
Towards validated network configurations
with NCGuard

Laurent Vanbever, Grégory Pardoen, Olivier Bonaventure
Université catholique de Louvain, Belgium

Abstract— Today, most IP networks are still configured man-
ually on a router-by-router basis. This is error-prone and
often leads to misconfiguration. In this paper, we describe the
Network Configuration Safeguard (NCGuard), a tool that allows
the network architect to apply a safer methodology. The first
step is to define his design rules. Based on a survey of the
networking literature, we classify the most common types of rules
in three main patterns: presence, uniqueness and symmetry and
provide several examples. The second step is to write a high-
level representation of his network. The third step is to validate
the network representation and generate the configuration of
each router. This last step is performed automatically by our
prototype. Finally, we describe our prototype and apply it to the
Abilene network.

I. INTRODUCTION

Managing and configuring the devices that compose an IP
network is a complex, costly and error-prone task [1]. Network
operators must ensure consistency among neighboring routers
while facing complex configuration languages and frequent
changes in the network [2], [3]. Furthermore, a typical network
may contain hundreds of devices from different vendors run-
ning different operating systems with their own configuration
language.

In many, if not most, networks, the state of the art method-
ology used by network engineers to configure their routers and
switches is very simple [4]. A wiki or a set of text files contain
the network documentation, policies and small configuration
templates for the most common tasks [2]. When a router’s
configuration must be changed, the network engineers often
update the configuration by using cut-and-paste from the
wiki template, after having changed parameters such as IP
addresses. If the same operation must be performed frequently,
a small script is written and stored on the wiki. Several
studies have shown that routers’ configuration often contain
faults [5], [6], sometimes with consequences on end-to-end
Internet connectivity [7].

During the last fifty years, several methods have been
proposed to improve software quality. Most of these methods
share several common steps. First, the requirements of each ap-
plication must be analyzed and documented in details. Second,
the software will be divided in modules and written in a high-
level language. Third, each module can be thoroughly tested.
Fourth, formal methods can be used to validate key modules.
Compared to software engineering practices, and although
more and more IP networks support mission critical services,
network configuration remains too often an art. Some authors

have compared the current way of configuring networks to
writing a distributed program in assembly language [8].

In this paper, we describe the Network Configuration Safe-
guard (NCGuard). NCGuard is a first, but important, step
towards the utilization of software engineering techniques
to produce network configurations that can be validated.
NCGuard encourages the network architect to first specify
formally the objectives of his network. Such a formalization
is used by several software engineering techniques such as
design by contract [9] for example. These objectives are
defined as a set of rules that must be met by the configuration.
Then, the network architect writes a high-level representation
of his network. NCGuard then validates the configuration
automatically based on the rules defined by the architect
and generates the routers’ configurations in their respective
configuration languages.

This paper is organized as follows. We first describe in
Section II how a network architect can specify his objectives.
Section III details the design of NCGuard. Section IV uses
NCGuard to produce the configuration of the Abilene net-
work and Section V discusses related work.

II. CONFIGURATION OBJECTIVES

Network architects usually have two different types of
configuration objectives. High-level objectives are design de-
cisions made by the architect about the organization of his
network. Some examples of high-level objectives are: ensure
that the iBGP sessions distribute interdomain routes to all BGP
routers, ensure that all intradomain routes are distributed by
the IGP protocol, enable MPLS, use MPLS fast-reroute to
protect links, . . . High-level objectives can depend on and be
realized through other lower-level objectives. For example, the
objective of ensuring that interdomain routes are distributed to
all BGP routers can be realized by using a full-mesh of iBGP
sessions, redundant Route Reflectors or confederations. Each
of these objectives can also depend on lower level objectives.
For example, the full-mesh of iBGP sessions requires that
the IGP protocol advertises to all routers the reachability of
the endpoints of all BGP sessions. This IGP objective can be
realized by using OSPF or ISIS. If OSPF is used its correct
configuration depends on other lower-level rules such as: the
areas must be connected to the backbone area, the same MTU
must be configured on both ends of each link, OSPF should
run in passive mode on peering links . . .NCGuard allows
the network architect to define a hierarchy of configuration
objectives where a high-level objective is composed of several

low-level objectives and allows the network architect to define
them as configuration rules.

