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ABSTRACT
Software Defined Networking (SDN) promises to bring un-
paralleled flexibility, fine-grained control, configuration sim-
plification and no vendor lock-in. The introduction of SDN
in an existing network, however, must be incremental in most
cases, for both technical and economical reasons. During the
transition, operators have to manage hybrid networks, where
SDN and traditional protocols coexist.

In this paper, we show that the simultaneous presence of
SDN and traditional routing protocols can create forwarding
anomalies that ultimately defeat the purpose of deploying
SDN. We devise techniques to adapt traffic flows to network
dynamics, update routing policies and incrementally deploy
SDN in hybrid networks, while avoiding those anomalies.
We assess the applicability of our approach by extensive
simulations. By adding support for manageability and evolv-
ability, our techniques make hybrid networks not only a means
for transition but also an interesting design point that can
merge advantages of SDN and traditional paradigms.

1. INTRODUCTION
By decoupling the data-plane from the control-plane,

Software-Defined Networking (SDN) has enabled a lot
of novel capabilities such as network virtualization [1],
support for virtual-machine migration [2], flexible ac-
cess control [3] and traffic engineering [4]. These new
capabilities, along with the growing support for SDN
protocols like OpenFlow [5], have increased the interest
of the majority of network operators [6] to deploy SDN
in a near future.

Despite all these advantages, network operators are
usually (and understandably) slow to adopt new and
disruptive network technologies. Replacing all the de-
vices at once is just not possible considering the costs,
the man power needed to perform the replacement, and
the possible downtime. Instead, the transition is likely
to be gradual, spanning several months (if not years).

During the transition, traditional devices will have to
work along SDN devices in order to consistently forward
packets. The cooperation between traditional and SDN
devices can be established on the basis of the proto-
cols supported. Indeed, device-specific controllers al-

low support of traditional protocols in SDN devices,
as in RouteFlow [7]. Moreover, basic SDN capabilities
(e.g., packet forwarding) can also be added to non SDN-
capable devices by letting SDN controllers manipulate
their static routes. In the following, we refer to networks
in which traditional IGP and SDN protocols coexist by
controlling different flows, as hybrid SDN networks, or
simply hybrid networks. A peculiar example of running
hybrid networks has been already reported in [8].

Besides facilitating the transition, hybrid networks
can also be considered as a long-term objective in some
networks. Indeed, hybrid networks enable operators to
reap some of the benefits SDN without a full deploy-
ment. For example, very large networks like Internet
Service Providers (ISP) usually have highly specific con-
straints that are unlikely to be fulfilled by SDN devices.
Such constraints include the support of a wide variety
of physical connectivity and the handling millions of
forwarding entries [9]. As a comparison, SDN-enabled
switches are mostly Ethernet-based and can only han-
dle tens of thousands entries [10]. Partial deployments
can also offload the SDN controller from tasks for which
traditional routing protocols have been proven effective.
For instance, network operators may need SDN fine-
grained control capabilities only for a small percentage
of flows, e.g., the few responsible for most of the traf-
fic [11], or only at specific points in the network [8].
Traditional routing protocols also offer a simple solu-
tion for in-band connectivity between network devices
and SDN controllers, or between SDN controllers han-
dling different portions of the network.

While being unavoidable, hybrid networks are also
harder to manage than pure IP or SDN networks. In
particular, updating a hybrid network can trigger nu-
merous forwarding inconsistencies due to the presence
of multiple, potentially conflicting control-planes. Intu-
itively, a forwarding consistency occurs when parts of
the traffic gets forwarded along unpredicted forwarding
paths. In addition to disrupting routing policies (e.g.,
by bypassing a firewall) and traffic engineering policies
(e.g., by forwarding along a backup link), these incon-
sistencies can also lead to forwarding loops and traffic
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Figure 1: Example of hybrid network, in which
a network update can trigger anomalies.

blackholes.
As an illustration, consider the network in Fig. 1,

where network nodes are represented by circles, SDN-
capable nodes by filled circles, and physical links by
edges labeled with their IGP weights. Even if r1 is
the only SDN-enabled device, finer-grained policies than
traditional networks are applied in the network. paths
of IGP-controlled flows, while dotted blue arrows and
solid orange arrows represent SDN-controlled flows for
ssh traffic and the remaining traffic, respectively. In-
deed, the IGP-controlled flows (dashed black arrows)
from r1 to d1 use different paths than the SDN-controlled
flows (solid orange arrows) from r1 to d2, even though
both destinations are announced by r5. The network
contains two firewalls fw1 and fw2 that check all the
traffic from r1, except ssh traffic which is routed around
them (dotted blue arrows). At a certain time, the op-
erator may be willing to move the control of the traffic
destined to d1 from IGP to SDN, letting it follow the
same path as the packets from r1 to d2. This can happen
for multiple reasons, e.g., traffic engineering and better
load balancing in response to traffic matrix changes,
maintenance support for some links or devices in the
path (r1 r2 r5), or need to offload fw1. Such an update
operation must be performed with care. For example,
if r1 is the first device to be updated, then a packet
inconsistency occurs for packets from r1 to d1. In fact,
r1 will forward those packets to r3, which has not been
updated yet and will therefore forward traffic along the
IGP path. The packets will thus bypass both firewalls
fw1 and fw2, violating security policies. Also, a for-
warding loop can occur if r3 is reconfigured before r4.
The described anomalies will persist until other routers
are reconfigured, hence potentially for a long time.

In this paper, we develop provably correct techniques
that enable network operators to update hybrid net-
works without losing traffic or violating security poli-
cies. Our techniques enable: (i) any update of SDN-
controlled forwarding paths; (ii) any update of the IGP-
controlled forwarding paths, e.g., to arbitrarily change
the weights of the IGP graph; (iii) any update in which
SDN-controlled flows become IGP-controlled, and vice

versa. Hence, our techniques can be leveraged to ar-
bitrarily change forwarding paths of traffic flows, e.g.,
to adapt to the volatility of the heavy hitters [11] and
to traffic trends (e.g., daylight) and to evolving require-
ments. We support all those scenarios by computing op-
erational orderings which maintain network-wide con-
sistency throughout the network update. Our tech-
niques provide similar abstraction as the ones proposed
recently by Reitblatt et. al [12]—while significantly im-
proving their applicability and their scalability. Indeed,
our techniques apply to any hybrid network (ranging
from full IP to full SDN networks) and minimize the
amount of duplicates entries required to perform the
consistent update. As such, our techniques provide in-
centives both to start the transition and to consider
hybrid networks as a target.

