
A Hierarchical Model for BGP Routing Policies

Laurent Vanbever Bruno Quoitin Olivier Bonaventure

IP Networking Lab
Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

ABSTRACT
BGP routing policies are mainly used by network operators to en-
force business relationships between Autonomous Systems (AS),
and to prefer some routes over others. In this paper, we propose a
hierarchical policy model to express each policy at the most appro-
priate level of abstraction. The model is structured around chains
of filters that apply at a specific level of abstraction. To validate our
approach, we implemented the model in a Java prototype and used
it to reproduce several network-wide routing policies. In all studied
networks, the model produced a high-level view of routing policies
while preserving their semantics. Our model offers numerous ad-
vantages to network operators including, but not limited to, a bet-
ter network documentation, an improved understanding of routing
policies, redundancy suppression, and an easier way of managing
their network.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management

General Terms
Design, Management

Keywords
BGP, routing policies, network configuration

1. INTRODUCTION
The Border Gateway Protocol (BGP) is one of the key protocols

in today’s Internet. BGP is a path-vector protocol that allows to dis-
tribute reachability information between and inside Autonomous
Systems (AS). A key feature of BGP is that it allows network op-
erators to define routing policies. Classical routing policies include
provider-customer (paid peering) and shared-cost (settlement-free
peering) peerings [5]. During the last ten years, BGP implemen-
tations have been extended to support additional routing policies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$10.00.

required by the network operators. As a side effect, this greatly in-
creased the difficulty of building and validating BGP routing poli-
cies. Several studies have shown that BGP policies often contain
errors [15, 17]. Some of these errors are minors, but others have
caused significant operational problems.

To build BGP policies, network operators go through a complex
configuration process. Generally speaking, configuring a network
is very similar, if not identical, to programming a distributed in-
frastructure. However, the network is configured by using low-
level proprietary languages or APIs provided by the network ven-
dor. Despite the improvements made in such APIs, they still fail
to offer network-wide abstractions to network operators. As a con-
sequence, network configuration remains a tedious and error-prone
process [17]. Validation tools have been proposed to cope with mis-
configurations [9, 22], but they are not frequently used. In addition,
the documentation of the network configuration is often limited to
a few configuration templates and a history of changes edited by
hand. The lack of detailed and up-to-date documentation is a prob-
lem in many networks.

In this paper, we consider a different but safer approach. Instead
of assuming that the routers are configured manually, we develop
on top of the pre-existing APIs a hierarchical framework which al-
lows network operators to express network-wide BGP policies in
a declarative way, just as a software programmer would do. There
are many advantages in using a high-level program to build the
configurations of all routers in a network [20]. First, the program
contains the entire documentation of the network. Second, a pro-
gram can easily ensure that the design guidelines are met in all parts
of the network. Third, the program can automatically adapt to dif-
ferent router vendors or different versions of the router’s operating
systems. Fourth, validation tests can be automatically performed
by the program.

This paper is organized as follows. Section 2 summarizes the
main applications of BGP policies. Section 3 describes the hier-
archical model we propose to express network-wide BGP routing
policies. Section 4 describes the utilization of our model on the
Abilene network. The paper ends with a discussion of the related
work.

2. BGP POLICIES
Currently, BGP configurations are expressed as commands for

router configuration languages. The BGP configuration of each
router usually contains several parts. First, the iBGP and eBGP
sessions attached to the router are listed. The definition of each
session includes the IP address and AS number of the neighbor
router as well as the filters to be applied on the session. Two types
of filters can be defined. Import filters specify which routes should
be accepted, possibly after having changed some of the BGP at-

61

Level of abstraction
All Group of AS AS Session Prefix

SANITY-IN

deny bogons �
deny own prefixes �
deny default route � �

remove own communities �
deny too specific prefixes,limit number of prefix �

filter un-assigned/un-allocated �
limit as-path length � � �

IMPORT

accept/reject MED � � �
allow blackhole-communities � � �

set initial local-pref � �
allow TE-communities � �
informational tagging � �

TE-IN change local-pref (relative) � � � �
TRANSIT business relationships �

exceptions � � �
TE-OUT

as-path prepending (relative) � � � �
export MED=IGP cost � �
apply TE-communities � � �

EXPORT allow MED � �

SANITY-OUT
deny bogons �

remove own communities �

Table 1: BGP routing filters and their levels of abstraction.

tributes. Export filters specify which routes can be advertised, pos-
sibly after modifying some of their BGP attributes. Several filters
can be attached to each BGP session.