In this section, we first survey the networking literature to
describe the most common configuration objectives and then
we show how to formalize them.

A. Patterns of configuration objectives

To build an efficient representation of configuration ob-
jectives, we studied the entire configuration of the Belgian
Research Network and of the Abilene network. We also
analyzed the recommendations from routers vendors such
as [10], [11], [12], [13] as well as configuration problems
found by tools such as rcc [7], minerals [6] and others [5],
[14], [15], [16]. Based on this survey, we found that most of
the objectives, and in particular the low-level ones, could be
expressed by using three main different patterns : presence
(and non-presence), uniqueness and symmetry. The last two
were already mentioned in [15]. Each pattern is applied on sets
of configuration elements that we will call SCOPE. Commonly
used scopes include the set of all routers, the set of all border
routers, the set of all loopback interfaces . . .

The presence pattern is used when a given configuration
rule must be defined on a set of devices. For instance, [10]
recommends to define a router id on each router to avoid
letting the router select a different one after a reboot. Another
example is that the passive keyword should appear on
the definition of the peering links that connect a router to
a different network to avoid creating OSPF adjacencies with a
peer [10]. The non-presence pattern is the dual of the presence
pattern. For instance, it can check that stub areas and not so
stubby areas in OSPF do not contain virtual links [11].

The uniqueness pattern is used to represent objectives
where several network elements must use unique values for
a given parameter. The most common uniqueness pattern is to
check that the IP addresses assigned to physical interfaces are
different [10]. Another example is that all routers should have
a different name. A third example could be that for security
reasons, the network architect forces all eBGP sessions to use
a different MD5 password.

Two symmetry patterns that cover most cases have been
identified. They are used when two configurations contain
related parameters. The simple equality pattern is used to
express that some parameters in two different routers must
be equal. For example, the two routers attached to a given
physical link must use the same layer-2 encapsulation. Another
example is that the same OSPF timers must be configured on
the two routers attached to one link. A third example is that
that same OSPF weight is used on both directions of each
link. The second kind of symmetry pattern is the cross equality
symmetry pattern. For instance, in order to establish an iBGP
session between routers A and B, router A has to configure B
as its neighbor, and B has to configure A as its neighbor [11],
[10].

Finally, there are some more complex objectives that do
not fit in those patterns. These will be expressed as custom
rules that are written in a programming or query language.

For instance, a network designer could want his network to
remain connected even after single link failures while another
designer could want his network to remain connected even
after the failure of any pair of routers. A second example is a
network designer who needs to ensure that at least two disjoint
equal cost paths exist between his data centers.

B. Formalization of the configuration objectives

The configuration objectives can be expressed as rules that
will be verified by NCGuard. A rule can represent a design
choice or any requirement of an operator. Rules are applied
to configuration elements of the network. A configuration
element represents any relevant network information such as
a router, a router’s interface or a routing protocol. . . All the
configuration elements together describe the entire network.
They can be represented as a tree noted T = (V,E) with V
being the set of vertexes and E the set of edges. A vertex
p of the tree represents a configuration element and it is
referenced as a Configuration Node (CNode). CNode p is
a child of CNode q (i.e., (p, q) ∈ E), if the configuration
element represented by p is a part of the configuration element
represented by q. Figure 1 depicts an excerpt of the tree T
representing a simple network composed of two routers shown
on the upper part of the figure.

Fig. 1. A simple network containing two routers

Our survey of high and low-level objectives showed us that
many rules need to check features on sets of configuration
elements. For instance, checking the presence of a router
id on each router can be done by examining the set of CNodes
containing all routers, i.e., the children of the Routers
CNode in Figure 1. We call this set the SCOPE of the rule.
The SCOPE of a rule is thus the set of CNodes on which the
rule will be applied.