This paper makes the following contributions.

General model of hybrid networks. We introduce
a formal model that captures the coexistence and in-
teraction of different protocols in hybrid networks (§2).
We make no assumptions on the type of IGP used in
the hybrid networks and consider both Link-State (LS)
and Distance-Vector (DV) IGPs. Since we assume the
absence of BGP, our model directly applies to enter-
prise networks and to the many ISPs using MPLS. In
the presence of BGP, our findings remain correct pro-
vided that the BGP configuration complies with known
sufficient conditions for its correctness [13].

Theoretical guarantees. We prove that any-to-any
connectivity can always be guaranteed during hybrid
network updates (§3), either because of some specific
IGP properties (for DV IGPs) or because of the recon-
figuration technique itself (for LS IGPs).

Algorithms. Unlike connectivity, we show that it is
not always possible to avoid path inconsistencies. We
introduce the GPIA algorithm that finds the maximal
sequence of safe operations, enabling the largest pos-
sible part of the network to be updated. We propose
fallback solutions when no solution exists (§4).

Evaluation. We validate the effectiveness of GPIA
on realistic traffic engineering reconfiguration scenarios,
through extensive simulations. In most experiments,
GPIA computed a safe operational ordering for the ma-
jority of the nodes (often more than 80%), hence allow-
ing them to be reconfigured with no additional resource
consumptions (e.g., no duplication of FIB entries).

Critical discussion. We discuss the relevance and
generality of our theoretical results, as well as their lim-
itations (§6). We compare with related work (§7), and
describe future work and conclusions (§8)

2. MODEL AND PROBLEM STATEMENT
In this section, we report some background on control-
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plane routing mechanisms (§2.1). Also, we describe our
model for hybrid networks (§2.2), and we formally state
the network update problem (§2.3).

2.1 Control-Plane Mechanisms
In a network, end-hosts data packets are relayed hop-

by-hop by intermediate systems which we call network
nodes, or simply nodes. Nodes forward packets on the
basis of the information that they keep in a data struc-
ture called Forwarding Information Base (FIB). A FIB
basically maps each network destination to a next-hop.
In the presence of Equal Cost Multi-Path (ECMP), a
single destination can have multiple load-balanced next-
hops. We denote the set of next-hops in the FIB of any
node r for an IP destination d at time t as next(r, d, t).
Observe that SDN-capable nodes can forward packets
based on information different from the only destination
IP address, e.g., the type of the traffic, as r1 in Fig. 1.
For SDN mechanisms, therefore, the concept of desti-
nation is more fine-grained (e.g., a destination could be
the combination of IP address and port number).

Node populate their FIB relying on the information
provided by control-plane mechanisms. A typical exam-
ple of control-plane mechanism is a distributed routing
protocol like OSPF, where each node computes routes
to every destination. An even simpler example is static
routing, in which each route is explicitly configured.
Some newer mechanisms, like OpenFlow [5], can add
and remove entries directly in the FIB of the nodes.

We classify control-plane mechanisms in Link State
(LS), Distance Vector (DV), and SDN mechanisms. LS
mechanisms are distributed protocols in which topologi-
cal information is flooded to all the nodes, allowing each
node to independently computes its FIB. OSPF and IS-
IS are LS mechanisms. DV mechanisms are distributed
protocols in which nodes do not have a global view of
the network topology and compute their FIB relying on
the information provided by their neighbors. RIP and
EIGRP are examples of DV mechanisms. SDN mecha-
nisms are protocols enabling a logically centralized SDN
controller to modify the FIB of network nodes. Static
routes and OpenFlow are SDN mechanisms.

2.2 Hybrid Networks
In hybrid networks, all the nodes run one IGP and one

SDN mechanism. The SDN controller interacts with
SDN-capable nodes using SDN specific protocols (e.g.,
OpenFlow), and with traditional nodes by configuring
static routes. IGPs are also supported at SDN-capable
nodes, e.g., as in [7]. We refer to LS hybrid networks
or DV hybrid networks, depending on the IGP.

Two factors concur to select the mechanism that pop-
ulates the FIB of each node for a specific destination d.

The first factor is the mechanism preference. It indi-
cates the relative preference between different control-

plane mechanisms. On IP routers, the preference be-
tween distributed protocols (including static routing) is
controlled by a configuration parameter called Admin-
istrative Distance (AD). The AD can be set on a per-
destination basis. OpenFlow is a special mechanism in
that it accesses the FIB directly. For this reason, Open-
Flow is effectively preferred over any other mechanism.
Note that mechanism preference depends only on mech-
anism definitions and node configuration.

The second factor is information availability in each
mechanism, i.e., the possibility for a given mechanism
to provide any node with forwarding information to des-
tination d at a given time t.

The combination of these two factors implies that, for
each destination d, the FIB entry of node r at time t
is populated by the r’s most preferred mechanism with
available information to reach d. We say that r uses a
mechanism m = used(r, d, t) for a destination d at time
t if m is the source of r’s FIB entries for d at time t.

Irrespectively of mechanism preferences, the following
properties hold for different mechanisms.

Property 1. Independently of control-plane mecha-
nisms configured on any node in a network, for each
destination, the next-hops of a node using a DV mech-
anism m are guaranteed to use m.

Property 2. For each destination, an LS mecha-
nism provides each node with a non-empty set of next-
hops despite the presence of other control-plane mecha-
nisms in the network.

Property 3. For each destination, an SDN mech-
anism provides each node with a possibly empty set of
next-hops despite the presence of other control-plane mech-
anisms in the network.

