I nt ernet Engi neering Task Force A. Ford

Internet-Draft Roke Manor Research
I ntended status: Experinental C. Raiciu
Expi res: Septenmber 15, 2011 M Handl ey

Uni versity Col | ege London
O Bonaventure

Uni versite catholique de
Louvain

March 14, 2011

TCP Extensions for Multipath Operation with Miltiple Addresses
draft-ietf-nptcp-nultiaddressed-03

Abstract

TCP/ 1P communication is currently restricted to a single path per
connection, yet multiple paths often exi st between peers. The

si mul t aneous use of these multiple paths for a TCP/IP session would
i nprove resource usage within the network, and thus inprove user
experience through hi gher throughput and inproved resilience to
network failure.

Mul tipath TCP provides the ability to simnultaneously use multiple
pat hs between peers. This docunent presents a set of extensions to
traditional TCP to support nultipath operation. The protocol offers
the sane type of service to applications as TCP (i.e. reliable
bytestream), and provides the conponents necessary to establish and
use nultiple TCP flows across potentially disjoint paths.

Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 15, 2011

Copyri ght Notice

Ford, et al. Expi res Septenber 15, 2011 [Page 1]

Internet-Draft Mul tipath TCP

March 2011

Copyright (c) 2011 | ETF Trust and the persons identified as the

docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Legal

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1.

ntroduction . . .
Desi gn Assurrptl ons .

Term nol ogy .

MPTCP Concept .

Requi renents Language
eration Overview .
TCP Pr ot ocol

Connection Initi at| on

Starting a New Subfl ow .

General MPTCP Operation
Dat a Sequence Mappi ng
Dat a Acknowl edgenent s
Cl osing a Connection .
Recei ver Consi derations
Sender Consi derations

www PRPRRPP

ONogrWNE

Subfl ow Policy .

.1. Address Advertisenent
.2. Renpve Address .

Fal | back . ..

Error Handling .
Heuristics . . .

.1. Port Usage . . .

7 2. Delayed Subfl ow St art
373 Fail ure Handllng.
Semanti c | ssues

Security Considerati ons .
Interactions with M ddl eboxes
Acknow edgenents .

H D

°°°°.\‘@@W@%WW@W@WWW@N!‘%QP’PW!\’!“

~

Nogak

Ford, et al. Expi res Septenber 15, 2011

Mil tipath TCP in the t\let\Aorkl ng Stack

Reliability and Retransmi ssi ons
Congestion Control Considerations

Address Know edge Exchange (Path Managerrent)

oo~NoOOo U~ DM

Internet-Draft

Mul tipath TCP

8. | ANA Consi derati ons

9. Ref er ences .

9.1. Normative References .

9.2. Infornmative References
Appendi x A. Notes on use of TCP Options .
Appendi x B. Control .o

B.1. MPTCP Control

B.
B.
B.
B. 2.
B. 2. 1.
B. 2. 2.
ndi

C. 1. Changes
C. 2. Changes
C. 3. Changes
C. 4. Changes
C.5. Changes
0

Aut h

Ford, et al.

si nce
si nce
si nce
si nce
si nce

rs’ Addresses .

Bl ocks

Bl ock

1.1. Authentication and Metadata
1.2. Sending Side .
1.3. Receiving Side .

TCP Control Bl ocks .

1 Sendi ng Si de .

2 Recei ving Side .
Appendix C. Changelog
draft-ietf-nptcp-nultiaddressed-02 .
draft-ietf-nptcp-nultiaddressed-01 .
draft-ietf-nptcp-nultiaddressed-00 .
draft-ford-nptcp-nultiaddressed-03 .
draft-ford-nptcp-nultiaddressed-02 .

Expi res Septenber 15, 2011

March 2011

45
46
46
46
48
49
50
50
50
51
51
51
51
52
52
52
52
52
53
53

[Page 3]

Internet-Draft Mul tipath TCP March 2011

1. Introduction

MPTCP is a set of extensions to regular TCP [2] to provide a

Mul tipath TCP [3] service, which enables a transport connection to
operate across multiple paths sinultaneously. This docunent presents
the protocol changes required to add nultipath capability to TCP
specifically, those for signalling and setting up nultiple paths
("subflows"), managi ng these subfl ows, reassenbly of data, and

term nation of sessions. This is not the only information required
to create a Multipath TCP i npl enentation, however. This docunent is
conpl enented by three others

0 Architecture [3], which explains the notivations behind Miltipath
TCP, contains a discussion of high-Ievel design decisions on which
this design is based, and an explanation of a functi onal
separation through which an extensi ble MPTCP i npl enmentation can be
devel oped.

o Congestion Control [4], presenting a safe congestion contro
al gorithm for coupling the behaviour of the multiple paths in
order to "do no harm to other network users

0 Application Considerations [5], discussing what inpact MPTCP wil |l
have on applications, what applications will want to do with
MPTCP, and as a consequence of these factors, what APl extensions
an MPTCP i npl enentation should present.

1.1. Design Assunptions

In order to linmt the potentially huge design space, the authors
i mposed two key constraints on the multipath TCP design presented in
thi s docunent:

o It nust be backwards-conpatible with current, regular TCP, to
i ncrease its chances of depl oynent

o It can be assuned that one or both hosts are nmultihonmed and
rmul ti addr essed

To sinplify the design we assune that the presence of nultiple
addresses at a host is sufficient to indicate the existence of

mul tiple paths. These paths need not be entirely disjoint: they may
share one or many routers between them Even in such a situation
maki ng use of multiple paths is beneficial, inproving resource
utilisation and resilience to a subset of node failures. The
congestion control algorithns as discussed in [4] ensure this does
not act detrinmentally.

Ford, et al. Expi res Septenber 15, 2011 [Page 4]

Internet-Draft Mul tipath TCP March 2011

There are three aspects to the backwards-conpatibility |isted above
(discussed in nore detail in [3]):

External Constraints: The protocol nust function through the vast
majority of existing mddl eboxes such as NATs, firewalls and
proxi es, and as such must resenble existing TCP as far as possible
on the wire. Furthernore, the protocol nust not assune the
segnments it sends on the wire arrive unnodified at the
destination: they may be split or coal esced; options may be
renoved or duplicated.

Application Constraints: The protocol nmust be usable with no change
to existing applications that use the standard TCP APl (although
it is reasonable that not all features would be available to such
| egacy applications). Furthernore, the protocol nust provide the
same service nodel as regular TCP to the application

Fal | -back: The protocol should be able to fall back to standard TCP
with no interference fromthe user, to be able to comunicate with
| egacy hosts.

Furt her discussion of the design constraints and associ ated desi gn
decisions are given in the MPTCP Architecture docunent [3].

1.2. Miltipath TCP in the Networking Stack

MPTCP operates at the transport |ayer and ains to be transparent to
both higher and lower layers. It is a set of additional features on
top of standard TCP; Figure 1 illustrates this layering. MPTCP is
designed to be usable by I egacy applications with no changes;
detail ed discussion of its interactions with applications is given in

[5].

Fom e e e e e e e e e m oo oo +

| Appli cation |
oo + o e oo +
| Application | | MPTCP |
B + B S T
| TCP | | Subflow (TCP) | Subflow (TCP) |
Fom e e e oo + Fom e e e e e e e e e m oo oo +
[I P [[I P [I P [
oo + o e e +

Figure 1: Conparison of Standard TCP and MPTCP Protocol Stacks

Ford, et al. Expi res Septenber 15, 2011 [Page 5]

Internet-Draft Mul tipath TCP March 2011

1.3. Terminol ogy

Path: A sequence of |inks between a sender and a receiver, defined
in this context by a source and destination address pair.

Subflow A flow of TCP segnents operating over an individual path,
which forns part of a |arger MPTCP connection. A subflowis
started and termnated sinilarly to a regular TCP connection

(MPTCP) Connection: A set of one or nore subflows, over which an
application can communi cate between two hosts. There is a one-to-
one mappi ng between a connection and an application socket.

Dat a-l1 evel : The payload data is nomnally transferred over a
connection, which in turn is transported over subflows. Thus the
term"data-level" is synonynous with "connection level"”, in

contrast to "subflowlevel" which refers to properties of an
i ndi vi dual subf | ow.

Token: A locally unique identifier given to a multipath connection
by a host. My also be referred to as a "Connection | D'

Host: A end host operating an MPTCP inpl enentation, and either
initiating or accepting an MPTCP connecti on

1.4. MPTCP Concept

This section provides a high-level summary of nornal operation of
MPTCP, and is illustrated by the scenario shown in Figure 2. A
detail ed description of operation is given in Section 3.

o To a non- MPTCP-aware application, MPTCP will behave the sane as
normal TCP. Extended APlIs could provide additional control to
MPTCP- awar e applications [5]. An application begins by opening a
TCP socket in the normal way. MPTCP signaling and operation is
handl ed by the MPTCP inpl ement ati on.

0 An MPTCP connection begins simlarly to a regular TCP connection
This is illustrated in Figure 2 where a TCP connection is
establ i shed between addresses Al and Bl on Hosts A and B
respectively.

o |If extra paths are available, additional TCP sessions (terned
"subfl ows") are created on these paths, and are conmbined with the
exi sting session, which continues to appear as a single connection
to the applications at both ends. The creation of the additiona
TCP session is illustrated between Address A2 on Host A and
Address Bl on Host B

Ford, et al. Expi res Septenber 15, 2011 [Page 6]

Internet-Draft Mul tipath TCP March 2011

o MPTCP identifies multiple paths by the presence of multiple
addresses at hosts. Combinations of these nultiple addresses
equate to the additional paths. 1In the exanple, other potential
pat hs that could be set up are Al<->B2 and A2<->B2. Although this
additional session is shown as being initiated fromA2, it could
equal Iy have been initiated from B1.

o The discovery and setup of additional subflows will be achieved
through a path managenent nethod; this docunment describes a
mechani sm by which a host can initiate new subflows by using its
own additional addresses, or by signalling its avail abl e addresses
to the other host.

o MPTCP adds connection-Ilevel sequence nunbers to allow the
reassenbly of the in-order data streamfrom nultiple subflows
whi ch nmay deliver packets out-of-order due to differing network
del ays.

0 Subflows are term nated as regular TCP connections, with a four

way FI N handshake. The MPTCP connection is term nated by a
connection-level FIN

| (initial connection setup) |

I

I

I

I

I I I
(additional subflow setup) |
I

I

I

I

Fi gure 2: Exanpl e MPTCP Usage Scenario
1.5. Requirenents Language
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [1].

Ford, et al. Expi res Septenber 15, 2011 [Page 7]

Internet-Draft Mul tipath TCP March 2011

2

Operation Overview

This section presents a single description of standard MPTCP
operation, with reference to the protocol operation. The detailed
protocol specification follows in Section 3.

To understand the operation of Miultipath TCP, |et us consider a very
simpl e case where a client having two addresses, Al and A2

est abli shes an MPTCP connection with a dual homed server having
addresses Bl and B2, as illustrated in Figure 2 in the previous
section. MPTCP offers the sanme bidirectional bytestream service as
regul ar TCP

To open an MPTCP connection, the client sends a SYN segnent from one
of its addresses (say Al) to one of the server’s addresses (say Bl).
This SYN segnent contains the MP_CAPABLE option that indicates that
the client supports MPTCP and contains the client’s key for this
MPTCP connection. The server replies with a SYN segnent that also
contai ns the MP_CAPABLE option to confirmthat it supports MPTCP
The MP_CAPABLE option returned by the server includes the server’s
key. The client are server keys are used for different purposes by
MPTCP. First, each host derives a 32 bits token that uniquely
identifies the MPTCP connection on this host. Second, the keys are
used to authenticate the utilisation of other addresses. Additiona
details about the utilisation of the MP_CAPABLE option may be found
in Section 3. 1.

To enable the client and the server to use their nmultiple addresses
to support the same MPTCP connection, MPTCP allows the client and the
server to open additional subflows. These subflows are TCP
connections that are linked to the MPTCP connection and can be used
to send and receive data. The client can open an additional subfl ow
by sending a SYN segnent from another address (e.g. A2) with the
MP_JO N option to the server. The MP_JO N option contains the
server’'s token that uniquely identifies the MPTCP connection to which
t he subfl ow nust be associated and a random nunber. To accept the
subfl ow, the server replies by sending a SYN+tACK segnment with the
MP_JO N option that contains a random nunber chosen by the server and
a HVAC conputed over the client and server’s random nunbers with the
client and server keys. This HVAC authenticates the server to the
client. Upon reception of this SYN+ACK segnent, the client replies
with an ACK segnent that contains an MP_JO N option that includes
anot her HVAC that authenticates the client to the server. Additiona
details about the utilisation of the MP_JON option rmay be found in
Section 3. 2.

The server nay al so establish one or nore subflows with the client by
sendi ng SYN segnents with the MP_JO N option that has been briefly

Ford, et al. Expi res Septenber 15, 2011 [Page 8]

Internet-Draft Mul tipath TCP March 2011

descri bed above. Furthernore, a host ny also informthe other host
of the I P addresses that it owns. MPTCP uses two options for this
pur pose. The ADD ADDR option allows a host to indicates that it owns
anot her address. For exanple, in the above scenario, the server
could use the ADD ADDR option to indicate that it also owns address
B2. If a host beconmes unable to use a previously advertised address,
it uses the REMOVE _ADDR option to indicate the address that it | ost
toits peer. Additional details about the utilisation of the
ADD_ADDR and REMOVE_ADDR options may be found in Section 3.4.

