IGP-as-a-Backup for Robust Software-Defined Networks

Olivier Tilmans Stefano Vissicchio

Université Catholique de Louvain
ICTEAM / INGI / IP Networking Lab
✉ name.surname@uclouvain.be

CNSM2014 – Nov. 20 2014
“Use the right tool for the right job”
Distributed network protocols and SDN
IGPs are distributed by nature

Flooding of reachability information

Each node infers the current map of the topology

Global shortest-path routing is achieved
Nodes only forward packets according to the overall shortest-path
SDN technologies are more expressive
Openflow enables for arbitrary behaviors

<table>
<thead>
<tr>
<th>Match</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp, dst.port=2</td>
<td>output=3</td>
</tr>
<tr>
<td>in_port=2, ip_proto=89</td>
<td>drop</td>
</tr>
<tr>
<td>tcp, src.port=1234</td>
<td>rewrite:src.port=4567, output=1</td>
</tr>
</tbody>
</table>

Explicit control over the paths on a per-device basis
Handling failures

Because bad things **will** happen
Recovery in SDN is hard as switches are not autonomous

The controller is a new type of failures
Recovery in SDN is hard as switches are not autonomous

The controller is a new type of failures

Two families of recovery techniques:
Reactive approaches

Switches ask the controller “What to do?”
Performance of reactive approaches vary with the network size
Recovery in SDN is hard as switches are not autonomous

The controller is a new type of failures

Two families of recovery techniques:

Reactive approaches

Switches ask the controller "What to do?"

Proactive approaches

Switches have backup rules

“If X happens do this
If Y happens do that
If Z happens do…”
Proactive approaches come at a price
IGPs are highly resilient by design

Scales well with large networks

Connectivity will be restored

Convergence can be very fast!
SDN are more expressive but IGPs are more resilient

Why picking only one?
IBSDN Components

Operator

IBSDN Controller

IBSDN Node
IBSDN Components

Operator

IBSDN Controller

IBSDN Node

Local Agent

SDN switch
IBSDN is an Hybrid Architecture

Policy configuration → IBSDN Controller
IBSDN is an Hybrid Architecture

IBSDN Controller

IGP config
Openflow

IGP config
Openflow

a

b
IBSDN is an Hybrid Architecture

IBSDN Controller

a

Openflow

IGP adjacency messages

b
IBSDN offers the same expressiveness than Openflow during normal operation
IBSDN offers the same expressiveness than Openflow during normal operation.
IBSDN offers the same expressiveness than Openflow during normal operation.
IBSDN reacts to failures by using the underlying IGP as failover.
IBSDN reacts to failures by using the underlying IGP as failover.
IBSDN reacts to failures by using the underlying IGP as failover.
Until the controller computes and installs the new set of optimal SDN rules.
Enabling a performant IBSDN

Packet returns stretch the post-failure path
Packet returns stretch the post-failure path
We built a packet return removal procedure
Enabling a performant IBSDN

Packet returns stretch the post-failure path

Packet return removal procedure
Enabling a performant IBSDN

Packet returns stretch the post-failure path

Packet return removal procedure

Forwarding packets through local agent is inefficient
Forwarding through software local agents is slow
Removing slow local Forwarding
Removing slow local Forwarding
Removing slow local Forwarding
Enabling a performant IBSDN

Packet returns stretch the backup path

Forwarding packets through local agent is inefficient

Generalized packet return removal procedure
IBSDN has strong guarantees

Safety

Th.1 Connectivity is preserved for any combination of failures if there is no network partition, without any action from the controller.
IBSDN has strong guarantees

Safety

Th.1 Connectivity is preserved for any combination of failures if there is no network partition, without any action from the controller

Efficiency

Th.2 Packet returns are removed in linear time

Th.3 Slow forwarding is removed in linear time
Implementation and Evaluation

Does it work in practice?
An IBSDN node is a coordinated stack of forwarding decisions

Incoming Packet → Forwarded Packet → Control-plane message → Openflow Forwarded Packet
An IBSDN node is a coordinated stack of forwarding decisions.
An IBSDN node is a coordinated stack of forwarding decisions
Can be implemented today!

Vanilla Openflow 1.1+

Uses the Logical OFPP_NORMAL Openflow port and Fast-failover groups

Implemented on Linux machines with modified Open vSwitch
Experiments in a virtual testbed confirmed IBSDN safety

No packet losses if the failure does not trigger IGP convergence

In the worst case, IGP convergence is fast \(^1\)

Evaluating the path stretch

\[|\text{IBSDN path}| := |\text{Path until node adjacent to failure}| + |\text{IGP path from there to the destination}| \]
Evaluating the path stretch

|IBSDN path| := |Path until node adjacent to failure| + |IGP path from there to the destination|

|Path stretch| := |IBSDN backup path| − |IGP path|
The packet return removal procedure effectively removes most of the path stretches.
IBSDN is not only about failure recovery
IBSDN is not only about failure recovery

- Incremental deployment of SDN functions
- Communication with an inband controller
- ...
IGP-as-a-Backup for Robust Software-Defined Networks

IBSDN flanks a SDN with an IGP

Implements separation of concern in network management

Benefits from both control-planes