Intuitively, Property 1 holds since, in a DV mech-
anism, a node propagates a routes to a destination d
only if the route was used to compute its FIB entry to
d. Moreover, Property 2 holds because LS mechanisms
distribute topological information independently of the
presence of other mechanisms. The same full visibil-
ity applies to SDN mechanisms, where the controller
is supposed to known all the paths to each destination.
However, the SDN controller can manipulate only a
subset of FIB entries of each node, yielding Property 3.

2.3 The Safe Update Problem
To achieve manageability and evolvability in hybrid

networks, we study the problem of disruption-free adap-
tation of forwarding paths in hybrid networks. We glob-
ally refer to the configuration and preference of mech-
anisms on nodes as network configuration, or simply
configuration. Note that, in any configuration of a hy-
brid network, some flows are IGP-controlled and oth-
ers are SDN-controlled. We denote a change from an
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initial configuration to a final configuration as network
update, or simply update. For the network update to
be controllable, we consider stepwise update process (as
in [12, 14]), where atomic operations are performed on
a single node at each step.

As shown in Fig. 1, the operational order followed
in the update can trigger path inconsistencies, i.e., for-
warding anomalies only due to the network update pro-
cess. We can state our problem as follows.

Problem 1. Given an initial and a final network con-
figuration, compute an operational order to update the
network without triggering any path inconsistency.

We always assume that both the initial and the final
configurations are anomaly-free. In the following, we
always focus on forwarding paths that change between
the initial and the final configurations. For the sake of
simplicity, we assume that all the changing paths are
controlled by an initial mechanism in the initial con-
figuration, and by a final mechanism in the final con-
figuration. However, all our findings and techniques
equally apply to the most general case. The initial and
final mechanism controlling some forwarding paths may
be different (e.g., if IGP-controlled flows become SDN-
controlled in the final configuration) or the same (e.g.,
if it runs different configurations).

The network update process consists in progressively
changing the configuration of nodes until all the nodes
in the network run the final configuration. The set
of possible operations on a node is (i) modification of
mechanism preference, (ii) addition or removal of static
routes on traditional nodes, and (iii) addition or removal
of FIB entries via SDN mechanisms on SDN-capable
nodes. Each of those operations can be restricted to an
arbitrary set of destinations. Unless differently spec-
ified, time is discrete and refer to stable forwarding
states in each update step. Times t = 0 and t = f stand
for the initial and final configurations, respectively.

To define forwarding anomalies, we need to formally
define forwarding path as concatenation of FIB entries.
More precisely, a forwarding path π(r, d, t) from r to d
at time t is a sequence of nodes (v0 . . . vk) such that k ≥
0, v0 = r, and ∀i = 0, . . . , k − 1, vi+1 = next(vi, d, t).
Each node can appear at most once in π(r, d, t).

A path inconsistency occurs during an update, at
time t, if π(r, d, t) 6= π(s, d, 0) and π(r, d, t) 6= π(s, d, f),
i.e., the forwarding path from r to d at t is a path dif-
ferent from both the forwarding paths in the initial and
in the final configurations. Path inconsistencies force
traffic to be forwarded through unpredicted forward-
ing paths, potentially disrupting routing policies (e.g.,
bypassing middle-boxes, as in Fig. 1) and traffic en-
gineering (e.g., negatively affecting delay and making
congestion harder to predict).

Connectivity problems during a network update are
special cases of path inconsistencies, in which π(r, d, t) =

10

1 1

r1 r2

r4

d

intermediateintial/final

LEGEND: DV SDN

r3
10

1 1

r1 r2

r4

d

r3

1 1

Figure 2: A case in which a blackhole can occur
in a hybrid network update.

(r . . . vk) and vk has no direct connectivity to destina-
tion d. In particular, we distinguish between blackholes
and forwarding loops. A blackhole occurs if π(r, d, t) =
(r . . . vk) and vk 6= d and node vk has no FIB entry for d.
A forwarding loop occurs if π(r, d, t) contains repeated
nodes. Both blackholes and forwarding loops directly
lead to packet dropping.

In the following, we assume that each mechanism is
anomaly-free in the absence of other mechanisms. This
means that, when taken in isolation, the used SDN
mechanism provides connectivity between every source
node and every SDN-controlled destination. The same
always property holds in IGPs for all the destinations
in the network by their definition.

3. ENSURING CONNECTIVITY
In this section, we show that end-to-end connec-

tivity can always be preserved during network up-
dates. We first describe how to avoid blackholes (§3.1),
and then we focus on forwarding loops (§3.2)).

3.1 Blackholes can always be avoided
Fig. 2 shows a simple case in which a blackhole can

be created during a hybrid network update. Assume
that the initial mechanism controlling paths to desti-
nation d is a DV mechanism, while the final one is an
SDN mechanism. Then, the update consists in recon-
figuring each node, one node at a time, by replacing
the DV information with the SDN one in its FIB entry
to d. The forwarding paths in the initial configuration
(black dashed arrows) are computed according to the
IGP link weights. The other arrows denote the FIB en-
tries installed in the final configuration. As evident in
the left part of the figure, the initial and the final net-
work configuration are anomaly-free. Consider now the
case (shown in the right part of the figure) in which r2
and r3 are the first nodes to be reconfigured. Hence, at
t = 2, r2 and r3 use the SDN mechanism. By Prop-
erty 1, both r2 and r3 stop propagating to r1 DV routes
for d. Moreover, as long as SDN entries are installed
only on reconfigured nodes, the SDN mechanism does
not provide r1 with forwarding information to reach d,
creating a blackhole at r1.
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Intuitively, the blackhole is caused by the inability of
both the initial and the final control-plane mechanisms
to provide all the nodes with enough information to
fill their FIBs. In the example in Fig. 2, the order in
which nodes were updated prevented the the correct
distribution of routes in the DV mechanism, while the
SDN mechanism was not yet deployed on the affected
node. Similar blackhole can also occur in updates of LS
hybrid networks. For example, in the previous example,
a blackhole can also occur during a update from an LS
mechanism to an SDN one, if the support for the LS
protocol is removed when a node is reconfigured.

