
1

Interdomain Traffic Engineering in a
Locator/Identifier Separation Context

Damien Saucez, Benoit Donnet, Luigi Iannone, Olivier Bonaventure

Université catholique de Louvain, Belgium

Abstract— The Routing Research Group (RRG) of the Internet
Research Task Force (IRTF) is currently discussing several archi-
tectural solutions to build an interdomain routing architecture
that scales better than the existing one. The solutions family
currently being discussed concerns the addresses separation
into locators and identifiers, LISP being one of them. Such a
separation provides opportunities in terms of traffic engineering.
In this paper, we propose an open and flexible solution that
allows an ISP using identifier/locator separation to engineer its
interdomain traffic. Our solution relies on the utilization of a
service that transparently ranks paths using cost functions. We
implement a prototype server and demonstrate its benefits in a
LISP testbed.

I. INTRODUCTION

During the last years, the Internet growth combined with

factors including multihoming and interdomain traffic engi-

neering has lead to a huge growth of the BGP routing tables

([1], [2]) and an increase of the BGP churn [3]. To cope

with this problem, the Internet Architecture Board (IAB) re-

chartered the Routing Research Group (RRG) of the Internet

Research Task Force (IRTF) to design a new interdomain

architecture for the Internet. The architectural work within the

RRG is progressing slowly, but several proposals have already

been discussed ([4], [5], [6]).

Most of these proposals assume two different types of

addresses: identifiers and locators. An identifier is used on

an host to identify a connection endpoint while a locator

refers to a node attachment point in the Internet topology.

Note that, in today’s Internet, an host address is at the same

time its identifier and its locator. The proposals are divided

in two categories: those attaching locators directly to hosts

(see HIP [7], SHIM6 [8], or ILNP [6]) and those attaching

locators to routers (see LISP [4], or Six/One [5]). Finally,

when identifiers are not routable, a mapping system allows

to map an identifier onto a set of locators in order to reach

this identifier ([9], [10]).

A key advantage of the addresses separation is to offer the

possibility of associating several locators to a given identifier.

This implies the availability of multiple paths between two

identifiers and, as shown by several studies, those paths often

offer different characteristics ([11], [12], [13], [14]). Conse-

quently, the identifier/locator separation adds a new dimension

to traffic engineering. Indeed, the separation makes possible

to choose the best locator (and, thus, the best path) in addition

to current traffic engineering techniques.

This work was partially supported by the European-funded 027609
AGAVE, 034819 OneLab and INFSO-ICT-216372 TRILOGY projects

In this paper, we propose a service helping an ISP, using

identifier/locator separation, to deploy a traffic engineering

service controlling both incoming and outgoing packet flows.

This service is contacted by clients (i.e., LISP routers in this

paper) for ranking paths between locators of the source and

the destination. The service performs the ranking using cost

functions that return a value characterizing a path according

to one or more metrics. One of the main advantages of the

cost functions is that they can be combined in order to form

a more complex function. Clients receive the list of ranked

paths so that the first path in the list is the most preferable

while the last one is the least desirable.

We implement our path selection mechanism in a tool

named ISP-Driven Informed Path Selection (IDIPS) and apply

it to a LISP case study. Our implementation is freely available.1

The remainder of this paper is organized as follows. Sec. II

gives a brief overview of LISP, a solution for separating ad-

dresses; Sec. III details our path selection mechanism; Sec. IV

shows how to construct a complex path selection algorithm

based on elementary cost functions; Sec. V demonstrates

the benefits of using our path selection mechanism within

LISP; Sec. VI positions our work with the state of the art.

Finally, Sec. VII concludes this paper by summarizing its main

contributions and by discussing future research directions.

II. LISP

The Locator/Identifier Separation Protocol (LISP) is a

router-based solution that does not require any end-host mod-

ification ([4], [15]). LISP has been mainly designed for stub

ASes and we focus our discussion on such ASes.

