
Experimental Evaluation of Multipath TCP Schedulers

Christoph Paasch1, Simone Ferlin2, Ozgu Alay2 and Olivier Bonaventure1

1ICTEAM, UCLouvain, Belgium
2Simula Research Laboratory, Fornebu, Norway

ABSTRACT
Today many end hosts are equipped with multiple interfaces. These
interfaces can be utilized simultaneously by multipath protocols to
pool resources of the links in an efficient way while also providing
resilience to eventual link failures. However how to schedule the
data segments over multiple links is a challenging problem, and
highly influences the performance of multipath protocols.

In this paper, we focus on different schedulers for Multipath
TCP. We first design and implement a generic modular scheduler
framework that enables testing of different schedulers for Multipath
TCP. We then use this framework to do an in-depth analysis of dif-
ferent schedulers by running emulated and real-world experiments
on a testbed. We consider bulk data transfer as well as application
limited traffic and identify metrics to quantify the scheduler’s per-
formance. Our results shed light on how scheduling decisions can
help to improve multipath transfer.

Categories and Subject Descriptors
C2.5 [Computer-communication Networks]: Local and Wide-
Area Networks—Internet (e.g., TCP/IP)

Keywords
Scheduling; Experimenting; Multipath TCP

1. INTRODUCTION
Today’s Internet is radically different from what it was 30 years

ago, the time when the building blocks of the Internet (e.g. TCP
and IP) have been specified. At that time, end hosts had a sin-
gle interface. However, today end hosts often have multiple in-
terfaces to access the world wide web. For example, smartphones
are equipped with two interfaces: a WiFi and a mobile broadband
(e.g., 3G/4G). Similarly, server machines are multihomed and data
center networks have a large redundant infrastructure with many
different paths between any two servers. However, TCP is not able
to efficiently utilize this multipath infrastructure as it tightly cou-
ples the data stream to the source and destination IP addresses used
to establish the connection.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSWS’14, August 18, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2991-0/14/08 ...$15.00.
http://dx.doi.org/10.1145/2630088.2631977.

Multipath TCP closes this gap between the multipath network
and the single-path transport. Multipath TCP is a major extension
to TCP, allowing the use of multiple paths between two end-hosts
for the transmission of a single data stream [6]. This enables the
pooling of resources as the paths may go over different interfaces
with distinct bottlenecks, effectively increasing the goodput for the
end user [14, 3]. Further, Multipath TCP permits vertical handover
for mobile nodes, offloading traffic from WiFi to 3G [12]. Multi-
path TCP is best at providing these benefits with long-lasting flows.
These flows may be bulk transfers or rate-limited traffic, like me-
dia streaming applications. For the latter, Multipath TCP might
bring a benefit if a single network connection does not provide suf-
ficient bandwidth or reliability. Here, not only the throughput but
also the end-to-end delays, as well as buffer space requirements,
become more relevant [2] as these kind of applications are sensi-
tive to delay-jitter. Examples in this direction are the adoption of
Multipath TCP in Apple’s iOS7 for the Siri application.

There are many factors influencing the performance of Multipath
TCP [16, 13]. One of them is the design of the scheduler. The
scheduler is responsible for the distribution of data over multiple
paths and wrong scheduling decisions might introduce head-of-line
blocking or receive-window limitation, especially when paths are
heterogeneous. In such a scenario, the user will observe high delays
as well as goodput degradation for its application, resulting in poor
user experience. Therefore, the scheduler can have a significant
impact on the performance of Multipath TCP.

We introduce a modular scheduler framework that allows to eas-
ily change the way data is distributed over the subflows. Further,
we evaluate different schedulers for Multipath TCP and provide
an in-depth performance analysis considering both bulk data trans-
fers and application-limited flows. We consider goodput and ap-
plication delay as metrics. Our experiments include evaluations
with both an emulated environment using the Experimental Design-
approach [13] and with real WiFi and 3G networks with the Nor-
Net testbed [11]. We identify the impact of scheduling decisions
on the performance of Multipath TCP and illustrate the underlying
root cause for the observed behavior. We provide guidelines on the
properties of a good scheduler to achieve a good performance un-
der different scenarios. The design of such a scheduler is out of the
scope and left for future work.

