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Preamble

Since the early days of the Internet, efforts have been teildar to ensure the reli-
ability of the communications [Cla88]. Survivability in e of failure was indeed
a major design priority of the Internet, and the choice of ekp&switched archi-
tecture instead of a circuit-switched architecture was@ddmasis to support that
goal. Defining the Internet as a set of gateways that can ford@tagrams without
keeping any state allowed paths through the Internet to &eggd at will, without
needing to update the connection state in the communichtists in case of path
change.

Current research is still ongoing to improve the resilieoteetworks, both in
the fields of inter-domain routing [BFF07] and intra-domaiuiting [FBO7]. But
an obvious requirement in any fault-tolerant system is @lidate the resources, so
that the sytem can fallback to the backup resources whendireanes fail. In the
Internet the resources are links and routers, and duplgétiem only for backup
purposes would be expensive. To ensure the profitabilithef investments, In-
ternet operators use various Traffic Engineering techsidiue06] that allow the
traffic load to be spread across the available links.

Besides, addressing has increasingly become a problenremamnt years. We
have now reached a point where the current address pooh@dnternet Protocol
version 4) is almost fully depleted [NRO10]. Efforts havebgursued to mitigate
the problem, by better dividing the address space [FLO6]shrading one address
amongst several machines [SE01]. Although this has bedul isemany years, it
is not enough anymore. Fortunately a new version of therneteProtocol (IP ver-
sion 6) has been designed, and is now in the deployment plragg uses 128-bit
long addresses, which solves the address exhaustion probid also brings the
risk for routing tables sizes to increase exponentiallthéf address allocation pol-
icy is not adapted consequently. In order to achieve effi¢Rew6 routing, alloca-
tion authorities try to enforce a hierarchical allocatioadal [CSP11]. However,
an interesting side-effect of this hierarchical allocatimodel is that the end-hosts,
which used to receive in most cases one IPv4 address onlyavaibe given sev-
eral IPv6 addresses if their provider is multihomed (that@anected to more than
one upstream providér) In that case the end-host can use its multiple addresses to

!strictly speaking, this is also true for IPv4, but it is exfgetto happen more often in the IPv6
case due to the larger available address pool. Moreoved $facks are usually not prepared to
handle efficiently multiple IPv4 addresses
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influence the path taken to reach a peer. A particular casaittitmming is when
the host itself uses two interfaces, with one address perfate. In summary, with
IPv6, the path control moves from being fully controlled bg thetwork to being
partly controlled by the end-hosts. An important conseqgaes that part of the
failure tolerance problem described above must now be kdrgll the end-host.

After having evaluated many alternatives [dB07, HusO5]dlwiag the multi-
homing problem in IPv6, the IETF chartered tiei n6 working group to develop
a host-based IPv6 multihoming solution [NB09] that opegatiethe network layer.
That solution has the advantage of being deployable withmmdifying the core of
the Internet. The applications inside the end-hosts alswtioeed to be upgraded,
as everything is managed transparently inside the Opgr&tstem.

Finally, several proposals chose to solve the multihomidplem in the trans-
port layer [MKO1, HS02, ROAO05, ZLK04]. They showed that adgimultipath
capability to TCP allows to achieygarallel use of the available linkir the same
TCP flow This cannot be done with shim6 because the TCP connectionglw
badly react to the incurred reordering. The transport |laygroach to multipath
support can hence potentially multiply the experienceddgab by the number of
links. Moreover, [WHB08, WRGH11] mention yet another benefitransport-
level multipath: if used at large scale in the Internet, orenlikely in the short
term, if used within a smaller scale network (e.g. a datdregiRPB"10]), it can
achieve an improved resource utilisation, compared togbleniques deployed to-
day. Such changes to the TCP stack are ambitious howevenosadof the afore-
mentioned proposals have been implemented in practice. SU¥WP [SXM™00]
protocol, by its design, allows easier addition of multipaapability, and this has
indeed been implemented in an extension called SCTP-CM3$(QB}. But SCTP
suffers from deployment problems and is not widely suppbkg current appli-
cations. Recently, the IETF chartered the MPTCP workingugrto develop a
solution that would be readily deployable in the currenétnet, and would bring
immediate benefit.

Thesis statement:Modern multihoming protocols offer improv
ments to the end-user experience despite an increasedeadtyp
of the end-host networking stack, and they are implemeata
current operating systems in a modular way.

= D
i |

The contributions of this thesis belong to both the shim6 BIRITCP land-
scapes, studying and improving multihoming in the netwarlt lansport layers.
The main goal of this thesis is to understand the implicatios of new multi-
homing protocols on the end-hosts We examine these implications from three
angles:

e Usability: To what extent is a new solution actually useable from the end
user point of view ? In particular some solutions require plax security
mechanisms that should be hidden to the user, yet proteetiivgently the
communications. Another usability aspect is to examine bfficiently a
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solution solves a particular problem. For example, how wel a mul-
tihoming protocol solve a mobility problem ? Under what citiods can
Multipath TCP improve data-centre communications ?

e Performance: New protocols should use a limited amount of system mem-
ory and CPU cycles. We also want to ensure that the user exyperis ac-
tually improved (e.g. short failure recovery time, highgperienced good-
puts).

e Integration with other mechanisms: This aspect encompasses both proto-
col and system design. From a protocol point of view, we noét many
protocols share functionalities, and would benefit frormgesombined, so
that the combined solution can do more at a lower cost. The $enfds for
Operating System design. The success of a solution doesnhyotepend
on its advantages or integration to existing networks. db alepends on its
integration to existing Operating Systems. We developitactures that al-
low reusing existing Linux frameworks, but also that can asilg extended
to support future protocols.

We use an experimental approach, through real Linux kenmglementations,
to study, validate and improve the behaviour of shimé and EIP.TWe also con-
nect shimé to a mobility protocol, MIPv6, continuing andending the work by
Bagnulo et al. [BGMAOQ7]. In the context of MPTCP, we proposeaachitecture
that decouples the MPTCP machinery (path selection, ctingeontrol) from the
technologies used to detect and manage the available patissa network. We
believe that such an architecture will facilitate the fetewvolutions of MPTCP to
new path management protocols. Our implementations of&HiipShim6(its
mobility-capable companion), and MPTCP are, to our knogéedhe first and
most complete implementations available in an Operatirsiedy kernel.
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Road map

This thesis is organized in five Chapte@hapter 1 introduces the building blocks
of our work: it presents in particular the concepts of mualtiting, mobility as they
are currently used today and the IETF proposals that we stadymprove in this
thesis: MPTCP and shim6.

Chapter 2 goes more in depth into the shim6 protocol. It presents optam
mentation and evaluation for shim6 and the associated palbration protocol,
REAP. We also show how shim6 can be combined with Mobile IBuérthance it
with mobility support.

MPTCP is still a recent protocol, and no general overviewtess written yet.
We provide one irChapter 3.

In Chapter 4, we present the architectural challenges for a MultipattPTC
implementation in detail, taking our Linux implementatiag a starting point, but
emphasising questions that any system implementer nesdév@

In Chapter 5, we evaluate the performance of MPTCP, based on lab measure-
ments. We also present how MPTCP can bring significant beriefilata-centre
environments, and present measurement results for thisasse

We conclude the thesis by comparing the two approaches sttt MPTCP,
and provide perspectives for future work.
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Chapter 1

Background

1.1 Multihoming

The core of the Internet is managed by many different stdkem They all share
the goal of being able to reach each other with maximum efffigiereliability, and
with minimum cost. The glue which makes this possible isBloeder Gateway
Protocol (BGP) [RLHO6]. In BGP terminology, the stakeholders ardexhAu-
tonomous System#&utonomous Systems (ASes) are defined as a set of network
resources (routers, switches, links, ...), that share @esirouting policy. Each
Autonomous system is allocated a number, called the AS nuni®BéP allows
ASes to offer transit services to others (for money), ortdista agreements of free
mutual transtt (this is called gpeering business relationshjGao01]). Peering
refers to an AS relationship where the partners agree tcaggehtraffic from their
respective customers free of charge. If, on the other hamdAS (provider) is
paid to offer a transit service to another AS (customer),aiipeeement is referred
to as acustomer-provider relationshifizao01]. A simplified Internet is shown in
Figure 1.1. The figure shows that some Autonomous System6, A8 provide
Internet connectivity to their customers (C1,C2,C3 in tkareple). They are lo-
cated at the edge of the Internet and are calted ASesOn the other hand, some
ASes provide only transport services to other ASes. Theyoasded at the core
of the Internet, and are callgdansit ASes In this thesis, we will often use the
term ISP (Internet Service Provider), which refers to an entity (@gtub AS or a
transit AS) that provides Internet connectivity to custesre.g. end-users or other
ISPs) [Nor01].

A customer will typically be influenced, in its ISP choice, thy price and the
quality (reliability, performance) of the offered Intetremnnectivity. This require-
ments translates, for the ISPs, into an attempt to minimistscand maximize the
reliability and efficiency of the data transfers. In Figur&,1AS6 is vulnerable
to a failure in AS3. Even if several physical links connect3A8 AS6, a simple

!By free mutual transitit is meant that one partner can freely exchange traffic ithother
partner or its customers, but not send or receive data frerpdhtner’s providers.

1
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Figure 1.1: Example AS interconnection

configuration error in AS3 could disconnect AS6. In contrdsAS7 experienced
a similar failure to AS3, it can simply redirect its traffic A54.

When possible, Autonomous Systems try to negotiate shastgheerings, like
AS4 and AS5. AS4 needs to pay ASL1 for the connectivity betwe®rn and AS6
(although in this case AS7 will probably use AS4 for reachh®&6 only in case of
failure of the AS7-AS3 link). But it can reach AS8 for free @path AS4-AS1-
AS2-AS5-AS8 would have been possible as well, but it is obsfip not preferred).
Shared cost peerings are possible when the involved ASeglpra similar level
of connectivity to other ASes.

In the past, end-users used to be connected to one provitlefeng. C1 in
Figure 1.1). This is changing, and multihoming tends to es@nt everywhere.
Smart-phones are now equipped with 3G and WiFi interfaceanyMcompanies
and even individuals now routinely buy Internet connettififom two providers
(e.g. C3), to improve the resilience of their connectiorcause a loss of connec-
tivity now becomes increasingly costly for them. Data-cestare designed with
many redundant paths, to achieve load balancing and faikgience. Finally,
the core of the Internet is heavily redundant and measurenteve shown that
per-flow load balancing is a widely used technique [Aug10& Wil come back to
the case of C3 later in this chapter.

Currently, most of the end-users still choose only one h@eEervice Provider
(ISP) and rely on the provider to ensure failure resiliertear. example C2 is only
connected to AS7, which in turn is connected to AS3 and AS47 BSaid to be
multihomed In generalan AS is said to be multihomed if it can provide con-
nectivity to its customers through more than one upstream povider [de 05].
By extension, in this thesis we will as well qualify C3-likests as multihomed.
That is, we will call an end-host multihomed if it has Interoennectivity through
more than one ISP. In contrast C2 is not considered as muoigdo

1.2 Multihoming in IP version 4

BGP is the protocol that translates business relationshiipsmietwork connectivity.
The Internet Protocol (IP) [Pos81a], is the protocol thahsports the data based
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Figure 1.2: The layered model for the Internet data plane

on the reachability information provided by BGP. In otherrdsy BGP forms part
of the control plane of the Internet, while IP forms part af thata plane. The data
plane, for Internet communications, is organized as shoviigure 1.2 [ISO94].
The layers are interchangeably referenced by their namayer humber. Layers
1 and 2 are related to access mediums (WiFi, 3G, Ethernét, Layer 3 is the
network layer, and provides unreliable packet deliveryveen two end-hosts
anywhere in the Internet. Today, the Internet Protocol idRhe most widely used
layer 3 technology. Layer 4 relies on layer 3 to find the way pear, identified
by an address (in general, layerelies on the services provided by layer 1).
While the job of the network layer is to find a host in the Intdrrthe job of the
transport layer is to address an application (referenceddgmyrt number) inside the
destination. It can also provide a reliable, in order dejiveervice to the appli-
cation layer. For instance, the User Datagram Protocol (JJP&s80] guarantees
the integrity of the transmitted data (using a checksum,nioti the ordering or
the reliability. The Transmission Control Protocol [PosBlin contrast, offers a
stream-based interface to the application. It guaranteegtegrity of data (using
checksums like UDP), the ordering through sequence numbadsthe reliabil-
ity by using timers and retransmitting upon loss. Additiallyy TCP is able to
dynamically adapt its sending rate to the capacity of thiesliand the congestion
levels, thanks to a congestion control mechanism. Todaye i@n95% of the
total Internet traffic is driven by TCP or UDP [LIJML0]. Finally the application
layer holds specific protocols tuned to fit the needs of anyiquéar application
(e.g., http for web pages, ftp for file transfers, .. .).

IP multihoming with Provider Independent address blocks : |IPv4 addresses
are 32-bits long. An Autonomous System can request to bgreessian address
block by itsRegional Internet Registry (RIRRIPE in Europe). If, in the example
of Figure 1.1, AS 7 receives the prefix C/24, it will annountéoiits two up-
stream providers AS 3 and AS 4, through BGP. This is shownguriei 1.3. The
announcement is then propagated in the Internet until thidvkoows that AS 7

2The original OSI model defines two additional layers betweansport and application (resp.
the Session and Presentation layers), but we can safelgeiginem in the context of this thesis.

SUnreliable packet deliveryneans that a packet may be lost, duplicated or modified oreiystov
the destination.
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can be reached through AS 3 or AS 4. Note, however, that paheofnternet
will know only one or the other. For example AS 1 will receiv8&P advertise-
ment for prefixC'/24 from both AS 3 and AS 4. It will then run the BGP decision
algorithm [RLHO6, Section 9.1] and only advertise to itsgidiours one of the
available paths, considered best by the algorithm.

Multihoming with Provider Independent (PI) address blotksio longer an
appropriate technique for two reasons. First, the IPv4esidspace is now almost
depleted [NRO10], so it is now almost impossible to receivewa PI prefix from
the RIR. Second, the use of PI prefixes (as opposed to ProAgigegatable (PA)
prefixes) does not allow prefix aggregation, and hence tanés to the growth of
the Internet routing tables [ALDO5].

1SP2 s 1SP2 ene

As3 3 Asa As3 R Asa

A.x/24 As7

Customer network Customer network

Figure 1.3: Multihoming with a PI Figure 1.4: Multihoming with a PA
address block address block

IP multihoming with Provider Aggregatable addresses : In contrast to Provi-
der Independent addresses, which are received from theMtRider Aggregat-
able (PA) addresses are received from a provider, as #ligstin Figure 1.4. In that
figure, AS 7 receives an address bloeky /24 from provider ISP1 (AS 3). This
is a subset of the ISP1 address block (A/16). This mitigdtesatidress depletion
problem mentioned above (although ISP1 neither has antmfioiol of addresses,
and is eventually dependent on the RIR to get an address)blBelsides, PA ad-
dress allocation allows for better prefix aggregation, kesmaller Internet routing
tables. ISP 1 needs to only advertise one prefix1() instead of two in the PI
case A/16 and propagat€’'/24).

Multihoming somehow breaks this advantage, however. Whsteas multi-
homed, it does not want to ask for an IPv4 prefix freathof its providers, because
addresses are scarce (hence expensive). Also, curremioshadetworking stacks
are not prepared to efficiently deal with multiple allocated4 addresses. A com-
mon IPv4 multihoming technique, for PA-addressed sitethas to advertise the
PA prefix to each peer, just as if it were a Pl address blockottumfately this con-
tributes to the growth of the routing tables because, in ¥aenple of Figure 1.4,
ISP2 still needs to propagate thez/24 prefix. It can also happen that the PA
prefix is too long (e.g. longer than a /24), and filtered by thegit ASes. In that
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case the multihomed site loses part of the benefits it colldraise expect from
multihoming [ALD*05]. Finally, the customer needs to renunfbigit wants to
change its main provider (ISP1 in the example).

In both the PI and PA IPv4 multihoming schemes, the multildbsite needs to
run BGP and have an AS number. This service is thus not alaitathome users
or small networks.

1.3 The Internet Protocol Version 6

The Internet Protocol version 4 (still most widely in useagpsuffers from sev-
eral problems. The main problem it that its address lengt32obits, is too
short [NRO10]. Despite several efforts to make more efficiese of the address
pool, like Classless Inter-Domain Routing (CIDR) [FLO6] Metwork Address
Translation [SEQ1] it has effectively depleted. But ingieg the address length is
a major change in the protocol, and the IPv6 [DH98] desigdersded to rethink
other aspects of the protocol, that we briefly describe infitise subsection. We
then describe several aspects of IPv6 that matter to psopeaderstand this thesis.

1.3.1 IPv6: core goals

Size of the routing tables: The previous section explains that the IPv4 Pl ad-
dressing scheme favours scattered address allocatioi®) imhurn makes aggre-
gation by the routers located in the core of the Internet sjide. Multihoming
makes things even worse by injecting small prefixes in thénmguables. One of
the original intentions, in the IPv6 design, was to enfordgéemarchical allocation
of addresses, hence forcing the PA allocation scheme in cagss [AANOQ7].
Unfortunately PA allocation has also drawbacks. In paldicuf a PA-addres-
sed client wants to change its provider, it will need to rebanits site. Although
research has been conducted to facilitate IPv6 renumb@riBQ9], companies
have not been convinced about the benefits of PA allocatams are now asking
for Pl assignments [Ferl1]. Recent revisions of IPv6 atiooapolicies allow Pl
allocations, although PA remains the preferred allocatimulel [CSP 11].

Packet processing in the core: The idea was to allow the heavily loaded core
of the Internet to concentrate on its core business: paokeafding. This can be
achieved by pushing state to the edges. To facilitate pgokeessing in routers,
the IPv6 header has been simplified [DH98], and several &sjpéthe protocol
have been removed from the main header and replaced by siiceted in subse-
guent headers. For example, fragmentation can now be ddp@dhe end-hosts,
while routers were allowed to fragment in IPv4.

“renumberingis the process of changing the address of each host insidevarke due to the
allocated prefix having changed. This usually happens wihepttefix is allocated by the provider,
and the network administrator decides to change to a diffgmevider.



6 Chapter 1. Background

No more NATs: NATs were initially designed to solve the address allocatio
problem. With IPv6, this problem is solved as addresses@gefour times longer
(i.e. four times more bits). Moreover, NATs were seen ay dietwork hacks, and
it was thought that they should be removed because they gasa¢fze end-to-end
principle. On the other hand, operators like them, becéhwese“accidentally” have
an interesting property from the “security” viewpoint: N&allow hiding the net-
work topology and services located behind the NAT. They ¢smlze used to facil-
itate multihoming and avoid renumbering [TZL10]. Soludmave been developed
to provide the side-benefits of NATs [dVHD7] without having the drawbacks,
but they have yet to convince the users, who often demoasiratmportant iner-
tia in the technology choices. In RFC5902 [TZL10] the IAB sasnmarised the
pros and cons of IPv6 Network Address Translation, withaking a clear posi-
tion about whether or not it should be used. A hybrid solutias been proposed
in [WB11], where only prefix translation is performed. Thalution mainly facili-
tates IPv6 multihoming, but may still break communicatitmest perform referrals
(that is, exchanging an IPv6 address in the data flow).

Automatic configuration:  With IP version 4, an end-host must configure its ad-
dresses itself. Although protocols (the most common onegbBiHCP [Dro97])
and software allow to automate the process to some extergmiains common
for a user to manipulate IPv4 addresses. A simple exampleeisdnnection of
two laptops through an Ethernet cable. In that case, theme BHCP server in
place, and the users need to agree on the addresses thegayithnd configure
them manually. With IPv6, a full address auto-configuratisechanism has been
defined [TNJQ7], that allows hosts to configure addressdsowitany help from a
user or DHCP. The auto-configuration mechanism reliesiaighbour Discovery
protocol [NNSSO07], that allows discovering the other hosts in thevoek (hence
replacing the ARP protocol used in IPv4), as well as the als&l routers (to auto-
configure the routing table). Later, an auto-configuratiechanism has also been
defined for IPv4 [CAGO5], but it is limited to defining link-tal addresses. Com-
pared to DHCP, IPv6 address auto-configuration has the tay@of requiring no
state in the network, while DHCP needs to maintain a pool aflable addresses.
Still, there exists an IPv6 version of DHCP [DBW3], which is useful in cases
where there is a desire to centrally manage addresses, dautaakasily obtain
configuration parameters such as DNS or NTP servers, or tsteeddNS host
names. For an in-depth comparison between IPv6 Neighbosoobéery and the
corresponding mechanisms in IPv4, see [NNSS07, Sectign 3.1

The IPv6 autoconfiguration process is described in Secti®s3.1

Improved mobility, multihoming and security: ~ Support for mobility has been
added to IPv4 [Perl10] long after IPv4 itself had been desigidis created sev-
eral constraints that limited the flexibility and efficienoffthe Mobile IP archi-

tecture [Ciz05]. In particular it was not possible to bidtiennally communicate
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without using tunnelling to a middlebox (called the Home Agewhich increases
the distance between hosts and inserts a single point ofddih the path. In IPv6,
Mobile IP is fully integrated in the protocol [JPA04], anctindes aRouting Op-

timisation service, that provides the option to communicate directiyveen two

hosts, without passing through a Home Agent

IPv6 also intended to improve the way multihoming was penfed. Sec-
tion 1.2 describes the current IPv4 multihoming practicel amphasises that it
contributes to a size increase for the routing tables in tre of the Internet, in
addition to requiring the multihomed network to own an AS tem The most de-
ployable IPv6 multihoming mechanism is probably shim6 [MB@lthough other
mechanisms have been proposed that generally requirerdgepees of the Inter-
net architecture (e.g. HIP [MNJHO08], ILNP [Atk11], LISP [FE.11]). The shim6
protocol is described in more detail in Section 1.4.