The data produced by the client and the server can be sent over any
of the subflows that conpose an MPTCP connection, and if a subflow
fails, data may need to be retransnmitted over another subflow For
this, MPTCP relies on two principles. First, each subflowis

equi valent to a normal TCP connection with its own 32-bits sequence
nunbering space. This enables MPTCP to traverse conpl ex ni ddl e-boxes
like transparent proxies or traffic normalizers. Second, MPTCP

mai ntains a 64-bits data sequence nunbering space. The DSS MPTCP
option is used to send the data sequence nunbers and data sequence
acknow edgenents. \When a host sends a TCP segnent over one subfl ow,
it indicates inside the segnent, by using the DSS option, the nmapping
bet ween the 64-bits data sequence nunber and the 32-bits sequence
nunber used by the subflow Thanks to this mapping, the receiving
host can reorder the data received, possibly out-of-sequence over the
different subflows. |In MPTCP, a received segnent is acknow edged at
two different levels. First, the TCP cunul ative or selective

acknow edgenents are used to acknow edge the reception of the data on
each subflow. Second, the acknow edgenents field in the DSS option
is returned by the receiving host to provide cunul ative

acknow edgenents at the data sequence level. Wen a segnent is |ost,
the receiver detects the gap in the received 32-bits sequence nunber
and traditional TCP retransm ssion nechanisns are triggered to
recover fromthe loss. Wen a subflow fails, MPTCP detects the
failure and retransnits the unacknow edged data over another subfl ow
that is still active. The DSS option also includes an optiona
checksum that covers data at the MPTCP connection level to enable a
receiver to detect whether an middl ebox has inserted, deleted or

nmodi fied data on-the-fly. The transm ssion of data by MPTCP is

di scussed in details in Section 3.3.

3. MPTCP Protoco

This section describes the operation of the MPTCP protocol, and is
subdi vided into sections for each key part of the protocol operation

Al'l MPTCP operations are signalled using optional TCP header fields.
A single TCP option nunber will be assigned by | ANA (see Section 8),

Ford, et al. Expi res Septenber 15, 2011 [Page 9]

Internet-Draft Mul tipath TCP March 2011

and then individual nmessages will be determnmined by a "sub-type", the
val ues of which will also be stored in an I ANA registry (and are al so
listed in Section 8). This sub-type is a four-bit field - the first
four bits of the option payload, as shown in Figure 3. The MPTCP
messages are defined in the foll ow ng sections.

1 2 3
01234567890123456789012345678901
e e e o e e e o Fom e - o e e e e e e e e e e e oo n +

[Ki nd [Lengt h | Subt ype|

| Subt ype-specific data
[(vari abl e | engt h)

Fi gure 3: MPTCP option format

Those MPTCP options associated with subflow initiation nust be

i ncluded on packets with the SYN flag set. Additionally, there is
one MPTCP option for signalling netadata to ensure segnmented data can
be reconbined for delivery to the application

The renai ni ng opti ons, however, are signals that do not need to be on
a specific packet, such as those for signalling additional addresses.
Whil st an inplenmentation may desire to send MPTCP options as soon as
possible, it may not be possible to conbine all desired options (both
those for MPTCP and for regular TCP, such as SACK [6]) on a single
packet. Therefore, an inplenentation my choose to send duplicate
ACKs containing the additional signalling information. This changes
the senmantics of a duplicate ACK, these are usually only sent as a
signal of a lost segment [7] in regular TCP. Therefore, an MPTCP

i mpl ement ati on receiving a duplicate ACK which contains an MPTCP
option MJUST NOT treat it as a signal of congestion. Additionally, an
MPTCP i npl enent ati on SHOULD NOT send nore than two duplicate ACKs in
a row for signalling purposes, so as to ensure no m ddl eboxes

m sinterpret this as a sign of congestion.

Furt hermore, standard TCP validity checks (such as ensuring the
Sequence Nunber and Acknow edgement Nunber are within wi ndow) MJST be
undert aken before processing any MPTCP signals, as described in [8].

3.1. Connection Initiation

Connection Initiation begins with a SYN, SYN ACK, ACK exchange on a
single path. Each packet contains the Miltipath Capabl e (MP_CAPABLE)
TCP option (Figure 4). This option declares its sender is capable of
performng nmultipath TCP and wi shes to do so on this particul ar
connecti on.

Ford, et al. Expi res Septenber 15, 2011 [Page 10]

Internet-Draft Mul tipath TCP March 2011

This option contains a 64-bit key that is used to authenticate the

addition of future subflows. This is the only tinme the key will be
sent in clear on the wire; all future subflows will identify the
connection using a 32-bit "token". This token is a cryptographic

hash of this key. This will be a truncated (nost significant 32
bits) SHA-1 hash [9]. A different, 64-bit truncation (the |east
significant 64 bits) of the hash of the key will be used as the
Initial Data Sequence Nunber.

This key is generated by its sender and has | ocal neaning only, and
its nethod of generation is inplenentation-specific. The key MIST be
hard to guess, and it MJST be unique for the sending host at any one
time. Recommendations for generating random keys are given in [10].
Connections will be indexed at each host by the token (the truncated
SHA-1 hash of the key). Therefore, an inplenentation will require a
mappi ng from each token to the correspondi ng connection, and in turn
to the keys for the connection

There is a very small risk that two different keys will hash to the
same token. An inplenentation SHOULD check its list of connection
tokens to ensure there is not a collision before sending its key in
the SYNACK. This would, however, be costly for a server wth

t housands of connections. The subfl ow handshake nechani sm

(Section 3.2) will ensure that new subflows only join the correct
connection, however, so in the worst case if there was a token
collision, it just neans that the second connection cannot support
mul tiple subflows, but will otherw se provide a regular TCP service.

The MP_CAPABLE option is carried on the SYN, SYN ACK, and ACK packets
that start the first subflow of an MPTCP connection. The data
carried by each packet is as follows, where A = initiator and B =

|i stener.

0 SYN (A->B): A's Key.

0 SYNACK (B->A): B's Key.

0 ACK (A->B): Both A's Key and B' s Key

The contents of the option is determ ned by the SYN and ACK fl ags of
the packet, verified by the option’s length field. For the diagram
shown in Figure 4, "sender" and "receiver" refer to the sender or
recei ver of the TCP packet (which can be either host). [If the SYN
flag is set, a single key is included; if only an ACK flag is set,
bot h keys are present.

The keys are echoed in the ACK in order to allow the |istener (host
B) to act statelessly until the TCP connection reaches the

Ford, et al. Expi res Septenber 15, 2011 [Page 11]

Internet-Draft Mul tipath TCP March 2011

ESTABLI SHED state. |If the listener acts in this way, however, it
MUST generate its key in a verifiable fashion, allowing it to verify
that it generated the key when it is echoed in the ACK

Furthernore, in order to ensure reliable delivery of the ACK

contai ning the MP_CAPABLE option, a server MJST respond with an ACK
segrment on receipt of this, which may contain data, or will be a pure
ACK if it does not have any data to send immediately. |If the
initiator does not receive this ACK within the RTQ it MJST re-send
the ACK containing MP_CAPABLE. In effect, an MPTCP connection is in
a "PRE_ESTABLI SHED' state while awaiting this ACK, and only upon
receipt of the ACKwill it nove to the ESTABLI SHED st ate.

The first four bits of the first octet in the MP_CAPABLE option
(Figure 4) define the MPTCP option subtype (see Section 8; for
MP_CAPABLE, this is 0), and the remaining four bits of this octet
specifies the MPTCP version in use (for this specification, this is
0).

The second octet is reserved for flags. The leftnost bit - |labeled C
- indicates "Checksumrequired', and SHOULD be set to 1 unless
specifically overridden (for exanple, if the system adm nistrator has
deci ded that checksuns are not required - see Section 3.3 for nore

di scussion). The remaining bits are used for crypto algorithm
negotiation. Currently only the rightnost bit - labeled S - is
assigned, and indicates the use of HVAC-SHAl (as defined in

Section 3.2). An inplenentation that only supports this nmethod MJST
set this bit to 1 and all other currently reserved bits to zero. |If
none of these flags are set, the MP_CAPABLE option MJST be treated as
invalid and ignored (i.e. it nust be treated as a regular TCP
handshake) .

These bits negotiate capabilities in simlar ways. For the "C bit,
if either host requires the use of checksuns, checksuns MJST be used.
In other words, the only way for checksuns not to be used is if both
hosts in their SYNs set C=0. The decision whether to use checksuns
will be stored by an inplenmentation in a per-connection binary state
vari abl e.

For crypto negotiation, the responder has the choice. The initiator
creates a proposal setting a bit for each algorithmit supports to 1
(in this version of the specification, there is only one proposal, so
Swill be always set to 1). The responder responds with only one bit
set - this is the chosen algorithm The rationale for this behavi our
is that the responder will typically be a server with potentially
many t housands of connections, so may wi sh to choose an al gorithm
with mnimal conputational conplexity, depending on load. |If a
responder does not support (or does not want to support) any of the

Ford, et al. Expi res Septenber 15, 2011 [Page 12]

Internet-Draft Mul tipath TCP March 2011

initiator’s proposals, it can respond w thout an MP_CAPABLE option
thus forcing a fall-back to regular TCP

The MP_CAPABLE option is only used in the first subflow of a
connection, in order to identify the connection; all follow ng
subflows will use the "Join" option (see Section 3.2) to join the
exi sting connection

1 2 3
01234567890123456789012345678901
oo oo oo oo R S +-+
| Ki nd | Length | Subt ype| Version| C| (reservd) |S
oo oo oo - S S U +- +
| Sender’ s Key |
| (64 bits) |
I I
o o e o e e ieaoaoo-o. +

| Recei ver’'s Key (64 bits) [
| (i f Lengt h==20) [

Figure 4: Miltipath Capable (MP_CAPABLE) option

If a SYN contains an MP_CAPABLE option but the SYN ACK does not, it
is assuned that the passive opener is not multipath capable and thus
the MPTCP session MJST operate as regular, single-path TCP. I1f a SYN
does not contain a MP_CAPABLE option, the SYN ACK MJUST NOT contain
one in response. |If the third packet (the ACK) does not contain the
MP_CAPABLE option, then the session MIST fall back to operating as
regul ar, single-path TCP. This is to maintain conpatibility with

m ddl eboxes on the path that drop sone or all TCP options.

If the SYN packets are unacknow edged, it is up to local policy to
decide how to respond. It is expected that a sender will eventually
fall back to single-path TCP (i.e. w thout the MP_CAPABLE Option) in
order to work around m ddl eboxes that may drop packets with unknown
options; however, the number of nultipath-capable attenpts that are
made first will be up to local policy. It is possible that MPTCP and
non- MPTCP SYNs coul d get re-ordered in the network. Therefore, the
final state is inferred fromthe presence or absence of the
MP_CAPABLE option in the third packet of the TCP handshake. |If this
option is not present, the connection should fall back to regul ar
TCP, as documented in Section 3.5.

The initial Data Sequence Nunber (IDSN) is generated as a hash from
the Key, in the sanme way as the token, i.e. |IDSN-A = Hash(Key-A) and

Ford, et al. Expi res Septenber 15, 2011 [Page 13]

Internet-Draft Mul tipath TCP March 2011

| DSN- B = Hash(Key-B). The Hash nechani sm here provi des the | east
significant 64 bits of the SHA-1 hash of the key. The SYN wth
MP_CAPABLE occupies the first octet of Data Sequence Space.

3.2. Starting a New Subfl ow

Once an MPTCP connection has begun with the MP_CAPABLE exchange,
further subflows can be added to the connection. Hosts have

know edge of their own address(es), and can becone aware of the other
host’s addresses through signalling exchanges as described in

Section 3.4. Using this knowl edge, a host can initiate a new subfl ow

over a currently unused pair of addresses. It is permtted for
either host in a connection to initiate the creation of a new
subflow, but it is expected that this will normally be the origina

connection initiator (see Section 3.7 for heuristics).

A new subflow is started as a normal TCP SYN ACK exchange. The Join
Connection (MP_JON) TCP option is used to identify the connection to
be joined by the new subflow It uses keying material that was
exchanged in the initial MP_CAPABLE handshake (Section 3.1), and that
handshake al so negotiates the crypto algorithmin use for the MP_JO N
handshake.

This section specifies the behaviour of MP_JO N using the HVAC SHAL
algorithm An MP_JO N option is present in the SYN, SYN ACK and ACK
of the three-way handshake, although in each case with a different
format.

In the first MP_JO N on the SYN packet, illustrated in Figure 5, the
initiator sends a token, random nunber, and address |D.

The token is used to identify the MPTCP connection and is a

crypt ographi ¢ hash of the receiver’s key, as exchanged in the initial
MP_CAPABLE handshake (Section 3.1). The tokens presented in this
option are generated by the SHA-1 [9] algorithm truncated to the
nost significant 32 bits. The token included in the MP_JO N option
is the token that the receiver of the packet uses to identify this
connection, i.e. Host Awll send Token-B (which is generated from
Key- B) .

The MP_JO N SYN not only sends the token (which is static for a
connection) but also Random Nunbers (nonces) that are used to prevent
replay attacks on the authentication method.

The MP_JO N option includes an "Address ID'. This is an identifier
that only has significance within a single connection, where it
identifies the source address of this packet, even if the address
itself has been changed in transit by a middl ebox. This allows

Ford, et al. Expi res Septenber 15, 2011 [Page 14]

Internet-Draft Mul tipath TCP March 2011

address rempval wi thout needing to know what the source address at
the receiver is, thus this allows address renoval through NATs. The
sender can signal this to the receiver via the REMOVE ADDR option
(Section 3.4.2). It also allows correl ation between new subfl ow
setup attenpts and address signalling (Section 3.4.1), to prevent
setting up duplicate subflows on the sane path.

The Address IDs of the subflow used in the initial SYN exchange of
the first subflowin the connection are inplicit, and have the val ue
zero. A host MJUST store the Address IDs associated with all

est abl i shed subfl ows.

The MP_JO N option on SYNs also includes 4 bits of flags, 3 of which
are currently reserved and MIST be set to zero by the sender. The
final bit, labelled "B, indicates whether the initiator wi shes this
subflow to be used purely as a backup path (B=1) in the event of
failure of other paths, or whether it wants it to be used as part of
the connection imrediately. Subflow policy is discussed in nore
detail in Section 3.3.8.

