is always under 40 for the loop enumeration algorithm,
except for the two cases corresponding to topology 1239. In
that cases, the standard deviation is around 450. Moreover,
the standard deviation of the time taken by the Routing
Trees Heuristic is always less than 25. Even if correct and
complete, the Loop Enumeration Algorithm is inefficient,
especially for large topologies. The heuristic is always one
order of magnitude faster. In Fig. 12, the low absolute value
of the time taken by the Loop Enumeration Algorithm can
be explained by the relatively small size of the Rocketfuel
topologies. Nevertheless, for the tier1.A topology, the Loop
Enumeration Algorithm took more than 11 hours to com-
plete. To further evaluate the performance degradation of
the complete algorithm, we enlarged tier1.B’s and tier2’s
topologies. The operation consisted in replicating multiple
times the structure of one peripheral zone, and attaching
these additional zones to the network in order to reach a
size similar to tier1.A. In such experiments, we found that
the Loop Enumeration Algorithm took several hours even if
routers can be migrated in any order, while the heuristics
always took less than 1.5 minutes. Typically, the time taken
by the ordering algorithm is not a critical factor in our ap-
proach, since a loop-free router migration ordering can be
computed before actually performing the migration. How-
ever, time efficiency is highly important to support advanced
abilities like promptly reacting to failures that could happen
during the migration (see Section 5.2).

7.3 Provisioning System
We evaluated the performance of the main components of

our provisioning system by means of a case study. In the
case study, we performed a flat2hier migration of Geant,
the pan-european research network, that we emulated by
using a major router vendor routing operative system im-
age. In particular, we simulated the migration from a flat
IS-IS configuration to a hierarchical OSPF. Geant’s topol-
ogy is publicly available [32]. It is composed of 36 routers
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Figure 13: Our system guarantees that no packet is
lost during migration while long-lasting connectivity
disruptions can happen with a naive approach.

and 53 links. For the case study, we artificially built zones
on the basis of the geographical location of the routers and
their interconnections [33]. In addition to the backbone
(12 routers), we defined three peripheral zones: the south
west area (6 routers), the north east area (11 routers) and
the south east area (17 routers). We defined the IGP link
weights to be inversely proportional to the bandwidth of
the links. By executing the Loop Enumeration Algorithm
(see Section 5.1), we found that 8 different loops towards 5
different destinations could arise on that topology.

We ran two experiments. In the first experiment, we relied
on the ordering computed by the Loop Enumeration Algo-
rithm, while in the second we adopted a random order. In
order to have statistically relevant data, we repeated each
experiment 50 times. To measure traffic disruptions due
to the migration, we injected data probes (i.e., ICMP echo
request) from each router towards the 5 troublesome desti-
nations. Fig 13 reports the median, the 5th and the 95th
percentiles of ICMP packets lost that arose after each mi-
gration step.

The case study showed the ability of our provisioning sys-
tem to perform seamless IGP migrations. Following the or-
dering computed by the Loop Enumeration Algorithm, we
were able to achieve no packet loss during the migration (the
few losses reported in Fig. 13 should be ascribed to the vir-
tual environment). On the other hand, adopting the naive
approach of migrating routers in the random order, forward-
ing loops arose at step 6 and are only solved at step 34.
Thus, the network suffered traffic losses during more than
80% of the migration process. Finally, we observe that, even
migrations on a per-zone basis require the use of an order-
ing algorithm because all the ordering constraints are among
routers in the same zone.

Our system also enables faster migrations than known mi-
gration [2, 4]. The IGP LSA Listener is able to process IGP
messages in a few milliseconds. The performance of the
module is confirmed by a separate experiment we ran. We
forced the Listener to process messages from a pcap file con-
taining 204 LSAs (both OSPF and IS-IS). On 50 runs, the
monitor was able to decode and collect each IGP message
in about 14 milliseconds on average and 24 milliseconds at
most. We evaluated the performance of the IGP State As-
serter on the IS-IS and the OSPF DBs generated during
the case study. The DBs contained information about 106

directed links and 96 IP prefixes. The IGP State Asserter
took about 40 milliseconds to assess equivalence of the log-
ical graph, routing stability, and advertisement of the same
set of prefixes in both IGPs. Even if the code could be op-
timized, current performance is good, also considering that
the IGP Asserter does not need to be invoked more than
once in absence of network failures (see Section 4). On av-
erage, the Configuration Manager took 8.84 seconds to push
one intermediate configuration on a router. The average size
of an intermediate configuration is around 38 lines. The en-
tire migration process took less than 20 minutes. On the
contrary, a similar real-world Geant migration took several
days to be completed [4].