Luckily, blackholes can be prevented by design of the
update technique. Indeed, the technique can force the
final mechanism to provide nodes with backup routes
before starting the update. If the final mechanism is
LS, each node can be guaranteed to have a FIB entry
to each destination by activating the final mechanism
on all the nodes before starting the network update,
because of Property 2. Otherwise, static routes reflect-
ing the final next-hops and pre-installed on nodes before
starting the update, can be used as backup routes. In
both cases, backup routes are initially installed as the
least preferred mechanism. When a node is reconfig-
ured, its backup routes are either promoted to more
preferred (e.g., in the case of LS mechanisms), or re-
moved and replaced by the information provided by the
final mechanism (e.g., in the case of static routes).

In the following, we exclusively consider techniques
that prevent blackholes by design.

3.2 Forwarding loops can always be avoided
Fig. 1 shows a case in which a forwarding loop occurs

during a hybrid network update. We now show that
forwarding loops can always be prevented.

First, consider the case of LS hybrid networks. Be-
cause of Property 2 and 3, the following holds.

Property 4. Consider any update involving only LS
and SDN mechanisms. At each step, for each destina-
tion d, each node uses its initial next-hops to d if not
reconfigured, and its final next-hops to d otherwise.

Property 4 has the important consequence that up-
dating a node n only affects n’s next-hops. Based on
this, it is possible to compute operational orderings that
prevent forwarding loops during LS IGP reconfigura-
tions. In [14] it is shown that a per-destination order-
ing that avoids forwarding loops always exists. Since
the technique to compute the ordering only relies on
Property 4, we can use the same algorithms to prevent
loops in all the updates involving only LS and SDN
mechanisms, i.e., in any update of LS hybrid networks.
DV hybrid networks do not even impose ordering

constraints. In fact, any ordering is guaranteed to be
free from forwarding loops. This is due to Property 1
that ensures that DV nodes coordinate, and compute a

consistent routing tree to each destination. In particu-
lar, the following lemma holds.

Lemma 1. If a node r uses a DV mechanism m to
reach a destination d, then all the nodes in the actual
path from r to d use m.

Proof. We now show that, given any time t, any
node r and any destination d, if used(r, d, t) is a DV
mechanism m, then ∀u ∈ π(r, d, t), used(u, d, t) = m.
Let π(r, d, t) = (r x)P . If x = d, then P is empty, and
the statement directly follows. Otherwise, x must use
m by Property 1. The statement follows by iterating
the same argument until the destination is reached.

Based on Lemma 1, we can group all nodes that use
the DV mechanism m to reach d at time t in a set
cone(m, d, t) which we call DV-cone . Lemma 1 states
that the forwarding path of each node in the DV-cone
is internal to the DV-cone itself. Hence, once a packet
arrives at a node in the DV-cone of a destination d, the
packet is guaranteed to reach d. As a consequence, the
following theorem holds.

Theorem 1. No forwarding loop can occur during
network updates involving a DV mechanism.

Proof. Let m1 and m2 be the two mechanisms in-
volved in the update. Without loss of generality, assume
that m2 is DV. By Lemma 1, for each node r, destina-
tion d and time t, π(r, d, t) = PQ, where P is a pos-
sibly empty path containing only nodes using m1 and
Q is a possibly empty path including only nodes using
m2. Since no node can simultaneously use m1 and m2,
P ∩Q = ∅. Since we assume anomaly-free mechanisms,
both P and Q do not contain blackholes nor forwarding
loops, yielding the statement.

4. ENSURING PATH CONSISTENCY
Contrary to blackholes and forwarding loops, an op-

erational ordering that avoids path inconsistencies may
not exist. Consider, for instance, the scenario depicted
in Fig. 3, in which d is the only destination. Assume a
LS hybrid network update. Independently of which are
the initial and final mechanisms controlling d, no node
among u, v and z can be reconfigured without caus-
ing a path inconsistency. Indeed, by Property 4, each
node uses its final next-hops if and only if reconfigured.
Hence, reconfiguring v as the first one will create a for-
warding loop between v and z. Moreover, starting the
update from either u and z will create path inconsisten-
cies on u. Similar cases exist in DV hybrid networks.

In the following, we propose an algorithm to avoid
path inconsistencies (§4.1), called Generic Path Incon-
sistency Avoider (GPIA). GPIA is correct and com-
plete, in the sense that it is free from both false pos-
itive and false negatives. It applies to any update of
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Figure 3: A case in which no operational order-
ing can prevent path inconsistencies in LS hy-
brid networks.

both LS and DV hybrid networks. However, the al-
gorithm has different complexity different update cases
(§4.2). Even when no reconfiguration ordering exists,
GPIA returns a maximal sequence of nodes that can be
reconfigured without creating path inconsistencies. We
propose variations of the update technique to increase
the number of nodes that can be safely reconfigured
(§4.3), and fallback solutions to be applied to the re-
maining nodes (§4.4).

4.1 The GPIA algorithm
Intuitively, to check if the update of a single node

causes a path inconsistency, we can simply simulate the
change, computing the resulting forwarding paths, and
comparing them with the initial and final ones. We use
this intuition in the check consistency procedure, illus-
trated in Fig. 4. Since forwarding paths can be easily
built by concatenating next-hops used by each node, the
critical step is to calculate next-hops, given a set of re-
configured nodes (sub-procedure compute next hops).
By Property 4, any LS or SDN mechanism always pro-
vides each node with either the initial or the final next-
hops (depending on whether the mechanism are the ini-
tial or the final one) to each destination. For a DV
mechanism, computing next-hops at a given node im-
plies calculating the shortest path in the DV-cone from
that node to each considered destination. Then, the
next-hops actually used by each node depend on its
mechanism preferences, i.e., on whether the node is re-
configured or not. In any case, the check consistency
procedure takes polynomial time with respect to the
number of nodes. Observe that, for the sake of sim-
plicity, we deliberately omitted a number of possible
performance optimizations. For instance, forwarding
paths can be stored and re-used for many nodes. A
detailed description of possible performance optimiza-
tions is outside the scope of this paper.