1 2 3
01234567890123456789012345678901
. . I e e +
| Ki nd | Length = 12 | Subtype| | Bl Address ID |
. . e e e +
| Recei ver’s Token (32 bits) |
o m m e +
[Sender’ s Random Number (32 bits) [
.. +

Figure 5: Join Connection (MP_JON) option (for initial SYN)

When receiving a SYNwith a MP.JO N option that contains a valid
token for an existing MPTCP connection, the recipient SHOULD respond
with a SYN ACK al so containing an MP_JO N option containing a random
nunber and a truncated (leftnost 64 bits) MAC. This version of the
option is shown in Figure 6. |If the token is unknown, or the host
wants to refuse subflow establishment (for exanple, due to a linmt on
the nunber of subflows it will permt), the receiver will send back
an RST, anal ogous to an unknown port in TCP. Although cryptographic
calculations are required in the SYNACK, it is felt that the 32-bit
t oken gives sufficient protection against blind state exhaustion
attacks and therefore there is no need to provide nmechanisnms to allow
a responder to operate statelessly at the MP_JO N st age.

An MAC is sent by both hosts - by the initiator (Host A) in the third

packet (the ACK) and by the responder (Host B) in the second packet
(the SYNACK). This is to allow both hosts to have exchanged random

Ford, et al. Expi res Septenber 15, 2011 [Page 15]

Internet-Draft Mul tipath TCP March 2011

data to be used as the nmessage before generating the MAC. In both
cases, the MAC algorithmis HVAC as defined in [11], using the SHA-1
hash algorithm[9] (thus generating a 160-bit / 20 octet HVAC). Due
to option space limtations, the MAC included in the SYN ACK is
truncated to the leftnost 64 bits, but this is acceptable since while
in an attacker-initiated attack, the attacker can retry nmany tines;
if the attacker is the responder, he only has one chance to get the
MAC correct.

The initiator’s authentication information is sent in its first ACK,
and is shown in Figure 7. The sanme reliability algorithmfor this
packet as for the MP_CAPABLE ACK is applied: receipt of this packet
MUST trigger an ACK in response, and the packet MJST be retransnitted
if this ACKis not received. In other words, sending the ACK/ MP_JO N
packet places the subflow in the PRE _ESTABLI SHED state, and it noves
to the ESTABLI SHED state only on receipt of an ACK fromthe receiver.
The reserved bits in this option MJST be set to zero by the sender.

The key for the MAC algorithm in the case of the nmessage transnitted
by Host A, will be Key-A followed by Key-B, and in the case of Host
B, Key-B followed by Key-A. These are the keys that were exchanged
in the original MP_CAPABLE handshake. The nessage in each case is

t he concat enati ons of Random Number for each host (denoted by R): for
Host A, R-Afollowed by R-B; and for Host B, R B followed by R A

1 2 3
01234567890123456789012345678901
Fom e e e oo Fom e e e oo Fom oo - +-- - - - AR +
| Ki nd | Length = 16 | Subtype| | B| Address ID |
o e oo o e oo Fom e e +--- - - T +

Figure 6: Join Connection (MP_JON) option (for respondi ng SYN ACK)

Ford, et al. Expi res Septenber 15, 2011 [Page 16]

Internet-Draft Mul tipath TCP March 2011

1 2 3
01234567890123456789012345678901
e e e o e e e o Fom e - o e e e e e e e e e e e oo n +
[Ki nd | Length = 24 | Subtype]| (reserved) [
o e oo o e oo Fom e e o m e e e e oo +

Figure 7: Join Connection (MP_JON) option (for third ACK)

These various TCP options fit together to enabl e authenticated

subflow setup as illustrated in Figure 8.
Host A Host B
Address Al Addr ess A2 Address B1

| <o T >]
R LR L IR TEEER TR |
| SYN ACK + MP_CAPABLE(Key- B) |
I I I
| ACK + MP_CAPABLE(Key- A, Key- B) |
A R |
[[SYN + MP_JO N(Token-B, R-A) |
| R AL >]
| <o e |
| | SYNACK + MP_JO N(MAG-B, R-B) |
I I

[[ACK + MP_JO N(MAC A) [
| R RRCLECPEPIEPER >]
I

MAC- A = MAC(Key=(Key- A+Key-B), Msg=(R-A+R-B))
MAC- B = MAC(Key=(Key- B+Key-A), Mg=(R-B+R-A))

Fi gure 8: Exanple use of MPTCP Authentication
If the token received at Host B is unknown or |ocal policy prohibits

the acceptance of the new subflow, the recipient MIST respond with a
TCP RST for the subflow

Ford, et al. Expi res Septenber 15, 2011 [Page 17]

Internet-Draft Mul tipath TCP March 2011

If the token is accepted at Host B, but the MAC returned to Host A
does not match the one expected, Host A MIST close the subflowwith a
TCP RST.

If Host B does not receive the expected MAC, or the MP._JO N option is
m ssing fromthe ACK, it MJIST close the subflowwith a TCP RST

If the MACs are verified as correct, then both hosts have

aut henti cated each other as being the sane peers as existed at the
start of the connection, and they have agreed of which connection
this subflow will beconme a part.

If the SYNN ACK as received at Host A does not have an MP_JO N option,
Host A MUST cl ose the subflow with a RST.

This covers all cases of the loss of an MP. JON. In nore detail, if
MP_JO N is stripped fromthe SYN on the path fromA to B, and Host B
does not have a passive opener on the relevant port, it will respond
with an RST in the normal way. |If in response to a SYNwith an
MP_JO N option, a SYNACK is received without the MP_JO N option
(either since it was stripped on the return path, or it was stripped
on the outgoing path but the passive opener on Host B responded as if
it were a new regular TCP session), then the subflow is unusable and
Host A MUST close it with a RST

Not e that additional subflows can be created between any pair of
ports (but see Section 3.7 for heuristics); no explicit application-
| evel accept calls or bind calls are required to open additiona
subflows. To associate a new subflow with an existing connection
the token supplied in the subflow s SYN exchange is used for

demul tiplexing. This then binds the 5-tuple of the TCP subflow to
the | ocal token of the connection. A consequence is that it is
possible to allow any port pairs to be used for a connection

Deunul ti pl exi ng subfl ow SYNs MJUST be done using the token; this is
unlike traditional TCP, where the destination port is used for
denul ti pl exi ng SYN packets. Once a subflow is setup, demrultiplexing
packets is done using the five-tuple, as in traditional TCP. The
five-tuples will be mapped to the |ocal connection identifier
(token). Note that Host A wll know its |ocal token for the subflow
even though it is not sent on the wire - only the responder’s token
is sent.

3.3. GCeneral MPTCP Qperation
This section discusses operation of MPTCP for data transfer. At a

high level, an MPTCP inplenmentation will take one input data stream
froman application, and split it into one or nore subflows, with

Ford, et al. Expi res Septenber 15, 2011 [Page 18]

Internet-Draft Mul tipath TCP March 2011

sufficient control information to allowit to be reassenbled and
delivered reliably and in-order to the recipient application. The
foll owi ng subsections define this behaviour in detail.

During normal MPTCP operation, the Data Sequence Signal (DSS) TCP
option (shown in Figure 9) is used to signal the data required to
enable nmultipath transport. This data conprises: the Data Sequence
Mappi ng (DSM, which defines how the sequence space on the subfl ow
maps to the connection level; and the Data ACK, for acknow edgi ng
recei pt of data at the connection level. These functions are
described in nore detail in the follow ng two subsections.

Ei ther or both of the Data Sequence Mapping or the Data ACK can be
signalled in the DSS option, dependent on the flags set.

1 2 3
01234567890123456789012345678901
o e oo o e oo Fom e e o e e e e e e aa oo +
| Ki nd | Length | Subtype| (reserved) |FnMalA
B B o m oo - B +
| Data ACK (4 or 8 octets, depending on flags) |
e +
| Dat a Sequence Nunber (4 or 8 octets, depending on flags) |
o o m eee oo +
| Subf | ow Sequence Nunber (4 octets) |
B S +
| Data-level Length (2 octets) | Checksum (2 octets) |
2 e +

Figure 9: Data Sequence Signal (DSS) option

The flags when set define the contents of this option, as follows:

0 A = Data ACK present
0 a = Data ACKis 8 octets (if not set, Data ACKis 4 octets)
0 M = Data Sequence Number, Subflow Sequence Nunber, Data-Ievel

Lengt h, and Checksum present
0 m= Data Sequence Nunber is 8 octets (if not set, DSN is 4 octets)
The flags "a’ and 'nm only have neaning if the corresponding 'A or
"M flags are set, otherwise they will be ignored. The maxi num

length of this option, with all flags set, is 28 octets.

The 'F flag indicates "DATA FIN'. |f present, this nmeans that this
mappi ng covers the final data fromthe sender. This is the

Ford, et al. Expi res Septenber 15, 2011 [Page 19]

I nt

3. 3.

For

ernet-Draft Mul tipath TCP March 2011

connection-level equivalent to the FIN flag in single-path TCP. The
pur pose of the DATA FIN, along with the interactions between this
flag, the subflowlevel FIN flag, and the data sequence mappi ng are
described in Section 3.3.3. The renmaining reserved bits MJST be set
to zero by an inplenentation of this specification

Note that the Checksumis only present in this option if the use of
MPTCP checksunmi ng has been negotiated at the MP_CAPABLE handshake
(see Section 3.1). The presence of the checksumcan be inferred from
the Il ength of the option

1. Data Sequence Mapping

The data stream as a whol e can be reassenbl ed through the use of the
Dat a Sequence Mappi ng conponents of the DSS option (Figure 9), which
define the mapping fromthe subfl ow sequence nunber to the data
sequence nunber. This is used by the receiver to ensure in-order
delivery to the application layer. Meanwhile, the subflowleve
sequence nunbers (i.e. the regular sequence nunbers in the TCP
header) have subflowonly relevance. It is expected (but not

mandat ed) that SACK [6] is used at the subflow | evel to inprove
efficiency.

The Data Sequence Mapping specifies a full mapping from subfl ow
sequence space to data sequence space, for the specified |length
(number of bytes of data) starting at the specified Subflow and Data
Sequence Nunbers. The purpose of the explicit mapping is to assist
with conpatibility with situations where TCP/I P segnentation or

coal escing is undertaken separately fromthe stack that is generating
the data flow (e.g. through the use of TCP segnentation of floading on
network interface cards, or by niddl eboxes such as perfornmance
enhancing proxies). It also allows a single mapping to cover many
packets, which nmay be useful in bulk transfer situations.

A mapping is unique, in that the subfl ow sequence nunmber is bound to
the data sequence nunber after the mappi ng has been processed. It is
not possible to change this nmapping afterwards; however, the same
dat a sequence nunmber can be mapped to different subflows for
retransm ssi on purposes (see Section 3.3.6). It would also permt
the sane data to be sent sinultaneously on nultiple subflows for
resilience purposes, although the detailed specification of such
operation is outside the scope of this docunent.

The data sequence nunber is specified as an absol ute val ue, whereas
t he subfl ow sequence nunbering is relative (the SYN at the start of
the subflow has rel ative subfl ow sequence nunber 0). This is to
al | ow m ddl eboxes to change the Initial Sequence Nunber of a subflow,
such as firewalls that undertake | SN random zati on

d, et al. Expi res Septenber 15, 2011 [Page 20]

Internet-Draft Mul tipath TCP March 2011

The data sequence mappi ng al so contains a checksum of the data that
this mapping covers. This is used to detect if the payl oad has been
adjusted in any way by a non- MPTCP-aware m ddl ebox. [If this checksum
fails, it will trigger a failure of the subflow, or a fallback to
regul ar TCP, as docunented in Section 3.5, since MPTCP can no | onger
reliably know the subfl ow sequence space at the receiver to build
dat a sequence nappi ngs.

The checksum algorithmused is the standard TCP checksum [2],
operating over the data covered by this mapping, along with a pseudo-
header as shown in Figure 10.

1 2 3
01234567890123456789012345678901

o e e e e e e e +
| Subf | ow Sequence Nunber (4 octets) |
Fom e e e e e e e e e e ee oo o mm e e e e e e e e e aa o n +
| Data-level Length (2 octets) | Zeros (2 octets) [
o e e oo o e e oo +

Fi gure 10: Pseudo- Header for DSS Checksum

Note that the Data Sequence Nunber used in the pseudo-header is

al ways the 64-bit value, irrespective of what length is used in the
DSS option itself. The standard TCP checksum al gorithm has been
chosen since it will be calcul ated anyway for the TCP subflow, and if
calculated first over the data before addi ng the pseudo- headers, it
only needs to be cal cul ated once. Furthernore, since the TCP
checksumis additive, the checksumfor a DSN_MAP can be constructed
by sinply addi ng together the checksuns for the data of each
constituent TCP segnent, and adding the checksum for the DSS pseudo-
header .

Not e that checksumm ng relies on the TCP subfl ow contai ni ng
contiguous data, and therefore a TCP subfl ow MJUST NOT use the Urgent
Pointer to interrupt an existing mapping. Further note, however,
that if Ugent data is received on a subflow, it SHOULD be mapped to
the data sequence space and delivered to the application anal ogous to
Urgent data in regular TCP.

To avoi d possi bl e deadl ock scenarios, subflow|evel processing should
be undertaken separately fromthat at connection-level. Therefore,
even if a mapping does not exist fromthe subfl ow space to the data-
| evel space, the data SHOULD still be ACKed at the subflow (if it is

Ford, et al. Expi res Septenber 15, 2011 [Page 21]

Internet-Draft Mul tipath TCP March 2011

in-wi ndow). This data cannot, however, be acknow edged at the data

| evel (Section 3.3.2) because its data sequence nunbers are unknown.

| mpl enent ati ons MAY hold onto such unmapped data for a short while in
the expectation that a mapping will arrive shortly. Such unmapped
data cannot be counted as being within the connection-Ilevel receive
wi ndow because this is relative to the data sequence nunbers, so if
the receiver runs out of menory to hold this data, it will have to be
di scarded. If a mapping for that subflowlevel sequence space does
not arrive within a receive w ndow of data, that subflow SHOULD be
treated as broken, closed with an RST, and an unnapped data silently
di scarded

Dat a sequence nunbers are always 64-bit quantities, and MJST be

mai ntai ned as such in inplenmentations. |If a connection is
progressing at a slowrate, so protection agai nst w apped sequence
nunbers is not required, then it is permssible to include just the

| ower 32 bits of the data sequence nunber in the Data Sequence
Mappi ng and/ or Data ACK as an optinization. An inplementation MJST
send the full 64 bit Data Sequence Number if it is transmtting at a
sufficiently high rate that it could wap within the MSL [12]. The

| engths of the DSNs used in these values (which may be different) are
declared with flags in the DSS option. |Inplenentations MJST accept a
32-bit DSN and inplicitly pronote it to a 64-bit quantity by
incrementing the upper 32 bits of sequence nunber each time the | ower
32 bits wap. A sanity check MJST be inplenented to ensure that a
wap occurs at an expected tine (e.g. the sequence nunber junps from
a very high nunber to a very |low nunber) and is not triggered by out-
of - order packets.