At the IP layer (both v4 and v6), the IPsec protocol [KSO5Mides authenti-
cation and encryption services for IP communications. ir@tifhis was an optional
addition to the protocol, but it has been made a requirenmnariy IPv6 imple-
mentation [Lou06, Section 8.1] (it has been recently pregphowever, to modify
this to a recommendation instead of a requirement [JLN11]).

1.3.2 IPv6 addressing scheme

Notation: As IPv6 addresses are 128-bits long, it has been necessdeyite a
different notation, compared to IPv4. An IPv6 address isposed of 8 groups of
4 hexadecimal digits, separated by a colon, as illustratéie following example:
1234: 0000: 0000: 0000: 5678: 9ABC. 0000: 0023. As this is very long, a
short notation has been defined. First, a set of consecutnas zan be omitted
in the writing. However only one such set can be omitted, wichambiguities.
Second, in any four-digits group, leading zeros can be enhitis well. Applying
this rule, the above address can also be writt#834: : 5678: 9ABC: 0: 23.
Prefixes are written the same as in IPv4, é334: : / 16.

Special addresses: Just like in IPv4, some addresses or prefixes are reserved for
special purposes:

e . means “no address”. It can be used only in the source field atkgh
and is useful in the autoconfiguration process (when thd bmdress is not
known yet).

e :: 1listhe loopback address (as wia7. 0. 0. 1 in IPv4).

SRouting Optimisation has also been proposed for IPv4 [RIit]it never acquired the RFC
status, probably due to the requirement in IPv4 to avoid gimanthe implementation of the corre-
spondent node, for deployment reasons [Ciz05]. IPv6 doesufter from that limitation because
mobility support has been part of the IPv6 design from therireng.
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IPv6
routing prefix SuIbDnet Interface ID
N bits > Moite 128-N-M bits
Often 48 bits 64 bits

Figure 1.5: IPv6 global unicast address format

e link-local addresses: To be used only for communicatiorik directly con-
nected hosts. Their prefix FE80: : / 64.

e Other special typesd=F00: : / 8 is reserved for multicast.: / 96 are used
for transition from IPv4 to IPv6 (IPv4-compatible IPv6 addses [GNOO]).
They are useful to traverse non-IPv6 network sections (bgeling).

.. FFFF: 0: 0/ 96 (IPv4-mapped IPv6 addresses) is also for transition from
IPv4 but helps communicating with non-1Pv6 end-hosts [HD0O6

FCO0O0: : / 7 (Unique Local Addresses or ULAs) [HHO5] are the equivalent
of IPv4 private addresses.

Global unicast addresses: They are the equivalent of the IPv4 public, routable
addresses and are taken from the pré®00: : / 3 [HD06]. A global unicast
address is made up of three fields, as shown in Figure 1.5. Tdtasfia global
routing prefix, encoded in 48 bits. Then comes the subnetxpré@ bits, and
finally an interface identifier encoded in 64 bits followingetmodified-EUI-64
specification [HDO06]. This number references an interfatbar than a machine.
Thus, each interface has a different address. An interfaag otherwise have
multiple addresses (e.g. link-local and global unicast)e Tentifier is generally
calculated from the Layer 2 address, such as the MAC addfesthis address is
encoded in 48 bits, a mechanism is set to convert it to the @ fbrmat [Cra98].
Sometimes it is not possible to use the link-layer addresgetterate the IPv6
identifier, or it is not desired for confidentiality reasoms.this case it is possible
to define an EUI-64, the uniqueness of which is only guarahteeally, the only
constraint being that each IPv6 address must be unique.eflandPv6 identifier
need only be unique within the local sub-network (since #hiés prefix provides
global uniqueness).

Two bits of an EUI-64 identifier have a special meaning:

e Bit 'u’ (Universal / Local): when set to 1, it indicates thdiet identifier is
globally unigue, otherwise its uniqueness is guarantegdlocally.

e Bit’g’ (Individual / group): indicates if the identifier coesponds to a group.
This means that the address formed from such an identifieulisaast.

These bits are respectively the seventh and eighth bit fhenheft of the identifier.
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Figure 1.6: Automatic address allocation

1.3.3 Neighbour discovery

Figure 1.6 shows an example of automatic address allocatitiv6, using the
Neighbour Discovery Protocol [NNSS07]. The allocation fexps in three steps
(numbered in the picture):

1. Router R periodically advertises all prefixes that candmxlion the link. In
this case itis the prefik000: 10: 123: : 0/ 64. Alice can trigger the send-
ing of this message (Router Advertisement) by sending adR@dllicitation
to theall routersmulticast addres~¢02: : 2).

2. Alice generates an interface identifier, that is, tdeleast significant bits
of the address. Several methods exist to generate thisifidensee e.g.
[Cra98, Aur05, NDO1]. Since the interface identifier is geted locally,
we must now check its uniqueness (on the link only, becawse@rndfix ad-
vertised by the router ensures uniqueness at the Intenel).leThis step
(number 2 in Figure 1.6), is handled by the DAD algorithm (Degie Ad-
dress Detection [TNJO7]): Alice asks if someone alreadytiie address
she wants to take.

3. Since nobody answered, she stores it and can use it.

The above paragraph only illustrates a portion of the NedghiDiscovery pro-
tocol, but it can actually do more. Link local addressesmahosts to communicate
locally even in the absence of a router. They are also gexteest shown in Fig-
ure 1.6, but starting at step 2 and using the pre&80: : / 64. Finally, Neighbour
Discovery allows nodes to monitor the reachability of othieosts and routers, and
find alternate routers when the current one stops being abseh

Security in Neighbour Discovery: The principle explained above works well if
one has confidence in people who connect to the network. el's &nd less the
case today, notably due to the wide development of wireletspbts in airports,
motorway service stations etc. If we consider Figure 1.6ptserve that a mali-
cious user may intervene in the Duplicate Address Deteetigorithm, answering
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sec parameter
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16*sec bits == 0 -fwork prefix -grface ID

Final address

Figure 1.7: CGA Address generation

all DAD queries by claiming he possesses any address. Tlarg &ntative ad-
dress is immediately considered as invalid, and Alice ilenéo connect. Other
examples of possible attacks to Neighbour Discovery cambed in [AAK+02].
The obvious solution to the problem is to sign the NeighboiscBvery protocol
messages. This is what is proposed in [AKZNO5], which def@ESD (Secure
Neighbour Discovery). Messages now include a signaturgpabtic key to verify
the message. If we take the example above, where Alice igtigiacquire address
A, and assuming Bob (whose machine is not shown in the drawictggally owns
this address, it will send a NA (Neighbour Advertisementsaage indicating that
he already holds the address. His message is sighed anddiiekay is attached.
It is observed that the public key is used here to prove, ratkte issuer is Bob, but
rather that the issuer is the holder of the address. Therefather than relying on
a certificate mechanism, it is enough to bind the public kegdb’s address, thus
defining a new type of address. This is the main idea behingtGgyaphically
Generated Addresses (CGASs) [Aur05], which are coveredaméxt subsection.

1.3.4 Cryptographically Generated Addresses

IPv6é CGAs (Cryptographically Generated Addresses) dfffem others only by
the 64-bit long interface identifier. As mentioned in Seatin3.1, this interface
identifier can be calculated from the Layer 2 address (e.gCIM& generated by
another process. The goal here is to bind an address to & fkalyli For this, a
device wishing to use an address will first generate a ppoiete key pair. The
public key is then used as input to calculate a hash, whichigies a result of 59
bits. These 59 bits, associated with bits u and g (describeédkection 1.3.1) and
the three bits of the security parameter (described belom) the 64-bit interface
identifiers (see Figure 1.5). The combination of these &ith the 64 bits prefix
is the final useable address.

Basing the security on a 59-bits hash is obviously too wedkute force attack
could crack the hash i2°? iterations. The securityséc) parameter is designed to
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overcome this weakness. Depending on the desired seceviy; thesec param-
eter can take a value ranging frditto 7 in order toatrtificially extend the length
of the hash byec * 16 bits. The principle, since only 59 bits are included in the
address, is to force one of its generation parameters (regdifee Figure 1.7), so
that the calculation of a hash of this modifier gives 0. Unfoately, the legiti-
mate address generator must check this constraint in afonge manner!6+sec
iterations): This is to increment the modifier and recalutae left-hand hash of
Figure 1.7, until thel6 x sec most significant bits are zero. This additional cost is
acceptable since the calculation is made only once per ssidaadneeds not be
done by the verifieas the modifier is sent along with the verification parameters

In summary, the price of a calculation is 2f6***¢ iterations for the creator
of the address. It requires, for an attacker to be succedefohake a brute force
calculation of259+16+se¢ jterations. An attacker could also create a dictionary of
pre-calculated public/private keypairs, and try to scatwoeks for a known ad-
dress. To complicate this type of attack, the subnet prefixcisided in the hash
computation. This forces an attacker to build one dictigrzer subnet (as the
hash-result, hence the address, becomes subnet-dependesniCGA generation
algorithm makes collisions improbable but not impossitiée DAD (Duplicate
Address Detection) algorithm is still needed to check if ddrass is already as-
signed. The technique of CGA address generation takesdntauat the possibility
of collisions, and provides a “collision count”. It is inenented each time some-
one claims to already own the address, thus providing a nelneasl directly (in
one iteration, since only the right-hand hash of Figure &&ds to be recalculated).
Note that this parameter can not exceed 2, since the call=ont would other-
wise facilitate the work of an attacker (who could also tryesal addresses for the
same price) and experiencing a number of collisions abaee ttertainly indicates
an anomaly [Aur05].

Finally, the CGA designers have anticipated that one coudtwo link some-
thing else than a public key to an address. For this purpasexgension field
can be attached as an input to calculate the hash. We defieeilise of such an
extension in Section 2.2.1.

If we come back to the address allocation example (Figurg adapting it
so that it uses CGA addresses, we get the following behaygiandardized as
SEcure Neighbour DiscovefpAKZNO05]):

e Alice gets the prefiXL000: 10: 123: : / 64 from router R, and uses it to
generate a CGA address. The generated identifieg& a, which leads,
by concatenating the prefix and identifier, to the constonctif the address
1000: 10: 123: 0: cga-a.

¢ Alice sends a Neighbour Sollicitation to ask if someoneaalyehas this ad-
dress. As Alice does not assert anything, but merely askingnformation,
it is pointless to sign.

¢ If a normal user has the same address, he also owns a priyafledteneces-
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sarily the same as the one that Alice uses) allowing him to&i§A message
(Neighbour Advertisement). The NA message contains ngtthel address,
but also a signature made with the private key associatddtigtpublic key
that was used to generate the address. All generation pemanaee included
in the message (i.e. the public key, collision count, moddied extension
field). Alice can verify the signaturand the binding between the public
key and the address. This verifies that the NA originatoralgtwwns the
address already, and Alice can increment the collision ttuget a new
address.

¢ If an attacker wants to claim the ownership of the address te must sign
his message with a certain private key. He must find a privajevkhose
associated public key provides the same address accondthg generation
algorithm described above. This will cagst+16*s¢¢ jterations.

A more detailed description of CGA addresses and the SENgubcan be
found in [Aur03] and [AAK™02], respectively.

1.4 Shim6 host-based IPv6 multihoming

Before delving into the details of shim6, consider that ¢hare at least two sce-
narios that can provide multihoming. The first type is whelingle host has two
or more IPv6 addresses assigned to two or more layer-2 actsfconnected to
separate networks. This can be the case of a laptop havihgMiéti and 3G net-
work interfaces, or servers having multiple Ethernet fiategs. In these cases, the
multihomed host would like to either be able to efficientlye umth interfaces si-
multaneously or use a primary interface, with automatidreetion of all packets
over another interface upon failure of the primary one.

The second type of multihoming occurs when a campus, cagordSP net-
work is attached to two different service providers. In saametwork, each host
gets an address from each service provider, and is acaessibl both. A host in
such a multihomed network can select, for itself, the prewit use for a given
flow, through appropriate selection of the source ad@reS&im6 was designed
with the latter form of multihoming in mind but also suppattte former.

As described previously, in today’s IPv4 Internet, when awvoek is multi-
homed, it receives one IPv4 address range, and uses BGP adisehits 1Pv4
prefix to its upstream providers which, in turn, advertise tietwork to the global
Internet. This contributes to the growth of the BGP routiaglés. If a link be-
tween the multihomed network and one of its providers f&8ISP re-converges,
to ensure that the multihomed network remains reachablé@sviather providers.
However, a network relying on shim6 for its multihoming beésidifferently. The
main difference from IPv4 multihoming is that each shim6thwss several IPv6

5Note that this requires support for source-address basgihgoin the network, as the source
address now carries information on what outgoing path to use
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Figure 1.8: Example Shim6 network configuration

addresses, one from each of its providers or one on eachiaférfaces. This is
illustrated in Figure 1.8. The corporate network shown atlibttom of the figure
is attached td SP1 and| SP2. Each ISP has allocated a prefix to the corporate
network. Each shimé host has one IPv6 address inside ealcbs# subnets. From
a BGP routing table viewpoint, the main advantage of shing-based multihom-
ing is thatl SP1 andl SP2 only need to advertise their globaB2 IPv6 prefix and
not the more specific prefixes allocated to their customeasveyer, this also im-
plies that if the link between the corporate network &i8P1 fails, BGP will not
announce the failure to the global Internet. This problesolsed in shim6 by us-
ing a new failure detection and recovery mechanism, the Rgafcol [AvB09],
that allows shim6 hosts to detect a failure and switch trédfien available working
path.

1.5 Mobility in IPv6: MIPv6

While multihoming is about making use of several paths thata&ailablein par-
allel, mobility is about making use of paths that are availa®#gquentially The
problem is hence not completely different, as we will showniore detail in Sec-
tion 2.8. In this background chapter, however, we keep dsagrthe default mo-
bility mechanism defined for IPv6: MIPV6.

The goal of Mobile IPv6 (MIPv6) [JPAO4] is to ensure sessiontauity while
an end-host is on the move. In a mobile environment, the itaif hosts is
always changing. At each network change, the mobile nodest maodify the
routing of data packets without breaking the ongoing comoations. For this,
MIPv6 (as does MIPv4) introduces a new element in the netvemckitecture:
the Home Agent (HA). The Home Agent assigns IPv6 addresshedis present
in its network (called the home network). Such an addresslled the Home
Address (HoA) and represents the permanent identity of tbkilsnnode. This
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Figure 1.9: MIPv6 with tunnelling  Figure 1.10: MIPv6 with Routing Opti-
misation

is the address to be used by applications to start commionsateven if at the
routing level other addresses may be used. During its \Asihobile node gets
temporary addresses (or Care-of Address, CoA) that aréamigally correct and
can be used for routing packets to the current location offrtbbile node.

The first feature provided by the Home Agent is to maintainrttagping be-
tween the identity of a node and its current location, thabetween the home
and care-of addresses of the mobile node. For this, the Hpskaeache (called
the Binding Cache) updated by the mobile node each time a dewess is ac-
quired or after a certain period of time. The update of thedBig Cache is done
by exchanging Binding Update (BU) and Binding Ack (Back) segges. The BU
message, originated by the mobile node, contains its HoAtametw CoA, and is
acknowledged by a Back sent by the HA. The second featurédaby the Home
Agent is to capture all traffic destined for the mobile nodd eglay it to its new
location. This is achieved by establishing an IPv6-in-IRuénel [CD98] between
the HA and the new location of the mobile node, as illustraefigure 1.9.

The outgoing traffic of the mobile node is also relayed to @e@spondents
through the Home Agent via the same tunnel. Thus, any exehbagveen the
mobile node and its correspondents passes through the Hamet,Acreating a
so-calledtriangular routing situation (unless routing optimisation is used, as de-
scribed in the next paragraph). The third feature providgedhe Home Agent
is that it can act as a rendez-vous point. Indeed, two molitkes can move si-
multaneously from one network to another one, and stillicoltto communicate
through their respective Home Agent. This is referred tdasble jump

One strong point of MIPV6 is that it does not require a comesing node to
implement MIPv6. However, if the corresponding node does alipport MIPV6,
it has the possibility to use a direct path to the mobile (#naiding the triangular
routing problem). This is made possible by the MIRR@uting OptimisatiofRO),
which consists in updating not only the HA upon a move, but #te correspond-
ing node. No tunnel is needed in this case, as shown in Figife 1
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1.6 Multihoming in the Transport layer: MPTCP

We have so far concentrated on network layer multihomingniypaescribing the
shim6 protocol. Although shim6 does provide failure reecgveapability, it can-
not be used as a way wimultaneouslyuse several paths for a single transport
connection, because the resulting packet reordering waddly impact the TCP
congestion control mechanism. To achieve efficient loadrmhg across multiple
paths, a modification of the transport layer is required. 3ide effect of modify-
ing the transport layer instead of the network layer is thatresulting multipath
transport protocol can be used over both IPv4 and IPv6.

Several attempts to do that already happened in the pasgdiextensions to
the TCP protocol [MKO1, HS02, ROAQ5, ZLK04]. However, to durowledge
these extensions have never been implemented nor depldjiedStream Control
Transmission Protocol (SCTP) [Ste07] protocol was desligniéh multihoming in
mind and supports fail-over. Several SCTP extensions [BAZEL04, LWZ08]
enable hosts to use multiple paths at the same time. Althauglemented in
several operating systems [IAS06], SCTP is still not widedgd besides specific
applications. The main drawbacks of SCTP on the global meteare first that
application developers need to change their applicatiars¢oSCTP. Second, vari-
ous types of middle-boxes such as NATs or firewalls do not tstaled SCTP and
block all SCTP packets.

During the last two years, the MPTCP working group of the IB&S been
developing multipath extensions to TCP [FRHB11] that eadduaists to use several
paths, possibly through multiple interfaces, to carry thekets that belong to a
single connection. This is probably the most ambitious resiten to TCP to be
standardized within the IETF.

Multipath TCP [FRHB11] is different from existing TCP extons like the
large windows, timestamps or selective acknowledgemesnsions. These older
extensions defined new options that slightly change thetiosaof hosts when
they receive segments. Multipath TCP allows a pair of hastse several paths to
exchange the segments that carry the data of a single caomect

When an application opens a new TCP socket in a multipatbledaetwork-
ing stack, the underlying stack actually discovers the remalb paths available to
reach the peer, and opens as many TCP subflows as its inteundtit dictates,
up to the maximum number of known paths. The detailed estahkent procedure
for Multipath TCP is described in Section 3.3. The data poeduby the client
and the server can be sent over any of the subflows that corapdsétipath TCP
connection, and if a subflow fails, data may need to be retnédted over another
subflow. For this, Multipath TCP relies on two principles.rgkti each subflow is
equivalent to a normal TCP connection with its own 32-bitgussice numbering
space. This is important to allow Multipath TCP to traversmplex middle-boxes
like transparent proxies or traffic normalizers. Secondltigiath TCP maintains a
64-bits data sequence numbering space. When a host sendd seg@ent over
one subflow, it indicates inside the segment, by using the Baguence Signal



16 Chapter 1. Background

(DSS [FRHB11]) option, the mapping between the 64-bits data segel number
and the 32-bits sequence number used by the subflow. Thartkg tmapping,
the receiving host can reorder the data received, possilthofesequence over
the different subflows. In Multipath TCP, a received segnisrdcknowledged
at two different levels. First, the TCP cumulative or selectcknowledgements
are used to acknowledge the reception of the segments orsabfibw. Second,
a connection-level acknowledgement is returned by theviegehost to provide
cumulative acknowledgements at the data sequence level.sdineDSS option
is used to inform the peer about the connection level sequanmber and the
connection-level acknowledgement. When a segment istlustreceiver detects
the gap in the received 32-bits sequence number and traaliticCP retransmis-
sion mechanisms are triggered to recover from the loss. Véhsubflow fails,
Multipath TCP detects the failure and retransmits the unaskedged data over
another subflow that is still active.

Another important difference between Multipath TCP ancdutegTCP is the
congestion control scheme. Multipath TCP cannot use thelatd TCP control
scheme without being unfair to normal TCP flows. Consider wsts sharing a
single bottleneck link. If both hosts use regular TCP anchapee TCP connec-
tion, they should achieve almost the same throughput. [flerst opens several
subflows for a single Multipath TCP connection that all pag®ugh the bot-
tleneck link, it should not be able to use more than its fa@rshof the link.
This is achieved by the coupled congestion control scheraeishdiscussed in
details in [RHW11, WRGH11]. The standard TCP congestiontrcbffAPB09]
increases and decreases the congestion window and sldvtkseshold upon re-
ception of acknowledgements and detection of losses. Thpled congestion
control scheme also relies on a congestion window, but ipdated according to
the following principle [RHW11]:

e For each non-duplicate ack on subflévincrease the congestion window of
subflowi by mm( axbytes_ackedxmss; bytes_acked*mss; ) (Wherecwndtot is the

cwndiot ) cwnd;

maxxi(rd)
2

total congestion window of all the subflows and= cund;o; ——z’—
i 7rr)?

e Upon detection of a loss on subflowdecrease the subflow congestion win-
dow by cwnd; /2.