This paper is structured as follows. Section 2 discusses the
background on Multipath TCP and the two main constraints that
a scheduler needs to take into account. Section 3 describes related
work and the schedulers evaluated in this paper. The measurement
setup for our evaluations and the experimental results are presented
in Section 4. Finally, we conclude our work and discuss the results
in Section 5.

standard Socket API

Transport Layer

Application Layer

Network Layer

Multipath TCP
send-queue

send-queue send-queue

21 3 4 5

21 3 4 5

TCP

subflow

TCP

subflow

Multipath TCP Scheduler

Figure 1: The scheduler distributes the segments from the Mul-
tipath TCP level on the different TCP subflows.

2. MULTIPATH TCP
Multipath TCP is a major protocol extension to TCP that sup-

ports the transmission of a single data stream across different in-
terfaces (e.g., WiFi and 3G on a smartphone). Multipath TCP in-
creases the goodput for the application by efficiently pooling the
network’s resources [6]. This pooling is achieved by presenting a
regular stream-socket interface to the application, however below
this interface, TCP subflows are created for each path. These sub-
flows form together a Multipath TCP connection, using TCP op-
tions to signal the necessary control information between the end
hosts. These TCP subflows make Multipath TCP look like regu-
lar TCP for a firewall/middlebox along the subflows’ path. Thus,
making Multipath TCP deployable on today’s Internet [16].

2.1 Exchanging Data
The pooling of the subflow’s resources is achieved by multiplex-

ing individual segments across the different subflows. TCP op-
tions are used to allow the receiver to reorder the segments and
recreate the byte stream ensuring reliable and in-order delivery.
Each subflow is subject to the regular congestion control stages
like slow-start and congestion-avoidance. Specific congestion con-
trol schemes are used to allow a better load balancing and fairness
among the subflows [23, 10].

When multiplexing individual segments, Multipath TCP has to
decide on which subflow to schedule each segment. We call the
module which takes this decision the scheduler in the remainder of
this paper. Figure 1 illustrates the architecture of a Multipath TCP
implementation, its subflows and the role of the scheduler. The
scheduler has access to the state of each TCP subflow, including
congestion window and RTT estimation. In the next two sections
we describe two of the main constraints a Multipath TCP scheduler
needs to consider.

2.2 Head-Of-Line Blocking
The TCP subflows of the Multipath TCP connection may go

through paths with different characteristics. For example, a subflow
going over the smartphone’s WiFi interface experiences a much
lower RTT than a subflow sent over the phone’s 3G interface.

As packets are multiplexed across the different subflows, assum-
ing each subflow goes on a different path, the path’s delay differ-
ence might cause out-of-order delivery at the receiver. As Multi-
path TCP ensures in-order delivery, the packets that are scheduled
on the low-delay subflow have to “wait” for the high-delay sub-
flow’s packets to arrive in the out-of-order queue of the receiver.
This phenomenon is known as head-of-line blocking [19].

Head-of-line blocking causes burstiness in the data stream by
delaying the data delivery to the application, which is undesir-
able especially for interactive or streaming traffic. Interactive ap-

plications will become less reactive, resulting in poor user expe-
rience. Streaming applications will need to add a high amount
of application-level buffering, stressing the end systems to cope
with burstiness and provide a continuous streaming experience to
the end user.

2.3 Receive-Window Limitations
A TCP stack reserves a certain amount of memory for out-of-

order data that might be received in the event of in-network reorder-
ing or packet loss. Multipath TCP introduces reordering across the
TCP subflows due to the delay differences, hence the receive buffer
has to accommodate out-of-order data also at the Multipath TCP
level. Thus, the size of the receive buffer is critical to allow high
goodput.

In order to fully utilize the capacity of all paths, a receiver must
provide enough buffer space so that the sender can keep all sub-
flows fully utilized, even in the event of reordering due to delay
differences or loss. The recommendation for Multipath TCP’s re-
ceive buffer size is defined in [1]:

Buffer =
n

∑
i

bwi × RTTmax × 2

where each subflow will be able to send at full speed (∑n
i bwi)

during the time-interval of the highest round-trip-time among all
subflows (RTTmax), even if a loss event occurs (multiply by 2).