As with the standard TCP sequence nunber, the data sequence nunber
shoul d not start at zero, but at a random value to make blind session
hijacking harder. This is done by setting the initial data sequence
nunber (1 DSN) of each host to the |east significant 64 bits of the
SHA- 1 hash of the host’s key, as described in Section 3.1

A Data Sequence Mappi ng does not need to be included in every MPTCP
packet, as long as the subfl ow sequence space in that packet is
covered by a mapping known at the receiver. This can be used to
reduce overhead in cases where the mapping is known in advance; one
such case is when there is a single subflow between the hosts,

anot her is when segnents of data are scheduled in |arger than packet-
sized chunks. An "infinite" mapping can be used to fallback to
regul ar TCP by nmapping the subflowlevel data to the connection-|eve
data for the remminder of the connection (see Section 3.5). This is
achi eved by setting the data-level length field to the reserved val ue
of 0. The checksum in such a case, will also be set to zero

Ford, et al. Expi res Septenber 15, 2011 [Page 22]

Internet-Draft Mul tipath TCP March 2011

3.3.2. Data Acknow edgenents

To provide full end-to-end resilience, MPTCP provides a connecti on-

| evel acknow edgenent, to act as a cunul ative ACK for the connection
as a whole. This is the "Data ACK' field of the DSS option

(Figure 9). The Data ACK is anal ogous to the behavi our of the
standard TCP cumul ative ACK in TCP SACK - indicating how nmuch data
has been successfully received (with no holes). The Data ACK
specifies the next Data Sequence Nunber it expects to receive.

The Data ACK, as for the DSN, can be sent as the full 64 bit val ue,
or as the lower 32 bits. |If data is received with a 64 bit DSN, it
MUST be acknowl edged with a 64 bit Data ACK. |If the DSN received is
32 bits, it is valid for the inplenentation to choose whether to send
a 32 bit or 64 bit Data ACK

The rationale for the inclusion of the Data ACK i ncludes the

exi stence of certain mddl eboxes that pro-actively ACK packets, and
t hus m ght cause deadl ock conditions if data were acked at the
subflow |l evel but then fails to reach the receiver. This sort of bad
interaction m ght be especially preval ent when the receiver is
nmobil e. The Data ACK ensures the data has been delivered to the
receiver. Furthernore, separating the connection-I|eve

acknow edgenents fromthe subflowlevel allows processing to be done
separately, and a receiver has the freedomto drop segnents after
acknow edgenent at the subflow |l evel, for exanple due to menory
constrai nts when many segnents arrive out-of-order

Anot her reason for including the Data ACKis that it indicates the

| eft edge of the advertised receive window. As explained in
Section 3.3.4, the receive windowis shared by all subflows and is
relative to the Data ACK. Because of this, an inplenmentati on MJST
NOT use the RCV.WAD field of a TCP segnent at connection-level if it
does not also carry a DSS option with a Data ACK field.

An MPTCP sender MUST only free data fromthe send buffer when it has
been acknow edged by both a Data ACK received on any subflow and at
the subflow | evel by any subflows the data was sent on. The fornmer
condition ensures liveness of the connection and the |latter condition
ensures liveness and sel f-consistence of a subfl ow when data needs to
be restransmted. Note, however, that if some data needs to be
retransmtted nmultiple tines over a subflow, there is a risk of

bl ocking the sending window. In this case, the MPTCP sender can
decide to cancel the subflow that is behaving badly by sending a RST.

The Data ACK MAY be included in all segnents, however optinisations

SHOULD be considered in nore advanced i npl enmentati ons, where the Data
ACK is present in segnents only when the Data ACK val ue advances, and

Ford, et al. Expi res Septenber 15, 2011 [Page 23]

Internet-Draft Mul tipath TCP March 2011

this behaviour MJST be treated as valid. This behaviour ensures the
sender buffer is freed, while reducing overhead when the data
transfer is unidirectional

3.3.3. dosing a Connection

In regular TCP a FIN announces the receiver that the sender has no
more data to send. In order to allow subflows to operate

i ndependently and to keep the appearance of TCP over the wire, a FIN
in MPTCP only affects the subflow on which it is sent. This allows
nodes to exercise considerable freedom over which paths are in use at
any one tine. The semantics of a FIN remain as for regular TCP, i.e.
it is not until both sides have ACKed each other’s FINs that the
subflow is fully closed.

When an application calls close() on a socket, this indicates that it
has no nore data to send, and for regular TCP this would result in a
FIN on the connection. For MPTCP, an equival ent nmechanismis needed,
and this is referred to as the DATA FIN

A DATA FIN is an indication that the sender has no nore data to send,
and as such can be used to verify that all data has been successfully
received. A DATA FIN, as with the FIN on a regular TCP connection

is a unidirectional signal

The DATA FIN is signalled by setting the "F flag in the Data
Sequence Signal option (Figure 9) to 1. A DATA FIN occupies one
octet (the final octet) of the connection-level sequence space. Note
that the DATA FIN is included in the Data-level Length, but not at
the subflow level: for exanple, a segnent with DSN 80, and length 11,
with DATA FIN set, would map 10 octets fromthe subflow into data
sequnce space 80-89, the DATA FIN is DSN 90, and therefore this
segrent incl udi ng DATA FIN woul d be acknow edged with a DATA ACK of
91.

Not e that when the DATA FINis not attached to a TCP segnent

contai ning data, the Data Sequence Mappi hg MJUST have Subfl ow Sequence
Nunmber of 0O, a Length of 1, and the Data Sequence Nunber that
corresponds with the DATA FIN itself. The checksumin this case wll
only cover the pseudo-header

A DATA FIN has the senmantics and behavi our as a regular TCP FIN, but
at the connection level. Notably, it is only DATA ACKed once all
data has been successfully received at the connection level. Note
therefore that a DATA FIN is decoupled froma subflow FIN. It is
only perm ssable to conbine these signals on one subflowif there is
no data oustanding on other subflows. Oherwise, it nmay be necessary
to retransnit data on different subflows. Essentially, a host MJST

Ford, et al. Expi res Septenber 15, 2011 [Page 24]

Internet-Draft Mul tipath TCP March 2011

NOT FIN all subflows unless it is safe to do so, i.e. until all data
has been DATA ACKed, or that the segnent with the FIN flag set is the
only outstandi ng segnent.

Once a DATA FI N has been acknow edged, all renaining subflows MJST be
closed with standard FI N exchanges. Both hosts SHOULD send FINs, as
a courtesy to allow niddl eboxes to clean up state even if the subflow

has failed. It is also encouraged to reduce the tineouts (Maxinmm
Segment Life) on subflows at end hosts. In particular, any subflows
where there is still outstanding data queued (which has been

retransmtted on other subflows in order to get the DATA FIN
acknow edged) MAY be closed with an RST.

A connection is considered cl osed once both hosts’ DATA FI Ns have
been acknow edged by DATA ACKSs.

Note that a host nmay al so send a FIN on an individual subflow to shut
it dowmn, but this inpact is limted to the subflowin question. |If
all subflows have been closed with a FIN exchange, but no DATA FIN
has been received and acknow edged, the MPTCP connection is treated
as closed only after a timeout. This inplies that an inplenmentation
will have TIME WAIT states at both the subfl ow and connection |evels.

3.3.4. Receiver Considerations

Regul ar TCP advertises a receive wi ndow in each packet, telling the
sender how nuch data the receiver is willing to accept past the
cumul ati ve ack. The receive window is used to inplenent flow
control, throttling down fast senders when receivers cannot keep up.

MPTCP al so uses a uni que receive w ndow, shared between the subfl ows.
The idea is to allow any subflow to send data as |long as the receiver
iswlling to accept it; the alternative, maintaining per subflow
recei ve wi ndows, could end-up stalling sone subflows while others
woul d not use up their w ndow.

The receive window is relative to the DATA ACK. As in TCP, a

recei ver MUST NOT shrink the right edge of the receive w ndow (i.e.
DATA ACK + receive window). The receiver will use the Data Sequence
Nunber to tell if a packet should be accepted at connection |evel.

When deciding to accept packets at subflow | evel, nornal TCP uses the
sequence nunber in the packet and checks it against the all owed
receive window. Wth multipath, such a check is done using only the
connection |l evel window A sanity check SHOULD be performed at
subflow |l evel to ensure that the subflow and mapped sequence nunbers
meet the followi ng test: SSN - SUBFLOW ACK <= DSN - DATA ACK.

Ford, et al. Expi res Septenber 15, 2011 [Page 25]

Internet-Draft Mul tipath TCP March 2011

In regular TCP, once a segnment is deenmed in-window, it is either put
in the in-order receive queue or in the out-of-order queue. In
mul ti path TCP, the same happens but at connection-level: a segnent is
pl aced in the connection |evel in-order or out-of-order queue if it
is in-window at both connection and subflow |l evel. The stack stil
has to remenber, for each subflow, which segnents were received
succesfully so that it can ACK them at subflow | evel appropriately.
Typically, this will be inplenented by keepi ng per subfl ow out - of -
order queues (containing only nessage headers, not the payl oads) and
renenbering the value of the cunul ative ACK

It is inportant for inplenmenters to understand how | arge a receiver
buffer is appropriate. The |ower bound for full network utilization
i s the nmaxi mum bandw dt h-del ay product of any of the paths. However
this mght be insufficient when a packet is lost on a slower subflow
and needs to be retransmtted (see Section 3.3.6). A tight upper
bound woul d be the maxi nrum RTT of any path nultiplied by the total
bandwi dth avail abl e across all paths. This pernmits all subflows to
continue at full speed while a packet is fast-retransmitted on the
maxi mum RTT path. Even this might be insufficient to maintain ful
performance in the event of a retransmt tineout on the maxi mum RTT
path. It is for future study to determ ne the relationship between
retransm ssion strategi es and receive buffer sizing.

3.3.5. Sender Considerations

The sender renenbers receiver wi ndow adverti sements fromthe
receiver. It should only update its local receive w ndow val ues when
the | argest sequence nunber allowed (i.e. DATA ACK + receive w ndow)
increases. This is inportant to allow using paths with different
RTTs, and thus different feedback | oops.

MPTCP uses a single receive wi ndow across all subflows, and if the
recei ve wi ndow was guaranteed to be unchanged end-to-end, a host
could al ways read the npbst recent receive w ndow val ue. However,
some cl asses of middl eboxes may alter the TCP-Ilevel receive w ndow.
Typically these will shrink the offered wi ndow, although for short
periods of time it may be possible for the window to be |arger
(however note that this would not continue for |ong periods since
ultimately the m ddl ebox nust keep up with delivering data to the
receiver). Therefore, if receive window sizes differ on nultiple
subfl ows, when sending data MPTCP SHOULD take the |argest of the nost
recent wi ndow sizes as the one to use in calculations. This rule is
implicit in the requirenent not to reduce the right edge of the

wi ndow.

The sender al so renenbers the receive wi ndows adverti sed by each
subflow. The allowed wi ndow for subflowi is (ack_i, ack_i +

Ford, et al. Expi res Septenber 15, 2011 [Page 26]

Internet-Draft Mul tipath TCP March 2011

rcv_wnd_i), where ack_i is the subflowlevel cunulative ack of
subflowi. This ensures data will not be sent to a m ddl ebox unl ess
there is enough buffering for the data.

Putting the two rules together, we get the followi ng: a sender is
allowed to send data segnments with data-1evel sequence nunbers

bet ween (DATA _ACK, DATA ACK + receive_wi ndow). Each of these
segrments will be mapped onto subflows, as |ong as subfl ow sequence
nunbers are in the the all owed wi ndows for those subflows. Note that
subfl ow sequence nunbers do not generally affect flow control if the
same receive window is advertised across all subflows. They will
performflow control for those subflows with a smaller advertised
recei ve wi ndow.

The send buffer nust be, at the mininmum as big as the receive
buffer, to enable the sender to reach maxi mumthroughput.

3.3.6. Reliability and Retransni ssions

The data sequence mapping allows senders to re-send data with the
same data sequence nunber on a different subflow \en doing this, a
host nust still retransmt the original data on the original subflow
in order to preserve the subflowintegrity (m ddl eboxes could repl ay
old data, and/or could reject holes in subflows), and a receiver wll
ignore these retransmissions. Wile this is clearly suboptiml, for
conmpatibility reasons this is the best behaviour. Optinmnisations
could be negotiated in future versions of this protocol

This protocol specification does not nandate any nechani sns for
handl i ng retransni ssions, and much will be dependent upon |oca
policy (as discussed in Section 3.3.8). One can inmagi ne aggressive
connection |l evel retransm ssions policies where every packet |ost at
subflow level is retransmitted on a different subflow (hence wasting
bandwi dt h but possi bly reducing application-to-application del ays),
or conservative retransm ssion policies where connection-|eve
retransmts are only used after a few subflow | evel retransm ssion
ti meouts occur.

It is envisaged that a standard connection-1|evel retransm ssion
mechani sm woul d be inplenented around a connection-1level data queue:
all segnments that haven't been DATA ACKed are stored. A tiner is set
when the head of the connection-level is ACKed at subflow | evel but
its corresponding data is not ACKed at data level. This tiner wll
guard against failures in re-transm ssion by m ddl eboxes that pro-
active ACK dat a.