BGP routing filters are configured on each router by using low-
level proprietary languages. The primary goal of these configura-
tion languages is to pass the router all the parameters needed for
its proper operation. These configuration languages are well suited
to set up most of one router’s configuration knobs. However, they
are not appropriate for the expression of more complex statements
such as BGP routing policies. As a consequence, network opera-
tors are often forced to express their routing filters on a per-session
or per-prefix basis.

A BGP routing filter is typically composed of a sequence of
rules. Each rule is a couple of one predicate and a series of ac-
tions. The predicate defines which criteria a route must satisfy in
order for the actions to be applied on the route. Actions can be as
simple as accepting or denying the route. They can also be used to
change the attributes of the route.

The majority of BGP routing filters can be roughly classified in
three main categories: enforcing transit policies according to the
business relationships with neighbor AS, performing traffic engi-
neering and sanitizing the routes. By studying reference books
such as [7] as well as a large set of router configuration files ob-
tained from several networks, we found that there are appropriate
levels of abstraction for different categories of routing filters. We
distinguish 5 main levels: the prefix level, the session level, the AS
level, the AS-group level, and the network level. In the remaining
of this section, we review the different categories of BGP routing
filters and we indicate their appropriate levels of abstraction. We
summarize our classification in Table 1.

2.1 Transit policies
Autonomous Systems need to control how routes are propagated

between their neighbors according to their business relationships.
There are two main business relationships [10]: customer-provider

and peer-to-peer. The policy for advertising routes among cus-
tomers, peers and providers is usually as follows. Customer routes
are distributed to all neighbors. Peer and provider routes are prop-
agated to customers only.

The transit policies are not limited to the above business rela-
tionships and more specific policies exist [18]. For example, it is
common for one ISP to buy its connectivity from one provider and
to have a peering link with another AS used as backup only [11].
Another example is the provision of partial transit [18].

Such transit policies can easily be abstracted by a square tran-
sit matrix where rows and columns are indexed by groups of AS
that share the same business relationships. In the case of the typi-
cal customer-provider and peer-to-peer relationships, the following
matrix fully describes the transit policies:

to
customers peers providers

from
customers � � �

peers �
providers �

In real router configuration files, it is frequent to find filters that
override or alter the behavior defined by the above high-level tran-
sit policies. These filters are often targeted at specific couples of
neighbors or sessions and can even be applied on a prefix-basis.
We call these filters exceptions to transit policies. To express such
exceptions, it is not possible to rely on the above transit matrix as
an higher level of granularity than groups of AS is needed.

2.2 Traffic Engineering
BGP provides the network operator with an arsenal of mecha-

nisms to influence how BGP ranks and selects routes towards a
specific destination. For example, changing the local-preference
attribute can be used to force BGP to prefer one route over another

62

in the local network. It is common to set the initial local pref-
erence of routes according to the business relationship with the
announcer [5]. Such attribute modifications are often done rela-
tively to a base attribute value. For example, a change of the local-
preference will be done by adding or subtracting a delta to the pre-
vious local-preference value. Another example is using AS-Path
prepending.

2.3 Sanitization
Every self-respecting BGP network operator configures his net-

work with BGP routing filters that makes sure routes towards in-
valid prefixes or bogons are denied [8].

In addition to filtering invalid prefixes, it is recommended to filter
too specific prefixes in order to limit the burden on BGP [3]. Such
filters are usually applied on sessions with customers and peers.
Careful operators can also deny their own prefixes from upstreams
or peers. The default route (0.0.0.0/0) is usually denied from
customers or peers who have no reason to announce it. A default
route is sometimes accepted from upstream providers by networks
that do not provide transit.

As part of the routes sanitization, filters are often deployed to
prevent a neighbor from attaching your own internal communi-
ties, i.e. communities that belong to the local AS and can be used
internally to implement transit policies or for informational pur-
pose. The communities attribute being transitive, it is also consid-
ered a good practice to filter local community values from outgoing
routes unless needed.