To formalize the scope, let C(T, p) be a function returning a
boolean value indicating whether CNode p satisfies a particular
condition in tree T . More precisely, a SCOPE is the subset of

CNodes of T respecting condition Cscope, thus

SCOPE = {p|p ∈ V : Cscope(T, p)} (1)

For example, to select all the routers shown on Figure 1, the
function Cscope returns true for every CNode p having p.type =
router (i.e., R1 and R2) and returns false otherwise. This
scope can be written as follows:

ROUTERS = {p|p ∈ V : p.type = router} (2)

In practice, several SCOPES are pre-defined and the network
architect can easily add new ones. In addition to ROUTERS,
we have defined several scopes [17] corresponding to all BGP
routers, all loopback interfaces, . . . However, some rules cannot
be validated by using only a SCOPE. For instance, a rule
that checks that all routers have at least one loopback inter-
face [11], [10] must extract from the network representation
a set containing all routers. Then, for each router, the rule
must extract its set of interfaces and verify that it contains at
least one loopback interface. A router represented by CNode
p leads to the set of its interfaces noted interfaces(p).
In general terms, a set computed from CNode p is noted
descendants(p) or in short d(p).

For instance, obtaining the CNodes representing the in-
terfaces of router R1 in Figure 1 requires to select the
descendants of R1 whose field type is equal to interface.
Let p be the CNode that represents R1.

interfaces(p) = {q|q ∈ descendants(T, p) :
q.type = interface} (3)

Now, we describe how the three main patterns of rules can
be expressed. A presence rule checks whether CNodes in T
meet a particular condition. More precisely, a presence rule
checks for each CNode x of the SCOPE, whether there is at
least one CNode respecting condition Cpresence in d(x). This
rule is expressed formally by:

∀x ∈ SCOPE ∃y ∈ d(x) : Cpresence(T, y) (4)

For example, Equation 5 shows the presence rule particu-
larized to check that all routers have at least one loopback
interface.

∀x ∈ ROUTERS ∃y ∈ interfaces(x) : y.id = loopback
(5)

The non-presence rule is the dual of the presence rule.
A uniqueness rule checks the uniqueness of the value of

a field among a set of CNodes. More precisely, it checks for
each CNode x of the SCOPE, whether all CNodes in d(x) have
different values of field. This can be expressed by Equation 6.

∀x ∈ SCOPE ∀y ∈ d(x) :
¬(∃z6=y ∈ d(x) : y.field = z.field) (6)

Symmetry rules cover two kinds of symmetries. The first
type checks the equality of a value for all members of a set.

It is called a symmetry rule with simple equality. A symmetry
rule can be expressed by Equation 7.

∀x ∈ SCOPE ∀y, z ∈ d(x) : y.field = z.field (7)

For instance, the MTU must be equal on all connected inter-
faces [10], otherwise OSPF will not establish an adjacency.
This is expressed by Equation 8.

∀x ∈ LINKS ∀y, z ∈ linkInterfaces(x) :
y.MTU = z.MTU (8)

The second kind of symmetry rule checks equality between
different parameters. We call it a symmetry rule with cross
equality. The general symmetry rule with cross equality is
expressed by Equation 9.

∀x ∈ SCOPE ∀y ∈ d(x) : ∃z ∈ SCOPE ∃w ∈ d(z) :
y.field1 = z.field2 and w.field1 = x.field2 (9)

In this section, we have discussed the three main patterns
of low-level rules. We explain how NCGuard supports them
in the next section.

III. THE DESIGN OF NCGUARD

NCGuard’s design relies on two main concepts. First, the
network configuration is represented at a high-level. Second,
the design objectives are expressed as rules that can be auto-
matically tested. Figure 2 illustrates NCGuard’s architecture.
NCGuard is divided in two processes, a validation engine
and a generation engine. The first validates the network rep-
resentation against the given design rules. The latter generates
concrete devices’ configurations based on the high-level repre-
sentation and vendor templates. A vendor template describes
the way the high-level representation must be transformed in
order to obtain devices’ configuration expressed in the vendor
configuration language (e.g. Juniper JunOS or Cisco IOS).