The sender MUST keep data in its send buffer as |Iong as the data has
not been acknow edged at both connection |evel and on all subflows it

Ford, et al. Expi res Septenber 15, 2011 [Page 27]

Internet-Draft Mul tipath TCP March 2011

has been sent on. In this way, the sender can always retransnmit the
data if needed, on the sane subflow or on a different one. A special
case is when a subflow fails: the sender will typically resend the
data on other working subflows after a timeout, and will keep trying
to retransnit the data on the failed subflow too. The sender will
declare the subflow failed after a predefined upper bound on
retransm ssions is reached (which MAY be | ower than the usual TCP
limts of the Maxi mum Segnent Life), or on the receipt of an | CW
error, and only then del ete the outstanding data segments.

Multiple retransmi ssions are triggers that will indicate that a
subfl ow perforns badly and could Iead to a host resetting the subflow
with an RST. However, additional research is required to understand
the heuristics of how and when to reset underperform ng subfl ows.

For exanple, subflows that perform highly asymetrically may be m s-
di agnosed as under perform ng.

3.3.7. Congestion Control Considerations

Different subflows in an MPTCP connection have different congestion
wi ndows. To achieve fairness at bottl enecks and resource pooling, it
is necessary to couple the congestion wi ndows in use on each subfl ow,
in order to push nost traffic to uncongested links. One algorithm
for achieving this is presented in [4]; the algorithm does not

achi eve perfect resource pooling but is "safe" inthat it is readily
depl oyable in the current Internet. By this, we nmean that it does
not take up nore capacity on any one path than if it was a single
path flow using only that route, so this ensures fair coexistence
with single-path TCP at shared bottl enecks.

It is foreseeable that different congestion controllers will be

i mpl emented for MPTCP, each aimng to achieve different properties in
the resource pooling/fairness/stability design space, as well as
those for achieving different properties in quality of service,
reliability and resilience.

Regardl ess of the algorithmused, the design of the MPTCP protoco
ainms to provide the congestion control inplementations sufficient
information to take the right decisions; this information includes,
for each subflow, which packets were |ost and when

3.3.8. Subflow Policy
Wthin a | ocal MPTCP inpl ementation, a host may use any local policy
it wishes to decide howto share the traffic to be sent over the
avai | abl e pat hs.

In the typical use case, where the goal is to maximn se throughput,

Ford, et al. Expi res Septenber 15, 2011 [Page 28]

Internet-Draft Mul tipath TCP March 2011

all available paths will be used sinultaneously for data transfer
usi ng coupl ed congestion control as described in [4]. It is
expect ed, however, that other use cases w |l appear

For instance, a possibility is an "all-or-nothing’ approach, i.e.
have a second path ready for use in the event of failure of the first
path, but alternatives could include entirely saturating one path
before using an additional path (the 'overflow case). Such choices
woul d be nost |ikely based on the nonetary cost of |inks, but may

al so be based on properties such as the delay or jitter of I|inks,
where stability (of delay or bandwi dth) is nore inportant than

t hroughput. Application requirenents such as these are discussed in
detail in [5].

The ability to nmake effective choices at the sender requires ful

know edge of the path "cost", which is unlikely to be the case. It
woul d be desirable for a receiver to be able to signal their own
preferences for paths, since they will often be the nultihoned party,
and may have to pay for nmetered i ncom ng bandwi dth

Whi | st fine-grained control may be the nost powerful solution, that
woul d require sone nechani sm such as overl oadi ng the ECN signal [13],
which is undesirable, and it is felt that there would not be

suf ficient benefit to justify an entirely new signal. Therefore the
MP_JO N option (see Section 3.2) contains the "B bit, which allows a
host to indicate to its peer that this path should be treated as a
backup path to use only in the event of failure of other working
subflows (i.e. a subflow where the receiver has indicated B=1 SHOULD
NOT be used to send data unless there are no usabl e subfl ows where
B=0) .

In the event that the avail abl e set of paths changes, a host may wi sh
to signal a change in priority of subflows to the peer. Therefore,
the MP_PRI O option, shown in Figure 11, can be used to change the 'B
flag of the subflow on which it is sent.

1 2
012345678901234567890123

Figure 11: MP_PRI O option

It should be noted that the backup flag is a request fromthe
receiver to the sender only, and the sender SHOULD adhere to these
requests. The receiver, however, nmay continue using the subflowto
send data even if it has signalled B=1 to the other host.

Ford, et al. Expi res Septenber 15, 2011 [Page 29]

Internet-Draft Mul tipath TCP March 2011

3.4. Address Know edge Exchange (Path Managenent)

We use the term "path managenent” to refer to the exchange of

i nformati on about additional paths between hosts, which in this
design is managed by rnultiple addresses at hosts. For nore detail of
the architectural thinking behind this design, see the separate
architecture docunent [3].

Thi s design makes use of two nethods of sharing such information
used sinultaneously. The first is the direct setup of new subfl ows,
al ready described in Section 3.2, where the initiator has an
addi ti onal address. The second nmethod, described in the follow ng
subsections, signals addresses explicitly to the other host to allow
it toinitiate new subflows. The two nechani sns are conpl enentary:
the first is inplicit and sinple, while the explicit is nore conplex
but is nore robust. Together, the nmechanisns all ow addresses to
change in flight (and thus support operation through NATs, since the
source address need not be known), and also allow the signalling of
previously unknown addresses, and of addresses bel onging to other
address famlies (e.g. both IPv4d and | Pv6).

Here is an exanple of typical operation of the protocol

0 An MPTCP connection is initially set up between address/port Al of
host A and address/port Bl of host B. If host Ais multihomed and
mul ti-addressed, it can start an additional subflow fromits
address A2 to Bl, by sending a SYNwith a Join option fromA2 to
Bl, using B's previously declared token for this connection.
Alternatively, if Bis nmultihomed, it can try to set up a new
subflow fromB2 to Al, using A's previously declared token. In
either case, the SYNwill be sent to the port already in use for
the original subflow on the receiving host.

0 Sinultaneously (or after a tineout), an ADD ADDR option
(Section 3.4.1) is sent on an existing subflow, informng the
receiver of the sender’s alternative address(es). The recipient
can use this information to open a new subflow to the sender’s
additional address. |In our exanple, A wll send ADD ADDR option
inform ng B of address/port A2. The m x of using the SYN- based
option and the ADD ADDR option, including tineouts, is
i mpl ement ati on-specific and can be tailored to agree with | oca
policy.

o |If subflow A2-B1 is succesfully setup, host B can use the Address
IDin the Join option to correlate this with the ADD ADDR option
that will also arrive on an existing subflow, now B knows not to
open A2-Bl, ignoring the ADD ADDR. Oherwise, if B has not
received the A2-B1 MP_JO N SYN but received the ADD ADDR, it can

Ford, et al. Expi res Septenber 15, 2011 [Page 30]

Internet-Draft Mul tipath TCP March 2011

try to initiate a new subflow fromone or nore of its addresses to
address A2. This permits new sessions to be opened if one host is
behi nd a NAT.

O her ways of using the two signaling nechani sns are possible; for
i nstance, signaling addresses in other address fanilies can only be
done explicitly using the Add Address option

3.4.1. Address Adverti senent

The Add Address (ADD ADDR) TCP Option announces additional addresses
(and optionally, ports) on which a host can be reached (Figure 12).
Multiple instances of this TCP option can be added in a single
message if there is sufficient TCP option space, otherwise nultiple
TCP messages containing this option will be sent. This option can be
used at any time during a connection, depending on when the sender

wi shes to enable nultiple paths and/or when paths becone avail abl e.

Every address has an | D which can be used for uniquely identifying
the address within a connection, for address renoval. This is also
used to identify MP_JO N options (see Section 3.2) relating to the
sane address, even when address translators are in use. The ID MJUST
uniquely identify the address to the sender (within the scope of the
connection), but the mechanismfor allocating such IDs is

i mpl emrent ati on-specific.

Al address IDs learnt via either MP._JO N or ADD ADDR SHOULD be
stored by the receiver in a data structure that gathers all the
Address I D to address mappi ngs for a connection (identified by a
token pair). In this way there is a stored mappi ng between Address
I D, observed source address and token pair for future processing of
control information for a connection. Note that an inplenmentation
MAY di scard inconmi ng address advertisenents at will, for exanple for
avoi ding the required nmapping state, or because advertised addresses
are of no use to it (for exanple, |IPv6 addresses when it has | Pv4
only). Therefore, a host MJST treat address advertisenents as soft
state, and MAY choose to refresh adverti senents periodically.

This option is shown in Figure 12. The illustration is sized for
| Pv4 addresses (I PVer = 4). For IPv6, the IPVer field will read 6,
and the length of the address will be 16 octets (instead of 4).

The presence of the final two octets, specifying the TCP port number
to use, are optional and can be inferred fromthe length of the
option. Although it is expected that the majority of use cases wll
use the sane port pairs as used for the initial subflow (e.g. port 80
renmains port 80 on all subflows), as does the epheneral port at the
client, there may be cases (such as port-based | oad bal anci ng) where

Ford, et al. Expi res Septenber 15, 2011 [Page 31]

Internet-Draft Mul tipath TCP March 2011

the explicit specification of a different port is required. If no
port is specified, MPTCP SHOULD attenpt to connect to the specified
address on sane port as is already in use by the signalling subflow,

and this is discussed in nore detail in Section 3.7.
1 2 3

01234567890123456789012345678901
B B Fomm oo - Fomm oo - B +
| Ki nd | Length | Subtype| IPVer | Address ID |
Fom e e e oo Fom e e e oo Fom oo - Fom oo - Fom e e e oo +
| Address (I Pv4 - 4 octets / IPv6 - 16 octets) |
oo e e e e e e eeee oo - o e oo o e oo +
[Port (2 octets, optional)

S +

Figure 12: Add Address (ADD ADDR) option (shown for |Pv4)

Due to the proliferation of NATs, it is reasonably likely that one
host may attenpt to advertise private addresses [14]. W do not wi sh
to bl anket prohibit this, since there may be cases where both hosts
have additional interfaces on the sane private network. W nust
ensure, however, that such advertisenments do not cause harm The
standard nechanismto create a new subflow (Section 3.2) contains a
32-bit token that uniquely identifies the connection to the receiving
host. |If the token is unknown, the host will return with a RST. In
the unlikely event that the token is known, subflow setup will
continue, but the MAC exchange nust occur for authentication. This
will fail, and will provide sufficient protection against two
unconnect ed hosts accidentally setting up a new subfl ow upon the
signal of a private address.

Ideally, we’'d like to ensure the ADD _ADDR and REMOVE_ADDR options are
sent reliably, and in order, to the other end. This is to ensure
that we do not unnecessarily cause an outage in the connection when
renove/ add addresses are processed in reverse order, and also to
ensure that all possible paths are used. W note, however, that
losing reliability and ordering it will not break the multipath
connections; they will just reduce the opportunity to open nultipath
paths and to survive different patterns of path fail ures.

Therefore, inplenenting reliability signals for these TCP options is

not necessary. In order to mininise the inpact of the |oss of these
options, however, it is RECOMMENDED t hat a sender should send these
options on all available subflows. |f these options need to be

received in-order, an inplenmentati on SHOULD only send one ADD_ADDK/
REMOVE_ADDR option per RTT, to mininmse the risk of msordering

When receiving an ADD_ADDR nessage with an Address ID already in use

Ford, et al. Expi res Septenber 15, 2011 [Page 32]

Internet-Draft Mul tipath TCP March 2011

for a live subflow wi thin the connection, the receiver SHOULD
silently ignore the ADD ADDR. |If the Address IDis not in use on a
live subflow, but is stored by the receiver, a new ADD ADDR SHOULD
take precedence and replace the stored address.

A host that receives an ADD ADDR but finds a connection setup to that
address is unsuccessful SHOULD NOT perform further connection
attenpts to this address for this connection. A sender that wants to
trigger a new incom ng connection attenpt on a previously advertised
address can therefore refresh ADD ADDR i nformation by sending the
option again.

During normal MPTCP operation, it is unlikely that there will be
sufficient TCP option space for ADD ADDR to be included along with
those for data sequence nunbering (Section 3.3.1). Therefore, it is
expected that an MPTCP inplenmentation will send the ADD ADDR option
on separate ACKs. As discussed earlier, however, an MPTCP

i mpl ementati on MUST NOT treat duplicate ACKs with MPTCP options as

i ndi cations of congestion [7], and an MPTCP i npl enentati on SHOULD NOT
send nore than two duplicate ACKs in a row for signalling purposes.

3.4.2. Renove Address

If, during the lifetine of an MPTCP connection, a previously-
announced address becones invalid (e.g. if the interface di sappears),
the affected host SHOULD announce this so that the peer can renove
subflows related to this address.

This is achieved through the Renpove Address (REMOVE ADDR) option
(Figure 13), which will renove a previously-added address (or |ist of
addresses) froma connection and term nate any subflows currently
usi ng that address.

For security purposes, if a host receives a REMOVE ADDR option, it
must ensure the affected path(s) are no longer in use before it
instigates closure. The receipt of REMOVE ADDR SHOULD first trigger
the sending of a TCP Keepalive [15] on the path, and if a response is
received the path is not renmoved. Typical TCP validity tests on the
subflow (e.g. ensuring sequence and ack nunbers are correct) MJIST

al so be undertaken.

The sending and receipt (if no keepalive response was received) of
this nessage SHOULD trigger the sending of RSTs by both hosts on the
af fected subflow(s) (if possible), as a courtesy to cl eaning up

m ddl ebox state, before cleaning up any |local state.

Address renmoval is undertaken by ID, so as to permit the use of NATs
and ot her m ddl eboxes that rewite source addresses. |f there is no

Ford, et al. Expi res Septenber 15, 2011 [Page 33]

Internet-Draft Mul tipath TCP March 2011

address at the requested ID, the receiver will silently ignore the
request .

A subflow that is still functioning MJST be closed with a FIN
exchange as in regular TCP - for nore infornmation, see Section 3.3.3.