All the intermediate configurations that our system gen-
erated in the case study described above are available on-
line [33].

8. DESIGN GUIDELINES
In this section, we state simple design guidelines that

make the entire IGP migration process easier, since all the
router migration orderings are loop-free. In the following,
we consider the design of zones in hierarchical IGPs, since
the most problematic migrations involve hierarchies.

Guideline A. For each zone Z, the shortest path from
each ZBR to any destination in Z is an intra-zone path.

Guideline A enables easier flat2hier and hier2flat mi-
grations. In fact, the guideline enforces sufficient condi-
tions to guarantee that the nh function does not change
for any router and any destination in any zone Z, since
an intra-zone path is preferred in both flat and hierarchi-
cal modes. Since no router in Z changes its path, then
nhinit(v, d) = nhfinal(v, d) also for all routers v 6∈ Z and
d ∈ Z. This implies that no loop can arise during the mi-
gration. Notice that Guideline A refers only to ZBRs, since
if they use intra-zone paths, then non-ZBR routers cannot
use inter-zone paths. Establishing multiple adjacencies (e.g.,
L1L2 adjacencies in IS-IS) between ZBRs also guarantees
the nh function does not change, but backbone links could
be unnecessarily traversed in this case.

Guideline B. For each zone Z, an aggregation layer of
routers connects the ZBRs to the destinations in Z (e.g.,
BGP border routers or MPLS PE). Link weights are set so
that the weight of the path from any ZBR to any destination
in Z is the same.

Guideline B guarantees easy IGP migrations when route
summarization is introduced or removed. We assume that
aggregated prefixes are announced with a cost equal to the
highest weight among the destinations in the aggregate (as
in OSPF, by default [13]). In this case, both with and with-
out summarization, each backbone router chooses the closest
ZBR in Z as entry point for destinations in the aggregated
prefix. It is easy to check that, as a consequence, the nh

function does not change with or without summarization,
hence no specific migration ordering is needed during the
migration.

9. RELATED WORK
Seamless IGP operation and maintenance have been the

focus of many previous studies. For example, several proto-
col extensions have been proposed [34, 35, 36] to gracefully



restart a routing process. However, few research effort has
been specifically devoted to network-wide IGP migrations.

In [18], Raza et al. propose the Graceful Network Oper-
ations (GNO) framework which formalizes the problem of
minimizing a certain disruption function (e.g., link conges-
tion) when the link weights change. They also describe an
algorithm to find a congestion-free ordering when several
IGP weights have to be modified. Although their work is
close in spirit to ours, the migration scenarios we analyzed
cannot always be mapped to a reweighting problem. For ex-
ample, in hierarchical IGP configurations, both the weight
of a link and the zone to which it belongs are considered in
the computation of the next-hop from a router to a desti-
nation and a unique link weight assignment that generates
the same next-hop for each router-to-destination pair could
not exist. In [37], Keralapura et al. study the problem of
finding the optimal way in which to add nodes and links to
a network to minimize disruptions. Even if our techniques
can be adapted to address topological changes, this problem
is beyond the focus of this paper.

In [38], Chen et al. describe a tool that is able to au-
tomate status acquisition and configuration change on net-
work devices according to rules specified by domain experts.
The tool can be used to automate the ships-in-the-night ap-
proach, but not to compute a loop-free ordering. The au-
thors also provide a rule of thumb to avoid problems during
IGP migrations, i.e., update edge routers before the back-
bone ones. However, this rule does not hold in general. For
example, migrating E1 before B1 in Fig. 1 creates a for-
warding loop in a hier2flat scenario.

In [39], Alimi et al. extend the ship-in-the-night approach
by allowing multiple configurations to run simultaneously
on a router. They also describe a commitment protocol to
support the switch between configurations without creating
forwarding loops. While the technique looks promising, it
cannot be exploited on current routers and a commitment
ordering could still be needed.