However, Some end hosts are not able to provide the necessary
amount of memory to allocate enough buffer to utilize the full ca-
pacity [2]. This phenomenon has been studied in [16, 13], propos-
ing incremental changes to the heuristics within Multipath TCP by
retransmitting segments and penalizing slow subflows, detailed in
the following section.

3. SCHEDULERS
A wrong scheduling decision might result in head-of-line block-

ing or receive-window limitation, affecting the performance of
Multipath TCP, as discussed in the previous section. Accurately
scheduling data across multiple paths while trying to avoid head-
of-line blocking or receive-window limitation has been shown to
be challenging, in particular if the multiple paths are heteroge-
neous. How to schedule different SCTP streams across the dif-
ferent SCTP associations has been analyzed in [20]. However,
SCTP design is different from Multipath TCP. Standard SCTP does
not support the transmission of a single stream across different
paths. With [7], concurrent multipath transfer has been introduced
for SCTP (SCTP-CMT) and thus exposes SCTP now also to the
scheduling problem in a similar manner as Multipath TCP. [18]
tries to achieve ordered delivery at the receiver in SCTP-CMT by
taking the delay of each path into account. While in theory this is
promising, it is unclear how feasible it is in a real-world Linux ker-
nel implementation where only a rough estimate of the path’s delay
is available.

In this paper, we implemented a modular Multipath TCP sched-
uler framework1. Whenever the stack is ready to send data (e.g., an
acknowledgement has freed up space in the congestion window, or
the application pushed data into the send-queue), the scheduler is
invoked to execute two tasks: first, choose a subflow among the set
of TCP subflows and; second, decide which segment to send con-
sidering the properties of the subflow. We added callbacks from
the Multipath TCP stack that invoke the functions specific to each

1The code is available since release v0.89 at http://multipath-
tcp.org

MPTCP: An Multipath TCP connection, ready to send data.
MPTCP->sched represents a structure containing the
specific callbacks.

1: subflow = MPTCP->sched->get_subflow();
2: while subflow != NULL do
3: data = MPTCP->sched->get_data(subflow);
4: while data != NULL do
5: send_data(subflow, data);
6: data = MPTCP->sched->get_data(subflow);
7: end while
8: subflow = MPTCP->sched->get_subflow();
9: end while

Figure 2: Pseudocode of the modular scheduler framework, us-
ing callbacks to invoke the scheduling functions.

scheduler. A pseudo-code implementation of this behavior can be
seen in Figure 2. This allowed us to design the scheduler in a mod-
ular infrastructure, as it is done with the TCP congestion control
algorithms [22]. A sysctl allows to choose the default scheduler for
all Multipath TCP connections.

Within our modular framework, we consider different sched-
ulers. First, we discuss a simple round-robin scheduler. Then,
considering the heterogeneous networks, where significant delay
differences are observed between the subflows, we discuss delay-
based schedulers. A first evaluation has been done in [21]. But only
a limited environment has been used in the evaluation and improve-
ments to the schedulers [16] were not yet part of the Multipath TCP
implementation.

3.1 Round-Robin (RR)
The round-robin scheduler selects one subflow after the other in

round-robin fashion. Such an approach might guarantee that the
capacity of each path is fully utilized as the distribution across all
subflows is equal. However, in case of bulk data transmission, the
scheduling is not really round-robin, since the application is able
to fill the congestion window of all subflows and then packets are
scheduled as soon as space is again available in each subflow’s con-
gestion window. This effect is commonly known as ack-clock [8].

Such a scheduler has already been discussed for concurrent mul-
tipath transfer SCTP [7]. [5] evaluates how such a round-robin
scheduler behaves in CMT-SCTP for multi-streaming compared to
a scheduler that assigns each stream to a specific path.