Fig. 2. Overview of NCGuard

A. Network representation

A network configuration can be seen as the sum of its
component’s configuration. Instead of dealing with a set of
configurations, NCGuard uses one high-level representation
encoded as a XML document. We have chosen XML because
it is a flexible and self-describing metalanguage that can easily
represent hierarchical structures like network configurations.
This approach brings several benefits. First, our representation
avoids redundancy. When configuring a large network, the

same value for a given parameter must be encoded multiple
times. By using a high-level network representation, those
parameters are encoded only once. For instance, instead of
configuring each router with a logging server, that value can
be represented once in the high-level representation and then
replicated on each device in an automated way. Thus, the
probability of making replication errors vanishes. Second, we
adopt a platform-independent representation that can easily
represent multi-vendors networks. This is key since each
vendor has its own specific configuration language (e.g., Cisco
IOS, Juniper JunOS, etc.). Third, we can leverage the existing
XML libraries to build the validation and the generation
engines.

Due to space limitations, we cannot describe in details how
the XML representation is written. A detailed example is
available in [17]. In brief, a router (<node> element) contains
some characteristics such as vendor, a model, and a specific
OS version. It contains several elements. The <rid> element
represents its router-id. The <interfaces> element contains
the description of each interface. A link in our representation
connects either two <node> elements together, or a <node>

and a <ext-node> element (i.e., a node that doesn’t belong
to the AS). Parameters that must have the same value on
both sides of the link, such as the MTU or the encapsulation
are described under the <attributes> element. During the
generation phase (see Section III-C), these values will be
duplicated on each node referenced in the link. We have found
that almost all errors due to symmetry incoherence can be
avoided by following this simple principle. This abstraction
also offers a nice way of dealing with protocol configurations.
For example, instead of configuring OSPF on each internal link
belonging to the domain, an operator configures OSPF under
a single entity. A snapshot of a simple OSPF configuration
may be found in [17].

B. Validating rules

High-level configuration objectives are usually expressed as
the conjunction or the disjunction of lower-level rules. For
example, a top-level configuration objective for OSPF would
be encoded as follows :� �
<rule id="CORRECT_OSPF">

<dependencies type="and">
<depends>CORRECT_OSPF_INTERFACES</depends>
<depends>CORRECT_OSPF_AREAS</depends>

</dependencies>
</rule>� �
NCGuard uses several techniques to check rules. Each

technique has its pro’s and con’s. As a result, a particular
technique can be more appropriate than another to check a
particular type of rules. Firstly, rules are checked by the XML
Schema associated to the network representation [18]. We
call these rules the Structural rules. Secondly, rules can be
checked by a query on the network representation. We call
these rules the Query rules. The queries on the XML file
representing the network are realized by using XQuery [19],
[20]. Finally, the more complex rules are checked by using a

programming language (Java in our prototype). These rules
are called Language rules.

A presence, non-presence, uniqueness or symmetry rule fits
well with the two first techniques (Structural rule and Query
rule), while a custom rule fits well with the last two techniques
(Query rule or Language rule). A non-custom rule can often
be verified by using a query if a SCOPE, or descendants
obtained from the SCOPE or evaluating a condition is required,
otherwise a Structural rule can be used.

Symmetry rules are often checked directly by the XML
Schema of the network representation because redundant
informations are stored at a high-level (see III-A) and this
implicitly checks the rule. For example, directly connected
interfaces must have the same MTU in order to work properly.
In NCGuard’s network representation, the MTU is defined
as a link parameter. As a result, the corresponding rule is
already checked by writing the network representation and by
ensuring that the correct value will be generated in the final
configuration files.

The Query rules and their different parameters are written as
a XML file. The following examples will illustrate the easiness
of writing rules.

a) All the routers have a unique router id: This
presence rule is part of the XML schema.

b) A loopback interface is present on all nodes: This
presence rule requires a condition to identify a loopback
interface and the notion of descendants in order to check
the presence of a loopback interface among all interfaces of a
node.� �
<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE"
type="presence">

<presence>
<scope>ALL_NODES</scope>
<descendants>interfaces/interface</descendants>
<condition>substring(@id,1,2)=’lo’</condition>

</presence>
</rule>� �

c) Loopback addresses are advertised in OSPF: This
presence rule needs a SCOPE to check the condition only on
OSPF nodes. It can be written by replacing the ALL_NODES
SCOPE in the previous rule by a SCOPE that selects all OSPF
routers.