Recently, some techniques [12, 40] have been proposed to
enable virtual routers or parts of the configuration of routers
(e.g., BGP session) to be moved from one physical device to
another. Their work differ from ours as we aim at seamlessly
changing network-wide configurations.

Regarding the problem of avoiding forwarding loops in
IGPs during transient states, some previous work has also
been done. Francois et al. propose protocol extensions that
allow routers to update their FIB without creating a tran-
sient loop after a link addition or removal [41]. Fu et al. [21]
and Shi et al. [22] generalize the results by defining a loop-
free FIB update ordering for any change in the forwarding
plane and considering traffic congestion, respectively. How-
ever, these approaches cannot be used in practice to carry
out IGP migrations since they assume that the FIB can be
updated on a per-destination basis which is not the case on
current routers.

IGP migrations could also be performed by using route
redistribution. Although new primitives have been recently
proposed [42], we believe that relying on a ships-in-the-night
approach (when possible) makes the entire migration process
easier and more manageable.

10. DISCUSSION
In this section, we discuss the limitations of our method-

ology, especially in terms of its application to other types of
migrations.

First of all, our methodology is adapted to link-state IGP
migrations and it cannot be directly applied to other IGPs
(e.g., distance-vector IGPs). Contrary to link-state proto-
cols, where routers always have a global view of the topol-
ogy and can take decisions autonomously, in distance-vector
protocols a change of the next-hop of one router can affect
the visibility other routers have of some destinations. This
poses different problems with respect to those tackled by our
techniques.

Moreover, our methodology does not take into consider-
ation the interactions between the changing IGP and the
protocols relying on it. In particular, our approach is not
suitable for all the scenarios in which BGP is deployed on
the migrated network. BGP uses the IGP to both discrim-
inate among several exit-points and to learn how to reach
the preferred exit-point [43]. Migrating the underlying IGP
can thus cause BGP routers to change their preferred exit-
point which can lead to forwarding loops. Currently, our
algorithms ensure that no loop occurs during the migration
towards any internal destination of an AS. For all the net-
works whose forwarding is based on tunneling or encapsu-
lation mechanisms like MPLS, this property is sufficient to
guarantee loop-free forwarding towards inter-domain desti-
nations as well. Indeed, no loop occurs in the IGP and the
tunneling mechanism ensures that the BGP traffic will reach
the proper exit-point. Though, in the migration of a pure IP
network, the exclusive presence of BGP can induce forward-
ing loops due to conflicting BGP decisions between updated
routers and non-updated routers. Theoretically, our order-
ing algorithms can be adapted to deal with BGP-induced
loops. However, the ordering problem is much more com-
plicated since it needs to consider: (i) the fact that BGP
prefixes could be reached via any combination of exit-points,
(ii) the iBGP topology and its relationship to the IGP [44],
and (iii) BGP dynamism. For these reasons, we expect that
a loop-free migration ordering for all the BGP prefixes does
not exist in most of the cases. We believe that finding an
effective technique to prevent BGP-induced loops during the
migration of pure IP networks is an interesting open problem
raised by this paper.

11. CONCLUSIONS
Network-wide IGP migrations are a source of concerns

for network operators. Unless carried on with care, IGP mi-
grations can cause long-lasting forwarding loops and thus
significant packet losses. In this paper, we proposed a mi-
gration strategy that enables network operators to migrate
an entire IGP configuration seamlessly, rapidly, and without
compromising routing stability. Our strategy relies on effec-
tive techniques for the computation of a router migration
ordering and on a provisioning system to automate most of
the process. These techniques encompass a complete, time-
consuming algorithm and a heuristic. The evaluation we
performed on several ISP topologies confirms the practical
effectiveness of both the heuristic and the provisioning sys-
tem.

Although we focused on link-state IGP migrations, the ap-
plicability of our techniques is broader since it can encom-



pass any migration issues involving changes of next-hops.
We plan to make our approach suitable for seamless migra-
tions involving distance-vector IGPs. Also, we plan to study
seamless migrations of other routing protocols (e.g., MPLS
or BGP). Our vision is that network-wide migrations could
become a basic operation enabling the seamless replacement
or reconfiguration of any protocol.
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