In a LISP-enabled stub AS, only the border routers are

upgraded to support LISP. The hosts send and receive IP

packets using IP addresses. In the LISP terminology, these host

addresses are called Endpoint IDentifiers (EIDs). The EIDs

are not advertised in the BGP routing system. The addresses

of the LISP-enabled routers are called the Routing LOCators

(RLOCs). These RLOCs are allocated by the providers to

which each border router is attached. An EID can be associated

to several RLOCs.

The basic idea of LISP is to tunnel packets from the RLOC

associated to the source EID to the RLOC associated to the

destination EID. To better understand the operation of LISP,

let us consider the example shown in Fig. 1.

In this topology, host EIDx is reachable through two border

routers. Hence it can be associated to two RLOCs: RLOC1
EIDx

1See http://inl.info.ucl.ac.be/idips.

2

EIDX

RLOC2

EIDX

RLOC1

EIDX

RLOC1

EIDY

RLOC2

EIDY

EIDY

ASX

ASY

ASj

ASz

ASk

ASw

Internet

Fig. 1. Position of EIDs and RLOCs in the global Internet

and RLOC2
EIDx

. Similarly, EIDy has two locators. When send-

ing a packet from EIDx to EIDy, the following happens.

First, EIDx sends a packet, using its ID (EIDx) as Source

Address and EIDy as Destination Address. This packet is

forwarded inside ASx in the usual way and reaches one

of the border routers. Upon reception of this packet, the

border router, called the Ingress Tunnel Router (ITR) in LISP

terminology, sends a map request through the mapping system

to determine the RLOCs associated to EIDy. A cache system

is used to avoid contacting the mapping system for each

packet [16]. Several mapping systems have been proposed

([17], [9], [10]) but, here, we assume the use of ALT [9].

Then, a new LISP header is prepended to the original IP

packet. Assuming that the packet reaches RLOC1
EIDx

and that

RLOC2
EIDy

is selected for the destination RLOC, the encapsu-

lated packet has RLOC1
EIDx

as source address and RLOC2
EIDy

as

destination address. The encapsulated packet is then forwarded

through the Internet until it reaches the Egress Tunnel Router

(ETR) RLOC2
EIDy

. Thanks to the utilization of tunnels, the core

Internet routers do not need to maintain routes for the EIDs

used by stub ASes. They only need to maintain routes to the

RLOCs whose prefixes can be more easily aggregated than

EID prefixes.

When the packet reaches RLOC2
EIDy

the outer LISP header

is removed and the inner packet is forwarded to EIDy inside

ASy.

III. ISP-DRIVEN INFORMED PATH SELECTION

In this section, we present IDIPS (for ISP-Driven Informed

Path Selection), our implementation of a generic and modu-

lar path selection service offering new network management

perspectives.

In Sec. III-A, we first propose a high-level behavior for any

path selection mechanism. In Sec. III-B, we describe how this

behavior has been implemented within IDIPS. Finally, Sec. III-

C illustrates how traffic engineering can be supported in LISP

with IDIPS.

A. Path Selection Mechanism

It is well recognized that traffic fluctuates with time: what

we see today is different from the past and does not reflect

tomorrow’s traffic. It is thus mandatory to build traffic engi-

neering systems that are traffic independent. This is clearly

the approach we follow in this section when discussing the

high-level behavior of a path selection mechanism.

Our assumption is that specialized boxes are installed in

the network. These boxes are in charge of running a path

selection algorithm reflecting the operator requirements in

terms of traffic engineering. Every time an application or

service needs to select one path among others or to rank a

list of paths, it contacts the box that replies with ranked paths.