3.2 Lowest-RTT-First (LowRTT)
In heterogeneous networks, scheduling data to the subflow based

on the lowest round-trip-time (RTT) is beneficial, since it improves
the user-experience. It reduces the application delay, which is crit-
ical for interactive applications. In other words, the RTT-based
scheduler first sends data on the subflow with the lowest RTT esti-
mation, until it has filled its congestion window (as it has been first
described in [16]). Then, data is sent on the subflow with the next
higher RTT.

In the same way as the round-robin scheduler, as soon as all con-
gestion windows are filled, the scheduling becomes ack-clocked.
The acknowledgements on the individual subflows open space in
the congestion window, and thus allow the scheduler to transmit
data on this subflow.

.
As explained in Section 2, the delay difference triggers head-of-

line blocking and/or receive-window limitation. Next, we discuss

two extensions to the RTT based scheduler. The first solution re-
acts upon receive-window limitation, and the second solution min-
imizes the delay difference in the presence of bufferbloat on the
individual subflows.

3.3 Retransmission and Penalization (RP)
In order to compensate for delay differences, opportunistic re-

transmission and penalization for Multipath TCP have been pro-
posed in [16]. Opportunistic retransmission re-injects the segment
causing the head-of-line blocking on the subflow that has space
available in its congestion window (similar to chunk rescheduling
for CMT-SCTP [4]). This allows to quickly overcome head-of-line
blocking situations and compensate for the RTT differences. Fur-
ther, the penalization algorithm reduces the congestion window of
the subflow with the high RTT, hence, reducing the sending rate
and the effect of bufferbloat on the subflow.

Particularly, the goal is not only to improve goodput, but also to
reduce delay, jitter and buffer size requirements.

3.4 Bufferbloat Mitigation (BM)
Following similar observations from Section 3.3, another source

for high RTTs are large buffers on routers and switches along
the subflow’s path. TCP will try to fill these buffers creat-
ing bufferbloat, resulting in very high RTTs.

The bufferbloat-mitigation algorithm is an alternative to the RP
mechanism. It caps the RTTs by limiting the amount of data to be
sent on each subflow, hence, reducing the effect of bufferbloat [17].
The goal here is not to significantly improve goodput, but instead,
to improve the application delay-jitter and reduce end host buffer
size requirements.

The main idea behind the bufferbloat-mitigation algorithm is to
capture bufferbloat by monitoring the difference between the mini-
mum smoothed RTT (sRTTmin), and smoothed RTT (sRTT). When-
ever sRTT drifts apart from sRTTmin on the same subflow, as a result
of sending data, we take it as an indication of bufferbloat. There-
fore, we cap the congestion window for each subflow by setting an
upper bound cwndlimit.

cwndlimit = λ × (sRTTmin/sRTT) × cwnd.

where λ determines the tolerance between sRTTmin and sRTT.
Within the remainder of this paper, we fix λ to 3, which has proven
to bring the best results, as analyzed in [17].

4. EVALUATION
Traffic characteristics and the network environment, where the

TCP subflows go through, influence the schedulers’ performance.
This section evaluates two Multipath TCP metrics, namely good-
put and application delay-jitter in emulated and real-world experi-
ments.

4.1 Experiment and Emulation Setup
Within Mininet the Experimental Design approach is used.

This experimental design approach, explained in [13], is a struc-
tured approach to the evaluation of transport layer protocols. Pro-
tocols are influenced by a large number of factors, each of them
with a different range of possible values. In case of networking ex-
periments, these influencing factors include (but are not limited to)
the propagation delay between client and the server, the capacity
of the bottleneck link and the size of the buffer at the bottleneck.
When applying the experimental design approach, a domain must
be selected for each of these factors. In this paper we use the same
domains as in [13] to create low- and a high-BDP environments,
shown in Table 1. As a next step, the selection of the parameter

Low-BDP High-BDP
Factor Min. Max. Min. Max.