The goal of being fair to competing TCP flows is achieved inaheve algo-
rithm by constraining the windows in two ways. First, windmereases are capped
at the increase value that would be applied by a regular T@P This ensures that
MPTCP does not take more of the available bandwidth compareegular TCP
flows, on any of its subflows. Second, thearameter controls the aggressiveness
of the increases. Its formula comes from solving the equulib equation (where
window increases and decreases balance out), under thieadohthat any combi-
nation of paths cannot take more capacity than a regular T@Pus$ing the best
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of those paths. This prevents a set of multipath subflowsrsgharbottleneck link
from taking more capacity than a competing regular TCP floiRBH11].

1.7 Conclusions

The presence of multiple available network paths is noweiasingly becoming the
norm in many environments. Smartphones can now connect totdrnet through
WiFi or 3G, data-centres use many redundant paths to acimereased bandwidth
and failure tolerance. Even the transition from IPv4 to IRwilb allow endpoints
to choose over which paths to exchange data.

In this chapter, we have set the foundations for this theBige central point
of this thesis being the use of multiple paths, we have calvre main options to
make use of multiple paths in today’s Internet. We emphegisat the current most
deployed IPv4 multihoming technique (using BGP) is not idgiaen it makes use
of the routing system which is not initially designed fortthand requires from a
multihomed network to own an AS number.

As IPv4 is going to be progressively replaced by IPv6, wegmtsd the main
solution envisaged by the IETF to solve the multihoming peob(without BGP) in
the case of IPv6. We note that mobility is also about usingipialpaths, the only
difference being that the paths are available sequentiagtgad of simultaneously.
We thus presented Mobile IPv6, as we will show later in thesth an interesting
use case for Shim6 as part of an integrated architecturertblaides MIPv6 as
well.

Finally, we moved one layer up, where multihoming can alsddxmt with, al-
though differently. We explained that several efforts hadrbdone in past research
to achieve transport layer multihoming, but none of themtgdhe point of real
deployment. We also explained that the most recent of thfisese MPTCP, is
receiving much interest from the IETF community, and is e&lly interesting in
that it isdesigned for deploymerthat is, it can be deployed in the current Internet
as it is, even robust to many of the existing middleboxes d@natmore and more
placed on Internet paths.

One clear question that arises from this first chapt&hisuld we support mul-
tiple paths at the transport or at the network layekrking at the network layer
seems more natural, and is still the current way of handlingtinoming (by us-
ing BGP). Shimé is still located in the network layer, butfitgctionality is now
located in the endpoints instead of the Internet core. Franwiewpoint, MPTCP
is the continuation of a trend to push multipath control ®&dge. Working at the
transport layer actually brings impressive additionaldfis compared to network
layer multihoming. Most noteworthy is the possibility toeuthe pathsimulta-
neously still handling elegantly the case of shared bottlenecks¢cdupling the
congestion control of subflows. The other advantage of prardayer multihom-
ing is that failure handling is more timely, as timeouts cancbmputed based on
the available RTT estimations.
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In the rest of this thesis, we will show thatodern multihoming protocols
offer improvements to the end-user experience despite andneased complex-
ity of the end-host networking stack, and they are implemerdble in current
operating systems in a modular way.We will present our contributions in both
kinds of multihoming, shim6 and MPTCP. We will conclude thegis with lessons
learnt from studying multihoming at the network and transpayers, and briefly
compare the benefits and drawbacks of these two approaches.



Chapter 2

Shim6: implementation and
evaluation

2.1 Introduction

The shim6 approach relies on an ID/locator split conceperatthe mapping is
done inside the end-hosts, thanks to a new shim sublayeethdathe IPv6 part
of the networking stack. If a host owns several locatorsglBddresses), an appli-
cation willing to connect to another end point will use ong¢hafm as Upper Layer
IDentifier (ULID), and the new shim6 sublayer will provideetability to change
the locators at will while keeping the identifiers constamw(iting the source
and destination address fields on-the-fly). Another prdtd@BAP [AvB09] (for
REAchability Protocol), adds failure detection and reecgueapabilities to shim6.
It is able to detect a failure and sends probes to the availabhtor pairs until a
new working path is found, after which the shim6 layer is tmidchange the cur-
rently used locators and the communication can continueowtitany change in
the application.

Because this approach allows a host to change locatorsgdamiexchange, it
is necessary to provide a means to verify that the used lecate actually owned
by the peer. Shim6 can use two mechanisms for that : HBA and.G{a8h Based
Addresses [Bag09] are a set of addresses linked togethbiatsane can verify that
two addresses have been generated by the same host. Caytticgily Generated
Addresses [Aur05] are a hash of a public key and allow, tagetlith a signature,
to verify that the sender of a signed message is the actuarafthe CGA address
used. CGA addresses have been detailed in Section 1.3.4. adBresses have
been proposed in parallel with shim6, although they are erpeto be useful in
other environments as well [AKZNO5]. We describe them intec2.2.1.

Since 2006, we published evolving versions of the first pijplavailable im-
plementation of shimél.inShim6é In this chapter, we present the architecture of
the latest version, 0.9:1 The design provides good performance and is easily ex-

http://inl.info.ucl.ac.bel/LinShing

19



20 Chapter 2. Shim6: implementation and evaluation

tensible to support cooperation with other protocols thia, LinShimg use the
xfrm? architecture (e.g. IPsec [KME04] and MIPv6 [MNO4]).

In this chapter, we first provide more details of the shimétgmol and our
implementation of it. Then we provide a detailed evaluatbmany aspects of the
protocol, including security, efficiency, failure recoyemd mobility. We close the
chapter with a summary of the open issues and related work.

2.2 Shim6

'B’, ISPX.B

I
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.+=" Internet,
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dest: ISPXB | dest : ISPX.B
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. after change

ULID : ISP1.A
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ULID : ISP1.A
current loc. : ISP1.A
current peer loc. : ISPX.B

Figure 2.1: Basic operation of a shim6 host

A shim6 host has several IPv6 addresses. All these addresséscators, i.e.
they identify where a network interface is located withia tobal routing context.
For example, in Figure 2.1, a packet whose destinatibiSiL. Awill be delivered
via | SP1. On the other hand, a packet whose destinationSB2. A will be
delivered vial SP2. A current best practice [BS04] recommends that ISPs verify
the source address of packets received from their custom@acket produced by
hostA that containg SP1. A as its source address must always be sent 8R1.
Such a packet will never be forwarded bgP2 if it implements [BS04].

When an application on host A contacts an application on Bogsing an
upper-layer protocol (ULP), the default address seledbrd(3] by host A is de-
termined to be the upper-layer identifier (ULID) to identifye transport flows be-
tween the hosts. Conceptually, the shimé6 sublayer belangpethetwork layer and

2xfrm stands fotransform It is a modular architecture that allows dynamically itisey sublay-
ers in the networking stack, and was originally designedP&ec



2.2. Shimé 21

Upper-layer identifier (ULID) : An IP address
which has been selected for communication with a
peer to be used by the upper layer protocol. 128
bits. This is used for pseudo-header checksum
computation and connection identification in the
Upper Layer Protocol.
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Frag Dest

IP routing sublayer
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Transport layer

IPv6 layer

Data Link Layer

Locator : An IP layer topological name for an
interface or a set of interfaces (128 bits). The
locators are carried in the IP address fields as the
packets traverse the network.

Figure 2.2: Networking stack with shim6

the locators are attached to the lower part of the networdrlaghile the identifier
is attached to the upper part of the network layer (Figurg 2.2

The main purpose of shimé6 is to preserve established flowstdes network
failures, while operating transparently to upper-layestpcols such as TCP or
UDP. This is illustrated in Figure 2.1. Host A has establiskeflow between
ULID | SP1. A and destinatioh SPX. B. In addition to its ULID, host A also has
thel SP2. Alocator. Upon failure of the path betwek8P1. Aandl SPX. B, host
A will use shim6 to switch its flow on theSP2. A—1 SPX. B path. For this, all
of host A's packets destined t&SPX. B must be sent from sourdeSP2. A. Shim6
ensures the transparency of this operation to the appulitati

The shim6 sublayer performs three different tasks. Firstlg communicating
shim6 hosts need to discover their respective locator $ats.is performed during
the establishment of the shim6 session. Secondly, durimdjfétime of a flow, it
may be necessary to switch from the current path to an atisreay. after a failure.
Thirdly, shim6 can be used to advertise any change in thef $etators available
on a host.

Discovering locator sets: This happens at the beginning of a communication.
When an application is requested to initiate an exchangarttsva host (i.e. a http
or other such request), the usual process is that its namekied up from the Do-
main Name System (DNS). The DNS answers with one or sevetdaéssks. The
application then initiates a connection with one of the wietd addresses (through
default address selection) [Dra03, MFHK08a, MFHKO08b].

A heuristic on one of the shim6-enabled hosts determinesh&hé is worth
the extra shim6 overhead to protect the communication flowtheé case where the
host decides that it is worth the effort, the end hosts conicatmto each other their
entire set of locators. This is the shim6 initial exchangdteiAthis negotiation,
each host has a set of local and peer addresses that it camexsghange packets.

The establishment of a shim6 session is performed by usingrafay hand-
shake as shown in Figure 2.3. This handshake is based onrbdshake used by
HIP [MNJHO8]. It was designed [NBO9] to protect against egpattacks, to en-
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Shim6 initiator Shim6 responder

Address set: Address set:
ISP1.A ISPX.B
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\ ISPZ.B
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Loc: ISP2.A Dest: ISPL.A
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Loc: ISPY.B
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<signature>

Figure 2.3: Shim6 session establishment

sure that all announced addresses belong to the same pedq protect against
Denial-of-Service (DoS) attacks. More details about how aty the messages
are exchanged this manner are discussed in [NB09, Section 7]

Changing the current path: Typically a path change is triggered when the asso-
ciated REAP protocol has detected a failure and found amalie working locator
pair. More generally, any appropriately interfaced entity application interface
for example [KBSS11]) could trigger a path change. Changdirggpath in the
course of a communication is made possible by rewriting ttress pair in use.
Obviously one particular path is the one corresponding édthIDs. In this case
the ULIDs and the locators are identical and no rewritingasded. In all other
cases, rewriting is needed and an extension header is anldeel dutgoing pack-
ets. The extension header containsoaitext tagused to identify the flow at the
receiver, so that locators can be replaced by the correddBlld the receiver.

The rewriting function of shimé is located in a new IP-sulgiain the network-
ing stack, as shown in Figure 2.2. Anything located abovestiim6 layer sees
stable addresses (ULIDs). This includes parts of the IPrIsiyeh as IPsec or frag-
mentation, so that those functions can operate on stablB4Jleven though shim6
may have had to rewrite the packet header. Conversely, theafding function-
ality of the IP layer must be located below the shim6 layerthed the locators
chosen by shim6 are correctly used to select a path. The effaddress rewriting
over the chosen path is illustrated in Figure 2.1.

Locator update: This is useful if a new locator appears after the initial exde,
that is, after the set of locators has been announced by eachThis could happen
should another Ethernet or WiFi interface become operatidha locator appears
or disappears on a host, it is possible to tell the peer aboupédated locator set,
so that changes in available paths are taken into accouatellbcator updates are
useful in some IP mobility scenarios as we will show in Setfd®8.
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TheLinShim6negotiation involves cryptographic mechanisms. Thesehmec
nisms have been carefully designed [NB09] to prevent arclkadtafrom injecting
fake addresses, and thus use this attack vector as a basmafdypes of attacks.
We summarise the critical parts in the next subsection.

2.2.1 Securing locator sets

A key problem faced by host-based techniques that rely onipteullocators is
that a receiver must be able to verify the origin of a packat tises a new locator.
RFC4218 [NLO5] describes the threats that must be congldeinde designing any
IPv6 multihoming solution in detail. The way shimé respomaishose attacks is
described in [NBQ9, Section 16]. While the solution to mahthe threats resides
in using well-known protection mechanisms, one partictyfpe of attack, namely
address injection, is addressed by a new mechanism thattlk describing here.
Address injection consists of an attacker presenting a fieddaddress set to one
of the communicating hosts (either by sending fake annaueoés or modifying
existing packets).

The first option proposed by [NB09] to solve this issue is te Gsyptograph-
ically Generated Addresses (CGASs) [Aur05]. As explaine@éattion 1.3.4 this
method relies on the use of a signature to prove that all digddresses have been
generated by the same entity. For a given public/privatepiedy the private key is
used to sign the locator set, while the public key is hasheas<o generate the 64
low order bits of the ULID. Consequently, the security is eleglent on an attacker
not being able to find a hash collision with a self-generatelip key. The time
needed to find a collision when thxc parameter is as low as 1 makes such an
attack infeasible in short timescales. Over time, when Midaw does eventually
make such an attack practical, or for servers that keep estadress over time,
the attack complexity can be increased further by increimgrthe security pa-
rameter(sec) on the host that generates the signature [Aur05]. With @amlease
in the security parameterthe complexity required to generate a collision will in-
crease by!6*s¢¢ jterations. This increases the cost of address generatiohthus
of brute-force attacks, while keeping the cost of addresification constant.

The second option is to bind all addresses together, withsing a signature.
This type of address is called Hash Based Addresses (HBA)J8a The 64 low
order bits of each address is the result of a hash computati@nall the prefixes
of the set. An attacker who wishes to inject his own addressthre locator set
would need to find an input to the hash function that produagleast, the locator
used for forwarding as part of the generated locator setceSims is made easier
by the short length of the hash, HBA uses the sasmurity parameteas CGA to
tune the cryptographical strength of the locator set.

HBA is computationally cheaper than CGA, but it also has fesgbility. Its
main drawback is that the addition of a new address in a losatrequires regen-
erating the whole set. This is where CGA-compatible HBA addes are useful.
In that case the hash input includes both a public key andethef prefixes. This
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is initially seen by the peer as normal HBA addresses, buh#éwa prefix must be
added afterwards, it can be signed with the public key.

With both these mechanims in place, shim6, as part of thialicibntext estab-
lishment, verifies that the host claiming to be representi8g2. A (for example,
see Figure 2.3) can be cryptographically tied to that lac@atsing either the CGA
or HBA mechanisms). While an attacker can generate a nevessidiom a sub-
net prefix and a public key, this attacker cannot impersomad¢her hosts address.
This is, of course, based on the premise that it is curremyyphd the capability of
an attacker to harness enough computing power to generatisia in either the
HBA or CGA hash functions.

2.2.2 Failure detection and recovery

REAP is responsible for suggesting to shimé when to changeuirent path, as
well as for finding an alternate path when the current one lesounavailable.
REAP is closely tied to shim6 because it uses its state totorothie active flows.
REAP can be divided in two main featurddow monitoringandpath exploration

Flow monitoringis started immediately after the shimé6 initial locator disc
ery. It is designed in such a way as to minimise the amounttdfeaprobing. The
main mechanism that allows for reaching that goal is callecté&d Bidirectional
Detection (FBD). The communication is forced to be bidii@gl in the sense that
if an end-host receives Upper Layer Protocol (ULP) data,doets not send any-
thing, then control packets (keepalives) are automayig@inerated. Given this,
it can be concluded that a failure has occurred if a host isisgnULP pack-
ets without receiving back any data or keepaffves host decides that a failure
has occurred if itsSend Timeexpires. The default expiry tim€send is defined
as15s in [AvB09]. That timer is reset whenever a packet enters thevark-
ing stack. In addition to th&end timer a host maintains &eepalive Timer
that sends a keepalive packet on expiry. This is to ensutettbgpeer does not
think that a failure occurred when in fact the applicatiostjgtopped sending
data. The requirement for lseepalive Timeiis to have an expiry time that ver-
ifies Tka + one-way delay< T'Send. [AvB09] recommends to séfka as one
third of T'send.

The second feature of REAP is path exploration. Due to its flwawnitoring
capability, REAP can react to failures by probing the knowathp (address com-
binations). The probing process allows for finding an alie&grworking path, for
each direction of the communication. It can even resulténuse of different paths
for each direction, as it is able to detect unidirectiondahpa

REAP relies on a state machine that can be in one of thres staper at i o-
nal , expl ori ng ori nbound ok. If the communication is not experiencing
any problem, the state agper at i onal . This means that end hosts receive either
data packets or keepalives from each other. Keepalivegaté s host has not sent

Note that the number of control packets is kept minimal sinc&eepalive is needed if data
exchange is either bidirectional or paused.
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any packet during some time definedikeepalive interval(default is 3 seconds).

If data traffic stops for a while, keepalives are sent ekegpalive intervalfor the
keepalive timeoudluration (default is 15 seconds as per the RFC). Then no more
keepalives are sent until data packets are sent again oothext is destroyed.

The second state defined in [AvB09]axpl ori ng. A context reaches that
state if a failure has been detected by expiration ofgbed timer This timer
is started when sending a data packet and only if it was neadyr running. It
is reset upon reception of any packet from the peer. BecalEgdPRensures that
the peer will reply with either data or keepalives, not reicgj anything from him
means that a failure occurred. There are additional way®tect failures such
as indications from upper layers, lower layers or ICMP emassages [AvB09].
Some of these indications may be faster than the timer expirtythey are not
always available.

The third state is nameidnbound ok. A host is in this state if it is receiv-
ing packets (either data, keepalives or probes) from its, et there is indica-
tion that the peer doesn't receive anything. A host may reéheln nbound ok
state fromoper at i onal if it receives an exploring probe from its peer, or from
expl ori ng ifit receives anything from its peer.

Locators : Locators :
Al1,A2,A3 B1,B2,B3

~ELD i) e

Operational
(A1,B1)

Operational
(A1,B1) QBl,Al)
Al,B1

B

(Al,Bl),eproring,id:a
(A1,B2),ig=p, ?g L<

send
timeout

B

Exploring
probe timeout
i ok,id= Inbound ok
i BL report:a Iprobetimeout
id=¢_, (B3,A2)inbound okK,id=0
g W

P

probe timeout

X l probe timeout
(BZ,AS)inbound ok,id=r
Operational report : a,

(AL,B1) (A1,B1)operational,ig=q
el

Operational
(B2,A3)

Figure 2.4: Example of failure detection and recovery

A probe contains the state of the sender, a nonce used agietearid a number
of reports A reportis defined as a summary of a sent or received probe. According
to [AvB09] a report contains the source and destination egkdrs, the nonce and
an option field (currently unused). As we will see in the faling example, reports
of received probes are necessary to learn a new operatiatial p

Figure 2.4 shows the case of the failure of the path from tvdat to locator
Al. {Al, A2, A3} and{B1, B2, B3} are the locators assigned to A and B respec-
tively. The first few arrows show the exchange of data packsirsg locatorsAl
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andB1, when the first answer from B is lost. This packet loss triggesend timer
expiry inside hosA. The consequence is that A switches toéhel or i ng state
and starts sending probes. The first an@wyith locators( A1, B1) ), goes through,
and B learns that its packets no longer reach host A, withfteetef B going to the

i nbound ok state. After that, both hosts are sending probes along é&wemyn
path. In our example, all probes from B precedingre lost. Upon reception, host
A reads the reports and learns that probesdb were successful, that is, locator
pairsAl, B1 andAl, B2 are eligible as current locators. The first one is chosen,
and a final probe is sent to host B with this new locator paintwoaince the switch

to theoper at i onal state. Because this final probe is sent using a working loca-
tor pair, it reaches host B. B learns that its only succegsfatbe has been the one
with id=r. This means that the only working locator pair82, A3. Both hosts
update theishi 6 context, for address mapping inside gte 6 sublayer, and
the conversation continues, without upper layers seeigtheng else than some
delay.

2.3 The LinShim6 implementation

In this section we provide an overview of obinShim6implementation. As will

be shown through measurements, it has been carefully aabsignallow good
perfomance and modularity. While we only provide a higteledescription here,
full details can be found in our technical report [Bar08].eldurrent version (0.9.1)

of LinShimécontains around0000 lines of code in the user space daemon (around
14000 of them from third-party code: timer management, hash fanst netlink
interface, part of the crypto operations). The kernel sidgrShim6has3556 lines
only because it reuses a lot of existing kernel functionsrandes functionality to
user space whenever possible.

2.3.1 The xfrm framework

Xfrm (for transformej is a network programming framework included in the Linux
kernel [WPR04] to permit flexible transformation of packets. The frarmdw
obeys &Serialized Data Statmodel, as described by Yoshifuji et al. in [YMN4].
The idea is to be able to modify the path of packets througm#te/orking
stack based on some policies. The framework, originallygmhesl to implement
IPsec [KMEO4], has later been used for the Mobile IPv6 imm@atation [MNOA4].
A policy contains aselector adirection anactionand atemplate The policy
is applied to a packet if it matches teelectorand is flowing in thedirection of
that policy (inbound or outbound). The selector mechanibowa one to use the
addresses, ports, address family and protocol number ds fi@ the matching
(see [KS05, sec. 4.4.1] for the precise semantics of a sgJecNow let us as-
sume that a packet matches a given policy. In that castethplateis used to get
a description of the tranformations needed for that kindaufqet. Let us further
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assume that the packet needs AH (Authentication Headeft SRd Encapsulating
Security Payload) transformations [KS05]. Then the cpwesling states (one for
AH and the other one for ESP) are found and a linked listsif structures is cre-
ated. Adst structure is normally the result of a routing table lookupd aontains
information about the outgoing interface as well as a poitdghe function that
must be called to send the packet (for examgeout put ori p6_out put). As
shown in figure 2.5, those structures may be linked togesioethat several output
functions are called sequentially.