Finally, we found that some aspects of the BGP session configu-
ration can be classified as part of the route sanitization task. Among
them, limiting the number of prefixes received from a neighbor.

2.4 Other filters
An ISP might provide its neighbors with a mean to influence the

processing of their routes within the ISP network. A typical ex-
ample is to allow customers to prepend specific TE-communities
to their routes [19]. These communities, when present, cause the
assignment of predefined local-preferences to the routes. Another
similar example is a community whose meaning is to request the
ISP to blackhole a customer route’s prefix, to prevent the cus-
tomer’s network to be overwhelmed with traffic generated by a
DDoS attack [23]. Another common utilization of the communi-
ties is to tag routes for informational or debugging purposes.

3. HIERARCHICAL MODEL
As explained in Section 2, BGP routing filters are used for dif-

ferent purposes and have an appropriate level of expression. For
this reason, we propose a high-level model of BGP routing poli-
cies where routing filters can be expressed at the most appropriate
level. The model is then used to automatically derive routing filters
expressed in vendor-dependent router configuration languages.

In our model, the network-wide BGP routing policies are ex-
pressed by using two chains of high-level routing filters. The im-
port policy chain (resp. export policy chain) completely specifies
the routing filters that must be applied when routes are received by
(resp. sent to) an eBGP session. Each node in a policy chain is a
sequence of rules, each rule containing a predicate and a routing
filter template, i.e. a block of routing filter statements. Predicates
specify the conditions one eBGP session must meet to allow the
corresponding template to be included in the session’s filter. Such
predicates can test the attributes of a BGP session, e.g. the router-
id, the remote ASN, the group of neighbors it belongs to, etc. The
filter template contains routing filter statements such as setting the
local-preference or denying a route.

IMPORT EXPORT

Group Session Group Group

SANIT
Y

IN SET-

PREF

TRANSIT
TA

G

IN
COM

IN

G
ALL

OW
-

RIR
-

PFXBACKUP-

PREF

GroupAll

Figure 1: High-level model of BELNET routing policies.

The import policy chain (resp. export policy chain) is used to
generate the import (resp. export) filters for eBGP session s. The
algorithm’s operation is similar for both chains, therefore we only
describe how the import chain is processed. The algorithm starts
with the first node and traverses the whole chain. For each node,
it traverses the rules in sequence. For each rule, it checks if the
predicate evaluates to true for s. If so, the filter template specified
in the rule becomes part of s’s routing filters.

3.1 Example
To illustrate our high-level model, we show an example inspired

of BELNET, the Belgian national research and education network.
We show in Figure 1 the import and export policy chains that glob-
ally describe BELNET’s routing filters. The import policy chain
is composed of five nodes, while the export policy chain is com-
posed of a single node named TRANSIT. The different nodes are
expressed using three different levels of abstraction: All when all
sessions are concerned, Group when groups of sessions are used
and Session when individual sessions are concerned.

Each node in the two policy chains is described in Table 2. The
SANITY-IN node for example declares that on import, all sessions
(the predicate is always true) must include a filter template that re-
jects all routes whose destination prefix belongs to a list of bogons.
The ALLOW-RIR-PFX node declares that each session must in-
clude a filter that denies prefixes not allocated/assigned by the RIR
to this AS. Finally, the TRANSIT node declares that the export
filter of customer sessions must announce the default route while
the export filter of peer and provider sessions must only announce
routes tagged with the “customer” community or routes originated
internally.

3.2 Implementation
Our prototype is implemented in Java and is freely available [1].

It is composed of three main components: a data repository, a pred-
icate matching engine, and a generation engine.

The data repository contains the description of all BGP sessions
as well as the import and export policy chains. In our prototype,
the nodes in the policy chains are Java classes to which we at-
tach routing filter templates written in vendor-specific configura-
tion language. At the moment, our prototype generates configu-
rations expressed in the JunOS language, but other configuration
languages (e.g., Cisco IOS, Alcatel TimOS, etc.) could be easily
added. An example of a particular policy template is shown in List-
ing 1. This template expresses in JunOS a routing filter that subtract
some value from one BGP route’s local-preference attribute.