Capacity [Mbps] 0.1 100 0.1 100
Propagation delay [ms] 0 50 0 400

Queuing [ms] 0 100 0 2000

Table 1: Domains of the influencing factors for our evaluation
of the schedulers within Mininet

Subflow 1

Subflow 2

Client Server

Figure 3: Our testbed sends traffic between two hosts, using
two subflows.

sets for the experiments must be done. [13] suggests to use space-
filling designs, which equally distribute the points across the whole
considered space. We apply the same design for the experiments in
this paper, executing up to 200 experiments each for the low- and
the high-BDP environments.

The Multipath TCP implementation used in all our evaluations
is based on release 0.882. The considered topology consists sim-
ply of two hosts communicating to each other over two different
subflows (shown in Figure 3), which may experience different path
characteristics.

The real-world experiments use the NorNet testbed [11].
The NorNet Edge testbed runs a standard Linux distribution
(3.11.7) and it is meant to do experimental network research
on real-world networks. With this testbed, we show exactly
the same measurements as defined for the emulated environment
with Mininet, using real systems and collecting data from op-
erational networks. This is crucial to understand the effect of real
network behavior on the Multipath TCP implementation. We con-
sider the smartphone use case where we utilize both WLAN and
3G (UMTS) interfaces to evaluate the performance with heteroge-
neous links. The WiFi connection uses a public WLAN, connect-
ing ca. 100 people during work hours in a large office complex with
several other interfering WLAN networks. On the system level, we
continuously flush all cached TCP metrics to avoid any dependency
between experiments. Finally, the Olia congestion control [10] is
used. Similar results were obtained with the coupled congestion
control scheme [23]. Compared to the Mininet environments
shown in Table 1, the NorNet testbed does not offer the same flex-
ibility setting up the measurement environment. Although, for the
WLAN network we observe average RTTs of 15 ms and link ca-
pacity close to 10 Mbps. However, the 3G (UMTS) network shows
average delays from 20 ms up to several seconds (when bufferbloat
occurs) and capacity of approximately 5 Mbps in downlink.

4.2 Bulk-Transfer
One of the goals of Multipath TCP is to increase the application

goodput [15], which can be measured by transferring bulky data
between two Multipath TCP capable end hosts.

Mininet.
Within Mininet we generate a bulk-transfer using iperf, where

each transfer lasts for 60 seconds. Our measurements cover 400
different settings, classified as low-BDP and high-BDP environ-
ments (200 settings for each environment). As each of these set-

2http://multipath-tcp.org

tings represent a completely different environment, the goodputs
of the experiments will be largely different. We need thus to nor-
malize the output to allow comparison of the results among each
other. Thus, we measure the aggregation benefit, which is a nor-
malization of the benefit in terms of goodput when using Multipath
TCP. For example, a value of −1 indicates the minimum (0 Mbps),
while 0 means that Multipath TCP achieves the same goodput as
regular TCP on the best path, and 1 means that Multipath TCP per-
fectly aggregates the available capacity. More information about
the aggregation benefit metric can be found in [9, 13].

Figure 4 shows the boxplots of the Mininet results. The box-
plots display the 25th and 75th percentiles, the median as well as
the outliers among all 200 experiments. We skip the RR sched-
uler since it performs similar to LowRTT. This is because in bulk-
transfers the TCP subflows are saturated and are thus controlled by
the ack-clock. Therefore, available space in the congestion window
controls the way packets are multiplexed across the subflows rather
than the scheduler.

In the low-BDP environment there is no significant difference
between schedulers. Each of them achieves close to perfect band-
width aggregation. Only the RP algorithm improves the worst-case
result among the 200 experiments to achieve an aggregation bene-
fit equal to the best available path. In the high-BDP environment
receive-window limitations may occur. In this case the RP and BM
techniques described in Section 3.3 and 3.4 improve the aggrega-
tion benefit. The RP technique has a higher benefit in the lower 25th
percentile and the median. This is thanks to the retransmission of
the blocking segment(s) as the receive-window limitation in these
cases is not due to bufferbloat but rather due to the baseline RTT
difference.

NorNet.
Within NorNet Edge we tested bulk-transfers of 16 MB files

in downlink with both bounded (2 MB) and unbounded (16 MB)
buffers. The bounded buffers will make the connection more likely
to be limited by the receive window. We repeat each measurement
around 30 times for each configuration. All measurements are per-
formed in the same networks and at the same locations over a pe-
riod of 3 weeks.