After thedst path has been created, the linked list is cached for thatesock
so that additionnal packets will flow through the IPsec laif it was part of the
standard networking stack.

While outgoing packets are attached to one or several stgtesingdst
entries (as shown in Figure 2.5), incoming packets are psackdifferently. Since
those packets already have extension headers (for exantpland ESP), with
lookup keys such as the SPI (Security Parameter Index),ahlg necessary to
lookup the xfrm states according to the information corgdiimside each extension
header.

Xfrm policies and states are created and managed from ugee swith akey
manager(as called inside the kernel) that communicates with theédgpart of
xfrm by using the Netlink APl [SKKKO03].

dst->output=esp6_output dst->output=ah6_output
dst->xfrm="esp6 state" dst->xfrm="ah6 state"
dst->child dst->child

dst->output=ip6_output
dst->xfrm=NULL

Figure 2.5: Dynamically created path for IPsec packets

2.3.2 LinShim6 0.9.1 : overall architecture

The shim6 mechanism introduces a new sublayer inside th@ l&xer (below
IPsec), similar to AH, ESP or Mobile IPv6. The flexible and miad, yet effi-
cient xfrm framework thus fulfills particularly well the né® of the shim6 trans-
formations: after a shim6 context (negotiated in user gplaeeomes established,
xfrm policies and states are created, so that the packetshingtthe policies
now go through the shim6-handling functionshi nm6_out put () (pointed to
by dst - >out put , see Figure 2.5) anshi n6_i nput ().

A global view of our design is given in Figure 2.6 (For clarityasons, the
network data flow is not represented and the arrows represgntthe control
flow). The upper part of the figure runs in user space as a daeandncurrently
works with four threads (represented as dashed boxes).reFRjid clarifies the
particular ations (described below) undertaken by eacheitodules presented
in Figure 2.6, based on a common scenario.

One thread is theel net server that provides a Command Line Interface
(CLI) to the daemon. The second one is thener thread, that wakes up each
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time an expiration event happens. TKIERM rmanager listens to messages from
the xfrm framework. Finally the main thread listens to mgssafrom the network
or the kernel, and reacts appropriately.

One of the major elements of this architecture is tleguest manager.

Its role is to simplify concurrency problems caused by exkthreads (that is,

all threads except the main one) wanting to access shiméstiatetures (also
used by the main thread). For example thed net thread may want to dump
the shim6 states, or thd mer thread may want to access the appropriate context
before sending a probe. This led in earlier versionkinEhim6to complex mutex
schemes, that did not improve the concurrency, since eaatit @as handled by
only a few lines of code.

A better scheme for avoiding concurrent access to critiatd dtructures (con-
texts and hashtables) is to prohibit direct access to thingetgres from threads
other than the main one. Instead, a gen®agjuest nanager has been writ-
ten, so that external threads now send a request for setvicagh a pipe. The
main thread then performs the service as soon as it is relgiyveral requests are
sent concurrently, they are queued inside the pipe, henglemnenting a message-
passing concurrency model. Note that the major benefit sfdpproach is not
an increased efficiency, given that in both cases the probbesolve is to ensure
sequential access to ressources that are accessed frenemtiffhreads. Instead,
the benefit isncreased encapsulatipmvhich in turn improves the overall stability.
However, this is efficient only if the message processinggtisnow for whatever
kind of request message (otherwise the response time wutrekise due to queue-
ing). Fortunately this assumption is true with the shiméndae: Each individual
action consists only in a single read and/or write to the éeon the network, with
a few memory accesses.

When a new shim6 session starts, packets flow through theslkend are
counted by th@acket |i st ener module. This module uses the netfilter hooks
NF_I P6_LOCAL_| NandNF_l P6_LOCAL _QUT to detect new exchanges and no-
tify the daemon through the Netlink interface when the impmated heuristic de-
cides that it is worth starting a new shimé session. Our defewristic, that we
further explain in Section 2.3.3, triggers a context essabhent when either 2KB
of data have been exchanged or one minute has elapsed. ©ids ahim6 estab-
lishments for small and short flows. Since shim6 works at Ehé&ayer, if several
transport flows are started between two ULIDs, only one nétilow is seen by
thepacket |i stener module.

When theshi n6d daemon is asked to create a new context, a four way hand-
shake is performed, across theaw socket, attached to the shim6 protocol
(I PPROTO.SHI M5). An important point to note is that the same protocol num-
ber is used for control and data plane in the shim6 protochiclivmeans that the
raw socket would normally receive any data message equipfieca shim6 ex-
tension header. For efficiency reasons, we prevent this tiygd shimé filter in-

4LinShim6 makes use of POSIX threads.
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side the raw socket implementation, as already done forale&VIPv6 messages
(ICMPve6 filters may be configured from user space through @eP6_FI LTER
socket option).

Now suppose that the shim6 (user space) context becomdsisstd. We
need to start the failure detection module, and thus makgdhkets go through
the shim6 transformershi 6 _out put () andshi 6. nput () (shim6 trans-
formsbox in Figure 2.6). Actually the transformer only perforntgieess rewrit-
ing if ULIDs differ from locators. If not, it simply notifieshie REAPFai | ur e
det ecti on module that a packet has been seen. That module maintains the
Keepalive and Send timers [AvB09], and notifies the Shim6etsmace daemon
if a failure has been detectetlétlink arrow in Figure 2.6). The result is that
the REAP pat h expl or at i on module starts sending probes acrossrtaev
socket until a new operational path has been found.

We decided to split the REAP protocol in two parts, respetfior kernel and
user space. Again, this is for efficiency reasons: we try &pkes much as possible
the protocols in user space, without sacrificing efficienByt failure detection
needs a timer to be updated for each packet sent or recenddhascannotbe
implemented in user space.

Finally, when a new path has been found, ¥RM nanager is notified to
update the shim6 xfrm states, so that 8e n6 t r ansf or mmodule now adds
the extension header and rewrites the addresses.

2.3.3 Heuristic for initiating a new shim6 context

When starting a new exchange, it is not necessarily a goadtadienmediately ne-
gotiate a shim6 context. The obvious case is the one of sbarsfifor short flows,
the shim6 control data may take as much of the communicatasmitted bytes
as the useful data. Worse, since the flow is short, there ayela® chances that
the shim6 capability to recover from failures is used at kdlthis subsection we
examine two heuristics (respectively based on the duratimhsize of the flows),
that may help a shim6 host in deciding whether it is worth tiatjog a shimé
context.

Figures 2.8 and 2.9 present the CDF of the duration and sitevad observed
on our campus network using NetFlow Version 5 traces, takea Gisco Catalyst
6509. Netflow [Cla04] is a tool that monitors network trafficdarecordglow-level
information (as opposed to e.g. wireshark that recqaisket-leveinformation)
about the observed traffic. Flow-level information is ernfoigwever to evaluate
the number of flows that would benefit from using shim6, anovedl much more
efficient capture and analysis. NetFlows were collectetiasingle Internet con-
nection of the campus. The analysis was performed for evely, UDP, GRE or
ESP packet sent or received (the flows belonging to thosgaags represent more
than99.9% of the total collected information). Flows 6fbytes or0 packets were
ignored. A total of6.4G B of NetFlow log files was collected between 10/27/2007
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Figure 2.10: Traffic classification

and 11/02/2007.

In order to evaluate for what flows to start shim6, we definewa e follows:
a flow is a stream of IP packets with the same source and destinR addresses,
in which packets are never separated by more thaeconds, whera is a tuning
parameter. We consider flows as bi-directional streams pbldkets. Figures 2.8
and 2.9 suggest that it would not be interesting to proteetyeflow by a shim6é
context. Indeed, we can observe that more @ of the flows last less thagD
seconds for reasonahfevalues. On the same manner, more tRa¥ of the flows
transmit less than 2KB.

Figure 2.10 shows the kind of flows that carry the majority gfels in our
campus network4 is 300 seconds in that figure). That is, for each flow class,
sorted by size and duration, the number of bytes pertaimrigat class is plotted.
While Figures 2.8 and 2.9 show that the majority of the flowesssamall and short,
Figure 2.10 shows that the majority of the bytes are carrigdbhg and heavy
flows. This means that a few flows would greatly benefit frommghisupport,
with only little overhead. We also observe that if we adeglyathoose which
communication to protect with Shim6, we can both maintaiowadlobal overhead
(many small flows will stay unprotected), and enhance thditguend stability of
the critical flows. To evaluate the shim6 initialization dvead, we compute it
for the realistic case of two peers performing a shim6 natjoti and announcing
two CGA locators. This exchange requires the transmissfoh @2 bytes and
represents a50% overhead for K B flow. On the other hand, some flows have
a small size, but a long duration. Such flows may need to beged by shim6,
even if the size overhead is high. LinShim6 thus uses a defader heuristic that

5The NetFlow parameters were as follows: normal aging tirhies@o; fast aging timeouts0;
fast aging packet threshold00; long aging timeout1920.
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starts a negotiation if either a flow is larger thaki B, or if it lasts more than one
minute. According to the observations from Figure 2.8, ibisufficient to avoid
triggering many useless negotiations (actual{; of the observed flows).

Apart from the size and length considerations, a networkimidtrator may be
interested in starting immediately a shim6é negotiatiorstime flows, or prevent it
from being ever triggered for other flows. An example is thitIrequests should
not be protected by shim6, while a VPN connection could béepted since its
beginning, because it is usually long lived and of high intaioce.

2.3.4 Incoming packets

As other extension headers, the shim6 extension headagissar®d in the kernel
as a protocol. This allows the standard dispatching funatibthe Linux kernel
(i p6. nput _fi ni sh() ) to direct the packet through the correct xfrm state.

The receiving process is illustrated in Figure 2.11 : firetplcket is sent to the
raw sockets that are listening for that protocol numbet flaft of the figure). If the
next header value in the IPv6 headet RPROTO.SHI M6 for example, the packet
is delivered to the aw socket module of the daemon (if not filtered before).

Next,i p6_i nput fi ni sh() enters a loop that parses each next header and
calls the appropriate handler. If a shim6 header is foure¢ctiiresponding handler
is called and a context tag-based lookup is performed to findran context.

Packets that do not contain the extension header also negl ttwough the
shi m6_i nput () function, since they may be using the ULIDs of an existing
shim6 context. This is needed to update the shim6 contexstamp (for garbage
collection) and the REAP timers (for failure detection).that case the standard
dispatching function will not send the packet through xfiso,we do that man-
ually by callingshi n6_i nput _st d(). Actually in that case we do as if the
shim6 header was present, looking at what would be its plegarding extension
header order, so as to go through shim6 at the right step (sedniérk and Bag-
nulo [NBQ9, sec. 4.6]). This case is shown in the right paifigure 2.11.

Note that keepalives and probes are processed by botlatHeur e det ec-
ti on (kernel) andpat h expl or ati on (daemon) modules. In that case, the
next handler (after functioneap.i nput ()) isi pv6_nodat a_rcv() which
simply terminates the processing since the next headd?RPROT O_NONE (59).

We extended the xfrm lookup functions to support ULID andtegttag-based
lookups. The current xfrm framework maintains three hdsbta: one uses the
IPsec Security Parameter Index (SPI) as key [KS05], thergkoae uses the ad-
dress pair and the last one uses a request ID (manually coedigdentifier used
by IPsec). Rather than creating new data structures, wehaseddress pair based
lookup for ULIDs, and SPI based lookup to find contexts on thgisof the con-
text tag (the 32 low order bits of the context tag are usedHat purpose). This
way we can benefit from the performance of hashtable lookupe keeping the
existing data structures.
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Figure 2.11: Incoming packet flow

2.3.5 Keeping one context for each direction

Since IPsec works on a unidirectional basis, the xfrm fraorkwonly supports
unidirectional contexts. For this reason, we split the $haantext into two xfrm
contexts. The outbound context stores the peer’'s contgxrtd the locator pair
(written in each outgoing packet), while the inbound cohstares the local con-
text tag and ULID pair.

But this solution is not sufficient for the failure detectiorodule, which really
needs a shared data area: when a packet goes out, a timetdd $&end timer).
Thus we should maintain a timer structure inside dlagboundcontext. But the
same timer is stopped when a packet comes in. It means thaty wh have one
context in hand, we actually need to get the correspondiverse context also.

We solve this problem by using the private data pointer of fam xontext. It
is private in the sense that its meaning is not known by the famework and
its usage is let to the particular instance of the transforfsleim6). This allows
us to do a reverse lookup at context creation only. After, ttiet shared memory
area (only used by REAP) is accessible from both context&fétence counter is
used to ensure that we free this memory only when the last gfmtext has been
destroyed.

2.4 HBA/CGA

CGA and HBA addresses, which are used to secure shim6, argegmal part of
the protocol. At the time of writing and to the best of our kiedge,LinShim6is
the only implementation with full support of HBA and CGA. $gsting these ad-
dresses raises operational and performance challengas. &performance view-
point, using CGA and HBA addresses may lower the performahs@im6é when
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compared to normal IPv6. HBA and CGA operations are the naapatationally
expensive parts dfinShimé We evaluate here the computational impact of using
those addresses, first at generation time (can be done pftlies at signature and
generation time (always online).

In the LinShim6design, a separate tool allows for CGA/HBA address gener-
atiorP. The tool can be configured to favour either speed of addressrgtion
or the strength of generated addresses, incurring extrgw@tional cost for the
latter. Also, address generation can optionally be run condigurable number of
parallel processor threads, thus taking advantage of qtailé processors. Much
of this address generation code was originally written bzbo [KWRGO04] for
SEcure Neighbour Discovery [AKZNO5], it was integratedoihinShimé6for the
purposes of address generation, and thus it is very sinoildret SEND implemen-
tation, although our tool features HBA generation as well.

2.4.1 HBAJ/CGA address generation

As the CGA addresses depend on a public/private key pairjnopiementation
automatically generates such a key-pair during its iretialh. This is done so that
LinShim6will work “out-of-the-box”, without complex configuratioeffort from

the user.LinShim6configures itself automatically with CGA addresses by using
this public/private key-pair. It is, of course, perfectlggsible to manually config-

ure several public/private key pairs, and also to define amgber of HBA-sets.

For LinShim§ as CGA addresses can be generated as soon as the hostrdiscove
the IPv6 prefix for a network interface, we selected CGA askke as the de-
fault. This implies that CGA addresses are useable on lafitei move regularly,
whereas HBA's are not for reasons mentioned previously atiGe2.2.1.

As explained in [Aur05], the cost of the CGA generation is28f**<¢ itera-
tions in the worst case, whesec is the security parameter (a larger increases
the security but also the time required to generate an asldr@he same worst
case cost applies to HBA generation [Bag09]. The worst casgplexity for an
attacker to find a matching hash for the address is of the afigt’16+sec jt-
erations [Aur05], which means that the generator 2¥éstimes less iterations to
perform as an advantage in computational cost over thekattaConsequently, in
general, as processing power increases one should coimsidegising the value of
the security parameter to protect against brute-forceksta

To evaluate the cost of generating HBA and CGA addresses,se@ a Sun-
blade x6440 equipped with 4 AMD Opteron 8431 processord) ®aih 6 cores,
clocked at 2.4GHz. Figure 2.12 shows the mean time requaragtherate HBA
or CGA addresses, each bar being the mean of 100 trials. Eacbhbws the
mean generation time dfvo addresses (with different prefixes), in log scale. For
this experiment the HBA addresses are CGA-compatible, atidt®GA and HBA
measurements include the 1024-bit RSA key generation flne first two sets of

5Address generation could potentially be done on a compleanarate, more powerful machine
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Figure 2.12: HBA/CGA generation time

bars are generated with a security parameter of 1. The otlienviere generated
with a security parameter of 2. It is worth noting that thendtrd deviation (not
shown in the figure) is very large, because of the brute-fatgerithm [Aur05]
used in the generation process. For the results presenteidune 2.12, we ob-
served a standard deviation ranging from 23% to 77% of thertegh mean.

The address generation tool [KWRGO04] is able to use any nuwfbeoncur-
rent threads. This capability was retained and extendedderdo support HBA.
With the security parameter set2pmultithreading is necessary in order to obtain
aresult in a reasonable time. Hence using a security pagamiet is the only op-
tion on current commodity hardware. When the computatiting increases due
to a required higher security level, it is clearly benefittalise as many threads as
possible (see the results with 8 threads in the figure, arelthat the scale is log-
arithmic). On the other hand, multithreading gives slighibrse results when the
security parameter is 1, because the threading overheasd #akigher proportion
of the processing time.

While Figure 2.12 shows the generation time for two addiesse note that if
the number of generated addresses is increased, the CGratiend¢ime increases
linearly with the number of addresses. On the other handg ibea barely percep-
tible increase in HBA generation time. This is because thmesive part (called
modifier generatiorin [Aur05]) is conducted only once for the whole set, in the
HBA case.

2.4.2 Address signature and verification

Both operations take place during the initialisation of erghexchange, or when
one of the peers announces changes in its locator set. Tua¢wdhe cost of these
cryptographical operations we measured the time needettp & shim6 negotia-
tion with different security mechanisms. These tests weréopmed between two
hosts on a 100 Mbps Ethernet. The initiator was a Pentium Aauea, 2.6GHz
with LGB RAM while the responder was a Pentium 3, 600MHz wBBIZB RAM.
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The results are reported in Figure 2.13. For each securitfigroration, the
case of each peer announcing 2, 5 or 10 addresses in itsigeeates compared. The
negotiation timas defined as the time elapsed between the transmission fifghe
I1 message, and the reception of the last negotiation me$Ra) (see Figure 2.3).
Note that the negotiation time includes two signatures aad/erifications, that is,
one for each peer. Each bar shows the median negotiatiorotier€20 consecutive
runs.

Looking at the right hand side of Figure 2.13, we note thatehe a strong
correlation between the length of the RSA key used for sgymiressages and the
negotiation time. Conversely, HBA addresses involve a tigion time that is
almost the same as if no security were used at all. This isusecao signature is
needed in the case of HBA addresses.

An important consideration, discussed previously, is thBA addresses re-
quire the knowledge of all the prefixes before commencingim&megotiation.
This motivates the use of CGA-compatible HBA addressesneéegfin [Bag09].
While pure HBA addresses use a random number as input of the1Skhsh used
during the generation process, CGA-compatible HBA adésesse a public key
instead of such a number. However, no signature is needédhanost learns of a
new prefix that can be used. At this point a CGA address is g&ttbased on the
new prefix, and the key used to generate the previous HBA sseigifed message
can be sent to the peer, which will use the already known pliely to verify the
locator update. In Figure 2.13, the bar labelldzthcompatshows the negotiation
time needed when an HBA set generated based on a 1024-hit gaplis used.

This shows very similar results to the use of pure HBA. Thelsmerease in
time is explained by the fact that pure-HBA uses a random murfdrmatted as
a 384-bit RSA key, as defined in [Bag09], as opposed to a rexl-b@t key with
the CGA-compatible variant. A final observation is that tpact of the number
of announced addresses (2, 5 or 10 in the figure) is insignificeampared to the
security mechanism used.
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From the above observations, we conclude that from a pedoce point of
view, there is a strong argument to be made for using HBA adéss or even
better, CGA-compatible HBA addressekinShim6allows for the generation of
HBA/CGA addresses in advance of their iseOnce they are generated, they
become active only when configured in the system, either algnar by auto-
configuration through thegad daemon. By default.inShim6édisables the stan-
dard IPv6 auto-configuration mechanism, in order to avoidritggboth unsecured
addresses and HBA/CGA addresses in the system. This meohasireplaced
by the cgad daemon, that listens for Router Advertisements, and corigthe
appropriate addresses when a new prefix is received.