The predicate matching engine of our prototype relies on regu-
lar expressions matching. In the data repository, we encoded each
BGP session as a concatenation of the textual representation of its
attributes. For example, the backup BGP session with AS 24 de-
fined on router LOSA and belonging to peer-group NREN is repre-
sented as "LOSA:NREN:24:FEDNET:207.231.246.3:backup". We
can then use regular expressions to express simple predicates. For
example the regular expression .*backup.* is our prototypical
way to express the predicate s.type = backup.

The generation engine iterates over all BGP sessions. For each

63

Predicate Filter template
SANITY-IN true (r.pfx ∈ BOGONS) =⇒ reject

SET-PREF
s.group = CUST r.lp = 5000
s.group = PEER r.lp = 4000
s.group = PROV r.lp = 3000

BACKUP-PREF s.type = backup r.lp = r.lp − 500

TAG-INCOMING
s.group = CUST r.comm � {CUST}
s.group = PEER r.comm � {PEER}
s.group = PROV r.comm � {PROV }

ALLOW-RIR-PFX s.group = CUST (r.pfx �∈ RIR_PFX(s.asn)) =⇒ reject

TRANSIT
s.group = CUST announce default route

s.group = PEER ∨
((r.comm � CUST) ∨ (r.pfx ∈ INTERNAL)) =⇒ accept

s.group = PROV

Table 2: High-level network-wide description of BELNET’s BGP routing policies.

policy-statement BACKUP-PREF {
term down-pref {

then {
local-preference subtract $value$;
accept;

}
}

}

Listing 1: Example of a JunOS backup template.

BGP session, it applies the import and export policy chains to gen-
erate the JunOS import and export filters assigned to the session.
For each node of one policy chain, the predicate matching engine is
used to identify whether one filter template applies. When a match
is found, the corresponding template is associated to the session.
Finally, the generation engine outputs, for each BGP session, all
the associated templates. The result is thus a complete configura-
tion expressed in the templates’ configuration language.

4. CASE STUDY
In this section, we show how our hierarchical model can be ap-

plied to produce network-wide BGP policies and help operators
deploy new BGP-based services. As an illustration, we reproduce
a subset of Abilene BGP routing policies [14]. Abilene is the Inter-
net2 backbone network interconnecting points of presence spreaded
all-over the United States. It is composed of nine BGP routers in
a fully-meshed iBGP configuration. Abilene is composed of more
than 125 IPv4 eBGP sessions.

In addition to interconnecting universities, Abilene offers ad-
vanced services such as commercial peering, an international tran-
sit network, an US federal peer network, etc. Abilene’s BGP poli-
cies are thus customized according to the type of neighbor. For
example, routes learned from commercial peers will not be redis-
tributed to international or federal peers. As a consequence, Abi-
lene routing policies are more complex than the policies found in
typical ISP networks [5].

Due to space limitations, we focus ourselves on modeling the
export policies of Abilene which were found to be the most in-
teresting. Indeed, most Abilene import policies are similar to the
policies described in Section 3.

4.1 Analyzing Abilene policies
To understand the high-level objectives expressed by BGP rout-

ing policies, we built a configuration analyzer tool. This tool is able
to identify patterns of policies shared through the network config-
uration and outputs semantically equivalent abstractions. The tool
helped us to identify the abstraction level of each policy.

Listing 2 shows a typical output for two BGP sessions belong-
ing to the same peer-group. Two trends are apparent. First, both
sessions share two groups of policy statements: [SANITY-OUT,
REMOVE-COMMS-OUT, ORIGINATE4] and [FEDNET-OUT]. We
called these two groups of shared policies: predecessor and succes-
sor. Typically, predecessor policies are applied before every other
policies while successor policies are applied after every others po-
lices. Second, lower-level policies are encompassed inside these
two groups (e.g., REDCLARA-TO-USGS). This configuration pat-
tern was often encountered in policies configurations (64 out of 125
policies configuration). In our hierarchical model, predecessor and
successor policies are represented by high-level filters (e.g., group-
level) because they could be abstracted among sharing sessions.
Between these high-level filters, lower-level filters (e.g., AS-level)
are added to represent more-specific policies.