Figure 5 shows the goodput, for all schedulers. The boxplots dis-
play the data among the 30 experiments. For a bulk-transfer with
unbounded buffer sizes (16 MB), the goodput of all schedulers is
similar. Each scheduler is able to efficiently aggregate the band-
width of WLAN and 3G together within the NorNet testbed. The
unbounded buffers allow for sufficiently large memory, so that no
receive-window limitation occurs.

However, if the receive buffer is bounded (as it is often the
case on a smartphone), the Multipath TCP connection may be-
come receive-window limited. Figure 6 shows the goodput in this
case. Here, one can see that LowRTT+BM slightly outperforms
the other schedulers. In case of the LowRTT+RP scheduler, the
effect of bufferbloat is not optimally reduced by the penalization
algorithm, as it does not manage to bring the congestion window
sufficiently down so that the delay-difference is reduced. This hap-
pens, because the RP algorithm is reactive and does the penaliza-
tion only after limitation has already happened. The BM algorithm
is proactive and, instead, prevents high delay-differences before-
hand, achieving higher goodput.

4.3 Application-Limited Flows
This section evaluates the impact of the schedulers on delay-jitter

with rate-limited traffic, i.e., when the application is not saturating
the connection. In this case, the scheduler has available space in all

LowRTT
LowRTT+BM

LowRTT+RP
LowRTT

LowRTT+BM
LowRTT+RP

−1.0

−0.5

0.0

0.5

1.0
A

gg
re

ga
tio

n
B

en
efi

t
Low-BDP High-BDP

Figure 4: Mininet: In high-BDP the
connection becomes receive-window limited
and BM and RP show their benefits.

RR
LowRTT

LowRTT+BM
LowRTT+RP

0

5

10

15

20

G
oo

dp
ut

[M
bp

s]

Figure 5: NorNet: With unbounded
buffers (16MB), each scheduler achieves
the goodput.

RR
LowRTT

LowRTT+BM
LowRTT+RP0

5

10

15

20

G
oo

dp
ut

[M
bp

s]

Figure 6: NorNet: With bounded buffers
(2MB), LowRTT+BM and LowRTT+RP
achieve the best performance.

100 101 102 103 104 105

Delay increase wrt lowest possible delay [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

LowRTT+RP
LowRTT+BM
LowRTT
RR

Figure 7: Mininet: Using the lowest-
RTT-first scheduler greatly reduces the
application-delay variance in Mininet.

(a) 500 Kbps

10−2 10−1 100 101 102 103 104

Delay-variation [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

LowRTT+RP
LowRTT+BM
LowRTT
RR

(b) 1875 Kbps

Figure 8: NorNet: The same delay-increase is observed in our real testbed when using
the RR scheduler.

subflows and should select the one that guarantees the lowest delay
for each segment.

In order to evaluate the delay-jitter we created an application
that sends traffic at a specific rate in blocks of 8 KB. The receiver
tracks the timestamps at which each block has been received. As
the sender transmits at a constant rate, the receiver is able to detect
the delay with respect to the desired packet-arrival time.

Mininet.
Within Mininet we ran this application in the high-BDP envi-

ronment of the Experimental Design approach, for a total of 200
experiments. Figure 7 shows the CDF of the worst-case relative
delay increase. The delay increase is expressed in % compared to
the lowest one-way delay. E.g., if the minimum one-way delay is
20 ms, but a block of 8 KB has been received rather after 40 ms,
the relative delay increase has a value of 100%. We show the worst
delay-increase among all 8 KB blocks of each experiment as this
will affect the user-experience.

In Figure 7 it is visible that the RR scheduler is particularly
bad in terms of application delay. 70% of the experiments us-
ing the LowRTT scheduler have a range between 10 and 100%
of delay-increase. Using a RR scheduler, roughly 40% of the ex-
periments have a delay-increase between 100 and 1500%. Such
delay increases have significant impact on delay-sensitive applica-
tions since they would need to maintain large buffers to react upon
these delay-spikes.