2.5 Improving Shim6 path exploration

Click modular router
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Figure 2.14: Shim6 testbed 1

In this section, we used a testbed composed of three Linuyuters. Two of
them support shim6, and the third acts as a Click router [KNQ], used to em-
ulate different paths. The router and one of the end hostBeméum I, 300Mhz
with 128MB of RAM and 100baseTx-FD Ethernet cards. The odret host is a
Pentium Pro 200Mhz with 64MB of RAM and 100baseTx-FD Ethecaeds. Both
end hosts run the Linux kernel 2.6.17.11 patched sithnt/ REAPrelease 0.4.3.
The Click router runs Linux kernel 2.6.16.13 patched witicKClelease 1.5.0. In
order to make measurements faster,46rd timethas been set to 3 seconds. The
setup is shown in Figure 2.14. The router runs the Router Aideenent Daemdh
that distributes the three prefixes of host A and host B. Oiek@Queue is defined
for each possible pair of addresses. Because each shim@itmmneceives three
prefixes, 9 queues are defined for each direction. Each quaydeconfigured to
be delayed or stopped. Thus we have a total of 18 configuralgees inside the
router. This gives the flexibility of simulating unidireatial paths in the Internet,
with a configurable delay for each one separately. We mayaste a failure in
one direction while letting the other direction operationa

"By defaultLinShiméwill generate CGA addresses on installation
Shttp: //ww. | i tech. org/radvd/
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2.5.1 Validation

To show the benefits of shim6 for a TCP application, we presefigure 2.15
the effect of a path failure on the throughput of an iperf T@Bsgon. The path
is broken approximately 20 seconds after starting the iplgeht. The different
curves are obtained by atrtificially adding delay to pathsidia the Click router.
This figure shows one of the most important benefits of shitn&, is, transport
layer survivability across failures, without any changertoP. Note that normal
TCP/IP is already able to survive if the broken path evehtui@mes back to life.
The difference here is that TCP behawssif the path came back to life, while in
fact another path is selected thanks to REAP path explorafdter the recovery,
ULIDs are kept constant, while locators are changed, asudt ifghe path change.
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Figure 2.15: Evolution of throughput for an iperf TCP sessio

The throughput drop of Figure 2.15 represents the full regptime, including
send timerexpiry (3 second$) Now it would be desirable to make this recovery
time as short as possible, that is, the throughput drop afrEig.15 should be as
narrow as possible. This is the subject of the next subgectio

2.5.2 Exploration time

We define thexploration timeas the duration between leaving and coming back to
the REAPoper at i onal state. This is different from theetection timedefined

as the interval between the occurrence of a failure, andréadetection by REAP.
Finally, therecovery timds the sum of the detection and exploration times. The
detection time is mainly influenced by the value of #end timer But this timer
being started every time a data packet is sent (if not alreaalying), the detection
time is also influenced by the frequency of outgoing data @&ckFor example,

90ur lab described in Figure 2.14 uses fixed-length queuesdkass of the configured artificial
delays. This in turns causes more packet drops for highificeitdelays, hence lower throughput.
This however is not related to shim6 as it only enters intmadifter the failure event.
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if one starts arssh session, then stops activity during some time, keepalivitts w
be sent by shim6 untkeepalive timeoutbut after that no keepalives will be ex-
changed anymore untiish becomes active again. In that case the failure will be
detectedsend timeouseconds after the first data packet is sent. This is of course a
worst case. There is also a best case, which may occur if wawvad to rely on
timers for failure detection (e.g. when the current integfgoes down).
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Figure 2.16: CDF of exploration times when n paths are broken

The exploration time depends exponentially on the numberatbes sent by
each of the peers before finding a successful path for eaebtidin of communi-
cation, due to the exponential backoff. It is important herepecify how often
a host may send probes, according to [AvB09]. Four initiabes are sent with
an interval of 500 ms. Then exponential backoff is starthd,interval is doubled
each time a probe is sent. When the time interval betweerepraaches 60 sec-
onds, exponential backoff is stopped and one probe is seny 6@ seconds. Our
implementation introduces an additional 20% jitter to the\e intervals, to avoid
self-synchronisation [FJ94] (the value of 20% has been faxbdrarily). It is also
important to note that this version of our implementatiolests address pairs by
cycling randomly over all possible paths. We present iniSe@.6 another way to
cycle over the paths, that tries to probe most distinct piatsts

Figure 2.16 shows the cumulative distribution of explamatiimes for the
testbed described in Section 2.5. Because failure detei@guires the existence of
a data stream, a UDP client and server have been placed ohestcho establish
a UDP bidirectional flow of one small packet every second.

Figure 2.16 has been obtained by measuring explorationstimedifferent
values of the numben of broken paths. Broken paths are emulated by tearing
down queues inside the Click router. Note that one queudertsie Click router
corresponds to anidirectional path from A to B or from B to A, as shown in
Figure 2.14. In this experiment we simulate only bidirestibfailures, thus we tear
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down at least the currently used queues for each simulatiedefaTherefore, the
minimum value fom is 2. Additional queues (thus additional unidirectional paths
are selected by running through the possible queue coninisatwithout taking
twice the same combination when possible. For each valug20 measurements
have been conducted. No artificial delay has been introdinséde queues for that
experiment.

The best performance is achieved for 2 as can be seen in Figure 2.16. We
see that if only the current queues are disabled, lettingukBies enabled, the first
probe sentis successful in 86% of the trials. The secondepsmdiways successful.
We can conclude this because the initial probes are sent@@® ms interval, and
100% of the trials take less than 600 ms (that is, 500 ms pr12@8o jitter).

As we shutdown more and more queues, we decrease the pitybédila
randomly chosen path to be successful. This gives loweresuas n increases,
because each exploration has a higher probability of demmgmadore probes, thus
more time. This is observed in Figure 2.16, where the curue$osver and lower
with increasing values of.

Because the testbed has 18 paths (9 in each direction), veenheasured the
worst case of breaking 16 paths, letting only one availabté for each direction.
In that case we obtain a curve with several steps, where ¢egloscurs after one
probe interval, due to the exponential backoff. 50% of thel@ations lasted less
than 7 seconds, 80% less than 17 seconds and 95% lasteddas3ltlseconds.
This scenario is rather unlikely to happen in practice abénreal world, it can be
considered a rare event to have only two operational patlosigrh8 available.

2.5.3 Paths with different delays

After having studied the impact of the number of broken pathshe exploration
time, we now evaluate how well the protocol performs to cleabg path with low-
est delay. For that experiment, we have compared each quguamwincreasing
delay in Click. We assigned a delay starting at 0 ms with a 1dnerement. The
last queue (ninth) has a delay of 80 ms. The 9 queues from A todBfram B
to A have a symmetric configuration. 500 failures have beewlsited. For each
failure, we save the path selected after recovery. Figuré ghows a histogram
that gives the frequency of selection for each kind of patiniesl by delays. For
example, if REAP has selected a path with 0 ms for one dinectind another one
with 10 ms for the other direction, we increment each of theasses by one.

The ideal case is plotted as a reference : 50 % of use for edtie dfvo best
paths. This is because in the case of the 0 ms path being b(iblkes the current
one), an ideal REAP would select the 10 ms path. The nextvriaild lead to
break the 10 ms path and selecting the 0 ms path. Thus, in ecpevbrld, this
experiment would consist of continously jumping betwees blest path and the
second best path.

We can observe that standard REAP gives a uniform distabutiue to the
random selection of paths. We have also tried to slightly ilgddEAP, replac-
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Figure 2.17: Proportions of use for paths with differentgsl

ing the 500ms initial inter-probe delay with a 0 ms delay. fTisasending four
probes in burst. The dashed histogram shows the same me&susemade with
the modified REAP. While the two best paths have a total gelegroportion of
21,5% with legacy REAP, we obtain a proportion of 46,1% whamdéing 4 probes
in burst. This is due to the fact that if probes are sent intbting first received
answer is taken as the new current path. But that answer @nheorresponding
to the path with lowest round trip time among the four tricfdvé increase the size
of the burst, we will get a higher proportion of selection foe best paths, at the
expense of more control packets being sent.

2.6 Improving failure recovery time

In the previous section, we concentrated on the REAP patlietjmn mechanism.
The path exploration is however only a part of the failureowery mechanism (the
first part being failure detection). In this section, we laatkhow to reduce the
overall failure recovery time.

The REAP Failure detection mechanism has been evaluatedrwations
in [dBGMSO07]. In [dBGMSO07], de la Oliva et al. emphasise ttiee TCP expo-
nential backoff has a negative impact on the recovery tirea g an application.
The reason is that after a failure, TCP tries to retransmil anresponse is re-
ceived. The delay between successive retransmissionpamentially increased.
Consequently, when REAP finds a new path, TCP unnecessaitg for its next
retransmission before noticing that the communicatioi jgbperational again.
[dBGMSO07] suggests informing TCP when a new path is foundhabit immedi-
ately retransmits and recovers. Figure 7 of [dBGMSQ07] mtesisimulation results
that show the effect of the improvement.

In LinShim6 we have added a mechanism that allows for notifications te-be
sued when any multihoming event occurs. This uses the Liraixevent frame-
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work. Any module in the kernel can register for such notifmas, without the
knowledge of the shim6 module. This is important for maimtaj the layer sep-
aration inside the kernel. TCP thus registers for BAdH UPDATE event, and
receives a notification when a path has been updated. Isrbgaesetting all its
RTO (Retransmission TimeOut) timers for the TCP sessicatsuise that pathLin-
Shim6is also modular enough to support external control fromrimfed entities
(such as network monitoring daemons), for example to forchamge to another
path. John Ronan has written such a controlling daemon ®E&KN information
into account [RM10].

In this section, we use a testbed consisting of a Juniper MiOthe router,
with two Dual Pentium Il Blade servers with 512MB of Ram andy&bit Inter-
faces (Figure 2.18). Both computers were running the IPReldffor traffic gener-
ation. To simulate link failures, links were switched offtime Juniper router via
expect scripts. The gain in recovery time is presented inr€ig@.19. This figure is
deliberately very similar to Figure 7 of [dBGMSO07]. The geals to compare the
simulation results with the implementation results. We suea the Application
Recovery Time (ART), defined in [dBGMSO07] as the time elapbetiveen the
last packet reception before a failure, and the first padadived after the recov-
ery. The measurement is repeated for different valugs%ind (Failure detection
timeout). Each point in the figure is the median of 45 measargmperformed
in the same conditions. Error bars with percentiles 5 andr@&akso shown, al-
though almost invisible (they appear as small squares)atleethigh stability of
the results.

With our testbed setup, an Application Recovery Time (ARANmot be below
T'send, because the time of the last packet received is almost ¢gjtiad time of
the last packet sent (due to the configured packet rate), rengddth exploration
startsT'send seconds after the last packet has been sent. In the moreafjease
the lower bound for an ART can be slightly lower as explainefiBGMS07].
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Figure 2.19 confirms the simulation results from [dBGMSOQ&E observe an
ART that increases linearly withisend if the RTO (TCP Retransmission TimeOut)
is reset. On the other hand, in the absence of RTO reset, vegvebsteps in the
curve that are due to TCP waiting for its RTO before perfograrretransmission.

Regarding the path exploration, our implementation seépathe address pairs
used for sending probes into two sets, each one randomizefirst set contains
all pairs that are completely distinct from the currentl{st) address pair. The
second set contains all other address pairs. The first psgbgsuse address pairs
from the first set, in the hope that using an orthogonal patheases the chance
our implementation can find a working path on the first attemptleed, in the
testbed setup, this proved to be the case. This also confitmatwas simulated
in [dBGMSO07].

While many things are common between our figure and Figuretieo&fore-
mentioned paper, all our experiments (either with or withRTIO reset) reveal a
faster ART than the one obtained in [dBGMSO07]. One explamais that while
[dBGMSO07] sends a probe to the current address pair beftwalbctriggering an
exploration, our implementation begins exploration immtzly upon expiration
of the Sendtimer.

Probing the current locator pair, before commencing thdogapon process,
is useful when there is some doubt about the failure. For gl@na host could
receive a spoofed ICMP destination unreachable messagdeh whould trigger
a probe on the current pair, but not an exploration. This ishat the host can
attempt to detect whether it was a genuine ICMP message oimétigure 2.19
and Figure 7 of [dBGMSO07], there is a timer expiry that intisathat no traffic
has been seen durirfsend seconds. Since REAP ensures (through keepalives)
that the Tsend timer expires only when there is truly a neétvfaiture, we argue
that this is a sufficient condition to immediately start tlahpexploration, with the
benefit of lowering the ART.
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2.7 Cost of state maintenance

Shim6 requires state to be maintained at both the initiatier(t) and responder
(server). Obviously servers usually manage many conmecsionultaneously, this
would then mean that a server could potentially have to manaany shimé con-
texts. In order to reduce the load on a server, it may be @elerto disable the
LinShim6heuristic. i.e. the context establishment trigger medraniThat way,
the server will never initiate a shim6 negotiation, but ordgpond to context cre-
ation requests from clients. The first step of a shim6 conigba@lisation would be
the sending of an 11 message by the client. The server woplgwdth an R1 with-
out creating state. Finally the client would send an 12, aittvipoint context state
would be created in the server. The 12 message holds thef listators from the
client, secured with a signature that the server is requoectrify. If the 12 mes-
sage is found to be valid, the server would then create a netextp and reply with
an R2 message containing it's own signed locator set. Asoitegdrs of a server
generally do not change all that often, our implementatmmputes the signatures
in advance, in order to spare computing time during the comiegotiation.

In our testbed (the same one as used to generate Figure @d ®valuated
the 12 processing time, the results of which can be seen iar€ig.20. Our tests
consisted of the following. EveryOms, a client initiated a new context negotia-
tion, each client used a different CGA source address, ierdaiforce the creation
of a new context in the server. The CGA was generated with d-bi2public
key. 1000 such contexts have been created, and the 12 processing tasuned.
The x-axis shows the number of the clients (and hence cooteation requests),
sorted in chronological order (conted@00 is created 000 « 50ms = 50s after the
first one). The figure shows that even when a hosts has 100@ acintexts, the 12
processing time remains at around 2 milliseconds.

Figure 2.21 shows the result of a case study of shim6 contartgement in
our university. The netflow traces of several critical sesvi@ our campus have
been analysed (Full IPv4 netflow). Traffic was collected friia1*t to the 7" of
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August, 2008. In our analysis, we assume that each peer viagiger a shimé
negotiation immediately after the first packet is exchanged that servers are
configured with a garbage collection time ¥ seconds (that is, if no traffic is
seen during 10 seconds related to a particular context,tieeserver decides that
it is no longer used and removes it. Peers having more thareddnds of idle
time then need to renegotiate their context). By compariitg figure 2.20, we
can infer that the 12 processing time (cost of creating a nemtext) would not
exceed2ms for any of those servers. We also observe from Figure 2.2lethen
in the worst case where each peer would trigger a shim6 coasablishment,
the number of concurrent shim6 contexts that need to be aiagd is less than
800. Note that in case an administrator wants to reduce teeretsd number of
simultaneous shim6 contexts, he can lower the garbagectioetime, in order to
more aggressively drop shim6 states. This tuning corredgptnmoving state from
the server to the network: the more aggressive a server i®ppihg contexts, the
more often clients will need to refeed the context data thhometwork messages.

Having just explained that servers can avoid unnecessargxiocreation by
simply disabling the shim6 heuristic, and only create cdsteipon request from
the clients, one simple method that clients could use toaetheir shimé activity
would be to introduce “hints” into the heuristic about wteatlthe peer supports
shim6. In particular we know that, currently, the majorifylBv6 addresses cor-
respond to auto-generated MAC-based addresses. Thosesselslican easily be
detected thanks to their format, i.ef : f e in the middle of the interface identi-
fier. If the peer uses such an address, most probably it hasppms for shim6,
because the use of multiple addresses by shim6 requirgsfahmiat to be either
HBA or CGA. Heuristics can be implemented as a kernel modanid, a user can
define his/her own (or indeed modify the existing one), withimaving to modify
the core implementation. So, for example, a heuristic cbeldlefined to ignore
auto-generated addresses, or to limit to some maximum tmbauof simultane-
ous shim6 contexts.
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2.8 Combining Shim6 with Mobile IPv6

We have explained in Section 2.3 that the architecturkim®him6is extensible,
thanks to the usage of the modular xfrm framework. In thisiseave show how
LinShim6can be combined with Mobile IPv6 to produce a new solutibtip-
Shimg able to handle simultaneously multihoming and mobilijpShim6can be
downloaded fronht t p: //inl .info.ucl.ac.bel/linshing.

Bagnulo et al. already proposed a similar architectureh@uit testing it, how-
ever, as it was not implemented at the time) in [BGMAOQ7]. Weliement and
evaluate this architecture. We also modify it slightly, maimg the Routing Op-
timisation mode of MIPv6 completely, as we justify how shiwén achieve the
same benefits at a lower cost.

Figure 2.22 summarises the services supported by MIPv@&6Ghind Mip-
Shim6, showing the benefit from unifying these technolagRsuting Optimisa-
tion (RO) and movement detection are supported by both MEhdb shim6, but
shim6 (which uses only direct paths) negotiates more efiiiyi¢he use of a new
path. On the other hand, MIPv6 has received a lot of atteritimm researchers
around movement detection [KMN7, MNO6a, DPNO3], and therefore is better
at detecting movements compared to shim6, which considasvament as a fail-
ure. The double jumps (where a host and its peer move sinaaltesty) are only
supported by MIPv6 because of the need for a rendezvous (oeinhome agent),
non-existent in shim6. Finally, shim6 is able to monitor ¢hpend-to-end, and try
to find another pair of addresses in case of failure of theeotipath. This allows
supporting failures of the home agent, by simply switchimgrother one.

The architecture we propose is illustrated in Figure 2.28esure the stability
of the transport and application layer identifiers, a siragleress is presented to
them. As recommended also by Bagnulo et al. [ BGMAOQ7], theesklused at this
level is a home address, because of its longer lifetime cosap@ CoAs. We call
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this a ULID (Upper Layer IDentifier) to use the shim6 termiogy. If a mobile
node has multiple home addresses, anyone of them can seavgldb.

Any packet leaving the transport layer passes first throhgtshim6 sublayer,
which provides an end-to-end address translation servide shim6 service is
illustrated in Figure 2.23, and has two components, nuntikead?2 in the figure.
In the first component, the ULID is rewritten into one of theaitable Care-of
addresses discovered in the visited network. We call tipis 6f translatiorShim6-
RO, because the immediate use of a care-of address withowgt MéfPV6 allows to
reach the correspondent node through a direct path, as wwilIPv6 RO were
it used.

In the second component, the ULID is rewritten into one ofitbme addresses.
This is useful only when the home address used as ULID hasifaitd the mobile
node has moved simultaneously with the correspondent ri@idg fience needing
to pass through the rendezvous point (the home agent) toagktib contact with
the CN (see Figure 2.24). In the absence of double jump, @mbrof addresses are
used and home agent failures do not need to be detected. Wimegnhcbme address
rewriting, two successive transformations take place.stFshim6 replaces the
home address used as ULID by the current locator (if nec@ssahis is the case
of the MN in Figure 2.24, which replacd$oA, by HoAs, the home agentl A,
being down. Then the packet passes through the MIPv6 laygechvencapsulates
the packet in order to send it to the home agent. Shim6 addegsiting from
one HoOA into another one allows supporting both the multimgrof the home
network and the failure of a home agent.
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Figure 2.24: Double jump scenario with MipShim6

The third component is the MIPv6 layer. It is mainly respbtesior managing
double jumps, but also the movement detection and thelinéteon of a communi-
cation context when a shim6 context has not yet been estallisvhen away from
home, the only option to start a new exchange is to use the lagmet). MIPv6
provides encapsulation for sending packets to the corneipg node through the
home agent. As stated in the specification [JPA04], it isiptes$so maintain mul-
tiple Care-of Addresses, although only one of them may bistexgd at the Home
Agent. This allows MIPV6 to try another Care-of addressutththe current bind-
ing attempt fail.

Shim6 can trigger a locator change when a failure is detdndREAP, or fol-
lowing a movement notification from MIPv6. In that case a RE&Ploration is
initiated. This involves sending probes on each of the p&hb#s being preferred
as they allow using direct paths to the Correspondent Nod\).(Eigure 2.25
shows an example wheMipShim6switches to Shim6-RO mode after a move-
ment: shim6 waits until the tunnel is established befor@isgnanUpdate Request
(UR) to the CN. The remote node however still needs to do a REAMaduility
test, before actually using the new path. This is to prevenahcious node from
redirecting the traffic from the correspondent node.

Support for multiple home addresses: Multiple Home Addresses (HOAS) can
be given to a mobile node for two main reasons. The first onkasthe home
network can be multihomed and receive multiple IPv6 prefixaghis case each
prefix is used to generate a new HoA. The second reason is ¢hef usdundant
Home Agents. One prefix is assigned to each home agent sohthdiost can
choose (using the shim6 layer) through which of them to senttaffic. This is
useful to allow tolerance to Home Agent failures and loattithistion across Home
Agents.
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Figure 2.25: Message sequence during a move

Support for multiple Care-of Addresses: The use of multiple CoAs allows sup-
porting multihoming of the visited network. [WDT09] proposes an extension to
support multiple CoAs, but it is not needed thanks to thegirated support of
shim6.

2.8.1 Movement with MipShim6

Movement is characterized by the loss of the current CoA hadtquisition of a
new CoA. MIPv6 uses generic IPv6 techniques to detect moweamel then makes
a Binding Update/Binding Ack exchange with the Home Agenewlcquiring a
new CoA. Our architecture can reuse the movement detegbiimisations already
developed for MIPv6 [MNO2, DPNO3].

Depending on whether or not the mobile node is in Shim6-ROaabthe time
of movement, we distiguish two cases. If it is not in Shim6-R0Ode, the tunnel
is simply updated and Shim6 can receive the movement ndiificaenabling it
to trigger an immediate switch to Shim6-RO (as shown in Fgai25). In the
second case, the mobile hode has moved while using the SR{nBrode. MIPv6
also updates its tunnel, although it is not used. As in theipus case, it sends a
notification to shim6, which may change the current locator.