d) OSPF areas must be directly connected to the
backbone area: This custom rule checks the OSPF topology.
As it does not require running an algorithm, it can be expressed
as a XQuery [20] query on the XML file representing the
network. To report useful errors and warnings, our queries
on the XML file always search for the elements that do not
respect the rule. In this example, the query searches for areas
without an area border router connected to the backbone area:� �
<rule id="AREAS_CONNECTED_TO_BACKBONE_AREA" type="custom">

<custom>
<xquery><![CDATA[

for $area in /domain/ospf/areas/area[@id!="0.0.0.0"]
let $backbone_nodes :=
/domain/ospf/areas/area[@id="0.0.0.0"]/nodes/node
where not(exists($backbone_nodes[@id=$area/nodes/node/@id]))
return <result><area id="{$area/@id}"/></result>]]>

</xquery>...� �

NCGuard’s validation engine is composed of two parts:
the engine and the rules. The validation engine was written
in about 1500 lines of Java by leveraging the saxon XML
libraries. The rules are either part of the schemas of expressed
as XQuery rules or by using Java classes. The XML schemas
used by NCGuard’s current prototype contain about 1000
lines. Additionally, the Language rules that check more ad-
vanced OSPF or BGP features contain about 950 lines.

C. Generation of the router’s configurations

The last step of NCGuard is the generation of network
devices’ configurations. This is performed in two steps. Firstly,
the high-level network representation is transformed into a
lower level XML-based representation to facilitate the gener-
ation. This representation contains redundancies and is closer
to the configurations of real routers. For example, while
in the high-level representation the MTU was specified on
each link, in the lower-level representation this parameter is
specified on each interface. Furthermore, this representation
contains the characteristics of each router (vendor, operating
system release, memory, types of interfaces, . . .). This is very
important as some configuration parameters are only valid on
some specific platforms.

Secondly, this low-level representation is transformed to
concrete vendor configurations (IOS, JunOS, etc.) by using
XSLT templates [21]. This allows our validation engine to
remain flexible. We can easily add support for new operating
systems or generate configurations that depend on the charac-
teristics of each router. Furthermore, it is also possible generate
models of the network for simulators such as C-BGP [22]
or traffic engineering tools [16], [15]. This can be used to
write more complex validation rules. Below you can find a
snapshot of an interface’s representation and the corresponding
generated Juniper configuration.� �
<interface id="so-0/0/0">

<unit number="0">
<ip mask="31" type="ipv4">64.57.28.11</ip>

</unit>...� �� �
interfaces {

so-0/0/0 {
unit 0 {

family inet {
address 64.57.28.11/31;

...� �
NCGuard’s generation engine was written in about 800

lines of Java. The XSLT style sheets used to generate the BGP
and OSPF JunOS configurations contain about 1200 lines.

IV. CASE STUDY

To illustrate the operation of NCGuard with publicly avail-
able configurations, we used it to develop a high-level repre-
sentation of the Abilene network. We chose Abilene because
this is the only network whose configuration is publicly avail-
able. This representation was written by reverse-engineering
the Abilene router configurations written in JUNOS. The
XML representation of the IGP and BGP configurations of
Abilene is composed of 1170 lines. We focused on IGP and

BGP and inferred their configuration objectives based on the
actual configurations. For example, the top-level OSPF design
objective is that the OSPF interfaces are correctly configured
and that the OSPF areas are correctly used. Since Abilene only
uses a single area this objective is easily verified. However,
the validation of the OSPF interfaces depends on several
lower-level objectives. For example, loopback addresses and
addresses of backbone interfaces must be advertised by OSPF.
Another example is that OSPF should only be run in passive
mode (i.e., without creating adjacencies) on peering links . . .

Table I summarizes the rules that are checked against the
corresponding high-level representation in function of their
type and the technique used to check them. Most of them
(78%) are expressed by using Structural rules. Those rules
are mainly used to perform low-level checks such as verifying
the presence or the type of an element/attribute. Most of these
rules could be provided directly by the router vendors as input
to NCGuard. Query rules are typically rules that an operator
would write himself to ensure that his design decisions are
followed everywhere in the network. For Abilene, we wrote
such rules to verify that the IGP is enabled on all backbone
interfaces or that the BGP nexthops are reachable. Finally,
Language rules are used to express more complex rules,
generally the ones that require the utilization of an algorithm.
For example, in Abilene, one of our custom rules checks that
a single link failure does not partition the network.