NorNet.
Within NorNet we evaluate the delay-jitter using rate-limited

applications transmitting at 500 Kbps and 1875 Kbps in down-
link with unbounded buffers. The values for the application-limited
rates are at approximately 5 and 10% of the mean goodput of the

bulk-transfer. We repeat each measurement around 30 times for
each configuration.

Figure 8 shows the variation of the application delay for all
schedulers. One can see that in all application-limited scenarios,
RR performs mostly worse compared to all other schedulers. More
prominent, in Figure 8(a), RR’s delay-variance shows to be up to 10
times worse compared to the LowRTT scheduler. This can be ex-
plained as RR schedules data without taking the RTT into account.
Looking into our dataset, one can see that both subflows carry sim-
ilar amounts of data, thus, increasing head-of-line blocking when
paths have different characteristics, e.g., baseline RTT difference.

For all other schedulers we observe that for very low application
rates, see Figure 8(a), LowRTT utilizes mainly one subflow, the
subflow with lowest RTTs. This is because the congestion window
space is not a limiting factor, and it has mostly enough space to
carry all data available.

By increasing the application rate, see Figure 8(b), LowRTT per-
forms in at least 60% of the cases up to 10 times better compared
to RR. The remaining 40% can be explained as we see that the
subflow with higher RTT (3G network) contributes more compared
to the scenario in Figure 8(a). This happens, because at a higher
sending rate, the congestion on the WiFi network will make the
LowRTT scheduler send traffic on the 3G subflow. This will in-
troduce head-of-line blocking due to the higher delay over the 3G
network and thus increases the delay-variation.

We also evaluate the delay-jitter when sending at unlimited rate
within the NorNet testbed. In this case, both WiFi and 3G are
fully utilized and bufferbloat might start increasing on the 3G path.
We observe that the LowRTT+BM scheduler effectively reduces
the bufferbloat and keeps the application delay lower compared to
other schedulers.

5. DISCUSSION
In this paper, we have proposed and implemented a modu-

lar scheduler selection framework that allows Multipath TCP to
change the way data is multiplexed across different TCP subflows.
We used this framework to experimentally evaluate schedulers in
a wide variety of environments in both emulated and real-world
experiments. In these environments, we could quantify the per-
formance of different schedulers, and scheduler extensions, with
respect to goodput as well as application delay-jitter.

We discovered that a bad scheduling decision triggers two ef-
fects: First, head-of-line blocking if the scheduler sends data across
a high-RTT subflow. Second, receive-window limitation, which
prevents the subflows from being fully utilized. We have shown
that a simple strategy to preferentially schedule data on the sub-
flow with lowest RTT (LowRTT) helps to reduce the application
delay-jitter compared to a simple round-robin (RR) scheduler.

Furthermore, the RP extension helps to mitigate receive-window
limitation, albeit it is a reactive method, i.e., it tries to recover from
receive-window limitation. We have discovered that in some cases
this is not sufficient. If the delay-difference is very high due to
huge bufferbloat, the penalization will not manage to bring the con-
gestion window sufficiently down. Also, anecdotal evidence has
shown that the penalization may hurt, if two subflows are unfortu-
nately sent through the same bottleneck. The bufferbloat mitigation
technique helps in these cases, but cannot overcome a large dif-
ference in the baseline RTT. Further, the delay-based congestion-
window capping may also suffer from the known limitations of
delay-based congestion controls when the bottleneck is shared with
other flows that do not deploy the same window capping.

Multipath scheduling should ideally be done in a way that the
data is received in-order. This minimizes head-of-line blocking and
receive-window limitation as applications are able to continuously
read data out of the receive queue. However, it is not trivial to de-
sign such a scheduler with a rough estimation on capacity or RTTs
of the paths, maintained by the Linux kernel. In our future work
we plan to extend our evaluation framework to a larger set of traf-
fic classes (including cross-traffic and on/off flows). Our modular
scheduler framework is publicly available to enable researchers to
explore and contribute with other new findings.