Itis possible that Shim6 detects a movement before MIPv6 thiessame time.
This happens when the failure detection timer is set to aeviawer than the time
required for MIPv6 to accomplish its movement detectionfaiidver. In this case,
the movement is actually perceived as a failure by Shim6 kvimumediately be-
gins to send probes. These will be unsuccessful until MIRagfimished updating
its tunnel with the Home Agent. Although this case leads éogame result as the
second scenario, it is better to avoid it because it gerenmatee control traffic. Itis
possible to avoid this competition between shim6 and MIRv6diting the shim6
failure detection timer to a higher value compared to theayeMIPv6 movement
recovery time.
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Figure 2.26: Recovery time after a failure of the Home AgenT®end timer

2.8.2 \Validation

We validatedMipShim6by running it in two scenarios. In the first scenario, a
Mobile Node communicates with a peer in tunnel mode and é&pess a failure.
Figure 2.26 shows the application recovery time as a funaifche shim6 failure
detection timer, when a mobile node experiences a failuteeoHome Agent. The
result is quite similar to what we obtained for pure shimé6 igufe 2.19, where
the transport layer is informed about the path change amdsrés retransmission
timer.

In the second scenario, we verify the correct behaviouMigiShim6in case
of double jump. This result is shown in Figure 2.27. After atefruption of a
few seconds, the TCP exchange recovers. Note that this lisaéd|Pv6 part of
MipShim6 given that the Home Agent is needed in this case to act aslazeous
point. The goodput is highly variable because our lab us@sl8@ wireless con-
nectivity.

More discussion on MipShim6, its implementation and thédedion can be
found in ourMipShim6épaper [BDMBO09].

2.9 Open Issues with shim6 multihoming

From a standardisation viewpoint, the shim6 IETF workingugr has concluded
and several RFC's have been published [NB09, AvB09, BagDft.implementa-
tion supports all the important features of shim6. Howetreare are still several
outstanding issues to be solved before there will be a widaspdeployment of
shimé.

A primary issue is that shim6 requires IPv6. As of this wagtirthe Internet
still mainly uses IPv4, but given the expected exhaustich®iPv4 address space,
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Figure 2.27: TCP goodput before/after a double jump

more and more networks are seriously considering IPv6 ane $tarted deploy-
ments [Hus10]. Shim6 could be a very useful feature for maitied networks.
Initially, shim6 could be used for important flows such as VeMommerce or IP
telephony servers where rapid recovery from link or integf&ailures is important.
An important advantage of shim6 over other multihoming ohs such as HIP
or SCTP, is that shim6 does not require any change to thecaipiis running on
hosts. Thus, applications can benefit of shim6 without beivgre of it. Simu-
lation studies performed during the early phases of the &lilavelopment have
shown that host-based multihoming techniques such as silimé hosts to use
many more paths to send their packets than traditional IR¥RBased multihom-
ing [de 05]. Furthermore, measurements have shown thatibyg treese additional
paths, it is possible to achieve much better performange@ver delays [de 05].
However, there are also some forces against a widespread skiployment.
At present, Internet Service Providers are very reluctantansider it [Sch05].
Their main concern with shimé is that it allows hosts to inflce the path used
to send and receive packets towards any multihomed destinatlSP operators
have become accustomed to performing traffic engineeringfaying their BGP
configurations to take into account business policies. €quesntly many consider
that the deployment of shim6 would limit their traffic engénieg capabilities and
make the network more difficult to manage [Sch05]. This ismetessarily true.
Shim6 provides benefits to both ISPs and their clients. |Ssbenefit from a
much more scalable interdomain routing system while die@n benefit from a
much larger number of paths providing better performancknaore redundancy.
In fact, peer-to-peer applications are also exploitings¢halternative paths.
Network operators could market shim6 as an added valuecedryiheir customers
willing to obtain improved performance or reliability. B$ervice could be com-
bined with a path selection service provided by the ISP thHatva its clients to
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easily determine the best path to reach a given destinalfibis. type of service is
already being developed to support peer-to-peer appitafiAFS08]. Recently,
the IETF has chartered the ALTO working group to work on susbraice [SB09]
which would be very useful for shim6 to integrate with.

A second issue concerning a widespread deployment of sisithé@timany cor-
porate networks insist on using Provider Independent |Pesdds, even for IPv6,
instead of Provider Aggregatable addresses [Pal09]. $lhisdause most operators
consider that renumbering a network is too complex. Despltd of discussions
on this topic [CAF10], the IETF does not provide a solutioretsily renumber
a corporate network. Thanks to DHCP and IPv6’s stateless-@rifiguration,
most hosts can easily change their address, but for semén®aters this remains
difficult. For the specific case of shim6, a complete renuinlgesolution is not
necessary. To easily support provider changes, a corpoeaterk could use pri-
vate addresses internally (e.g. for the routers and the geament servers) and
simply add the prefixes allocated by their providers to airthouters. Solutions
to address this issue have been proposed in [LBO9].

2.10 Related Work

Other solutions have been developed to solve the multihgmioblem. The SCTP
transport protocol [Ste07] was initially designed to supg@mnalling servers in IP
telephony environments. It has now been extended to suppder deployment
scenarios and is supported by several operating systemsthémexample is the
Host Identity Protocol (HIP) [MNO6b]. HIP has been develdpe evaluate the
benefits and drawbacks of using a new cryptographical ifi@ntiamespace on
top of IP. HIP has been extended to support multihoming ankilityo] NHVAOS]
and there are several implementations of HIP available [RYJG Compared to
these solutions, the main benefit of shim6 is that it does equire any change
to the applications. This is very important for a new techeighat needs to be
incrementally deployed.

Several years ago, based on the recommendation from [MZB@¥Routing
Research Group of the Internet Research Task Force (IRTE)rechartered to
consider the evolution of the Internet architecture. Sewafrthe techniques being
evaluated within this working group [Atk11l, FFML11, VogO&lly on separating
the identifier and locator roles of the IP addresses, asin&hAlthough the details
between these protocols and shim6 vary, the experiencedjaiythe implemen-
tation and improvements of shimé will be beneficial for theadlepment of these
new protocols.

Two other prototype implementations have been developspentively by
Park et al. [PCC07] and Ahrenholz and Henderson [AH08], also on the Linux
platform. They are mainly user-space implementations wehf i | t er hooks
to capture the shim6 packets and process them in user spaw®is. In contrast,
our implementation uses the xfrm framework and is implemeartially in the
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kernel with the non time-sensitive functions in user spaa®ther important dif-
ference is that our implementation completely supportssté®irity mechanisms
designed for shim6.

Finally, recently an IETF working group has been created TIP) to design a
modified version of TCP, called Multipath TCP [FRHB11], tiimgble to failover
from one path to another, and to spread one single transpertatross several
paths. MPTCP will be our main topic starting at Chapter 3, aedpropose in
Section 4.4.2 an architecture that allows integrating shivith MPTCP.

2.11 Conclusions

Multihoming is one of the problems that limits the scaldpilbf the current In-
ternet architecture, because it is currently obtainedutiinanjection of additional
routes in the BGP system. Shim6 brings a solution to that, akimng possible a
hierarchical allocation of IPv6 addresses, through irewdgpath management by
the end-hosts.

In this chapter, we have studied in details the HBA and CGAhaasms.
Although HBA is computationally cheaper compared to CGA Addwes offer in-
teresting capabilities in terms of flexibility. For examp#mn interesting possible
extension of our work could be to augment shim6 with IPv4 supy simply
including IPv4 addresses in the CGA signature. The onlyiremqent for this to
work would be to use an IPv6 address as ULID, so that the hdmicgkey can be
encoded in this ULID. This would effectively allow a host teeuboth IPv4 and
IPv6 protocols in the same communication, without the kreolgke of the applica-
tion.

We also analysed in depth the failure recovery capabilitglom6, and ex-
plained that the associated REAP protocol allows movingdrtféc from one path
to another. But one could wonder whether it is possible toseseral shim6 paths
simultaneously. Although this cannot be done autonomoimstiie shim6 layer,
because TCP performance would drop due to the incurredegogg the concept
of context forkindNBQ9] has been proposed in the shim6 specification to allow a
upper layer (e.g. a shim6-aware application) to controlpds on its own. This
is costly, however, as it requires creating a full shimé eghper path that needs to
be handled simultaneously (more memory required). Mone@aeh of these con-
texts must be negotiated separately with the peer (morertipgred for context
establishment). This can be useful in specific cases wheaplitation needs full
control of the shim6 context and hence needs to “own” one. évew for simul-
taneous use of shim6 paths, we will instead propose in Sedta2 a completely
local interface (that is, without change in the shim6 protocoldditional network
exchanges) that enhances shim6 with simultaneous multgzadability, given an
appropriately interfaced upper layer can control it (wehds with Multipath TCP).

Finally, we described our MipShim6 proposal, that combMesile IPv6 with
Shim6. An interesting future work would be to put togethepBhim6 with the
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Multipath TCP protocol, presented in the next chapter. Wusld indeed result in
a full solution for handling multihoming, mobility and sirtaneous use of multiple
paths.






Chapter 3

Understanding Multipath TCP

In the previous chapters, we have studied multihoming as Been the network
layer. We will now concentrate on a recently developed matdVPTCP, that can
handle multiple paths at the transport layer. Before pt@sgmour contributions,
we provide a short introduction to regular TCP and to MPTCHt &s defined
currently by the IETF [FRHB11].

3.1 Regular TCP

The Transmission Control Protocol (TCP), standardize®®illPos81b], is used
in the vast majority of Internet communications. Togethéhwhe User Datagram
Protocol (UDP [Pos80]), this transport layer protocol em95% of the network
traffic on the Internet [LIJM 10].

TCP provides a reliable bytestream abstraction to appicstReliable means
that any lost or corrupted data is retransmitted until iteiseived. A TCP sender
knows that a range of bytes have correctly reached the déstinthanks taac-
knowledgementsThe data bytes are givesequence numbetkat are referenced
in the acknowledgements to indicate the amount of data taatbeen correctly
received. For example, an acknowledgement@f0 means that the bytes with
sequence numbefsthrough999 have been successfully received (assuming an
initial sequence number df in this case). TCP estimates tR®und Trip Time
(RTT) as the time elapsed between the transmission of a se@mne the reception
of the corresponding acknowledgement. This RTT is usednfiguare a timer that
triggers an automatic retransmission of data when it egpiddl of this is done
without the knowledge of the application, that only need$eted a socket with
bytes and can be confident that the data will reach the pelemass the network
path used for the communication is not completely broken.

Bytestream abstraction means that TCP allows the application layer to ex-
change a flow of bytes with the peer, which requires handlagrentation on
behalf of the application because the underlying netwoykerlaan only handle
packets (see Figure 1.2 in Chapter 1 for a reminder on Intéayering). TCP

57



58 Chapter 3. Understanding Multipath TCP
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Figure 3.1: Example TCP exchange

can negotiate Maximum Segment Sia¢the beginning of a connection, and later
on tries to fill all segments up to their maximum size (in orttetenefit from
the best possible control/data ratio in each segment) kthtmthe Nagle algo-
rithm [Nag84].

[Pos81b] has been very careful with the establishment anuiriation phases
of a TCP connection, and a full state machine is defined indPmsFigure 6]. We
show a simple example of TCP communication in Figure 3.1 ¢thee names on
the left and right of the picture refer to the state machingws81b, Figure 6]).

A TCP server waits for incoming connection requests. Untiéguest is re-
ceived, itis inLl STENstate (TheCLOSED state refers to the absence of a socket).
A connection request segment, in TCP terminology, is cal&YN. The server
creates no connection specific state until ¥\ is received (IfSYN cookies are
enabled [Ber], state creation is even delayed until the tiniessageACK) has been
received). For this reason, no data can be sent by the cligihthe SYN has been
acknowledged. If after some time the acknowledgement isetsived (meaning
that either theSYN or the ACK has been lost in transit through the network), the
SYNsegment is retransmitted. The server neither enterEST@BLI SHED state
until its own SYN has been acknowledged. This is important becauseStié
segment contains the Initial Sequence Number (ISN), raimiahfor security rea-
sons. Entering th&STABLI SHED state before the reception of ti&€K would
result in potentially sending data that the receiver will Ine able to localize in the
sequence number space. This initial exchange of three sdgrisetraditionnally
called thethree-way handshake

A similar handshake happens when terminating the conmecfioFl Nis is-
sued when the application performsbhose() system call on the TCP socket.
The reception of th&l N generally triggers &l ose() in the application on the
server as well, which allows sending the serveN and the acknowledgement of
the clientFl N in the same segment. When the server receive@\@efrom the
client, it can safely remove any state related to that caimecHowever, the client
has no way to know if hifACK has actually reached the peer. If not, it must be
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prepared to receive a retransmitfeldN+ACK. For this reason, [Pos81b] defines an
arbitrary timeout of four minutes, during which the clientket must remain open
in order to resend aACK in response to any retransmittetl N+ACK.

[Pos81b] defines some important state variables. We explaime of them
here, as we will discuss them later as well in the case of MPTCP

e RCV.NXT: Next expected sequence number, that is, all the bytes until
RCV.NXT — 1 have been correctly received.

e RCV.WND: Receive window. TCP ensures that bytes are transmitted in
the correct order, thanks to the sequence number. In casgeségjarrive
out of sequence, they are reordered in a buffer on the racdivearticu-
lar, if a segment is lost, a TCP receiver must be able to stbtbeadata
that follows the lost segment until it is retransmitted. STbhan quickly fill
up the receive buffers. Another case where buffering is eged the re-
ceiver is when an application is very slow at reading themiog data. In
those cases where buffering is needed, it is important teeptehe sender
from providing data that cannot be stored. The receive wingoan in-
dication, included in each segment, of the current avalabteive buffer.
RCV.W N D indicates a window in the sequence number space that the
sender is allowed to use for sending new data. The exact wigldefined
as[RCV.NXT,RCV.NXT + RCV.WND —1].

e SND.NXT: Next byte to send. The sequence numbers increase monoton-
ically after each new sent byte. If, for instancel 50 bytes segment is to
be sent, it is given sequence numi&Y D.N XT and thenSND.NXT is
incremented by 500.

e SND.UN A: First unacknowledged byte. It stores the highest cunudati
acknowledgement received so far. All data with sequencebeusnlower
than SND.UN A can be discarded from the send buffers, as it has been
correctly received by the peer.

e SND.W N D: This is the sender view of thRC'V.W N D state variable de-
fined above. From the sender point of view, the allowed winémveending
new segments iISND.UNA,SND.UNA + SND.WND —1].

Congestion control: We have mentioned above the case of a TCP flow being
limited by the receiving application. In that case the reeeadvertises a small
receive window, to force the sender not to send faster theantread. It is also
possible (and this case is more frequent), that a TCP flomisdd by the network.

A flow is network-limited when it uses all the available cajpaon the bottleneck
link. In such a case, the bottleneck router starts droppgggnents, which requires
retransmissions, as explained above. If the sending ratat isontrolled, however,
there is an amplifying congestion effect: The losses indtensmissionsin
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addition tothe new data being sent in parallel at the same rate. Henazvénall
transmission rate is effectively increased, while a dropmadly means that the
sender is already transmitting too fast.

To control congestion, the solution is to maintain a sepanahdow called the
congestion windoWcwnd) [Ste97]. A sender can send a new segment only if it fits
in bothits send window and congestion window. The intuition is thaan send
only if both the network and the receiver are able to handienbw data. The con-
gestion control always happens in two steps. The first stew, start, is used when
the congestion level is unknown and a first probing is needadore accurate term
for it however would be “fast start”, as the sending rate @éased exponentially
until the first loss event. At that moment, another variatile,slow start thresh-
old, is set to one half of the congestion windowé{hresh = cwnd/2). ssthresh
determines when the sender must be more conservative iasiog its conges-
tion window. This more conservative, second step is catiedgestion avoid-
ance In the first implementation of congestion avoidance (BSDZahoe), the
increase was linear, again until a loss happened. Therdlaeangestion avoid-
ance mechanisms in modern TCP implementations such as T@43 Y8OP94],
CUBIC [HRX08] or lllinois [LBS08], which will not be discussl here.

3.2 Multipath protocols

MPTCP is the most recent but not the first effort to handle #smeous use of
multiple paths at the transport layer. Previous multipdtbres can be classi-
fied based on the directions taken by the authors. One obviestion is the
chosen transport protocol: SCTP or TCP. We remark that inynaspects the
conclusions for one or the other of those protocols are vienjlas, because the
main problems encountered when designing a multipath pobtare not related
to the specificities of SCTP or TCP. Both protocols need teesptordering prob-
lems when data is spread across multiple paths, and adgisbitiffer allocation.
SCTP-based [IAS06, ASL04, LWZ08] multipath approachesfjutheir protocol
choice by SCTP’s built-in ability to define multiple streafse07], which can be
more easily turned into concurrent subflows. But the TCP stepMKO01, HS02,
ROAO05, ZLK04] have shown that it is equally feasible to tul@F’into a multipath
protocol. The reason is that while SCTP provides a socketfatte for controlling
the subflows, such an interface is not needed when only oneiglpresented to
the application and the spreading of data across subflonmis iditernally. In the
end, TCP was chosen to implement multipath capabilitiesimss, in contrast to
SCTP, it is widely deployed in today’s Internet.

Another important direction is the choice of the sequeneespSome propos-
als use a single sequence number space [MK01, ROAOQ5, IAS0&.choice may
lead to significant reordering of sequence numbers at theverc Since reorder-
ing is normally considered as a failure indication, new ldstection heuristics are
needed to distinguish between normal multipath reordeaimdjfailures. To get rid
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Figure 3.2: MPTCP is transparent to both the network and ppécations

of that problem, MPTCP defines a dual sequence number sphege wne space
is subflow specific and identifies bytes within a subflow. [FRHBdefines a Data
Sequence Number (DSN) space, which takes care of reordatitige aggregate
connection level, but these DSNs do not have any impact oanghission deci-
sions. The closest related work from that point of view is (25

A third design choice is the way to deal with shared bottl&secThere is a
fairness problem when several multipath flows share a Ibettle when employ-
ing regular TCP congestion control per subflow, becausewuyd get a higher
proportion of the available capacity compared to standa@@® flows. Zhang et
al. solve that problem by trying to avoid establishing saveubflows across
the same bottleneck, thanks to an external tool [ZLKO04]. eDtipproaches sim-
ply ignore the problem. In MPTCP, the congestion controbetgm is coupled
across all subflows, so as to ensure fairness without ne¢dlidgtect shared bot-
tlenecks [RHW11, WRGH11]. A good, detailed overview of rnpdth transport
approaches can be found in [Ong09].

3.3 Starting a new MPTCP session

One of the main design goals behind MPTCP was to be complatatgparent
to both the application and the network. This is illustrated=igure 3.2. The
application opens a regular TCP socket, which initiallytstane regular TCP sub-
flow. Up to that point, there is no major difference betweerPTabd MPTCP. But
if both endpoints support Multipath TCP, additional subfogan be initiated by
either host. Outgoing data is then scheduled according neesmplementation
dependent policy. Incoming data from all TCP subflows isdeoed to maintain
the in-order bytestream abstraction of TCP, as seen by thleeation. Scheduling
and reordering operations are represented by the ellipgbe icenter of Figure 3.2.
Subflow establishment is shown in Figure 3.3. It is slightpified for the
sake of describing the main idea, and the full version willdegailed in Sec-
tion 3.6, in Figure 3.7.Host A wants to contactHost B. From the DNS, it
learns thaHost B can be reached through addr&sl. Because MPTCP must
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Figure 3.3: MPTCP initial exchange and subflow establisimen

be transparent to the network, any new TCP subflow (includiveg first one)
must be established using a three-way handshdkes augmented with MPTCP-
specific TCP options, that need to be understood by the estdraystacks only
(not by the network). Thanks to tHéP_CAPABLE option inserted in theSYN

and SYN+ACK, bothHost AandHost B can know that the other end supports
MPTCP.MP_CAPABLE is also present in the third message of the three-way hand-
shake to allow the server to defer the state creation umtietid of the handshake,
and make use of SYN cookies [Ber]. If nothing more is done, I@PTuns exactly

like TCP.

At any moment either host can try to establish a new subflonaiighis is
done through a regular TCP three-way handshake. The opsien for additional
subflows must be different, however. The peer must be ablexderstand that
the new subflow must be attached to an existing MPTCP commedind this is
made possible by themken. During the first three-way handshake bbibst A
andHost B choose a token to identify the new connection locally. ThHesmo
is announced to the peer in thd>_CAPABLE option. SinceHost A has two
addresses, it can establish a new subflow using addresseg, B.1 >, and join
it to the correct context iRlost B by attaching oken_Bto theMP_JO Noption.
Note thatt oken_A does not need to be included in tB¥N+ACK becausdHost
A has state for that subflow already, which is not the case df BoSimilarly,
Host B could establish the subflow A.1, B.2 >. But neitherHost A nor
Host B can establish the subflow A.2, B.2 > since none of them knows the
second address of the remote host. This address pair gyeciseesponds to the
most distinct path (in most network configurations). Thusa MPTCP option
is needed:ADD_ADDRESS. Its use is shown in the right part of Figure 3.3. After
Host B has announced that it can be reached at addBe8sas well,Host A

The final ACK makes it actually a four-way handshake, but it is seen by éteark as a reg-
ular TCPACK, independent from the establishment. The reason for usfogravay handshake is
explained in Section 3.6
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Figure 3.5: MPTCP retransmission

has the opportunity to establish one more subflow.

To close this section, we note that MPTCP subflows can be lesttat over
IPv4 or IPv6. A single connection can make use of both undeglyetworks.
This is a very interesting property of MPTCP, as it faci#githe transition from
IPv4 to IPv6 and allows hosts having both kinds of addressesé two different
underlying network protocols simultaneously.