1 2 3
01234567890123456789012345678901

Fi gure 13: Renove Address (REMOVE _ADDR) option
3.5. Fall back

At the start of an MPTCP connection (i.e. the first subflow), it is
important to ensure that the path is fully MPTCP-capabl e and the
necessary TCP options can reach each host. The handshake as
described in Section 3.1 will fall back to regular TCP if either of
the SYN nessages do not have the MPTCP options: this is the same, and
desired, behaviour in the case where a host is not MPTCP capable, or
the path does not support the MPTCP options. Wen attenpting to join
an existing MPTCP connection (Section 3.2), if a path is not MPTCP
capable, the TCP options will not get through on the SYNs and the
subflow will be cl osed.

There is, however, another corner case which should be addressed.
That is one of MPTCP options getting through on the SYN, but not on
regul ar packets. This can be resolved if the subflowis the first
subflow, and thus all data in flight is contiguous, using the

foll owi ng rul es.

A sender MJST include a DSS option with Data Sequence Mapping in
every segnent until one of the sent segnents has been acknow edged
with a DSS option containing a Data ACK. Upon reception of the
acknow edgenent, the sender has the confirmation that the DSS option
passes in both directions and may choose to send fewer DSS options
than once per segnent.

If, however, an ACK is received for data (not just for the SYN)
without a Data ACK in a DSS option, the sender determines the path is

not MPTCP capable. 1In the case of this occurring on an additiona
subflow (i.e. one started with MP._JAON), the host MIST close the
subflow with an RST. In the case of the first subflow (i.e. that

started with MP_CAPABLE), it MJST drop out of a MPTCP node back to
regular TCP. The sender will send one final Data Sequence Mappi ng,
with the Iength value of 0 indicating an infinite nmapping (in case

Ford, et al. Expi res Septenber 15, 2011 [Page 34]

Internet-Draft Mul tipath TCP March 2011

the path drops options in one direction only), and then revert to
sendi ng data on the single subflow wi thout any MPTCP opti ons.

Note that this rule essentially prohibits the sending of data on the
third packet of a MP_CAPABLE or MP_JO N handshake, since both that
option and a DSS cannot fit in TCP option space. |If the initiator is
to send first, another segment nust be sent that contains the data
and DSS. Note also that an additional subflow cannot be used unti
the initial path has been verified as MPTCP-capabl e.

These rul es should cover all cases where such a failure could happen
whether it’s on the forward or reverse path, and whether the server
or the client first sends data. |If |ost options on data packets
occur on any other subflow apart fromthe the initial subflow it
shoul d be treated as a standard path failure. The data would not be
DATA ACKed (since there is no mapping for the data), and the subfl ow
can be closed with an RST. (Note that these rules do not apply if an
infinite mapping is included fromthe start - in which case, each end
will send DSS options declaring the infinite nmapping.)

The case described above is a specialised case of fallback. Mre
generally, fallback to regular TCP can becone necessary at any point
during a connection if a non-MPTCP-aware m ddl ebox changes the data
stream

As described in Section 3.3, each portion of data for which there is
a mapping is protected by a checksum This mechanismis used to
detect if middl eboxes have nmade any adjustnents to the payl oad
(added, renoved, or changed data). A checksumwill fail if the data
has been changed in any way. This will also detect if the length of
data on the subflow is increased or decreased, and this nmeans the
Dat a Sequence Mapping is no longer valid. The sender no | onger knows
what subfl ow | evel sequence nunber the receiver is genuinely
operating at (the mddl ebox will be faking ACKs in return), and
cannot signal any further mappings. Furthernore, in addition to the
possibility of payload nodifications that are valid at the
application layer, there is the possibility that fal se-positives
could be hit across MPTCP segnment boundaries, corrupting the data.
Therefore, all data fromthe start of the segnent that failed the
checksum onwards is not trustworthy.

When nultiple subflows are in use, the data in-flight on a subfl ow
will likely involve data that is not contiguously part of the
connection-level stream since segnents will be spread across the
multiple subflows. Due to the problens identified above, it is not
possi ble to determ ne what the adjustnent has done to the data
(notably, any changes to the subfl ow sequence nunbering). Therefore,
it is not possible to recover the subflow, and the affected subfl ow

Ford, et al. Expi res Septenber 15, 2011 [Page 35]

Internet-Draft Mul tipath TCP March 2011

nmust be inmrediately closed with an RST, featuring a MP_FAIL option
(Figure 14), which defines the Data Sequence Number at the start of
the segnment (defined by the Data Sequence Mapping) which had the
checksum fail ure

1 2 3

01234567890123456789012345678901

B B Fomm oo - o e e e e e e e e e oo +

| Ki nd | Lengt h=12 | Subt ype| (reserved) |

Fom e e e oo Fom e e e oo Fom oo - Fom e e e e oo +
| Dat a Sequence Nunber (8 octets)

o o m eee oo +
Dat a Sequence Nunber (continued)

B +

Figure 14: Fall back (MP_FAIL) option

Failed data will not be DATA ACKed and so will be re-transmitted on
ot her subflows (Section 3.3.6).

A special case is when there is a single subflow and it fails with a
checksum error. Here, MPTCP should be able to recover and continue
sending data. There are two possi bl e nechanisns to support this.
The first and sinplest is to establish a new subflow as part of the
same MPTCP connection, and then close the original one with a RST.
Since it is known that the path nmay be conprom sed, it is not
desirable to use MPTCP' s segnentation on this path any |longer. The
new subflow will begin and will signal an infinite mapping (indicated
by length=0 in the Data Sequence Mppi ng option, Section 3.3) from
the data sequence nunber of the segnment that failed the checksum
This connection will then continue to appear as a regular TCP
session, and a m ddl ebox may change the payl oad wi t hout causing

uni ntentional harm

An optimisation is possible, however. |If it is known that al
unacknow edged data in flight is contiguous, an infinite mapping
could be applied to the subflow without the need to close it first,
and essentially turn off all further MPTCP signalling. In this case,
if areceiver identifies a checksumfailure when there is only one
path, it will send back an MP_FAIL option on the subflowlevel ACK
The sender will receive this, and if all unacknow edged data in
flight is contiguous, will signal an infinite mapping (if the data is
not contiguous, the sender MJST send an RST). This infinite mapping
will be a DSS option (Section 3.3) on the first new packet,

contai ning a Data Sequence Mapping that acts retroactively, referring
to the start of the subfl ow sequence nunber of the |last segnent that
was known to be delivered intact. Fromthat point onwards data can

Ford, et al. Expi res Septenber 15, 2011 [Page 36]

Internet-Draft Mul tipath TCP March 2011

3.

6

.7,

be altered by a mniddl ebox without affecting MPTCP, as the data stream
is equivalent to a regular, |egacy TCP session

After a sender signals an infinite mapping it MJST only use subfl ow
ACKs to clear its send buffer. This is because Data ACKs nay becone
m sal i gned with the subfl ow ACKs when m ddl eboxes insert or delete
data. The receive SHOULD stop generating Data ACKs after it receives
an infinite mapping.

When a connection is in fallback node, only one subflow can send data
at atime. Oherw se, the receiver would not know how to reorder the
data. However, subflows can be opened and cl osed as necessary, as
long as a single one is active at any point.

It should be enphasised that we are not attenpting to prevent the use
of mi ddl eboxes that want to adjust the payload. An MPTCP-aware

m ddl ebox to provide such functionality could be designed that woul d
re-wite checksuns if needed, and additionally would be able to parse
the data sequence mappi ngs, and thus not hit false positives though
not knowi ng where data boundaries lie.

Error Handling

In addition to the fallback nechani sm as descri bed above, the
standard cl asses of TCP errors may need to be handled in an MPTCP-
specific way. Note that changing semantics - such as the rel evance
of an RST - are covered in Section 4. Were possible, we do not want
to deviate fromregular TCP behavi our

The following Iist covers possible errors and the appropriate MPTCP
behavi our:

o Unknown token in MP_JO N (or MAC failure in MP_JO N ACK, or
m ssing MP_JO N in SYN ACK response): send RST (anal ogous to TCP's
behavi our on an unknown port)

o DSN out of Wndow (during normal operation): drop the data, do not
send Data ACKs.

0 Renove request for unknown address ID; silently ignore
Heuristics

There are a nunber of heuristics that are needed for performance or
depl oynent but which are not required for protocol correctness. In
this section we detail such heuristics. Note that discussion of
buffering and certain sender and receiver wi ndow behavi ours are
presented in Section 3.3.4 and Section 3.3.5, as well as

Ford, et al. Expi res Septenber 15, 2011 [Page 37]

Internet-Draft Mul tipath TCP March 2011

retransnission in Section 3.3.6.
3.7.1. Port Usage

Under typical operation an MPTCP inpl ementati on SHOULD use the sane
ports as already in use. |In other words, the destination port of a
SYN containing a MP_JO N option SHOULD be the same as the remote port
of the first subflow in the connection. The local port for such SYNs
SHOULD al so be the same as for the first subflow (and as such, an

i mpl ement ati on SHOULD reserve epheneral ports across all local IP
addresses), although there may be cases where this is infeasible.
This strategy is intended to naxim ze the probability of the SYN
being pernmitted by a firewall or NAT at the recipient and to avoid
confusing any network nonitoring software.

There may al so be cases, however, where the passive opener w shes to
signal to the other host that a specific port should be used, and
this facility is provided in the Add Address option as docunented in
Section 3.4.1. It is therefore feasible to allow nmultiple subflows
bet ween the sanme two addresses but using different port pairs, and
such a facility could be used to allow | oad bal ancing within the

net wor k based on 5-tuples (e.g. sone ECMP inpl enentations).

3.7.2. Delayed Subflow Start

Many TCP connections are short-lived and consist only of a few
segnments, and so the overheads of using MPTCP outwei gh any benefits.
A heuristic is required, therefore, to decide when to start using
addi ti onal subflows in an MPTCP connection. W expect that
experience gathered from depl oynents will provide further guidance on
this, and will be affected by particular application characteristics
(which are likely to change over tinme). However, a suggested
gener al - purpose heuristic that an inplenentati on MAY choose to enpl oy
is as follows. Results from experinental deploynents are needed in
order to verify the correctness of this proposal

If a host has data buffered for its peer (which inplies that the
application has received a request for data), the host opens one
subflow for each initial window s worth of data that is buffered.

Consi deration should also be given to limting the rate of addi ng new
subflows, as well as limting the total nunber of subflows open for a
particul ar connection. A host may choose to vary these val ues based
on its load or know edge of traffic and path characteristics.

Note that this heuristic alone is probably insufficient. Traffic for

many common applications, such as downl oads, is highly asymmetric and
the host that is multihoned may well be the client which will never

Ford, et al. Expi res Septenber 15, 2011 [Page 38]

Internet-Draft Mul tipath TCP March 2011

fill its buffers, and thus never use MPTCP. Advanced APlIs that allow
an application to signal its traffic requirements would aid in these
deci si ons.

An additional tine-based heuristic could be applied, opening

addi tional subflows after a given period of time has passed. This
woul d al |l evi ate the above issue, and also provide resilience for |ow
bandwi dth but long-1lived applications.

This section has shown sone of the considerations than an inplenenter
shoul d gi ve when devel opi ng MPTCP heuristics, but is not intended to
be prescriptive.

3.7.3. Failure Handling

Requirenents for MPTCP' s handling of unexpected signals have been
given in Section 3.6. There are other failure cases, however, where
a hosts can choose appropriate behavi our.

For exanple, Section 3.1 suggests that a host should fall back to
trying regular TCP SYNs after several failures of MPTCP SYNs. A host
may keep a systemw de cache of such information, so that it can back
off fromusing MPTCP, firstly for that particul ar destination host,
and eventually on a whole interface, if MPTCP connections continue
failing.

Anot her failure could occur when the MP_JO N handshake fails.

Section 3.6 specifies that an incorrect handshake MJST | ead to the
subfl ow being closed with a RST. A host operating an active

i ntrusion detection systemmy choose to start blocking MP_JO N
packets fromthe source host if nmultiple failed MP_JON attenpts are
seen. Fromthe connection initiator’s point of view, if an MP_JON
fails, it SHOULD NOT attenpt to connect to the sanme | P address during
the lifetime of the connection, unless the other host refreshes the
informati on with a REMOVE ADDR and then an ADD ADDR for the sane
address.

In addition, an inplenentation nay | earn over a number of connections
that certain interfaces or destination addresses consistently fai

and nmay default to not trying to use MPTCP for these. Behaviour
could also be learnt for particularly badly perform ng subflows or
subflows that regularly fail during use, in order to temporarily
choose not to use these paths.

4, Semantic |ssues

In order to support nultipath operation, the semantics of sone TCP

Ford, et al. Expi res Septenber 15, 2011 [Page 39]

Internet-Draft Mul tipath TCP March 2011

components have changed. To aid clarity, this section collects these
semanti ¢ changes as a reference

Sequence Nunber: The (in-header) TCP sequence nunber is specific to
the subflow. To allow the receiver to reorder application data,
an additional data-level sequence space is used. |In this data-
| evel sequence space, the initial SYN and the final DATA FIN
occupy one octet of sequence space. There is an explicit mapping
of data sequence space to subfl ow sequence space, which is
signal l ed through TCP options in data packets.

ACK: The ACK field in the TCP header acknow edges only the subfl ow
sequence nunber, not the data-l|evel sequence space.
| mpl enent ati ons SHOULD NOT attenpt to infer a data-Ieve
acknow edgenent fromthe subflow ACKs. Instead an explicit data-
| evel ACK is used. This avoids possible deadl ock scenarios when a
non- TCP- awar e mi ddl ebox pro-actively ACKs at the subflow | evel
and separates subflow and connection-Ilevel processing at an end
host .

Duplicate ACK: A duplicate ACK that includes MPTCP signalling MJST
NOT be treated as a signal of congestion. To avoid any non- MPTCP-
aware entities also nistakenly seeing duplicate ACKs in such
cases, MPTCP SHOULD NOT send nore than two duplicate ACKs
contai ning MPTCP signals in a row.