In addition, our configuration analyzer tool could also be used
to detect abstraction errors. For instance, when all but one session
of a given peer-group share the same predecessor and successor
groups, it is very likely that the remaining one is an error. Based
on that observation, we detected several problems which were later
confirmed as misconfigurations by Abilene’s network operators.

...
<198.32.153.121 - AS#22284 (USGS)>
EXPORT : [SANITY-OUT REMOVE-COMMS-OUT ORIGINATE4

REDCLARA-TO-USGS FEDNET-OUT]
<198.32.11.81 - AS#24 (NREN)>
EXPORT : [SANITY-OUT REMOVE-COMMS-OUT ORIGINATE4

GEANT-TO-NREN CLARA-TO-NREN FEDNET-OUT]
...

Listing 2: Example output from the configuration analyzer tool.

4.2 Modeling Abilene’s export policies
Based on our configuration analyzer tool and on manual analy-

sis, we have been able to group policies by their level of abstraction
and represent them as a chain of filters. Figure 2 depicts the export
chain describing Abilene’s export routing policies. The text at the

64

EXPORT

AS SessionAll All All AS Group All

SANIT
Y

OUT
ORIG

IN
E

M
Y P

REF

TE-O
UT

TRANSIT
DEL-

COM
M

S-

OUT
DEFA

ULT

GRP-

EXPORTTE-

EXCEPTI

ON

Figure 2: Excerpt of the filters chain representing Abilene’s
export policies.

bottom of each filter represents its abstraction level. The chain is
composed of 8 nodes. Table 3 describes the most significant nodes.

The first three nodes —SANITY-OUT, DEL-COMMS-OUT, and
ORIGINE MY PREF— apply on all sessions. They respectively san-
itize announced routes, prevent local communities to leak out of
the network, and announce Abilene’s prefix to neighbors. The
TE-OUT node declares traffic engineering policies. It is used to
prepend Abilene’s AS number to routes announced on the sessions
with AMPATH, GEANT and ESNET. In a filter template, the no-
tation r.aspath[0] identifies the AS which originated route r. The
TE-EXCEPTION node represents traffic engineering exceptions. For
instance, we found that AS-path prepending is done on routes orig-
inated by AS AMPATH and redistributed to AS ESNET, but only
on the Atlanta router (cf. predicate s.rid = ATLA ∧ s.asn =

ESNET). The TRANSIT node represents a transit matrix. It de-
clares which routes will be redistributed to each ASes. For instance,
routes coming from AS ESNET will be redistributed on all the ses-
sions Abilene has with ASes AMPATH and GEANT (see Table 3,
Equations 3.1 and 3.2 respectively). The GRP-EXPORT node is a
group-based filter that rejects routes based on the routes’ commu-
nities. Finally, the DEFAULT node accepts all routes that weren’t
previously rejected.

4.3 Modeling complex routing policies
In this section, we give an example of scenario where our frame-

work can help modeling complex routing policies. For instance,
let’s say a large ISP wants to offer a new service to its customers:
national transit. Typically, the implementation process implies add-
ing a new BGP import policy on each national customer sessions.
This policy will tag every incoming routes with a given commu-
nity (e.g., NAT). Then, on the same sessions, BGP export policies
have to be set to redistribute routes tagged with the aforementioned
community. In this scenario, we suppose the default action for a
policy is to reject a route.

Within our framework, this work could have been done much
more easily. The only requirement is that each session must be
flagged with a type to identify whether it is facing a national peer
or not. Only two filters need to be added to the chain. The first
filter is placed in the import chain. It matches sessions based on the
predicate: s.type = NATIONAL. The filter’s template simply
sets the community accordingly: r.comm � {NAT}. The second
filter is an export one. It shares the same predicate and is associated
with a template which accepts NAT tagged routes: r.comm �
NAT =⇒ accept. Based on those two filters, our tool will
iterate on each BGP session and apply routing policies accordingly.

Even if the result will be the same in both scenarios, our mod-
eling offers numerous advantages. Among others, it gives a clear
visualization of network policies. Routing policies are thus much
more easier to understand, and to reason about. Moreover, it al-
lows network operators to modify their policies easily and safely
by reducing the required modifications to the minimum necessary.
In this case, only two filters need to be added.