3.4 Exchanging data across multiple flows

At the sender, an implementation specific scheduler (repted as a ellipses in
Figures 3.4 and 3.5) decides over which subfow to send argy dfytlata (we de-
scribe our design of such a scheduler in the next chapterja result, the initial
ordering of the application bytestream is lost, and holgzeapin the sequence
numbers of the bytestream (e.g. subflow 2 in Figure 3.4). iBhi®t desirable as
some network devices (e.g. TCP normalizers [HPKO01]) ametlys TCP sequence
numbers and block a TCP flow when holes appear in the sequandaening. This
motivated the definition of aecond sequence number spac®ne sequence num-
ber space is related to subflow sequence numbers. Each subdimtains its own
subflow sequence number space, and writes sequence numbezsame field as
regular TCP. Again, the MPTCP information is stored in opsioand a DSS (Data
Sequence Signal) option has been defined by [FRHB11] to taerglata sequence
numbers. Subflow sequence numbers and data sequence namedidtstrated in
Figure 3.4.

Retransmissions: When a loss is detected (loss detection is performed on each
subflow individually), it is not necessarily the best chdiaeetransmit on the same
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subflow. For instance, if the loss happened on a high deldy, ffathay be wise
to retransmit the segment on another subflow. This can be dangally with
MPTCP, by simply remapping the data sequence numbers toutelow sequence
numbers, as shown in Figure 3.5. However, the original segmmeist still be
retransmitted on its initial subflow to avoid confusing nm&ltbxes that check for
payload consistency upon retransmissions.

Acknowledgements: Due to the subflows behaving like regular TCP connec-
tions on the wire, the subflow sequence numbers are ackngededormally on
each subflow. In theory this should be sufficient, becausse¢hder can infer the
acknowledged data sequence numbers from the received suitknowledge-
ment. However, two practical problems exist with that dolut

e Various kinds of middleboxes have been developed to impitevéehaviour
of TCP, and are grouped under the tePerformance Enhancing Proxies
(PEPs) [BKG 01]. Some of them acknowledge TCP data before it is actu-
ally acknowledged by the peer. If the data happens to befiestiehas been
acknowledged by the PEP, it is the responsability of theaeto retransmit
it. However if the path has failed (that is, any retransmisgrom the PEP
fails), or if the receiver is mobile, so that the PEP retraissians cannot
reach it anymore, the other subflows cannot be used to ratiatise lost
data, as the sender has released the corresponding memory.

e Inregular TCP, the receive window is defined as follows [R©§8
[RCV.NXT,RCV.NXT + RCV.WND|

RCV.NXT is determined by th&CK field in the TCP segment. However,
in MPTCP there is no subflow-specific receive window (for ozesthat we
describe in Section 4.3.5). The advertised receive windorelated to the
data sequence number space, and is redefined as follows:

[DATA.RCV.NXT,DATA.RCV.NXT + DATA.RCV.W N D]

That is, the receive window is no longer a fraction of the sabfsequence
number space, but instead a fraction of the data sequenckengpace. If
the data acknowledgement is inferred from the subflow acledyement, it
is not cumulative, and hence does not refleddT A.RCV.N XT (which is
the next data sequence number expected by the receiver).

To solve the above problems, the protocol specification kfised adata ac-
knowledgemenobption, that is included in the same option as the data seguen
number. It solves the first problem because the cumulativia Baknowledge-
ment can be sent on any subflow, and truly reflects the stateeafeteiver, even
in the presence of PEPs. It also solves the second probleaugedt explicitly
defines the left edge of the data level receive window. Rindlleven simplifies
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implementations, by removing the need to infer the data @asladgement from
the subflow-level acknowledgemént

Congestion Control: Congestion control algorithms for regular TCP try to use
their fair share of the available capacity. Two TCP subfloeieihging to a logical
connection would then use twice their fair share. MoredWRGH11] describes
a scenario (with multiple bottlenecks) where even an aggresMPTCP would
fail to obtain the best possible bandwidth. The authorsamphat it is desirable,
in multipath scenarios, to use only the less congested frastsad of spreading
the traffic equally among the available paths. Starting feomexisting theoretical
solution [KV05, HSH 06], [WRGH11] develops an algorithm, and adapts it to
fulfill the following two goals*A multipath flow should give a connection at least
as much throughput as it would get with single-path TCP orbist of its paths.
This ensures there is an incentive for deploying multipasimd“a multipath flow
should take no more capacity on any path or collection of pabtan if it was a
single-path TCP flow using the best of those paths. This giiees that it will not
unduly harm other flows at a bottleneck link, no matter whatlimation of paths
passes through that link”

The resulting congestion control algorithm is as follows:

e For each non-duplicate ack on subfléwincrease the congestion window
of the subflowi by min(a * bytes_acked * M SS;/cwndyq, bytes_acked
MSS;/cwnd;) (where cwnd,, is the total congestion window of all the

cwnd,;
RTT?

——ana—)- This formula assumes that the con-
i wrr)?

gestion window is measured in bytes dndes_acked is the number of bytes
acknowledged by the received ack segment.

max; (

subflows andv = cwnd;:

e Upon detection of a loss on subflowdecrease the subflow congestion win-
dow by cwnd; /2.

This congestion control algorithm has been proposed byahmesuthors in an
IETF draft [RHW11]. The MPTCP specification [FRHB11] doeg n@andate the
use of that algorithm, however, and emphasises that caagesintrol is separate
from the main specification, to leave space for future dédimibf other congestion
controllers. As of this writing, this is the only congestiocontrol scheme that has
been adapted to MPTCP.

3.5 Terminating an MPTCP connection

In the previous sections, we described the motivationsdtate the definition of
data sequence numbers and data acknowledgements. Indti@aseve explain

20ur implementation initially worked without data acknoddggments, but this forced us to main-
tain a list of acknowledged fragments in the data sequene®auspace, just like the SACK imple-
mentation in TCP
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Host A Host B
Addrs: Addrs:
Al A2 B.1
Data
[end|data_stream]+FIN+DATA_FIN
V4

Timeout
[end_data_stream]+FIN+DATA_FIN

Figure 3.6: MPTCP example connection termination

why MPTCP also includes Rata FIN [FRHB11].

One could assume that, to close an MPTCP connection, itfisisuf to send a
regularFl Non all subflows. This works indeed if all subflows are operalpbut
will fail if any of the subflows is broken. In regular TCP, ifdHlow is broken, the
connection cannot be closed gracefully anyway, but MPTC&awoot be affected
by such a failure, as every useful information about the eotion can be moved
to another working subflow.

The semantics of thBat a FI N is the same as the semantics of EHa\, at
the data level. A regulafl N does not close a connection, it closes a subflow. A
Dat a FI Ncan be sent oany subflow. It is acknowledged with Bat a ACK,
and occupies one byte in the data sequence number space.

An example connection termination is shown in Figure 3.6. d&kberately
show a particular case, where subflew A.1, B.1 > fails, to illustrate the be-
haviour of MPCTP in that cas¢.end_dat a_st r eanj represents the last block
of application data. Since the application has issuetd@se() system call after
this last block, MPTCP appendsCat a FI N to the transmission queue. Sub-
flow < A.1, B.1 > is selected by the scheduler. Since D&t a FI Nis present,
MPTCP knows that it can as well close the subflow, and alsotketsl N flag.
Unfortunately this termination segment is lost, and afteimeeout it is retrans-
mitted. Thanks to MPTCP’s ability to retransmit segmentothrer subflows (see
Section 3.4), the lost segment is also retransmitted onaubfl A.2, B.1 >. The
retransmission successfully reaches the peer, and thegfimeful shutdown can
happen on this second subflow. From the application vieviptie stack can re-
turn that the connection has been correctly closed in thgoing direction. From
the viewpoint of MPTCP, the failed subflow will continue tdrensmit aFl N seg-
ment, with exponential backoff, and finally terminate afidimeout. This is done
without the knowledge of the application. Note that [FRHBAbposes to reduce
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Figure 3.7: MPTCP authentication

the timeout value when the subflow is not needed anymore éocdhnection.

3.6 Security mechanisms for MPTCP

The security mechanisms for MPTCP have been subject to adehgte in the
IETF, and consensus has been reached only recently. Faetsin they are not
yet included in our Linux MPTCP implementation. In this seatwe give an
overview of the problems and solutions as defined in [FRHB11]

A threat analysis for MPTCP is detailed in [Bagll]. It stati@e important
issues about MPTCP:

e An important design goal of MPTCP is to be no worse than TCkfeo
security point of view. For example, TCP being vulnerablé/an-in-the-
Middle (MiTM) attacks, it is explicitly not a goal for MPTCRthe protected
against those attacks.

e The main new threat introduced by MPTCP is related to locadgity. An
attacker could send afDD_ADDRESS with his own address and divert part
of the data stream, if not all, to himself. Or he could sendBD_ADDRESS
with the address of a target, so that it can force a server tal ffochosen
victim.

From the above, it comes that the most critical part in MPT@if a security
point of view, is the subflow establishment. [Bagll] empsesithat a tradeoff is
needed between the level of protection we want, and the axitplof the result-
ing security mechanisms. The currently adopted tradesffledined in [FRHB11]
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is that the protection of new subflows is based on the prerméadhe initial three-
way handshake cannot be intercepted by an attacker. Otbritgemechanisms
(e.g. using a Diffie-Hellman exchange) were considered twopuitationally ex-
pensive, and hence no protection is given against the thifieed attack described
in [Bagl1] (where an attacker is on-path at the beginninchefdommunication
and then moves away but can still hijack the communicati@hg protocol could
be extended to support other security mechanisms in theefutu

Based on the assumption that an attacker cannot see tla¢laitidshake, a key
is exchanged in clear text between the peklsst A generatekey A Host B
generatekey B. Key_Ais sent only in the third segment of the handshake, to al-
low the utilisation of SYN cookies on the server. Note that tbken, introduced
in Section 3.3 (Figure 3.3), does not appear anymore in ftialiaxchange of Fig-
ure 3.7. This is because the token is derived from the k&yen 4 = hash(key )
andtokenp = hash(keyp).

The key is then used to authenticate further subflow estabésits, thanks to a
Hash-based Message Authentication Code (HMAC), whith tha S[EH06] hash
function. Due to the fact that the addresses and ports majideged on the path
to the destination (e.g. by a NAPT device [SE01]), they caibecincluded in the
HMAC authentication. Instead, [FRHB11] specifies that a pifandom numbers
(R4 andRpg), one generated locally and one generated by the peer, mustld as
the message to be hashéthst A authenticates itself by showing that it is able to
provide the right keyed hash &4 + Rp, usingkey 4 andkeyp. Similarly, Host
B shows that it is able to generate the correct HMAC base& pr- R 4 and using
keyp andkey4. Since onlyHost AandHost B know the keys, only them can
create new subflows with each other (again, given the assumiptat the attacker
cannot see the initial exchange and that the random keysrageshough to prevent
brute force attacks). Moreover, to protect against reptechks, the numberg 4
and Rp arenonces meaning that they are used only once.

Figure 3.7 shows that the handshakes are actually four-waydhakes, for
both the initial and additional subflows. In fact the regul&P three-way hand-
shake is maintained, but MPTCP forces the server to send larowtedgement
after the three-way handshake to ensure that the final MPECRit/ data is re-
ceived. For the initial exchange, the datakig; 4 and keyp. For the additional
subflows, it isM AC'4. This acknowledgement can and should be used to carry
application data, if available.

3.7 Conclusions

In this chapter, after a quick introduction to regular TCE,lvave presented Multi-
path TCP, as defined in [FRHB11]. The main goal of MultipathPTi€to enhance
TCP in such a way that two or more paths can be used simultalyedrLhis has
many advantages, including better resource utilisatiettebthroughput obtained
thanks to the resulting pooling of network resources, analogher reaction to fail-
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ures. One important design decision was to make MPeagily deployablethat
is, transparent to applications and to a maximum of netwdddheboxes. An in-
teresting novelty of MPTCP was the proposal for @aupled Congestion Control
Established from theoretical models, this new algorithioved moving traffic away
from congested paths, while being fair to regular TCP flowshiared bottlenecks.
We concluded with a presentation of the security mechantsmently defined for
MPTCP. They are only intended to be no worse than regular TTCiRat matter,
MPTCP is not completely successful in its current specificathowever, as the so
calledtime shifted attack [Bag11$ still possible with MPTCP, while it is not with
regular TCP. The other attacks presented in [Bagl1] areredyéhough.

The next chapter presents our modular implementation otipaih TCP, in
the Linux kernel. We then evaluate the protocol, by usingimplementation, in
Chapter 5.






Chapter 4

Linux-MPTCP: A modular
MPTCP implementation

4.1 Introduction

The Multipath TCP protocol [FRHB11] is a major TCP extensibat allows for
simultaneous use of multiple paths, while being transpdocetie applications, fair
to regular TCP flows [RHW11] and deployable in the currerginét. The MPTCP
design goals and the protocol architecture that allow riegcthem are described
in [FRHT11]. Besides the protocol architecture, a number of namatridesign
choices need to be made in order to extend an existing TCReimgitation to
support Multipath TCP. The objective of this chapter is thiaee a future-proof,
yet realistic implementation architecture for MPTCP. Intjgalar we will illus-
trate in Section 4.4 how MPTCP can be set to take benefit frammpanagement
techniques different from the default one, defined in theeurspecification.

The proposed architecture is expected to be applicablediega of the Op-
erating System (although the MPTCP implementation desdrliiere is done in
Linux). Another goal is to achieve the greatest level of marty without impact-
ing efficiency, hence allowing other multipath protocolsnioely coexist in the
same stack.

This chapter is based on the code that we implemented in olirdéiln TCP-
aware Linux kernel (the version covered here is 0.6) whicévalable from the
addresdhttp: //inl.info.ucl.ac.bel/nptcp. We also list configuration
guidelines that have proven to be useful in practice. Theeativersion of Linux
MPTCP contains arounth000 lines of code, currently without user space program
(that is, all the processing takes place in the kernel).

During our work on implementing Multipath TCP, we evaluatgder designs.
Some of them are not used anymore in our implementation. Mewere explain
in [BPB11a] the reason why these particular designs havebeeh considered
further, and why some of them could be reconsidered in thedutwhen more
experience is gained.

71
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Chapter 4. Linux-MPTCP: A modular MPTCP implementation

This chapter is structured as follows. First we propose ahit@cture that
allows supporting MPTCP in a protocol stack residing in aerapng system.
Then we consider a range of problems that must be solved by RIFQW stack
(compared to a regular TCP stack). In Section 4.5, we givernetendations on
how a system administrator could correctly configure an MPFDabled host.
Finally, we discuss future work, in particular in the aread#TCP optimisation.

4.1.1 Terminology

In addition to the concepts introduced in the previous arapte define here the
following terms, useful to understand the Linux MPTCP inmpémtation. The
main ones are illustrated in Figure 4.1.

Meta-socket: A socket structure used to reorder incoming data at the con-
nection level and schedule outgoing data to subflows.

Master subsocket: The socket structure that is visible from the application.
If regular TCP is in use, this is the only active socket sttt If MPTCP

is used, this is the socket corresponding to the first subffi@mde the name
sutsocket).

Slave subsocketAny socket created by the kernel to provide an additional
subflow. Those sockets are not visible to the applicatiohe@sna specific
API [SF11] is used). The meta-socket, master and slave slibisoare ex-
plained in more detail in Section 4.2.2.

Endpoint ID: Endpoint identifier. It is the tuple that identifies a partic-
ular subflow, hence a particular subsocketaqdr, sport, daddr,
dport).

Fendpoint ID: First Endpoint identifier. It is the endpoint identifier ofth
Master subsocket.

Connection ID ortoken: Itis a locally unique number, defined in [FRHB11,
Section 2], that allows finding a connection during the disthiment of new
subflows.

local_addr_table: A table of local addresses. It stores, on a per-connection
basis, the set of local addresses that an MPTCP connectionseafor its
subflows.

remote_addr_table: A table of remote addresses. It stores, per connection,
the set of remote addresses that an MPTCP connection has flean its
peer, either through theDD_ADDRESS MPTCP option, or through sponta-
neousSYNs sent by the peer using new addresses.
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Figure 4.1: Overview of the multipath architecture

4.2 An architecture for Multipath transport

Section 4 of the MPTCP architecture document [FRH] describes the functional
decomposition of MPTCP. It lists four entities, namely Psthnagement, Packet
Scheduling, Subflow Interface and Congestion Control. &leggities can be fur-
ther grouped based on the layer at which they operate:

e Transport layer: this includes Packet Scheduling, Subfloterface and
Congestion Control, and is grouped under the term “Mullip@tansport
(MT)”. From an implementation point of view, they all invavmodifica-
tions to TCP.

e Transport layer and beldw path management. Path management can be

done in the transport layer, as is the case of the built-ih Retnager (PM)
described in the MPTCP architecture document [FRHB11].t A dis-
covers paths through the exchange of TCP options of Aip@_ADDR or

the reception of &YN on a new address pair, and defines a path as an end-

point ID (saddr, sport, daddr, dport). But, more generally, a
PM could be any module able to expose multiple paths to MPTacBted
either in kernel or user space, and acting on any OSI laygr éebonding
driver that would expose its multiple links to the Multipathansport).

Because of the fundamental independence of path manageompiared to
the three other entities, we draw a clear line between bathdafine a simple inter-
face that allows MPTCP to benefit easily from any appropsateerfaced multi-
path technology. In this Section, we stick to describing timsvfunctional elements
of MPTCP are defined, using the built-in Path Manager desdribh [FRHB11],
and we leave for Section 4.4 the description of other Pathagers. We describe
in the first subsection the precise roles of the Multipathn$pmrt and the Path
Manager. Then we detail how they are interfaced with eacéroth

The exact constraint is that the path management functicst fsee” packets marked by the
Multipath Transport, and hence be located below or insiderdmsport layer.
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4.2.1 MPTCP architecture

Although, when using the built-in PM, MPTCP is fully contadhin the transport
layer, it can still be organized as a Path Manager and a Mitlitipransport Layer
(each with its own control and data plane) as shown in Figuze Bhe Path Man-
ager announces to the Multipath Transport which paths carséé through path
indices for an MPTCP connection, identified by the fendpdihi(first endpoint
ID). The fendpoint ID is the tupl¢ saddr, sport, daddr, dport) seen
by the application that uniquely identifies the MPTCP cotioec(an alternative
way to identify the MPTCP connection is the connection IDjalkihis a token as
described in [FRHB11, Section 2]). The Path Manager maiattiie mapping be-
tween the pattindex and an endpoint ID. The endpoint ID is the tuptaddr ,
sport, daddr, dport) thatis to be used for the corresponding path index.

Note that the fendpoint ID itself represents a path and is thparticular end-
point ID. By convention, we always represent the fendpdintak path index 1.
As explained in [FRH 11, Section 5.6], it is not yet clear how an implementation
should behave in the event of a failure of the first subflow. Wfeeet, however,
that the Master subsocket should be kept in use as an irgesfitic the application,
even if no data is transmitted anymore over it. It also alltinesfendpoint ID to
remain meaningful throughout the life of the connectionistehaviour has yet to
be tested and refined with Linux MPTCP.

Figure 4.2 shows an example sequence of MT-PM interactiappdning at
the beginning of an exchange. When the MT starts a new cdonethrough
an applicationrconnect () oraccept ()), it can request the PM to be updated
about possible alternative paths for this new connectitap(@ in Figure 4.2). The
PM can also spontaneously update the MT at any time (normdign the path set
changes). This is step 1 in Figure 4.2. In the example, 4 gathde used, hence
3 new ones. Based on the update, the MT can decide whethetatdigls new
subflows, and how many of them. Here, the MT decides to establie subflow
only, and sends a request for endpoint ID to the PM. This ig &teln step 3,
the answer is given<A2, B2, 0, pB2>. The source port is unspecified to allow
the MT ensure the unicity of the new endpoint ID, thanks torilesv_port ()
primitive (present in regular TCP as well). Note that messaf}2,3 need not be
real messages and can be function calls instead (as is teeércagiux MPTCP,
where anADD_ADDR option causes the Path Manager to directly call the subsocke
creation function).

The following options, described in [FRHB11], are managgdhg Multipath
Transport:

e MULTI PATH CAPABLE (MP_CAPABLE): Tells the peer that we support
MPTCP and announces our local token.

e MP_JOA N MP_AUTH: Initiates a new subflow (MRAUTH is not yet part of
our Linux implementation at the moment)
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Figure 4.2: Functional separation of MPTCP in the transiager

e DATA SEQUENCE NUMBER (DSN_MAP): Identifies the position of a set of
bytes in the meta-flow.

e DATAACK: Acknowledge data at the connection level (subflow level ac-
knowledgements are contained in the normal TCP header).

e DATA FI N(DFI N): Terminates a connection.

e MP_PRI O Asks the peer to revise the backup status of the subflow ochwhi
the option is sent. Although the option is sent by the Muttip@ransport
(because this allows using the TCP option space), it mayidgetied by the
Path Manager. This option is not yet supported by our MPTQRaémenta-
tion.

e MP_FAI L: Checksum failed at connection-level. Currently the Liimple-
mentation does not implement the checksum in opB8hLMAP, and hence
does not implement theP_FAI L option.