The check consistency procedure can be used as a
building block to compute a reconfiguration ordering
that avoids path inconsistencies, as in the Generic Path
Inconsistency Avoider (GPIA) algorithm. The algo-
rithm, reported in Fig. 5, tries to iteratively compute

1: check consistency(r, d, next0, nextf , M)
2: nhs← compute next hops(M ∪ {r}, d)
3: curr paths← build actual paths(nhs)
4: return curr paths = build actual paths(next0) ∨

curr paths = build actual paths(nextf )

Figure 4: Procedure to check absence of path
inconsistencies to d if a node r is reconfigured.

1: compute sequence(N,next0,nextf ,D,M,max seq)
2: seq ← []
3: for d ∈ D do
4: Cd ← ∅
5: for x ∈ N do
6: if check consistency(x, d, next0, nextf ,M) then
7: Cd ← Cd ∪ {x}
8: end if
9: end for
10: end for
11: C ← ∩d∈DCd

12: for n ∈ C do
13: tail ← compute sequence(N \ {n}, next0, nextf , D,M ∪

{n})
14: seq ← concat([n], tail)
15: max seq ← update max seq(max seq, seq)
16: if |seq| = |N | then
17: break
18: end if
19: end for
20: return max seq

Figure 5: GPIA Algorithm.

a safe reconfiguration sequence. At each iteration, for
each destination d, GPIA builds a set Cd of candidate
nodes that can be reconfigured without generating a
path inconsistency to d. Then, GPIA picks any node
in the intersection of all sets Cd, and iterates until it
finds an empty intersection. If the computed sequence
includes all the network nodes, then it is directly re-
turned. Otherwise the algorithm backtracks on previous
candidate choices. Finally, GPIA returns the maximal
sequence it found.

GPIA finds the maximal sequence of nodes that can
be reconfigured without creating path inconsistencies.
Indeed, by definition, the check consistency procedure
identifies all the nodes that can be safely reconfigured at
a given update step. Exploration of all safe operational
orderings is ensured by the GPIA backtracking ability.

4.2 Computational complexity of GPIA
The computational complexity of GPIA depends on

the recursion tree generated in the backtracking phase.
In the worst case, this recursion tree enumerates all pos-
sible orderings, yielding combinatorial complexity.

However, if updating a node in the candidate set C
cannot remove any other nodes from C, only a single
branch of the recursion tree needs to be explored. In this
case, GPIA behaves as a greedy algorithm, and takes
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polynomial time with respect to the number of nodes.
The following theorem shows that this holds in network
updates involving only LS and SDN mechanisms.

Theorem 2. Consider an update involving only LS
or SDN mechanisms m1 and m2, and assume that node
r is in set C at any time t. Then, r will stay in set C
until it is reconfigured.

Proof. Assume by contradiction that node r is re-
moved from set C at time t+ 1. Let x be the node re-
configured at time t+ 1. By definition of GPIA, x ∈ C
at time t. If x does not change next-hops, then a con-
tradiction follows by Properties 2 and 3. Hence, it must
be next(x, d, 0) 6= next(x, d, f).

By construction of C, r 6∈ C means that reconfiguring
r at time t+ 2 creates a path inconsistency for at least
one destination d. By Property 2 and 3, reconfiguring
r can only change the next-hops of r, so we must have
next(r, d, 0) 6= next(r, d, f). Since r ∈ C at time t, we
have two cases:

• r ∈ π(x, d, t + 1). At time t + 1, x has been re-
configured, i.e., next(x, d, t + 1) 6= next(x, d, 0),
which implies π(x, d, t+ 1) 6= π(x, d, 0). Moreover,
r has not been reconfigured yet, i.e., next(r, d, t+
1) 6= next(r, d, f), which implies π(x, d, t + 1) 6=
π(x, d, f).

• x ∈ π(r, d, t+ 1). We have that next(x, d, t+ 1) 6=
next(x, d, 0) implies π(r, d, t + 1) 6= π(r, d, 0). On
the other hand, next(r, d, t+1) 6= next(r, d, f) im-
plies π(r, d, t+ 1) 6= π(r, d, f).

In the first and second cases, reconfiguring x at time
t + 1 triggers a path inconsistency at node x and r,
respectively, hence contradicting that x ∈ C at t.

Corollary 1. The time complexity of GPIA is O(n),
where n is the number of network nodes.

In the presence of a DV mechanism, Property 1 forces
nodes that use the DV mechanism to select a next-
hop in the DV-cone. Since the shape of the DV-cone
changes at each step, a node can exit the candidate
set C as a consequence of the reconfiguration of an-
other node. This implies that GPIA cannot behave as
a greedy algorithm in the general case. However, a re-
sult similar to Theorem 2 holds for network updates
that are path-preserving, i.e., in which next(r, d, 0) =
next(r, d, f) for each node r and each destination d.

Theorem 3. Consider a path-preserving update such
that the initial mechanism m1 is DV and the final mech-
anism m2 is not. If a node r is in set C at any time t,
then r will stay in set C until it is reconfigured.

Proof. Assume by contradiction that node r is re-
moved from the candidate set C at time t + 1. Let x,

such that x ∈ C at time t, be the node that GPIA
reconfigures at time t + 1. By construction of C, re-
configuring r at time t+ 2 creates a path inconsistency
for some node u and some destination d. For the path
inconsistency to occur, reconfiguring r must force u to
change its forwarding path. Hence, by Property 1, we
must have r ∈ π(u, d, t+ 1).

Consider now the forwarding path of u at time t. If
r ∈ π(u, d, t), then reconfiguring r at time t + 1 would
cause a path inconsistency, as it occurs at time t + 2
by definition of u. This contradicts the hypothesis that
r ∈ C at time t. Otherwise, r 6∈ π(u, d, t) but r ∈
π(u, d, t+ 1). This implies that reconfiguring x at time
t + 1 causes a path change at u. However, since the
update is path-preserving, π(u, d, 0) = π(u, d, f), hence
each path change results in a path inconsistency. This
contradicts the hypothesis that x ∈ C at time t.

Theorem 3 allows us to carry out arbitrary updates
from a DV mechanism to SDN at the cost of doing
them in two phases. In the first phase, we can perform a
path-preserving update, which can be efficiently tackled
with GPIA. In the second phase, we use again GPIA to
change the forwarding paths in the SDN mechanism.