Recei ve Wndow. The receive window in the TCP header indicates the
anount of free buffer space for the whole data-1level connection
(as opposed to for this subflow) that is available at the
receiver. This is the sane semantics as regular TCP, but to
mai ntain these semantics the receive w ndow nust be interpreted at
the sender as relative to the sequence nunber given in the
DATA ACK rather than the subflow ACK in the TCP header. In this
way the original flow control role is preserved. Note that sone
m ddl eboxes may change the receive wi ndow, and so a host nust use
t he maxi num val ue of those recently seen on the constituent
subflows for the connection-Ilevel receive window, and al so need to
mai ntain a subfl ow | evel w ndow for subflowlevel processing.

FIN. The FINflag in the TCP header applies only to the subflowit
is sent on, not to the whole connection. For connection-level FIN
semantics, the DATA FIN option is used.

RST: The RST flag in the TCP header applies only to the subflow it

is sent on, not to the whol e connection. A connection is
considered reset if a RST is received on every subfl ow.

Ford, et al. Expi res Septenber 15, 2011 [Page 40]

Internet-Draft Mul tipath TCP March 2011

5.

Address List: Address list managenent (i.e. know edge of the |oca
and renote hosts’ lists of available |IP addresses) is handled on a
per-connection basis (as opposed to per-subflow per host, or per
pai r of conmunicating hosts). This pernmits the application of
per-connection |ocal policy. Adding an address to one connection
(either explicitly through an Add Address message, or inplicitly
through a Join) has no inplication for other connections between
the sane pair of hosts.

5-tuple: The 5-tuple (protocol, local address, |ocal port, renote
address, renote port) presented by kernel APlIs to the application
layer in a non-nultipath-aware application is that of the first
subflow, even if the subflow has since been closed and renoved
fromthe connection. This decision, and other related APl issues,
are discussed in nore detail in [5].

Security Considerations

As identified in [16], the addition of multipath capability to TCP
will bring with it a nunber of new classes of threat. In order to
prevent these, [3] presents a set of requirenents for a security
solution for MPTCP. The fundanental goal is for the security of
MPTCP to be "no worse" than regular TCP today, and the key security
requirenents are

0 Provide a nmechanismto confirmthat the parties in a subflow
handshake are the sane as in the original connection setup

o Provide verification that the peer can receive traffic at a new
address before using it as part of a connection.

o Provide replay protection, i.e. ensure that a request to add/
remove a subflowis ’'fresh’

In order to achieve these goals, MPTCP includes a hash-based
handshake al gorithm docunented in Section 3.1 and Section 3. 2.

The security of the MPTCP connection hangs on the use of keys that
are shared once at the start of the first subflow, and never again in
the clear. To ease denultiplexing whilst not giving away any
cryptographic material, future subflows use a truncated SHA-1 hash of
this key as the connection identification "token". The keys are
combi ned and used as keys in a MAC, and this should verify that the
parties in the handshake are the same as in the original connection
setup. It also provides verification that the peer can receive
traffic at this new address. Replay attacks would still be possible
when only keys are used, and therefore the handshakes use singl e-use

Ford, et al. Expi res Septenber 15, 2011 [Page 41]

Internet-Draft Mul tipath TCP March 2011

random nunbers (nonces) at both ends - this ensures the MAC will

never be the sane on two handshakes. The use of crypto capability
bits in the initial connection handshake to negoti ate use of a
particular algorithmw Il allow the depl oynent of additional crypto
mechani snms in the future. Note that this would be susceptible to

bi d-down attacks only if the attacker was on-path (and thus woul d be
able to nodify the data anyway). The security mechani sm presented in
this draft should therefore protect against all forms of flooding and
hi j acki ng attacks suggested in [16].

6. Interactions with M ddl eboxes

Mul tipath TCP was designed to be deployable in the present world.
Its design takes into account "reasonabl e" existing m ddl ebox
behaviour. In this section we outline a few representative

m ddl ebox-rel ated failure scenarios and show how nulti path TCP
handl es them Next, we list the design decisions nmultipath has nade
to acconodate the different m ddl eboxes.

A primary concern is our use of a new TCP option. Mdst m ddl eboxes
shoul d just forward packets with new options unchanged, yet there are
sonme that don't. These we expect will either strip options and pass
the data, drop packets with new options, copy the sanme option into
mul tiple segnents (e.g. when doing segnentation) or drop options
during segment coal escing.

MPTCP uses a single new TCP option "Kind", and all nessage types are
defined by "subtype" values (see Section 8). This should reduce the
chances of only sone types of MPTCP options being passed, and instead
the key differing characteristics are different paths, and the
presence of the SYN fl ag.

MPTCP SYN packets on the first subflow of a connection contain the
MP_CAPABLE option (Section 3.1). |If this is dropped, MPTCP SHOULD
fall back to regular TCP. |If packets with the MP_JO N option
(Section 3.2) are dropped, the paths will sinply not be used.

If a mddl ebox strips options but otherw se passes the packets
unchanged, MPTCP will behave safely. |If an MP_CAPABLE option is
dropped on either the outgoing or the return path, the initiating
host can fall back to regular TCP, as illustred in Figure 15 and
di scussed in Section 3.1

Subfl ow SYNs contain the MP_JON option. If this option is stripped
on the outgoing path the SYN will appear to be a regular SYN to host
B. Depending on whether there is a listening socket on the target
port, host Bwll reply either with SYN ACK or RST (subflow

Ford, et al. Expi res Septenber 15, 2011 [Page 42]

Internet-Draft Mul tipath TCP March 2011

connection fails). Wen host A receives the SYNACK it sends a RST
because the SYN ACK does not contain the MP_JO N option and its
token. Either way, the subflow setup fails, but otherw se does not
affect the MPTCP connection as a whol e.

Host A Host B
| M ddl ebox M |
I I I
| SYN(MP_CAPABLE) | SYN |
| o I RREEEEEEEEE, >|
| SYN ACK |
| <o |

Host A Host B
I SYN(MP_CAPABLE) |
T e T 7
I SYN ACK I SYN ACK(MP_CAPABLE) I
b) Nb CAPABLE opi1on shiiphed on returm path

Fi gure 15: Connection Setup with M ddl eboxes that Strip Options from
Packet s

We now examine data flow with MPTCP, assuming the flowis correctly
setup, which inplies the options in the SYN packets were all owed
through by the rel evant m ddl eboxes. |f options are allowed through
and there is no resegnmentation or coal escing to TCP segnents,

mul tipath TCP fl ows can proceed w thout problens.

The case when options get stripped on data packets has been di scussed
in the Fallback section. |If a fraction of options are stripped,
behavi our is not determnistic. |If sone Data Sequence Mappings are

| ost, the connection can continue so | ong as mappi ngs exist for the
subflowlevel data (e.g. if multiple maps have been sent that
reinforce each other). |If some subflowlevel space is |eft unnmapped,
however, the subflowis treated as broken and is cl osed, as discussed
in Section 3.3. MPTCP should survive with a |oss of sone Data ACKs,
but perfornmance will degrade as the fraction of stripped options

i ncreases. W do not expect such cases to appear in practice,

t hough: nost m ddl eboxes will either strip all options or let them
al | through.

We end this section with a |ist of m ddl ebox classes, their behavi our

and the elenents in the MPTCP design that all ow operation through
such mi ddl eboxes. |ssues surroundi ng droppi ng packets with options

Ford, et al. Expi res Septenber 15, 2011 [Page 43]

Internet-Draft Mul tipath TCP March 2011

or stripping options were di scussed above, and are not included here:

(0]

Ford,

NAT [17]: Network Address (and Port) Translators change the source
address (and often source port) of packets. This neans that a
host will not know its public-facing address for signalling in
MPTCP. Therefore, MPTCP pernmits inplicit address addition via the
MP_JO N option, and the handshake mechani sm ensures that
connection attenpts to private addresses [14] do not cause
problenms. Explicit address renoval is undertaken by an |ID nunber
to allow no know edge of the source address.

Per f or mance Enhancing Proxies (PEPs) [18]: might pro-actively ACK
data to increase performance. Problems will occur if a PEP ACKs
data and then fails before sending it on to the receiver, of if
the receiver is nobile and noves away before proactively ACKed

data is forwarded on. |f subflow ACKs were used to control send
buffering, the data could be | ost and never be retransnmitted, thus
causing the subflow to permanently stall. MPTCP therefore uses

the DATA ACK to nake progress when one of its subflows fails in
this way. This is why MPTCP does not use subflow ACKs to infer
connection | evel ACKs.

Traffic Nornmalizers [19]: may not allow holes in sequence nunbers,
and nay cache packets and retransnit the sane data. MPTCP | ooks
like standard TCP on the wire, and will not retransmit different
data on the sane subfl ow sequence numnber.

Firewalls [20]: might performinitial sequence nunber

randoni zati on on TCP connections. MPTCP uses relative sequence
nunbers in data sequence mapping to cope with this. Like NATs,
firewalls will not pernmit many inconing connections, so MPTCP
supports address signalling (ADD_ADDR) so that a multi-addressed
host can invite its peer behind the firewall/NAT to connect out to
its additional interface.

Intrusion Detection Systems: |ook out for traffic patterns and
content that could threaten a network. Miltipath will mean that
such data is potentially spread, so it is nmore difficult for an
IDS to anal yse the whole traffic, and potentially increases the
risk of false positives. However, for an MPTCP-aware |DS, tokens
can be read by such systens to correlate nultiple subflows and re-
assenbl e for anal ysis.

Application | evel mddl eboxes: such as content-aware firewalls may
alter the payload within a subflow, such as re-witing URIs in
HTTP traffic. MPTCP will detect these using the checksum and
close the affected subflow(s), if there are other subflows that
can be used. If all subflows are affected nmultipath will fallback

et al. Expi res Septenber 15, 2011 [Page 44]

Internet-Draft Mul tipath TCP March 2011

to TCP, allow ng such m ddl eboxes to change the payl oad. MPTCP-
awar e m ddl eboxes should be able to adjust the payl oad and MPTCP
metadata in order not to break the connection.

In addition, all classes of m ddl eboxes may affect TCP traffic in the
foll owi ng ways:

0o TCP Options: may be renoved, or packets wi th unknown options

dropped, by many cl asses of m ddl eboxes. It is intended that the
initial SYN exchange, with a TCP Option, will be sufficient to
identify the path capabilities. |If such a packet does not get

t hrough, MPTCP will end up falling back to regular TCP.

0 Segnentation/Coal escing (e.g. TCP segnmentation offloading): night
copy options between packets and nmight strip sonme options.
MPTCP' s data sequence napping includes the relative subflow
sequence nunber instead of using the sequence nunber in the
segment. In this way, the mapping is independent of the packets
that carry it.

0 The Receive Wndow. may be shrunk by some m ddl eboxes at the
subflow level. MPTCP will use the maxi mum w ndow at data-Ievel,
but will also obey subflow specific w ndows.

7. Acknow edgenent s

The aut hors are supported by Tril ogy
(http://ww.trilogy-project.org), a research project (I1CT-216372)
partially funded by the European Conmunity under its Seventh
Framework Program The views expressed here are those of the

aut hor(s) only. The European Conmission is not |iable for any use
that may be made of the information in this docunent.

The aut hors gratefully acknow edge significant input into this
docunent from Sebastien Barre, Christoph Paasch and Andrew M:Donal d.

The aut hors al so wish to acknow edge reviews and contri butions from
Iljitsch van Beijnum Lars Eggert, Marcel o Bagnul o, Robert Hancock,
Pasi Sarol ahti, Toby Mncaster, Philip Eardley, Sergio Lenbo,

Law ence Conroy, Yoshifum N shida and Bob Bri scoe.

8. | ANA Consi derations
This docunment will nake a request to IANA to allocate a new TCP

option value for MPTCP. This value will be the value of the "Kind"
field seen in all MPTCP options in this docunent.

Ford, et al. Expi res Septenber 15, 2011 [Page 45]

Internet-Draft Mul tipath TCP March 2011

This docunment will also request | ANA operates a registry for MPTCP
option subtype values. The values as defined by this specification
are as follows:

S o m e e e e e e eeaa o o e oo Fom e e +
[Synbol [Nare [Ref | Val ue |
o m e o T [R, +
| MP_CAPABLE | Mul ti path Capabl e | Section 3.1 | 0x0 |
| MP_JON | Joi n Connection | Section 3.2 | O0Ox1 |
[DSS | Data Sequence Signal (Data | Section 3.3 | O0x2 |
| | ACK and Data Sequence | | |
I I Mappi ng) I I I
[ADD_ADDR | Add Address | Section 3.4.1 | O0x3 |
| REMOVE_ADDR | Renmove Address | Section 3.4.2 | 0x4 |
| MP_PRIO | Change Subflow Priority | Section 3.3.8 | O0x5 |
[MP_FAI L [Fal | back | Section 3.5 | O0x6 |
S o m e e e e e e eeaa o o e oo Fom e e +

Table 1: MPTCP Option Subtypes

Thi s docunment al so requests that | ANA keeps a registry of
crypt ogr aphi ¢ handshake al gorithns based on the flags in MP_CAPABLE
(Section 3.1). This docunent specifies only one algorithm

oo - Fommemeeeas T +
| Flags | Algorithm | Docunent |
Fom e - Fom e e e e - - o e e e e e e e e e e m o +
| Ox1 | HVAC-SHA1 | This docunent, Section 3.2 |
R N S +

Tabl e 2: MPTCP Handshake Al gorithns

9. References
9.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirenent
Level s", BCP 14, RFC 2119, March 1997.

9.2. Infornmative References

[2] Postel, J., "Transm ssion Control Protocol", STD 7, RFC 793,
Sept enber 1981.

[3] Ford, A, Raiciu, C, Handley, M, Barre, S., and J. lyengar,

"Architectural Guidelines for Miltipath TCP Devel opnent",
draft-ietf-nptcp-architecture-05 (work in progress),

Ford, et al. Expi res Septenber 15, 2011 [Page 46]

Internet-Draft Mul tipath TCP March 2011

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

January 2011.

Raiciu, C, Handley, M, and D. Wschi k, "Coupled Congestion
Control for Miltipath Transport Protocols",
draft-ietf-nptcp-congestion-01 (work in progress),

January 2011.