In the IDIPS terminology, the specialized box is called a server

and anything querying the server is called a client. It is worth

to notice that more than one server can be deployed in the

network and that clients do not have to deal with that (e.g.,

servers can be deployed in anycast).
Any request sent by a client contains the following in-

formation: a list of sources, a list of destinations and an

optional performance criterion (e.g., route stability). The server

processes the request and builds a list of all possible paths

based on those two lists. This paths list is then ranked using

information on the network state owned by the server such

that the higher the rank the more promising the path.
Sources and destinations sent by the clients are typically

IPv4 or IPv6 addresses. Instead of replying with complete

addresses, the server can work with prefixes. In other words,

if two paths with different ends have the same rank and if it is

possible to aggregate the sources within a single prefix and to

aggregate the destinations within a single prefix, the returned

ranked list will only contain one path where the source is a

prefix encompassing the two source addresses and the same

for the destination. Aggregation offers several advantages. It

allows to reduce the size of the replies (e.g., a single prefix can

include several addresses indicated in the request) as well as

the amount of potential paths to process. In addition, it avoids

revealing topology details and network policies to clients.

Nevertheless, a drawback in such an approach is the lost of

precision (e.g., the reachability of a prefix is not the same as

the reachability of an host).
In addition to a ranked prefixes pairs list, the server reply

contains a time-to-live (TTL) information indicating how long

the path ranking remains valid. This TTL is configured by the

network operators and depends on the performance criterion

provided by the client. When the TTL expires, it is up to the

client to contact the path selection service to obtain a new path

ranking.
Considering ranked prefixes pairs list allows reduces the

risk of attacks or the disclosure of sensitive information to

competitors, which is often a required by ISPs. Further, it al-

lows the operators to modify the ranking algorithms according

to their needs without involving clients. It thus separates the

clients and operators while enabling cooperation.

B. A Modular Architecture for IDIPS

Fig. 2 shows the high level design of IDIPS, our implemen-

tation of the path selection service described in Sec. III-A. It

is based on three modules or engines that cooperate with each

other when performing the path selection.
The first engine, named Path Information Collector (PIC)

collects path information. Information are of two types: (i)
administrative information (i.e., network policies and billing,

but also routing information such as BGP or IGP), (ii) mea-

surements information (i.e., active and passive measurements).

3

Internet

ISP A

ISP B

Request

ResponseClient

ranking server

AS 123

BGP feeds

B
G
P

fe
e
d
s

Measurement results

IGP/SNMP

A
S

Policies

KB

PIC

DE

Fig. 2. IDIPS general behavior

In addition to information collection, the PIC translates the

different metrics into path attributes. Attributes are a generic

representation of the metrics, independent of their nature.

The simplest way to transform metrics into attributes is to

convert them into integer values. This idea comes from the LO-

CALPREF attribute used by BGP where complex metrics are

summarized as an integer. Attributes comparison relationship

is transitive so that the comparison between different unrelated

paths is made possible. For instance, if A > B and B > C
then A > C for a given attribute. It is up to the implementer

to check that the transitivity property holds.

Once paths have been characterized, their attributes are

stored in the Knowledge Base (KB). The Knowledge Base

might be seen as a database gathering all attributes of various

paths. The Knowledge Base must face two main challenges.

First, it must be possible to retrieve any path attribute as

quickly as possible. Second, given the potentially large number

of paths and attributes in the Knowledge Base, the Knowledge

Base must be as compact as possible.

Finally, the Decision Engine (DE) compares the paths in

order to select the best one according to some criteria. To

do so, the Decision Engine defines Cost Functions. A Cost

Function returns the cost of a 〈source, destination〉 pair (i.e.,

a path) for a given criterion. The cost is a numerical value

characterizing a path according to one or more metrics. The

cost must respect two constraints. First, the lower the cost,

the better the path. Second, costs comparison relationship has

to respect transitivity. As for attributes, transitivity is the key

point of Cost Functions as it allows one to estimate the cost

of any path independently and then order them afterwards.

Transitivity allows caching and parallel computation of costs.

Another important point of Cost Functions is enabling com-

binations to create more complicated Cost Functions.