Structural Query Language Total
Uniqueness 14 6 - 20
Symmetry 10 - - 10
Presence 82 15 - 97
Custom - 6 3 9
Total 106 27 3 136

TABLE I
NUMBER AND TYPES OF RULES FOR THE ABILENE NETWORK

To illustrate the usefulness of NCGuard’s validation en-
gine, we introduced deliberate errors in the network repre-
sentation. For example, we deactivated OSPF on one side
of an internal link. NCGuard immediately detected it and
warned the user with an error message. As noted by [3],
comprehensive error messages are important for the network
operators. Other examples may be found in [17]. Finally,
once the Abilene representation has been validated, NCGuard
generate the configuration of each router. The original and
generated configuration files are compared in [17]. Globally,
the corresponding parts of those files are almost identical. The
main differences come from the fact that we don’t use exactly
the same configuration schemes as the Abilene operators.
For example, our configurations follow the Team Cymru’s
recommendations [23].

V. RELATED WORK

Several researchers have proposed solutions to allow net-
work operators to better configure their routers. Metaconfig-
uration, proposed by Matuska in [24] also uses a high-level

XML-based representation of the network. Enck et. al describe
in [3] the PRESTO software that they use to generate parts of
the configurations of routers. Metaconfiguration and PRESTO
perform some checks on the generated configuration. However,
their validation is not as detailed and as extensible as with
NCGuard.

Several authors have proposed tools to improve the configu-
ration of the routing policies and the BGP filters. The Routing
Policy Specification Language [25] was designed to allow
network operators to document their routing policies in the
whois databases. Some network operators, notably in Europe,
rely on these RPSL databases to automatically configure their
route filters by using the IRR toolset. Gottlieb et al. in [1]
and Maennel et al. in [26] also propose tools to automate
the configuration of BGP sessions on routers. Feamster et
al. [7] use static analysis to detect BGP configuration errors.
Other authors have analyzed router configurations either based
on data mining techniques or by using special purpose tools.
Caldwell et al. [2], El-Arini et al. [27] and Le et al. [6] use
different data mining techniques to detect configuration errors.
Some commercial tools from vendors such as WANDL or
OPNET can perform various checks on router configurations,
but operators are often reluctant to correct all the warnings
reported by these tools. NCGuard goes one step further by
generating the entire configuration and by ensuring that the
generated configuration meets the design objectives of the
network architect. While finalizing this work, we learned
about a similar approach to use programs to generate router’s
configurations [28].

VI. CONCLUSION

Most IP networks are still configured manually, which is
both error-prone and costly. In this paper, we have proposed
the Network Configuration Safeguard (NCGuard) that sup-
ports a different approach. Instead of manually configuring
each router, the network architect first formally specifies the
objectives of his network. These objectives are defined as a
set of rules that must be met by the configuration. NCGuard
allows the network architect to easily define his own rules.
Then, he writes the configuration of his network as a high-
level XML-based representation. Finally, NCGuard validates
the configuration and generates the router configurations in
their respective configuration languages.

Our further work is to improve NCGuard to support more
protocols and other router vendors. We also intend to enhance
NCGuard to allow it to interact directly with the routers.

ACKNOWLEDGMENTS

We would like to thank Bruno Quoitin, Pierre Francois,
Cristel Pelsser and Olaf Maennel for their suggestions and
comments. We would also like to thank Alain Fontaine, Jan
Torrele and Abilene for having allowed us to study their
configuration files.

REFERENCES

[1] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang, “Automated provi-
sioning of BGP customers,” IEEE Network, Nov/Dec 2003.

[2] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson, and
J. Rexford, “The cutting edge of ip router configuration,” SIGCOMM
Comput. Commun. Rev., vol. 34, no. 1, pp. 21–26, 2004.