5. RELATED WORK
The Routing Policy Specification Language (RPSL) [2] was ini-

tially proposed as a language to both document and verify that there
are no conflicts among routing policies from different ASes [13].
Some ASes, notably in Europe rely on RPSL to document their
peering relationships and some use the RPSL information to auto-
matically generate part of their filters. However, it does not seem
that RPSL is still used to verify the coherence of the routing poli-
cies. This is mainly because some operators do not provide their
policies in RPSL format. Furthermore, RPSL does not allow oper-
ators to easily express complex policies. For example, most opera-
tors explain their usage of BGP communities using free text com-
ments instead of pure RPSL syntax. RPSL does not allow to easily
express complex routing policies.

Several network operators have developed tools to automate the
configuration of parts of their routing policies. Among others, Got-
tlieb et al. described in [12] tools to build the configurations of
the eBGP sessions with customers in a large ISP network based on
provisioning databases. No information is provided in [12] about
the support of complex routing policies. Bohm et al. propose in [4]
an XML-based configuration language that allows to express the
network-wide routing policies in an ISP network. This XML con-
figuration is then converted in RPSL format and the RPSL tools
are used to generate the corresponding router configurations. Our
hierarchical model provides a clearer way of expressing and doc-
umenting complex routing policies. By using string templates, we
also generate the actual router configuration commands.

Levanti et al. proposed in [16] the NetPolis software that starts
from the low-level router configuration files to detect and document
the abstract routing policies used in a network. We used a method
similar to the one proposed in [16] to reverse engineer the Abilene
routing policies as explained in Section 4. NetPolis could thus serve
as a first step to allow an operator to start using our approach.

6. FUTURE WORK
They are three main directions for future work. First, we need to

extend the scope of our study to more networks. Actually, chains
of filters were found to be the easiest construction allowing us to
represent every polices we encountered. Though, highly complex
BGP policies (e.g., the ones using branching instructions or sub-
routines) might not be supported by this model. In that case, we
could easily extend our model to use directed acyclic graphs instead
of chains.

The second direction is to study how this framework could be
used as a building block to more advanced services for network
operators. In particular, we plan to study how such tool could help
operators doing inter-domain traffic engineering. For instance, it
could be used to generate BGP policies that divert traffic from a
given link while minimizing data loss (e.g. by updating the BGP
routing policies or active BGP sessions thanks to the Route Refresh
capabilities [6]).

A third direction would be to build a network-wide management
control-plane instead of basing ourselves on the low-level APIs
provided by network vendors. This could address one of the biggest
problem of ISPs today: deploy rapidly and safely new services [21].

7. CONCLUSION
In this paper, we have first analyzed the routing policies that are

used in today’s network. We have then proposed a hierarchical
model to express complex BGP routing policies. Our model ex-
presses the routing policies as chains. Each node in a chain is a
sequence of rules that contain a predicate and a routing filter tem-

65

Predicate Filter template

TE-OUT
s.asn = AMPATH

r.aspath[0] = ESNET =⇒ [11537] + r.aspath
s.asn = GEANT
s.asn = ESNET r.aspath[0] = GEANT =⇒ [11537] + r.aspath

TE-EXCEPTION
s.rid = ATLA ∧ s.asn = ESNET r.aspath[0] = AMPATH =⇒ [11537] + r.aspath
s.rid = CHIC ∧ s.asn = USGS r.aspath[0] = REDCLARA =⇒ [11537] + r.aspath

TRANSIT

s.asn = AMPATH r.aspath[0] = ESNET =⇒ accept (3.1)
s.asn = CLARA r.aspath[0] = NREN =⇒ accept
s.asn = CUDI r.aspath[0] = NISN =⇒ accept

s.asn = ESNET
(r.aspath[0] = AMPATH
∨ r.aspath[0] = NREN) =⇒ accept

s.asn = GEANT
(r.aspath[0] = ESNET ∨ r.aspath[0] = NREN (3.2)
∨ r.aspath[0] = USGS) =⇒ accept

s.asn = NISN r.aspath[0] = CUDI =⇒ accept
s.asn = NREN r.aspath[0] = GEANT =⇒ accept
s.asn = REDCLARA r.aspath[0] = USGS =⇒ accept

GRP-EXPORT s.group = FEDNET (r.comm ∩ {FEDNET, ITN,NITN}) �= ∅ =⇒ reject
s.group = ITN (r.comm ∩ {FEDNET, NITN}) �= ∅ =⇒ reject

DEFAULT true accept

Table 3: Excerpt of the chain of filters modeling Abilene’s export routing policies.

plate. Different nodes in the chain are applied at different levels of
abstraction. We developed a prototype in Java and used it to com-
pletely reproduce the Abilene routing policies in JunOS. We also
showed how network operators could use our framework to build
their own routing policies.