To ranks paths, the Decision Engine calls the appropriate

Cost Function for each possible path to rank. It then creates

the ranked paths list such that the best paths are those with

the lowest cost and the worst with the highest. Paths in the

returned list are grouped by rank. The first group of paths in

the list contains all the paths with the same lowest cost value.

The second group contains those with the second lowest cost

and so on. Remember that topology should not be revealed,

thus ranking are not absolute but relative to other paths in

the list. For instance, if paths A,B,C and D have a cost of

1, 4, 1 and 7 respectively, the ranking value should be A :

1, B : 2, C : 1 and D : 3 which does not reveal the cost of the

paths.

C. IDIPS and LISP Interactions

In the LISP context, for each RLOC mapped to an EID, the

mapping system provides a priority and a weight [4]. When

several RLOCs have the same priority, the LISP traffic is split

among the different RLOCs in proportion to their weight. This

makes possible to control the traffic that enters a site by tuning

the RLOCs sent to different sources and also by changing their

priorities and weights.

The priorities in LISP follow the same principle as the

ranking in IDIPS. It is thus straightforward to use the IDIPS

ranking as an input for the mapping priorities. When RLOCs

priorities have to be determined, IDIPS is contacted. The

ranking in the IDIPS responses is then converted into priorities.

Working with prefixes in IDIPS allows one to reduce the

number of exchanged messages. If IDIPS replies with prefixes

instead of addresses, it becomes possible to use a reply for

different EIDs. For instance, if an EID has RLOCs within

prefixes already returned by IDIPS, it is possible to reuse the

ranking. This technique has two advantages. First, it reduces

the traffic to and from IDIPS and, second, it reduces the time

required to obtain the optimal RLOC priorities. A drawback

is that a specific cache has to be implemented on the LISP

router.

IV. COST FUNCTIONS

In this section, we show how to construct a complex path

selection algorithm based on elementary Cost Functions. We

base our explanation on a situation in which an ISP has three

customer families: (i) premium users always requiring the

best available performances, (ii) standard users requiring a

good performance/cost trade off, and (iii) light users always

requiring the lowest cost. The traffic engineering changes

between the night and the day for standard users: during

the day, a lower cost is preferred while during the night,

the performance is preferred. The monetary cost of a path

depends on the 95th percentile load of the link used to reach

the Internet.

In our example, we assume that the function

update prefix(src,dst,a,v) tags path from src

to dst with value v for attribute a. In addition, function

path attributes(src, dst) returns all the attributes

of the path from src to dst.

We first have to define if a destination is reachable or

not from a given source address. A destination is considered

as unreachable if its DISABLE attribute is set to 1 in the

Knowledge Base or if it is impossible to find a longest-

match prefix with at least one attribute. The Cost Function

is reachable cf, implemented in Algorithm 1, returns 1

if the path is valid, 2 otherwise, so that reachable paths are

preferred.

In our example, we assume that the local ISP is charged

on the 95th percentile link utilization by its upstream ISPs. In

addition, we assume that the local ISP receives one RLOC

per upstream ISP. To support 95th percentile in IDIPS, a

4

Algorithm 1 Example of Cost Function for the reachability

Ensure: Integer value representing the result of this Cost

Function.

1: procedure IS REACHABLE CF(src, dst)

2: attributes ← path attributes(src, dst)

3: if attributes = ∅ ∨ attributes{’DISABLE’} = 1 then

4: return (2)

5: end if

6: return (1)

7: end procedure

Algorithm 2 Example of Cost Function for the cost minimiza-

tion
Ensure: Integer value representing the cost of using the path

defined by src, dst.

1: procedure MINIMIZE COST CF(src, dst)

2: attributes ← path attributes(src, dst)

3: return attributes{’COST’}
4: end procedure

monitoring tool estimates the cost of using the links at time t.
Periodically, this monitor contacts the PIC to update the

Knowledge Base with a cost associated to each upstream ISP.