Scharf, M and A Ford, "MPTCP Application Interface
Consi derations”, draft-ietf-nptcp-api-00 (work in progress),
Novenber 2010.

Mat his, M, Mhdavi, J., Floyd, S., and A Romanow, "TCP
Sel ective Acknow edgnent Options", RFC 2018, Cctober 1996.

Al man, M, Paxson, V., and W Stevens, "TCP Congestion
Control ", RFC 2581, April 1999.

Gont, F., "Security Assessnment of the Transm ssion Control
Protocol (TCP)", draft-ietf-tcpmtcp-security-02 (work in
progress), January 2011.

Eastl ake, D. and T. Hansen, "US Secure Hash Al gorithns (SHA and
HVAC- SHA) ", RFC 4634, July 2006.

Eastl ake, D., Schiller, J., and S. Crocker, "Randommess
Requirements for Security", BCP 106, RFC 4086, June 2005.

Krawczyk, H., Bellare, M, and R Canetti, "HMAC. Keyed-Hashing
for Message Authentication", RFC 2104, February 1997.

Jacobson, V., Braden, B., and D. Bornan, "TCP Extensions for
H gh Performance", RFC 1323, May 1992.

Ramakri shnan, K., Floyd, S., and D. Black, "The Addition of
Explicit Congestion Notification (ECN) to IP", RFC 3168,
Sept enber 2001.

Rekhter, Y., Mskowitz, R, Karrenberg, D., Goot, G, and E.
Lear, "Address Allocation for Private Internets", BCP 5,
RFC 1918, February 1996.

Braden, R, "Requirenents for Internet Hosts - Conmuni cation
Layers", STD 3, RFC 1122, Cctober 1989.

Bagnul o, M, "Threat Analysis for TCP Extensions for Milti-path
Qperation with Miultiple Addresses”, draft-ietf-nptcp-threat-08
(work in progress), January 2011.

Ford, et al. Expi res Septenber 15, 2011 [Page 47]

Internet-Draft Mul tipath TCP March 2011

[17] Srisuresh, P. and K Egevang, "Traditional |P Network Address
Translator (Traditional NAT)", RFC 3022, January 2001

[18] Border, J., Kojo, M, Giner, J., Mntenegro, G, and Z
Shel by, "Perfornmance Enhancing Proxies Intended to Mtigate
Li nk- Rel at ed Degradations", RFC 3135, June 2001

[19] Handley, M, Paxson, V., and C. Kreibich, "Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End
Prot ocol Semantics", Usenix Security 2001, 2001, <http://
WWw. useni X. or g/ event s/ sec01/ ful | _paper s/ handl ey/ handl ey. pdf >.

[20] Freed, N, "Behavior of and Requirements for Internet
Firewal | s", RFC 2979, Cctober 2000.

Appendi x A, Notes on use of TCP Options

The TCP option space is linmted due to the length of the Data O f set
field in the TCP header (4 bits), which defines the TCP header |ength
in 32-bit words. Wth the standard TCP header being 20 bytes, this

| eaves a maxi num of 40 bytes for options, and many of these may

al ready be used by options such as tinmestanp and SACK

We have perforned a brief study on the commonly used TCP options in
SYN, data, and pure ACK packets, and found that there is enough room
to fit all the options we propose using in this draft.

SYN packets typically include MsSS (4 bytes), w ndow scale (3 bytes),
SACK permitted (2 bytes) and tinmestanp (10 bytes) options. Together
these sumto 19 bytes. Sone operating systems appear to pad each
option up to a word boundary, thus using 24 bytes (a brief survey
suggests Wndows XP and Mac OS X do this, whereas Linux does not).
Optinmistically, therefore, we have 21 bytes spare, or 16 if it has to
be word-aligned. 1In either case, however, the SYN versions of

Mul tipath Capable (12 bytes) and Join (12 or 16 bytes) options wll
fit in this remaining space.

TCP data packets typically carry tinmestanp options in every packet,
taking 10 bytes (or 12 with padding). That |eaves 30 bytes (or 28,
if word-aligned). The Data Sequence Signal (DSS) option varies in

| engt h dependi ng on whether the Data Sequence Mapping and DATA ACK
are included, and whether the sequence numbers in use are 4 or 8
octets. The maxi num size of the DSS option is 28 bytes, so even that
will fit in the avail able space. But unless a connection is both bi-
directional and high-bandwidth, it is unlikely that all that option
space will be required on each DSS opti on.

Ford, et al. Expi res Septenber 15, 2011 [Page 48]

Internet-Draft Mul tipath TCP March 2011

It is not necessary to include the Data Sequence Mappi ng and DATA ACK
in each packet, and in many cases it may be possible to alternate
their presence (so long as the mapping covers the data being sent in
the follow ng packet). GQher options include: alternating between 4
and 8 byte sequence nunbers in each option; and sendi ng the DATA ACK
on a duplicate subflowlevel ACK (although note that this nust not be
taken as a signal of congestion).

On subfl ow and connection setup, an MPTCP option is also set on the
third packet (an ACK). These are 20 bytes (for Miltipath Capable)
and 24 bytes (for Join) - both of which will fit in the available
option space.

Pure ACKs in TCP typically contain only tinestanps (10B). Here

mul tipath TCP typically needs to encode only the DATA ACK (maxi mum of
12 octets). Cccasionally ACKs will contain SACK i nformation
Dependi ng on the nunber of |ost packets, SACK may utilize the entire
option space. |f a DATA ACK had to be included, then it is probably
necessary to reduce the nunber of SACK bl ocks to acconodate the DATA
ACK. However, the presence of the DATA ACK is unlikely to be
necessary in a case where SACK is in use, since until at |east some
of the SACK bl ocks have been retransmtted, the cunul ative data-I|eve
ACK wi Il not be noving forward (or if it does, due to retransm ssions
on another path, then that path can also be used to transnit the new
DATA ACK) .

The ADD ADDR option can be between 8 and 22 bytes, dependi ng on
whether IPv4 or IPv6 is used, and whether the port nunber is present
or not. It is unlikely that such signalling would fit in a data
packet (although if there is space, it is fine to include it). It is
reconmended to use duplicate ACKs with no other payload or options in
order to transmt these rare signals. Note this is the reason for
mandati ng that duplicate ACKs with MPTCP options are not taken as a
signal of congestion

Finally, there are issues with reliable delivery of options. As
options can al so be sent on pure ACKs, these are not reliably sent.
This is not an issue for DATA ACK due to their cumul ative nature, but
may be an issue for ADD ADDR/ REMOVE ADDR options. Here, it is
recommended to send these options redundantly (whether on nultiple
pat hs, or on the sane path on a nunber of ACKs - but interspersed
with data in order to avoid interpretation as congestion). The cases
where options are stripped by m ddl eboxes are discussed in Section 6.

Appendi x B. Control Bl ocks

Conceptual |y, an MPTCP connection can be represented as an MPTCP

Ford, et al. Expi res Septenber 15, 2011 [Page 49]

Internet-Draft Mul tipath TCP March 2011

control block that contains several variables that track the progress
and the state of the MPTCP connection and a set of |inked TCP control
bl ocks that correspond to the subflows that have been establi shed.

RFC793 [2] specifies several state variables. Wenever possible, we
reuse the sane terninology as RFC793 to describe the state variabl es
that are maintained by MPTCP

B. 1. MPTCP Control Bl ock

The MPTCP control block contains the follow ng variabl e per-
connecti on.

B.1.1. Authentication and Met adata

Local . Token (32 bits): This is the token chosen by the | ocal host on
this MPTCP connection. The token MJUST be uni que anong al
establ i shed MPTCP connections, generated fromthe |ocal key.

Local . Key (64 bits): This is the key sent by the local host on this
MPTCP connecti on

Renot e. Token (32 bits): This is the token chosen by the renote host
on this MPTCP connection, generated fromthe renote key.

Renote. Key (64 bits): This is the key chosen by the renpote host on
this MPTCP connection

MPTCP. Checksum (flag): This flag is set to true if at |east one of
the hosts has set the C bit the MP_CAPABLE opti ons exchanged
during connection establishnment, and is set to fal se otherwi se.
If this flag is set, the checksum nust be conputed in all DSS
options.

B.1.2. Sending Side

SND. UNA (64 bits): This is the Data Sequence Nunber of the next byte
to be acknow edged, at the MPTCP connection level. This variable
i s updated upon reception of a DSS option containing a DATA ACK.

SND. NXT (64 bits): This is the Data Sequence Nunmber of the next byte
to be sent. SND.NXT is used to determ ne the value of the DSN in
t he DSS option.

SND. WND (32 bits with RFC1323, 16 bits without): This is the sending
wi ndow. MPTCP nmi ntains the sendi ng wi ndow at the MPTCP
connection level and the sane wi ndow is shared by all subflows.

Al'l subflows use the MPTCP connection | evel SND.VWND to conpute the

Ford, et al. Expi res Septenber 15, 2011 [Page 50]

Internet-Draft Mul tipath TCP March 2011

SEQ WND val ue which is sent in each transmtted segnent.
B.1.3. Receiving Side

RCV. NXT (64 bits): This is the Data Sequence Nunber of the next byte
whi ch is expected on the MPTCP connection. This state variable is
nmodi fi ed upon reception of in-order data. The value of RCV.NXT is
used to specify the DATA ACK which is sent in the DSS option on
all subfl ows.

RCV. WND (32bits with RFC1323, 16 bits otherwise): This is the
connection-| evel receive wi ndow, which is the nmaxi nrum of the
RCV.WND on all the subflows.

B.2. TCP Control Bl ocks

The MPTCP control block also contains a list of the TCP control
bl ocks that are associated to the MPTCP connecti on.

Note that the TCP control block on the TCP subfl ows does not contain
the RCV. WND and SND. WND state vari abl es as these are nmi ntai ned at
t he MPTCP connection | evel and not at the subflow | evel.

I nside each TCP control block, the following state variables are
defi ned:

B.2.1. Sending Side

SND. UNA (32 bits): This is the sequence nunber of the next byte to
be acknow edged on the subflow. This variable is updated upon
reception of each TCP acknow edgenent on the subfl ow.

SND. NXT (32 bits): This is the sequence nunber of the next byte to
be sent on the subflow. SND.NXT is used to set the val ue of
SEG. SEQ upon transmni ssion of the next segnent.

B.2.2. Receiving Side

RCV.NXT (32 bits): This is the sequence nunmber of the next byte
which is expected on the subflow. This state variable is nodified
upon reception of in-order segnents. The value of RCV.NXT is
copied to the SEG ACK field of the next segnents transmtted on
t he subfl ow.

RCV.WAD (32 bits with RFC1323, 16 bits otherwise): This is the

subfl ow | evel receive wi ndow which is updated with the w ndow
field fromthe segnents received on this subflow

Ford, et al. Expi res Septenber 15, 2011 [Page 51]

Internet-Draft Mul tipath TCP March 2011

Appendi x C. Changel og

This section maintains |ogs of significant changes made to this
docunent between versions.

C.1. Changes since draft-ietf-nptcp-mnultiaddressed-02
0 Changed to using a single TCP option with a sub-type field.
o0 Merged Data Sequence Nunber, DATA ACK, and DATA FI N
0 Changed DATA FI N behavi our (separated from subflow FIN).
0 Added crypto agility and checksum negoti ati on.
0 Redefined MP_JA N handshake to use only three TCP opti ons.
0 Added pseudo-header to checksum
o Many clarifications and re-structuring.
0 Added nore discussion on heuristics.
C. 2. Changes since draft-ietf-nptcp-mnultiaddressed-01
0 Added proposal for hash-based security mechani sm

0 Added receiver subflow policy control (backup path flags and
MP_PRI O option).

0 Changed DSN_MAP checksumto use the TCP checksum al gorithm
C. 3. Changes since draft-ietf-nptcp-mnultiaddressed-00

0 Various clarifications and minor re-structuring in response to
conment s.

C. 4. Changes since draft-ford-nptcp-multiaddressed-03

0o darified handshake nechanism especially with regard to error
cases (Section 3.2).

0 Added optional port to ADD ADDR and clarified situation with
private addresses (Section 3.4.1).

0 Added path liveness check to REMOVE ADDR (Section 3.4.2).

Ford, et al. Expi res Septenber 15, 2011 [Page 52]

Internet-Draft Mul tipath TCP March 2011

C 5.

Added chunk checksunming to DSN MAP (Section 3.3.1) to detect

payl oad-al teri ng m ddl eboxes, and defined fallback nechani sm
(Section 3.5).

Maj or clarifications to receive wi ndow di scussion (Section 3.3.5).
Various textual clarifications, especially in exanples.

Changes since draft-ford-nptcp-nultiaddressed-02

Renove Version and Address ID in MP_CAPABLE in Section 3.1, and
make | SN be 6 bytes.

Dat a sequence nunbers are now al ways 8 bytes. But in sonme cases
where it i s unanbiguous it is permssible to only send the |ower 4
bytes if space is at a prenium

Clarified behaviour of MP_JON in Section 3.2.

Added DATA ACK to Section 3. 3.

Clarified fall back to non-nultipath once a non-MP-capable SYNis
sent.

Aut hors’ Addr esses

Al an Ford

Roke Manor Research

ad Salisbury Lane

Ronsey, Hanpshire S061 0ZN

UK

Phone: +44 1794 833 465
Emai |l : al an. f ord@ oke. co. uk

Costin Raiciu

Uni versity Col | ege London
Gower Street

London WC1E 6BT

UK
Email: c.raiciu@s. ucl.ac. uk
Ford, et al. Expi res Septenber 15, 2011 [Page 53]

Internet-Draft Mul tipath TCP March 2011

Mar k Handl ey

Uni versity Col | ege London
Gower Street

London WCLE 6BT

UK

Emai | : m handl ey@s. ucl . ac. uk

A ivier Bonaventure

Uni versite catholique de Louvain
Pl. Ste Barbe, 2

Louvai n-| a- Neuve 1348

Bel gi um

Email : olivier.bonavent ure@cl ouvai n. be

Ford, et al. Expi res Septenber 15, 2011 [Page 54]