4.3 GPIA Variants
Intuitively, each destination poses its own set of con-

straints. Hence, the length of the maximal reconfigura-
tion sequences (e.g., the ones computed by GPIA) gen-
erally decreases with the number of destinations. Based
on this observation, we propose two variants of GPIA
that improve its effectiveness in specific update cases.

GPIA with progressive destination removal.
Thanks to the routing protocol definition, destinations
can be safely removed from the initial mechanism if it
is an IGP. Let d be a destination removed from the IGP
at a given time. Indeed, as soon as the IGP converges,
the old information is purged and all the nodes start
using the final mechanism to forward packets to that
destination. The correctness of the final configuration
prevents permanent anomalies. Hence, the reconfigu-
ration technique can progressively remove destinations
when nodes are reconfigured. In case of progressive des-
tination removal (PDR), reconfiguring a node affects its
mechanism preferences and forces it to stop advertising
connected destinations in the initial IGP, e.g., by means
of route-maps. We refer to the corresponding variant
of GPIA as PDR GPIA.

However, PDR also has two main drawbacks. The
first one is that it cannot be applied if the initial mech-
anism is SDN, since it relies on dynamic information
exchange between nodes. The second drawback is that
removing a destination incurs a penalty in terms of con-
vergence time and transient path inconsistencies. How-
ever, those anomalies are transient, and IGP conver-
gence is normally fast. Moreover, techniques [15, 16]

7



are known that prevent blackholes and forwarding loops
in most IGPs.

GPIA with destination distinction. Not all des-
tinations are equally important in a network. For exam-
ple, it is known that a relatively tiny number of traffic
flows attract a disproportionate amount of traffic (see,
e.g., [11]). GPIA can easily be adapted to consider dif-
ferent requirements for different destinations. In partic-
ular, the algorithm can receive as input only the subset
of the destinations for which some form of path consis-
tency is needed. For the input destinations, stricter or
looser path consistency can be specified, e.g., to toler-
ate path inconsistencies for internal destinations as long
as forwarding loops and blackholes are avoided. Such a
logic is easily accommodated in GPIA when construct-
ing the candidate set Cd.

4.4 Fallback Solutions
Fig. 3 shows that sometimes preventing path incon-

sistencies is simply impossible. In those cases, we rely
on other technical solutions.

Static destination removal. We have already dis-
cussed that destinations can be safely removed from the
initial mechanism if it is an IGP (see §4.3). Hence, in
case no operational ordering exists on the nodes, desti-
nations can be removed one by one by the initial mech-
anism. Each time a destination is removed from the
IGP, all nodes will consistently use the final mechanism
as soon as the initial IGP converges.

Static destination addition. When the final mecha-
nism is an IGP, more specific destinations can be added
to the final IGP in order to force its usage by all the
nodes in the network in a single step. Consider again
the example in Fig. 3. We can partition the destination
prefix d in two sub-prefixes d′ and d′′. Then, we inject
d′ in the final IGP. At this step, all the nodes in the net-
work will start consistently using the final IGP (hence
the final forwarding paths) for traffic to d′, because of
the longest prefix matching rule. Moreover, all nodes
keep using the initial mechanism for the rest of traffic
to d since they are not reconfigured. Announcing d′′ in
the IGP has an analogous effect. After this second step,
all nodes are using the final IGP for packets to any IP
address in d. Hence, reconfiguring nodes in any order
will not trigger any update anomaly.

Moreover, if d contains a single IP address, e.g., as
for loopback interfaces, a new IP address can be added
among those assigned to the destination. This new IP
address can either be kept in the final configuration, or
be used only during the update, switching back to the
initial IP address as the last update step.

Destination addition and destination removal also pro-
vide a safe way to perform any update of hybrid net-
works at the cost of possibly introducing transient anoma-

lies, adding management overhead and slowing down
the update process. On one hand, transient anoma-
lies during IGP convergence are highly mitigated by ad-
vanced techniques to prevent anomalies (e.g., transient
loops [15, 16]) and to speed up IGP convergence (less
than one second even in large networks [17]). On the
other hand, however, the configuration of single nodes
needs to be modified multiple times, i.e., to add or re-
move routes to given destinations and possibly tempo-
rary IP addresses to nodes. Moreover, destination ad-
dition would increase the size of the nodes’ FIB only
for the purpose of the update. For those reasons, we
propose to use those solutions only if a reconfiguration
ordering does not exist.

5. EVALUATION
In this section, we evaluate the effectiveness of our

techniques, through simulations of realistic update cases
in which forwarding paths are changed for traffic flows
to one or several destinations. We consider LS and
DV hybrid networks in Sec. 5.1 and 5.2, respectively.
We stress that our techniques can be applied to further
scenarios, like moving traffic flows away from specific
links or nodes to avoid congestion.

5.1 Updates of LS hybrid networks
We started simulating network updates of LS hybrid

networks in which IGP-controlled flows become SDN-
controlled or vice versa. During such control shifts, the
forwarding path followed by the affected flows changes
as to mimic traffic engineering operations.

As dataset, we used the topologies computed and
made publicly available in the Rocketfuel project. For
each topology, we partitioned the nodes according to
the cities in which they are located. We refer to nodes
having no direct links with nodes in other cities as bor-
der nodes. Border nodes are 38 out of 306 nodes for AS
1221, 10/322 for AS 1755, 27/656 for AS 3257, 19/294
for AS 3967, and 73/748 for AS 6461. Since border
nodes attract Internet traffic, we assumed them to be
critical for both traffic engineering and policy routing
requirements. In our experiments, we use border nodes
as destinations of the traffic flows that we modify.

Single destination
As a first use case, we reconfigured traffic flows to one
border destination. We make several experiments on
each topology. In each experiment, we pick a border
node as destination, we change some forwarding paths
to the picked destination, and we run algorithm GPIA.
We computed the old forwarding paths as shortest paths
on the original IGP graph. The final shortest paths co-
incides with shortest paths on another weighted graph
that differ from the IGP one for 10 link weights. This
can reflect a case in which IGP- and SDN- forward-
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Figure 6: CCDF of nodes that can be safely re-
configured using GPIA in the single destination
experiments on LS hybrid networks.

ing paths are computed according to different criteria,
e.g., using bandwidth for IGP link weights, and delay as
the main metric for SDN-controlled paths. This would
support different forwarding path computation for dif-
ferent kinds of traffic, e.g., letting IGP manage traffic
from standard applications while SDN supports VoIP
services. The control shift of a flow from IGP to SDN
(or vice versa) may be then needed depending on the
relocation of end users and servers.