If the RLOC provided by upstream ISP A is 192.0.2.1 and

the estimated cost is $1,500.00, IDIPS is updated as follows:

update prefix(192.0.2.1/32, 0.0.0.0/0, ’COST’,2). It adds the

attribute COST with the value 2 for any destination with a

source address within the prefix provided by ISP A. Here,

the value of the attribute COST represents the ceiling cost of

using the ISP, in kilo dollars. This approximation permits to

avoid oscillations and can be adapted to the needs of the IDIPS

operator.

Algorithm 2 shows the minimize cost cf cost function

that returns the cost of using a link such that the cost at the

lowest price is preferred.

When considering bandwidth, the best paths are those

having the highest available bandwidth. To support available

bandwidth metric in IDIPS, we add the ABW attribute repre-

senting the rounded available bandwidth expressed in Kbps on

the associated path. The declaration of the available bandwidth

(let say 12.5Kbps) from src to dst can be done as follows:

update prefix(src,dst,’ABW’,12).

The implementation of a cost function preferring paths with

the highest bandwidth is not straightforward. Indeed, IDIPS,

by definition, always prefers the lowest cost while in terms of

bandwidth, the highest is the best. Thus, to prefer paths with

the highest bandwidth, the value of the available bandwidth

is subtracted to the highest theoretical available bandwidth

for the operator (i.e., the capacity of the best link in the

network). Algorithm 3 provides the implementation of such a

Cost Function, MAX BW being the highest theoretical available

bandwidth for the operator.

To implement the path selection algorithm, we need

to define the customer family (i.e., premium, stan-

dard, light). For the example, we assume that prefixes

are grouped in families. We add the FAMILY attribute

to the Knowledge Base. For a customer belonging to

Algorithm 3 Example of available bandwidth Cost Function

Ensure: Integer value representing the result of this Cost

Function.

1: procedure AVAILABLE BW CF(src, dst)

2: attributes ← path attributes(src, dst)

3: return (MAX BW – attributes{’ABW’})
4: end procedure

Algorithm 4 Example of customer family Cost Function

Ensure: Integer value representing the customer family for

traffic from src to dst.

1: procedure CUSTOMER FAMILY CF(src, dst)

2: attributes ← path attributes(src, dst)

3: return attributes{’FAMILY’}
4: end procedure

Algorithm 5 Example of customer family Cost Function

Ensure: Encounters customers requirements

1: procedure CUSTOMER MANAGEMENT CF(src, dst)

2: if (is reachable cf (src, dst) = 2) then

3: return (UNREACHABLE)

4: end if

5: customer ← CUSTOMER FAMILY CF(src, dst)

6: if (customer == 1) then

7: return (AVAILABLE BW CF(src, dst))

8: end if

9: if ((customer == 10 ∧ DAY) ∨ customer = 20) then

10: return (MINIMIZE COST CF(src, dst))

11: end if

12: if (customer == 10 ∧ NIGHT) then

13: return (AVAILABLE BW CF(src, dst))

14: end if

15: return (ERROR)

16: end procedure

the premium family (assuming that the associated EIDs

are 192.0.2.224/27), the Knowledge Base can be up-

dated as follows: update prefix(192.0.2.224/27,

0.0.0.0/0, ’FAMILY’, 1). Standard family has value

10 and light family 20. This family representation offers high

flexibility (e.g., the family can change from destination to

destination).

Like for cost minimization, the customer family cost func-

tion only has to return the customer family. Algorithm 4 shows

the implementation of this Cost Function.

The previous algorithms can be combined by the network

operator to build more complex strategies. Algorithm 5 com-

bines all the blocks in order to reflect the operator policies

proposed earlier in this section. In particular, Algorithm 5 first

checks whether a path between src and dst exists. If at least

a path exists, then it applies the policies previously defined,

based on the on the FAMILY attribute. For premium clients

available bandwidth is always preferred. For standard clients

the applied policy depends on the time period; the available

bandwidth is used as cost function during the night, while cost

minimization is preferred during the day.