6. ACKNOWLEDGMENTS
This research has received funding from the European Union’s

Seventh Framework Program FP7/2007-2013 under the Trilogy2
project (grant agreement 317756) and the EU project RITE (grant
agreement ICT-317700).

7. REFERENCES
[1] S. Barre, C. Paasch, and O. Bonaventure. Multipath TCP:

From Theory to Practice. In IFIP Networking, 2011.
[2] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei. Network

Performance of Smart Mobile Handhelds in a University
Campus WiFi Network. In ACM IMC, 2012.

[3] Y.-C. Chen, Y. Lim, R. Gibbens, E. Nahum, R. Khalili, and
D. Towsley. A Measurement-based Study of Multipath TCP
Performance over Wireless Networks. In ACM IMC, 2013.

[4] T. Dreibholz, M. Becke, E.P. Rathgeb, and M. Tuxen. On the
Use of Concurrent Multipath Transfer over Asymmetric
Paths. In IEEE GLOBECOM, 2010.

[5] T. Dreibholz, R. Seggelmann, M. Tüxen, and E.P. Rathgeb.
Transmission Scheduling Optimizations for Concurrent
Multipath Transfer. In PFLDNeT, 2010.

[6] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP
Extensions for Multipath Operation with Multiple
Addresses. RFC6824, January 2013.

[7] J. Iyengar, P. Amer, and R. Stewart. Concurrent Multipath
Transfer using SCTP Multihoming over Independent
End-to-End Paths. IEEE/ACM Transactions on Networking,
2006.

[8] V. Jacobson. Congestion Avoidance and Control. In ACM
SIGCOMM Computer Communication Review, 1988.

[9] D. Kaspar. Multipath Aggregation of Heterogeneous Access
Networks. PhD thesis, University of Oslo, 2011.

[10] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J-Y.
Le Boudec. MPTCP is not Pareto-Optimal: Performance
Issues and a Possible Solution. In ACM CoNEXT, 2012.

[11] A. Kvalbein, D. Baltrūnas, K. Evensen, J. Xiang,
A. Elmokashfi, and S. Ferlin-Oliveira. The Nornet Edge
Platform for Mobile Broadband Measurements. Elsevier
Computer Networks, 2014.

[12] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and
O. Bonaventure. Exploring Mobile/WiFi Handover with
Multipath TCP. In ACM SIGCOMM workshop CellNet,
2012.

[13] C. Paasch, R. Khalili, and O. Bonaventure. On the Benefits
of Applying Experimental Design to Improve Multipath
TCP. In ACM CoNEXT, 2013.

[14] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In ACM SIGCOMM, 2001.

[15] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion
Control for Multipath Transport Protocols. RFC6356,
October 2011.

[16] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How Hard
Can It Be? Designing and Implementing a Deployable
Multipath TCP. In USENIX NSDI, 2012.

[17] Ferlin-Oliveira S., Dreibholz T., and ÃŰ Alay. Tackling the
Challenge of Bufferbloat in Multi-Path Transport over
Heterogeneous Wireless Networks. In IEEE/ACM IWQoS,
2014.

[18] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith.
Mitigating Receiver’s Buffer Blocking by Delay Aware
Packet Scheduling in Multipath Data Transfer. In IEEE
WAINA, 2013.

[19] M. Scharf and S. Kiesel. Head-of-line Blocking in TCP and
SCTP: Analysis and Measurements. In IEEE GLOBECOM,
2006.

[20] R. Seggelmann, M. Tuxen, and E.P. Rathgeb. Stream
Scheduling Considerations for SCTP. In SoftCOM, 2010.

[21] A. Singh, C. Goerg, A. Timm-Giel, M. Scharf, and T.-R.
Banniza. Performance Comparison of Scheduling
Algorithms for Multipath Transfer. In IEEE GLOBECOM,
2012.

[22] L. Stewart and J. Healy. Light-Weight Modular TCP
Congestion Control for FreeBSD 7. Technical report, CAIA,
Tech. Rep, 2007.

[23] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, Implementation and Evaluation of Congestion
Control for Multipath TCP. In USENIX NSDI, 2011.