For each pair of topology and destination, we ran 15
simulations. In each simulation, we randomly select the
link weight to be changed and we assign a new value to
the link consistent with the values of other links.

Fig. 6 shows the Complementary CDF (CCDF) of the
percentage of nodes that can be reconfigured without
causing path inconsistencies. A point (x, y) in the plot
indicates that at least x% of the nodes can be safely re-
configured in y∗100% of the experiments. Despite a safe
update sequence does not always exist, an update se-
quence that provably prevents any forwarding anomaly
during the entire update can be applied in many of our
experiments. In the remaining cases, the vast major-
ity of nodes (typically, more than 80%) can be safely
reconfigured, with few exceptions in which a safe order-
ing cannot be found for about 40% of the nodes. Those
results imply that GPIA allows the less efficient fallback
solutions proposed Section 4.4 to be applied to a small
percentage of nodes.

Multiple destinations
To react quicker to some network events, like increasing
load threatening congestion, or for traffic engineering
purposes, it is often desirable to change paths to multi-
ple destinations at the same time. Moreover, simultane-
ously reconfiguring several destinations would minimize
the time during which the network is in intermediate

states, and forwarding paths are not optimized.
To assess the effectiveness of our techniques when

traffic flows to multiple destinations are changed, we
performed two series of experiments. As in the single
destination experiments, forwarding paths were com-
puted as shortest paths on different graphs, differing by
5 and 10 link weights in the first and second series of
experiments, respectively. Observe that state of the art
techniques for traffic engineering [18] are stated to typ-
ically few (not rarely, less than 10) link weights. For
each topology and each series of experiments, we also
run the PDR version of GPIA (see §4.3), imagining to
apply it when the initial mechanism is an IGP. To per-
form a worst case analysis, we considered all the border
nodes as destinations. For statistical significance, we
ran each series of experiments 60 times, randomly se-
lecting each time the links having different weights in
the initial and final graphs.

The results for the 5 link changing experiments are
reported, as CCDF, in Fig. 7. Fig. 7(a) shows that, for
3 topologies out of 6, the large majority of the nodes
(more than 80% in more than 80% of the experiments)
could be safely reconfigured following the ordering com-
puted by our GPIA algorithm. In the remaining topolo-
gies, a lower but still significant percentage of nodes
(more 50% except a small percentage of the experi-
ments) could also be safely reconfigured in many ex-
periments. As in the single destination experiments,
running GPIA significantly limits the number of cases
in which to apply solutions less efficient than a simple
operational ordering.

Fig. 7(b) reports the results for the same experiments
as obtained by running PDR GPIA. As predicted by the
theory, removing destinations improves the effective-
ness of our update technique, and enables GPIA to find
longer node update sequences. Contrary to the original
GPIA algorithm, the PDR version also finds a complete
ordering in many cases, i.e., in more than 60% of the
experiments for 4 out of 6 topologies. Moreover, in the
same 4 topologies, more than 90% of the nodes can be
safely reconfigured following our computed ordering in
70% of the experiments (and few less in the remaining
experiments). Unfortunately, the improvements in the
2 other topologies are less important. This is not com-
pletely surprising as the effectiveness of GPIA is highly
dependent on network topologies. We plan to have a
deeper insight on the peculiarities of those topologies
with respect to the others in future work.

By repeating the same experiments with 10 links, we
found similar trends. In particular, on ASes 1221, 1755
and 3257, GPIA was able to safely reconfigure more
than 60% of the nodes and more than 75% in about 80%
of the experiments. ASes 6461 and 1239 are the ones on
which GPIA performed the worst, though it was able to
reconfigure about 60% of the nodes in more than 50% of
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(b) GPIA with destination removal

Figure 7: CCDF of nodes that can be safely reconfigured using GPIA in the multiple destination
experiments on LS hybrid networks.

Figure 8: CCDF of nodes that can be safely re-
configured using GPIA in our experiments on
DV hybrid networks.

the experiments. PDR GPIA improved those numbers
similarly to the case of 5 link weight changes.

5.2 Updates of DV hybrid networks
We considered cases in which DV-controlled flows are

reconfigured to become SDN-controlled in DV hybrid
network. We focus on path-preserving update cases,
i.e., in which the forwarding paths are the same in the
initial and final configurations. This scenario can reflect
a progressive transition of networks still deploying DV
IGPs, as reported to be still frequent in enterprise net-
works [19]. Observe that the path-preserving case is the
only one in which GPIA is polynomial when applied to
DV hybrid networks (see §4.2), and it is also the more
likely to have longer update sequences.

We performed experiments similar to those run for
LS hybrid networks. Fig. 8 is the equivalent of Fig. 7(a)
for DV to SDN updates to multiple destinations. We

observe much less variability compared to Fig. 7(a), sug-
gesting that changing 10 links only minimally affects the
effectiveness of GPIA. Moreover, a complete sequence
was impossible to find in any of the experiments, and
the number of nodes that can be safely reconfigured
were significantly lower than in the LS hybrid networks
experiments. Contrary to LS hybrid networks, even
augmenting GPIA with the destination removal feature
provides marginal improvements (not shown in the fig-
ure for brevity). We ascribe such a discrepancy between
LS and DV hybrid networks to Property 1 which im-
poses intermediate next-hops, depending on the shape
of the DV-cone, to nodes in the DV-cone.

Our experiments show that forwarding can be hardly
changed without disruptions in DV hybrid networks,
even in path-preserving updates. Our results suggest
to prefer LS hybrid networks on DV ones, unless only
end-to-end connectivity has to be preserved in update
operations.

6. DISCUSSION

Table 1 recaps our theoretical results. We now discuss
their high-level implications and their generality.