5

Client

FTP

L2 Backup
(128Kbps)

L2 (10Mbps)

L1 (2Mbps)

xTR

xTR

Content Producer Content Consumer

Content

Server

Idips

$ $

= =

Client

video

Idips

Fig. 3. Case study testbed

V. CASE STUDY

In this section, we evaluate the benefits of the interaction

between LISP and IDIPS. To do so, we build the testbed

depicted in Fig. 3. The left hand network, labeled Content

Producer, is a content producer and the right hand network

is the consumer. Interdomain connectivity is ensured by LISP.

For the test, we used the two types of customers light and

premium and apply the customer management cf cost

function presented in Sec. IV. As discussed in Sec. IV, the

objective for light users is cost reduction. On the contrary, QoS

has to be ensured for premium users. In the sake of clarity,

in our experiments two clients with one flow per client are

involved. The light client downloads a large file using FTP

(TCP) while the premium client watches a video over UDP.

The video must have at least a 1.4Mbps bandwidth and the

jitter must be limited. The two networks are connected with

two links: L1 and L2. L1 represents a peering link and L2

a customer/provider link (from the producer point of view).

L2 is protected by a 128Kbps backup link. Penalties are due

when QoS is not ensured for premium users.

In the testbed, we use the recent LISP implementation

named OPENLISP [18]. OPENLISP implements the LISP

protocol in the FreeBSD kernel. A particularity of OPENLISP

is the mapping socket that allows user space applications to

interact with the EID-to-RLOC mappings maintained in the

kernel.

An IDIPS server instance runs in each network. At that point,

neither OPENLISP nor IDIPS are aware of each other. The

link between the two paradigms is implemented by a wrapper

running on each OPENLISP router. The wrapper monitors the

mapping socket and the IDIPS control plane. When there is an

event concerning an EID of the local OPENLISP’s map table,

the wrapper retrieves all the RLOCs for that EID and asks the

IDIPS server to rank them. The resulted ranks are translated

into priorities and the EID’s mapping is updated according to

the information given by IDIPS. Our implementation does not

yet take into account the LISP weight defined in LISP.

The experiment is divided in four periods (P1 to P4). The

RLOCs used for each period depends on the IDIPS rankings.

During P1, both L1 and L2 are working properly and IDIPS

optimizes the performance for premium traffic and minimizes

the cost for the light traffic. The beginning of P2 corresponds

Fig. 4. Evolution of the different flows bandwidth for the different network
events.

to the L2 link failure: L2 traffic is diverted to the backup

link. During L2, IDIPS is not involved and the RLOCs are

not modified, premium traffic is degraded. In P3, IDIPS is

informed of the failure and modifies the mapping to minimize

the cost and avoid backup links. It is worth to notice that the

gap between P1 and P3 is for illustration only, in practice,

IDIPS can be informed of the topology change at the same

time as the backup link activation (e.g., via SNMP). During P3,

the backup link is not used anymore. Finally, P4 shows what

happens if IDIPS policies are set to the original premium and

light traffic requirements (as during P1). In P4, IDIPS decides

to divert the light traffic (i.e., FTP) to the backup link and

keep premium traffic on L1 to ensure its QoS requirements

while minimizing costs.

Fig. 4 shows the flows’ dynamic during the different peri-

ods. The horizontal axis is the normalized time and the vertical

axis the bandwidth (in Kbps). The best effort traffic consist of a

big file transfer using FTP (TCP). The video is simulated with

Iperf. Iperf continuously sends 700 bytes long UDP segments

with a constant rate of 1.7 Mbps.

During P1, both flows are working as expected: the video

(premium customer) encounters a limited jitter and has enough

bandwidth (1.7Mbps) and the cost for FTP (light customer) is

minimized. After the failure, during P2, the video stream is

redirected to the backup link. The video flow bandwidth falls

down to around 100Kbps, which is not sufficient to ensure

QoS (1.4 Mbps is required to ensure QoS requirements). FTP

traffic is not affected by the failure as it is carried by L1. P3

presents the flow bandwidth when all the traffic is diverted on

L1. For that period, the policies in IDIPS are to avoid backup

links. However, this choice does not ensure QoS for the video

as the jitter is important and video bandwidth falls to 1.3Mbps.