8. ACKNOWLEDGMENTS
Laurent Vanbever is supported by a grant from FRIA (Fonds

pour la Formation à la recherche dans l’Industrie et dans l’Agricul-
ture, Belgium). Bruno Quoitin is funded by the SPINNET project.
The authors would like to thank Bernard Lambeau and Virginie Van
den Schrieck for their suggestions and comments on this work. We
would also like to thank Dirk Haex from BELNET and Volodymyr
Yakovenko from Google.

9. REFERENCES
[1] A hierarchical model for BGP routing policies.

http://inl.info.ucl.ac.be/softwares/hm-bgp.
[2] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg,

D. Meyer, M. Terpstra, and C. Villamizar. Routing Policy
Specification Language (RPSL). RFC 2280, Jan. 1998.

[3] S. Bellovin, R. Bush, T. Griffin, and J. Rexford. Slowing
routing table growth by filtering based on address allocation
policies. unpublished, June 2001.

[4] H. Bohm, A. Feldmann, O. Maennel, C. Reiser, and R. Volk.
Network-wide inter-domain routing policies: Design and
realization. NANOG 34, May 2005.

[5] M. Caesar and J. Rexford. BGP routing policies in ISP
networks. IEEE Network, 19(6):5–11, 2005.

[6] E. Chen. Route Refresh Capability for BGP-4. RFC 2918
(Proposed Standard), Sept. 2000.

[7] G. Davies. Designing and Developing Scalable IP Networks.
Wiley, September 2004.

[8] D. Deitrich. Bogons and bogon filtering. NANOG 33, Feb
2005.

[9] N. Feamster and H. Balakrishnan. Detecting BGP
Configuration Faults with Static Analysis. In 2nd Symp. on

Networked Systems Design and Implementation (NSDI),
Boston, MA, May 2005.

[10] L. Gao. On Inferring Autonomous System Relationships in
the Internet. IEEE Global Internet, November 2000.

[11] L. Gao, T. Griffin, and J. Rexford. Inherently Safe Backup
Routing with BGP. In IEEE INFOCOM, 2001.

[12] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang.
Automated Provisioning of BGP Customers. IEEE Network,
17, 2003.

[13] R. Govindan, C. Alaettinoglu, K. Varadhan, and D. Estrin.
An architecture for stable, analyzable internet routing. IEEE
Network Magazine, 13(1):29–35, 1999.

[14] Internet2 Observatory.
http://www.internet2.edu/observatory/.

[15] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb.
Minerals: Using Data Mining to Detect Router
Misconfigurations. In MineNet ’06, pages 293–298, 2006.

[16] K. Levanti, H. Kim, and T. Wong. Netpolis : Modeling of
inter-domain routing policies. In IEEE GLOBECOM, 2008.

[17] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP misconfiguration. In SIGCOMM ’02, pages 3–16, 2002.

[18] W. Muhlbauer, S. Uhlig, B. Fu, M. Meulle, and O. Maennel.
In Search for an Appropriate Granularity to Model Routing
Policies. In Proceedings of ACM SIGCOMM, 2007.

[19] B. Quoitin and O. Bonaventure. A survey of the utilization of
the BGP community attribute, February 2002. Work in
progress, draft-quoitin-bgp-comm-survey-00.txt.

[20] M. Shields. Automatic Configuration Generation and
Auditing of Network. NANOG44, October 2008.

[21] J. van der Merwe and C. Kalmanek. Network
Programmability is the answer! PRESTO, 2007.

[22] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards
validated network configurations with ncguard. In Proc. of
Internet Network Management Workshop 2008, Orlando,
USA, October 2008.

[23] R. White, D. McPherson, and S. Sangli. Practical BGP.
Addison Wesley, 2004.

66

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