Comparison between LS and DV hybrid net-
works. The guaranteed absence of forwarding loops
in DV hybrid network should not be taken as an argu-
ment to prefer DV IGPs in hybrid networks. The pres-
ence of the DV mechanism significantly complicates the
problem of avoiding path inconsistencies. As opposed
to LS hybrid networks, GPIA does not have a polyno-
mial time bound when DV mechanisms are involved.
Efficient computation of the ordering can be done only
in some scenarios (e.g., when the final mechanism is LS
or SDN) at the cost of doubling the number of recon-
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PPPPPPPPfrom
to

SDN LS IGP DV IGP

SDN
forwarding loops † forwarding loops † no forwarding loops

path inconsistencies ∗ path inconsistencies ∗ path inconsistencies ?

LS IGP
forwarding loops † forwarding loops [14]† no forwarding loops

path inconsistencies ∗ path inconsistencies ∗ path inconsistencies ?

DV IGP
no forwarding loops no forwarding loops no forwarding loops

path inconsistencies ~ path inconsistencies ~ path inconsistencies ?

†NP-hard, ∗P-time, ~P-time if done in two steps,?open problem

Table 1: Summary of our theoretical findings.

figuration steps. In fact, studying the computational
complexity of avoiding path inconsistencies in DV hy-
brid networks remains an open research problem.

Types of control-plane mechanism. Our findings
reveal that different types of mechanisms incur differ-
ent types of anomalies. Moreover, SDN and LS mech-
anisms show very similar properties, while DV proto-
cols are a special case. This suggests that, in order to
study the update process, the most important feature of
a control-plane mechanism is whether it computes the
routes based on a partial (DV) or complete (LS and
SDN) knowledge of the network topology.

Generality of our techniques. By pinpointing the
key properties of mechanisms, our findings are general
enough to cover additional use cases than the ones dis-
cussed in this paper. First, although we focus on hybrid
enterprise networks, our results apply to hybrid data
center networks as well, namely if some switches run dis-
tributed protocols like TRILL [20]. Moreover, our tech-
niques directly apply to updates in pure SDN networks.
Finally, they can be leveraged to replace one IGP with
another in a traditional network in which routers run
two IGPs at the same time.

Limitations. We studied one form of coexistence be-
tween SDN and IGPs. Indeed, except during network
updates, we assume each flow to be either completely
IGP-controlled or SDN-controlled. Alternative forms of
cooperation, e.g., in which part of the forwarding paths
is determined by an IGP and part by SDN [21], are also
possible. Despite being more powerful, they complicate
network management and troubleshooting. We leave
the study of forwarding anomalies in different coexis-
tence paradigms for future work. Finally, throughout
the paper we assume that packets are not modified en
route, e.g., by NAT or by OpenFlow rules. If hybrid
networks are to offer a comparable flexibility to pure
SDN networks, the impact of such advanced functions
deserves further investigation.

7. RELATED WORK

To the best of our knowledge, this is the first paper
proposing general disruption-free techniques for consis-
tent update of hybrid networks. In [8], progressive intro-
duction of SDN is reported in a running hybrid network.
However, disruptions during update operations are not
prevented in [8], e.g., when FIB entries are changed for
traffic engineering purposes.

The rest of the related work targets either IGP re-
configurations or update of pure SDN networks.

IGP reconfigurations. Changing IGP configurations
while avoiding disruptions has been the objective of sev-
eral research efforts. However, previous work mainly
focused on forwarding loops in link-state IGP reconfig-
urations. Notably, algorithms to avoid forwarding loops
during IGP convergence in case of topological modifica-
tions have been proposed in [16]. In this paper, we pre-
vent permanent loops triggered by inconsistencies due
to reconfiguration techniques. A framework to minimize
a given disruption function is proposed in [22], how-
ever this directly applies only to link weight changes.
A technique to avoid forwarding loops during arbitrary
configuration changes is described in [14]. We found
that this technique can be reused to avoid loops in LS
hybrid networks. Moreover, we developed more refined
techniques to avoid all possible forwarding anomalies in
both LS and DV hybrid networks. The relationship
between our work and [14] is highlighted in Table 1.

SDN update. The work closer in spirit to ours is
the consistent update of pure SDN networks presented
in [12]. In that work, however, a pure SDN network
has been assumed, and the same technique cannot be
applied on hybrid networks where SDN protocols and
IGPs interact during traffic flow changes. As they can
also be applied to pure SDN networks, our techniques
are more general. Moreover, they ensure per-packet
consistent updates while avoiding packet modifications
(e.g., tagging) and sensibly reducing resource consump-
tions with respect to [12]. Indeed, our techniques dupli-
cate FIB entries only when strictly necessary. This is
especially critical for SDN switches that typically sup-
port a limited number of flow entries.
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Congestion-free techniques applicable in OpenFlow
networks have also been recently proposed, e.g., [24].
We target to preserve accommodation of more critical
requirements, like security policies, in hybrid networks
By preventing any path inconsistency, our techniques
provably preserves accommodation of higher-level re-
quirements like security policies, while limiting the like-
lihood of congestion during the network reconfiguration.

8. CONCLUSIONS
SDN promises incomparable flexibility. To create in-

centives to bootstrap an incremental transition towards
SDN, part of this flexibility should be made available
in hybrid SDN networks, mixing SDN-capable devices
and devices not supporting SDN protocols yet.

In this paper, we developed the machinery to realize
anomaly-free updates of hybrid networks. Our tech-
niques enable dynamic traffic engineering and policy
routing at a fine-grained level, e.g., supporting condi-
tional load balancing (e.g., addition of egress points to a
given set of network flows if traffic becomes higher than
a given threshold), on-the-fly addition and removal of
network resources (e.g., making the traffic traverse the
smallest possible subset of devices in a given set), or
conditional selection of forwarding paths (e.g., selection
of the forwarding path for specific flows on the basis of
the delay experienced over that path).

Although this paper is targeted to hybrid enterprise
networks, the same machinery can also be exploited in
hybrid data center networks, in pure SDN networks and
in traditional IGP networks. A full evaluation of those
use cases is left for future work.
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