With this configuration, video traffic is influenced by the TCP

behavior of the FTP flow. Period P4 shows what happens if

IDIPS is configured to ensure QoS and minimize costs, thus

video is diverted on link L1 as this is the only one allowing

QoS for video. The best effort flow is diverted to L2 backup

link because the costs of using it is lower than the cost of

losing QoS for video.

This test shows that IDIPS path selection algorithm can

take administrative and technical question into account (e.g.,

minimize costs but maximize bandwidth). Furthermore, it also

6

shows that the simplicity of IDIPS allows to use it in situations

where several paths are possible.

VI. RELATED WORK

A proposal that shares objectives similar to IDIPS is Mor-

pheus [19], which determines the best path to use according

to the operator policies and, then, sends BGP updates to its

BGP router target (via multihop eBGP). Like IDIPS, Morpheus

is very modular but is restricted to BGP as the signaling

is performed using BGP messages while IDIPS has its own

messaging format, allowing a finer-grained interaction between

the client and the path selection service. Other IDIPS-like

solutions have already been proposed, specially for peer-to-

peer (P2P) applications. For instance, Xie et al. propose P4P,

a solution to give topology hints to P2P clients [20]. In P4P,

ISPs, or third parties, maintain trackers that are contacted

by P2P clients to retrieve the best swarm peers according

to some topology information. Aggarwal et al. introduce an

oracle service very similar to IDIPS that would be configured

by the network operator and queried by P2P applications [21].

While the oracle limits the ranking to destination addresses,

IDIPS proposes to rank paths or even cluster of paths, using

prefixes. Another difference between the oracle and IDIPS is

the ranking scope: the oracle ranking is limited to local or

peering domains while such a limitation does not exists in

IDIPS. Finally, a number of vendors have proposed proprietary

path selection solution ([22], [23], [24], [25]). Most of the

proprietary solutions are based on BGP or NAT or rewriting.

VII. CONCLUSION

Identifier/locator separation proposals, such as LISP, are

currently being discussed as a possible solution to better scale

the Internet architecture. The idea is to assume two different

types of addresses: identifier (i.e., a connection endpoint) and

locator (i.e., a node attachment point in the Internet). As

several locators can be attached to a given identifier, it leads

to the increase of the number of available paths between two

identifiers. It has been demonstrated that those paths often

offer very different performance characteristics.

This paper proposed what is, to the best of our knowl-

edge, the first attempt for performing traffic engineering in

an identifier/locator separation context. Our solution, named

IDIPS, allows an ISP to control both incoming and outgoing

traffic without the drawbacks of traditional traffic engineering

schemes.

IDIPS is a service deployed in a stub AS network using

LISP. It is contacted by border routers performing the iden-

tifier/locator mapping to rank paths. These rankings are per-

formed using cost functions that return a value characterizing

a path according to one or more metrics. One of the main

advantages of the cost functions is that they can be combined

in order to form a more complex function. Clients receive

the list of ranked paths so that the first path in the list is

the most preferable while the last one is the least desirable.

We demonstrated the advantages of coupling LISP and IDIPS

through a case study.

The path ranking service provided by IDIPS is applicable

to the other environments where a host or a set of hosts

are reachable via multiple paths such as IPv6 host based

multihoming [8], IPv4/IPv6 dual-stack hosts or peer-to-peer

applications. In the near future, we plan to evaluate the effects

of IDIPS on real traffic.

REFERENCES

[1] G. Huston, “BGP routing table analysis reports,” 2004, see http://bgp.
potaroo.net.

[2] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang, “IPv4
Address Allocation and the BGP Routing Table Evolution,” ACM

SIGCOMM Computer Communcation Review, vol. 35, no. 1, pp. 71–
80, 2005.