[3] W. Enck, P. D. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. G. Greenberg,
S. G. Rao, and W. Aiello, “Configuration management at massive
scale: System design and experience.” in USENIX Annual Technical
Conference. USENIX, 2007, pp. 73–86.

[4] R. Bush, “Private communication,” 2008.
[5] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding bgp mis-

configuration,” in SIGCOMM ’02, 2002, pp. 3–16.
[6] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb, “Minerals: using

data mining to detect router misconfigurations,” in MineNet ’06, 2006,
pp. 293–298.

[7] N. Feamster and H. Balakrishnan, “Detecting bgp configuration faults
with static analysis,” in NSDI’05. Berkeley, CA, USA: USENIX
Association, 2005, pp. 43–56.

[8] S. Lee, T. Wong, and H. Kim, “To automate or not to automate : On
the complexity of network configuration,” in IEEE ICC 2008, Beijing,
China, May 2008.

[9] B. Meyer, “Applying "design by contract",” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[10] K. Dooley and I. Brown, Cisco IOS Cookbook. O’Reilly Media, Inc.,
2006.

[11] J. Doyle, CCIE Professional Development, Routing TCP/IP, Volume 1.
Cisco Press, 1998.

[12] M. Kolon and J. Doyle, Eds., Juniper Networks(r) Routers: The Com-
plete Reference. Osborne/McGraw-Hill, Feb. 2002.

[13] A. Garrett, JUNOS Cookbook, 1st ed. O’Reilly Media, Inc., 4 2006.
[14] H. Peine and R. Schwarz, “A multi-view tool for checking the security

semantics of router configurations,” in ACSAC ’03: Proceedings of the
19th Annual Computer Security Applications Conference. Washington,
DC, USA: IEEE Computer Society, 2003, p. 56.

[15] A. Feldmann and J. Rexford, “IP Network Configuration for Intradomain
Traffic Engineering,” pp. 46–57, Sept. 2001.

[16] S. Balon, J. Lepropre, O. Delcourt, F. Skivée, and G. Leduc, “Traffic
Engineering an Operational Network with the TOTEM Toolbox,” IEEE
Transactions on Network and Service Management, vol. 4, no. 1, pp.
51–61, June 2007.

[17] L. Vanbever and G. Pardoen, “NCGuard,” 2008,
http://inl.info.ucl.ac.be/softwares/NCGuard.

[18] D. C. Fallside and P. Walmsley, “XML Schema Part 0: Primer Second
Edition,” W3C,” W3C Recommendation, Oct. 2004.

[19] P. Walmsley, XQuery. O’Reilly Media, Inc., 2007.
[20] J. Siméon, J. Robie, D. Florescu, D. Chamberlin, M. F. Fernández,

and S. Boag, “XQuery 1.0: An XML query language,” W3C,” W3C
Recommendation, Jan. 2007.

[21] J. Clark, “XSL transformations (XSLT) version 1.0,” W3C,” W3C
Recommendation, Nov. 1999, http://www.w3.org/TR/1999/REC-xslt-
19991116.

[22] B. Quoitin, “BGP-based interdomain traffic engineering,” Ph.D. disser-
tation, Université catholique de Louvain, August 2006.

[23] Team Cymru’s recommendations, http://www.team-cymru.org.
[24] M. Matuska, “Metaconfiguration of the computer network,” CESNET,

Tech. Rep. 27/2004, 2004.
[25] C. Alaettinoglu, T. Bates, E. Gerich, D. Karrenberg, D. Meyer,

M. Terpstra, and C. Villamizar, “Routing Policy Specification Language
(RPSL),” RFC 2280, Jan. 1998.

[26] O. Maennel, A. Feldmann, C. Reiser, R. Volk, and H. Böhm, “As-wide
inter-domain routing policies: Design and realization,” 2005, NANOG
34.

[27] K. El-Arini and K. Killourhy, “Bayesian detection of router configuration
anomalies,” in MineNet ’05: Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data. New York, NY, USA: ACM, 2005,
pp. 221–222.

[28] V. Gill, “Automatic configuration generation and auditing of network,”
North American Network Operators’ Group (NANOG) presentation,
October 2008.