[3] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” Internet Engineering Task Force, RFC 4984,
September 2007.

[4] D. Farinacci, “Locator/ID separation protocol (LISP),” Internet Engi-
neering Task Force, Internet Draft (Work in Progress) draft-farinacci-
lisp-08, July 2008.

[5] C. Vogt, “Six/one: A solution for routing and addressing in IPv6,”
Internet Engineering Task Force, Internet Draft (Work in Progress) draft-
vogt-rrg-six-one-00, July 2007.

[6] R. Atkinson, “ILNP Concept of Operations,” Internet Engineering Task
Force, Internet Draft (Work in Progress) draft-rja-ilnp-intro-01, June
2008.

[7] R. Moskowitz and P. Nikander, “Host identity protocol (HIP architec-
ture),” Internet Engineering Task Force, RFC 4423, May 2006.

[8] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming shim
protocol for IPv6,” Internet Engineering Task Force, Internet Draft
(Work in Progress) draft-ietf-shim6-proto-09, October 2007.

[9] D. Farinacci, V. Fuller, and D. Meyer, “LISP alternative topology
(LISP+ALT),” Internet Engineering Task Force, Internet Draft (Work
in Progress) draft-fuller-lisp-alt-02, April 2008.

[10] S. Brim, N. Chiappa, D. Farinacci, V. Fuller, D. Lewis, and D. Meyer,
“LISP-CONS: A content distribution overlay network service for LISP,”
Internet Engineering Task Force, Internet Draft (Work in Progress) draft-
meyer-lisp-cons-03, November 2007.

[11] A. Akella, S. A., and R. Sitaraman, “A measurement-based analysis of
multihoming,” in Proc. ACM SIGCOMM, August 2003.

[12] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure, “Evalu-
ating the benefits of the locator/identifier separation,” in Proc. ACM

SIGCOMM MobiArch Workshop, August 2007.
[13] C. de Launois, B. Quoitin, and O. Bonaventure, “Leveraging networking

performance with IPv6 multihoming and multiple provider-dependent
aggregatable prefixes,” Computer Networks, vol. 50, no. 8, pp. 1145–
1157, June 2006.

[14] X. Zhou, M. Jacobsson, H. Uijterwaal, and P. Van Mieghem, “IPv6 delay
and loss performance evolution,” International Journal of Communica-

tion Systems, 2007, dOI: 10.1002/dac.916.
[15] D. Meyer, “The locator identifier separation protocol (LISP),” Internet

Protocol Journal, vol. 11, no. 1, pp. 23–36, March 2008.
[16] L. Iannone and O. Bonaventure, “On the cost of caching locator/id

mappings,” in Proc. ACM CoNEXT, December 2007.
[17] E. Lear, “NERD: A not-so-novel EID to RLOC database,” Internet

Engineering Task Force, Internet Draft (Workin in Progress) draft-lear-
lisp-nerd-02, September 2007.

[18] L. Iannone, D. Saucez, and O. Bonaventure, “OpenLISP implementa-
tion report,” Internet Engineering Task Force, Internet Draft (Work in
Progress) draft-iannone-openlisp-implementation-01, July 2008.

[19] Y. Wang, I. Avramopoulos, and J. Rexford, “Morpheus: Making rout-
ing programmable,” in Proc. ACM SIGCOMM Workshop on Internet

Network Management (INM), August 2007.
[20] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz, “P4P:

Provider portal for applications,” in Proc. ACM SIGCOMM, Agust 2008.
[21] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISPs and P2P users

cooperate for improved performance,” ACM SIGCOMM CCR, vol. 37,
no. 3, pp. 29–40, July 2007.

[22] Internap, “Premise-base route optimisation,” 2005.
[23] Avaya, “Adaptative networking software (ANS),” 2005.
[24] Radware, “Peer director,” 2002.
[25] Cisco Systems, “Optimized edge routing (EOR).”