The Path Manager applies a particular technology to giv&ithéhe possibility
to use several paths. The built-in MPTCP Path Manager usésplauPv4/v6
addressésas its means to influence the forwarding of packets througlrternet.

When the MT starts a new connection, it chooses a token thalbevused to
identify the connection. This is necessary to allow futurbflow-establishment
SYNs (that is, containing theP_JO N option) to be attached to the correct con-
nection.

An example mapping table is shown in Figure 4.2. In that examiwo
MPTCP connections are active. One is identified lbken_1, the other one with
t oken_2. As per [FRHB11], the tokens must be unique locally.

Since the endpoint identifier may change from one subflow tahem, the at-
tachment of incoming new subflows (identified b$¥N + MP_JO Noption) to
the right connection is achieved thanks to the locally uaitpken.

2y6 support is a contribution by Jaakko Korkeaniemi, HIT
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The following options (defined in [FRHB11]) are included iretbuilt-in Path
Manager:

e Add Address ADD_ADDR): Announces a new address we own

e Remove AddressREMOVE_ADDR): Withdraws a previously announced ad-
dress

Those options form the built-in MPTCP Path Manager, basedemtaring IP
addresses, and carry control information in TCP options.

4.2.2 Structure of the Multipath Transport

Our Multipath Transport module handles three kinds of steckelhe relations
between them are illustrated in Figure 4.1, page 73. We d#fama here and use
this notation throughout this chapter:

e Master subsocket: This is the first socket in use when a connection (TCP or
MPTCP) starts. It is also the only one in use if we need to fatikoto reg-
ular TCP. This socket is initiated by the application thriotigesocket ()
system call. Immediately after a new master subsocket a&taue MPTCP
capability is enabled by the creation of the meta-socket.

e Meta-socket: It holds the multipath control block, and acts as the connec-

tion level socket. As data source, it holds the main sendehuffs data sink,

it holds the connection-level receive queue and out-o&ocgieue (used for
reordering). We represent it as a normal (extended) sotketsre in Linux
MPTCP because this allows reusing much of the existing TCle aath few
modifications. In particular, the regular socket structready holds point-
ers toSND. UNA, SND. NXT, SND. VWND, RCV. NXT, RCV. WAD (as defined

in [Pos81b]). It also holds all the necessary queues forisgfidceiving
data.

e Slave subsocket:Any subflow created by MPTCP, in addition to the first
one (the master subsocket is always considered as a subfeowtlesugh
it may be in failed state at some point in the communicatiofhe slave
subsockets are created by the kernel (not visible from tipéicgtion) The
master subsocket and the slave subsockets together fopudhef available
subflows that the MPTCP Packet Scheduler (called from thesmtket)
can use to send packets.

4.2.3 Structure of the Path Manager

In contrast to the Multipath Transport, which is more comead divided in sub-
entities (namely Packet Scheduler, Subflow Interface anty€stion Control, see
Section 4.2), the Path Manager just maintains the mapplirig tnd updates the
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event action
master_sk bound: This is triggered| Discovers the set of local addresses.
upon either &i nd() system call, & This set is then maintained in the lp-
connect (), or when a new servel- caladdrtable structure.
side socket becomes established.
ADD_ADDR or SYN + MP_JO Nre- | Updates remotaddrtable

ceived on new address correspondingly.

local/remote addr_table updated Updates therappi ng_t abl e struc-
ture by adding any new address com-
binations, or removing the ones that
have disappeared. Each address pair
is given a path index.
Mapping_table updated Sends a notification to the Multipat
Transport (Figure 4.2, msg 1).
Endpoint ID request received from | Retrieves the endpoint IDs for the car-
MT (Figure 4.2, msg 2) responding path index from the map-
ping table and returns them to the MT
(Figure 4.2, msg 3).

o>

Table 4.1: (event,action) pairs implemented in the bailBM

Multipath Transport when the mapping table changes. Theingpable has been
described above (Figure 4.2). We detail in Table 4.1 thefde¢went , acti on)
pairs that are implemented in the Linux MPTCP built-in Pathndger. For ref-
erence, we discuss an earlier architecture for the path geament in [BPB11a,
Appendix 1].

In the example of Figure 4.2, we show the beginning of an MP&&hection,
where the Path Manager tells the Multipath Transport admntimber of useable
paths. When the MT asks for the endpoint ID of path indexhe PM answers
with < A2, B2,0,pB1 >. The zero value for the source port indicates that the
Path Manager does not mandate any source port (it coulddtlisbme intelligence
about an ECMP hash function for example), and the sourceipprst chosen by
the MT in that case (using the regular TCP source port seleetigorithm).

4.3 MPTCP challenges for the OS

MPTCP is a major modification to the TCP stack. We have desdrdbove an
architecture that separates Multipath Transport from psthagement. Path Man-
agement can be implemented rather simply. But Multipatm3part involves a
set of new challenges, that do not exist in regular TCP. Wediscribe how an
MPTCP client or server can start a new connection, or a neflosukvithin a con-
nection. Then we propose techniques (a concrete impletimmtaf which is in
Linux MPTCP) to efficiently implement data reception (at tfega sink) and data
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sending (at the data source).

4.3.1 Charging the application for its CPU cycles

As this chapter is about implementation, it is important aoly to ensure that
MPTCP is fast, but also that it is fair to other applicatiohattshare the same
CPU. Otherwise one could have an extremely fast file transtaite the rest of the
system is just hanging. CPU fairness is ensured by the sldrenfithe Operating
System when CPU cycles are consumed in user space. But theidernel, we
can choose to run code in “user context”, that is, in a modeevbach CPU cycle
is charged to a particular application. Or we can (and musbime cases) run code
in “software interrupt context”, that is, interrupting eything else until the task
has finished. In Linux, the arrival of a new packet on a NICgeis a hardware
interrupt, which in turn schedules a software interrupt thdl pull the packet
from the NIC and perform the initial processing. The chajkerns to stop the
processing of the incoming packet in software interruppas s it can be attached
to a socket, and wake up the application. With TCP, an additiconstraint is
that incoming data should be acknowledged as soon as pamsgibich requires
reordering. Van Jacobson has proposed a solution for 8i98]: If an application
is waiting on & ecv() system call, incoming packets can be placed into a special
gueue (called prequeue in Linux) and the application is walke. Reordering
and acknowledgement are then performed in user contexteXéwution path for
outgoing packets is less critical from that point of viewchese the vast majority
of processing can be done very easily in user context.

In this chapter, when discussing CPU fairness, we will usddhowing terms:

e User context: Execution environment that is under control of the OS sched-
uler. CPU cycles are charged to the associated applicatibich allows to
ensure fairness with other applications.

e Software Interrupt context: Execution environment that runs with a higher
priority than any process. Although it is impossible to cdetgly avoid
running code in software interrupt context, it is importé&mtminimize the
amount of code running in such a context. Note that, herdtwaoe” does
not imply a relation with any application, but instead cepends to ker-
nel code that is programmed for urgent execution, usuatir af hardware
interrupt or timer expiry.

e VJprequeues:This refers to Van Jacobson prequeues, explained in [Jac93]

4.3.2 At connection/subflow establishment

As described in [FRHB11], the establishment of an MPTCP eotion is quite
simple, being just a regular three-way exchange with amithli options. As ex-
plained in Section 4.2.2 this is done in the master subsocketrrently Linux
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MPTCP attaches a meta-socket to a socket as soon as it isdréiaat is, upon
asocket () system call (client side), or when a server side socket srber
ESTABLI SHED state. An alternative solution is described in [BPB11a, éqpx

3].

An implementation can choose the best moment, maybe dameodithe OS,
to instantiate the meta-socket. However, if this meta-sbk needed to accept
new subflows (as in Linux MPTCP), it should be attached at ditest when the
MP_CAPABLE option is received. Otherwise incoming new subflow requEsti
+ MP_JO N) may be lost, requiring retransmissions by the peer and/ihgjdhe
subflow establishment.

The establishment of subflows, on the other hand, is motkytriche problem
is that newSYNs (with the MP_JO N option) must be accepted by a socket (the
meta-socket in the proposed design) as if it wasliSTEN state, while its state is
actually ESTABLI SHED. The following are common properties withLd STEN
socket:

e Temporary structure: Between the reception of$lyé and the finalACK, a
mini-socket is used as a temporary structure.

e Queue of connection requests: The meta-socket, like STEN socket,
maintains a list of pending connection requests. Thereveoestich lists.
One contains mini-sockets, because the @K has not yet been received.
The second list contains sockets in B8TABLI SHED state that have not
yet been accepted. “Accepted” means, for regular TCP,metuto the ap-
plication as a result of aaccept () system call. For MPTCP it means that
the new subflow has been integrated in the set of active subflow

We can list the following differences with a normal STEN socket.

e Socket lookup for &YN: When aSYNis received, the corresponding socket
(in LI STEN state) is found by using the endpoint ID. This is not possible
with MPTCP, since we can receiveS¥N on any endpoint ID. Instead, the
token must be used to retrieve the meta-socket to whictsitié must be
attached. A new hashtable must be defined, with tokens as keys

e Lookup for connection request: In regular TCP, this looksimuite simi-
lar to the previous one (in Linux at least). The 5-tuple isd,d&st to find
the LI STEN socket, next to retrieve the corresponding mini-socket,est
in a private hashtable inside thé STEN socket. With MPTCP, we cannot
do that, because there is no way to retrieve the meta-soaket the final
ACK segment. The 5-tuple can be anything, and the token was oebgpt
in the SYN segments in the first versions of the MPTCP draft. Our Linux
MPTCP implementation uses a global hashtable for pendingesdion re-
quests, where the key is the 5-tuple of the connection rétjues

%In the latest version of the MPCTP specification as of thigimgi[FRHB11], the token has
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An implementation must carefully check the presence oMRel O N option
in incomingSYNs before performing the usual socket lookup. If it is presenty
the token-based lookup must be done. If this lookup doesatotrr a meta-socket,
the SYN must be discarded. Failing to do that could lead to mistgkatthch the
incomingSYNto aLl STENsocket instead of attaching it to a meta-socket.

Whenever a new path is created at either the client or seidey the corre-
sponding slave subsocket is prepended to a linked listensid meta-socket, so
that it can be accessed by the scheduler to decide wherenentitadata. From
this linked list, only the slave subsockets that ar&8TABLI SHED state can be
selected by the scheduler for data transmission.

4.3.3 Locking strategy

In Figure 4.1, we have shown how the meta-socket, masteoskiisand slave
subsocket relate to each other to form an MPTCP connectiortegs to those
structures may happen in software interrupt context or ceetext, or simultane-
ously in both, on different CPU cores. A careful locking taggy is needed to avoid
corrupting the data structures.

The removal of the data structures is another critical pointparticular, an
implementation must ensure that the meta-socket remagessible until the last
subsocket disappears, even if any subsocket needs to waitifoeout.

In this section we will describe the regular TCP locking &gy as it is used in
the Linux kernel, before to explain how we extend it to maksatie in a multipath
use.

Existing locking strategy for regular TCP: When it comes to locking, it is cru-
cial to understand the difference between the user cormeiie software interrupt
context. We described them succinctly in section 4.3.1. @ explain how they
interact from a locking point of view.

e User context: Code running in user context can sleep. Locking is ensured
typically through mutexes when a code region must be predefiom si-
multaneous accesses that run both in user context (e.g.rocegses). If a
mutex is locked, the corresponding code simgllsepg(calls the scheduler)
until the mutex is released.

e Software Interrupt context: It is not possible to sleep in software interrupt
context, hence mutexes are not an option. Instead, sacaialocksare
used. They simply actively wait in a loop until the lock iseased. Because

been added in the final ack to support SYN cookies. The siéetaff that it facilitates the lookup
described in this paragraph, allowing the global connectemjuest hashtable to be replaced with a
local one (specific to each multipath control block). Thidl wiake the design closer to that of a
regularLl STEN socket, although the lookup must still be done based on #entmstead of the
5-tuple.
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func lock_socKsk):
disableinterruptslocal CPU();
spinlock(sk);
sk- >sk_owned_by_user =1,
spinunlocksk);
mutexacquirgsk- >sk _nmut ex);
enableinterruptslocal_ CPU();
return;

Figure 4.3: User context socket locking

of this active loop, the kernel always tries to minimize tmeoant of time
spent in a spinlock.

It is also possible that a piece of code be run from either asetext or
software interrupt context. An example is the TCP packatsimrgssion mecha-
nism. Packets are transmitted from user context if the tnés®on is a result of a
sendnsg() system call. They are transmitted from software interrupttext if
a received acknowledgement opened space in the congestidowy allowing to
send more segments from the send buffer. In that case bots#recontext and
the software interrupt context need to use a spinlock. Marethe user context
must disable the software interrupts on the local CPU cdferwise a deadlock
situation is possible. The deadlock would happen if a usatext grabs a spin-
lock, and is later interrupted by a software interrupt. Tierrupt having higher
priority, the user context has no chance to run until thenso® interrupt is done.
On the other hand if the software interrupt tries to grab tud | it loops forever.
Disabling software interrupts (on the local CPU) during wWieole locking period
is the only solution to prevent this kind of deadlock. Obwlyuthis gives an addi-
tional motivation for shortest possible spinlock periods.

Back to TCP, there is a simple way to manage locking in the alesample of
TCP transmission.

e When sending from user context, disable interrupts andtloelsocket.
e When sending from software interrupt context, only lock gbeket.

Unfortunately the above mechanism does not respect théreetgnt to hold
a spinlock for very short periods. For that reason the Linaxnkl applies the
pseudo-code shown in Figure 4.3 for locking in user contéite idea is that
instead of holding the spinlock for the whole locking peridds only used to set
a flag. If packet reception happens (in software interruptext), the flag causes
the receive function to enqueue the newly received segmeheibacklog instead
of processing it. In that case, the segment processing &yel@luntil the user
context releases the lock, as shown in Figure 4.4. Finalomling to Figure 4.4,
one could think that the socket spinlock is still held for agdime if the backlog
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func releasesocKsk):

mutexreleasésk- >sk _nut ex);

disableinterruptslocal CPU();

spinlock(sk);

if not emptysk- >backl og_queue):
processbacklogsk- >backl og_queue);

sk- >sk_owned_by_user =0;

if is_processsleeping()
wakeup_process();

spin.unlocksk);

enableinterruptslocal_ CPU();

return;

Figure 4.4: Releasing a socket locked whithk sock()(user context)

contains several segments. The kernel solves this by fgiegaoftware interrupts
after each segment processed from the backlog queue. Mwrdbe spinlock is
not held during the segment processing itself, becausedbk _owned_by user
flag already prevents new incoming segments from being pseckimmediately.
The final result is thaLinux ensures that software interrupts are not blocked
for more than the time needed to processne segment.

MPTCP general locking policy: Given that MPTCP uses several subflows in
parallel, it would be natural to think of running each subflow a separate core
when possible. However, the data converges to a single ggdnehe end, and if

it were spread among several CPU local caches, some effjoiremad be lost (as
data would need to be moved between the caches). For th@reasuse a single
lock for the whole MPTCP connectiorf.

A lock is associated to a socket structure. In MPTCP, we cpolentially
make use ofr + 1 locks if n flows are available, as the meta-socket itself uses
a socket structure. Given the above design decision to usggk socket lock,

a natural choice would be to use the meta-socket lock for ackei processing
activity, on any subsocket. This would complicate the fadkprocedure to regular
TCP, which is needed when the peer does not support MPTCPeanetwork
drops some options. When performing a fallback, the met&edds destroyed and
only the master-socket lock can be used. This motivatesemarsl design choice:
Socket locking for MPTCP is performed by using only the mastesocket lock
Note that the network path corresponding to the master sacked fail at some
point, but in that case only the path stops being used. THesstructure remains
available for locking and providing the interface with thaphcation.

The locking procedure is the same as in regular TCP (seed-#y8). Regard-

“However, for the most efficient result, it will be necessarghsure that all subflows run on the
same core, which is not the case yet in Linux MPTCP.
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ing the backlog queues, we use the subsocket-specific lgpglleues as in regular
TCP. Doing so avoids needing to perform a second tuple-bssdaet lookup when

processing the backlog. We modify the algorithm of Figuretd.include an iter-

ation over all backlog queues, so as to ensure that all bgekdce empty after the
releasesock()call.

Attaching a new subflow to the meta-socket: When we attach a new subflow
to the meta-socket, we extend the linked list of availableflsws. This requires
to grab the master socket lock, so as to avoid corruptingitied list. Hence,
we need a backlog-queue mechanism for the processing ahinganew subflows
(SYN+JO Ns). We use the meta-socket backlog queue for thatSYs+JO Nis
received and the socket is locked by the userspmoe_owned_by _user is 1),
the segment is enqueued in the meta-socket backlog queugrereksed during
thereleasesock()operation. Likewise, the finadlCK of the three-way handshake
for a new subflow may be queued in the meta-socket backlogirgathe full
socket to be created and attached to the meta-socket ialé@esesock()function.

Reference counting: Reference counting is the mechanism that ensures the clean
removal of data structures from the Linux kernel. Each usaeiases the reference
count, before using the structure and decreases the cauinéer it is done with its
task. This guarantees that the structure is properly reteéavoiding memory
leaks), and prevents the release from happening when atilskolsls a reference
to it (avoiding pointer faults). In the case of sockets stites, asockhold() func-
tion is called to increase the reference cowatck put() is used to decrease it, and
releases the structure if the counter reaches 0.

For MPTCP, as opposed to the locking mechanism that usestlomlgnaster
socket lock, we use the reference counts from all the sulesecK his is needed
because a slave subsocket does not necessarily disappedtaseously with the
master subsocket. However, we note that the master sultsoutkéhe meta-socket
are tied together, so we use the same reference count for téndefine a ref-
erence count policy that guarantees the integrity of thatpos. The following
sockhold()/sockput() pairs are applied:

e meta-socket allocation/destructiosockhold/put(mastersk). This ensures
that the master socket does not disappear before the netatsdhe reverse
is possible however, and happens in case of fallback toaed@P.

e new slave subsocket/release of slave subsocs@tkhold/put(mastersk).
This ensures that the master and meta-sockets do not dasajmtéd the last
slave subsocket has been released.

e packet receptionssockhold/putéub_sk), resp. at the beginning or end of
TCP reception procedure. This behaviour is unchanged c@dpa regular
TCP. This is safe because the reference count increasenséefie release of
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the subsocket. In turn, the presence of the subsocket fgsestearementing
the master socket reference count.

e timer started/stoppedsockhold/putéub_sk). This is also the same beha-
viour as regular TCP.

The meta-socket is released either during the fallbackatioer or at the end
of the master socket release.

4.3.4 Subflow management

Further research is needed to define the appropriate hesiristsolve problems
with subflow management. Initial thoughts are provided iotide 4.6.

Currently, in a Linux MPTCP client, the Multipath Transpdries to open
all subflows advertised by the Path Manager. On the other,hhadserver only
accepts new subflows, but does not try to establish new onks.rationale for
this is that the client is the connection initiator. New sab are only established
if the initiator requests them. This is subject to changeutnire releases of our
MPTCP implementation.

4.3.5 Atthe data sink

There is a symmetry between the behaviour of the data soact¢ha data sink.
Yet, the specific requirements are different. The data sirdescribed in this sec-
tion while the data source is described in the next section.

Receive buffer tuning

MPTCP needs that the receive buffer be larger than the suhedduffers required
by the individual subflows. The reason for this and propeueslifor the buffer are
explained in [FRH 11, Section 5.3]. Not following this could result in the MPFPC
throughput being capped at the bandwidth of the slowest@ubfl

An interesting way to dynamically tune the receive buffecading to the
bandwidth/delay product (BDP) of a path, for regular TCRdscribed in [FFO1]
and implemented in recent Linux kernels. It uses@Pl ED_SEQsequence vari-
able (sequence number of the next byte to copy to the apiplichtiffer) to count,
every RTT, the number of bytes received during that RTT. hlimber of bytes is
precisely the BDP. The tuning algorithm is conservativethat it never shrinks a
previously increased receive buffer. The accuracy of thégive buffer tuning is
directly dependent on the accuracy of the RTT estimatiorfoktumately, the data
sink does not have a reliable estimate of the SRTT. To solse[FF01] proposes
two techniques:

1. Using the timestamp option (quite accurate).
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2. Computing the time needed to receive /. WND[Pos81b] worth of data.
It is less precise and Linux considers as outliers such Riihates that are
more than 8 times larger than the last estimate.

The receive window advertised by MPTCP is shared by all swisflddence,
no per-subflow information can be deduced from it, and themsgdechnique
from [FFO1] cannot be uséd

As mentioned in [FRFi11], the connection-level receive buffer that is allo-
cated should b& « . BW; * RT'T,,.,, Where BIW; is the bandwidth seen by
subflow: and RT'T,,.. is the maximum RTT estimated among all the subflows.
We achieve this in Linux MPTCP by slightly modifying the fitsihing algorithm
from [FFO1], and disabling the second one. The modificatmmsists in counting
on each subflow, everRTT,,..., the number of bytes received during that time on
this subflow. Per subflow, this provides its contributionhe total receive buffer
of the connection.

Receive window handling: The original design of the MPTCP protocol used
subflow-specific receive windows. This looks interestindeied as a way for the
receiver to perform ingress load balancing, and it is alesecko regular TCP be-
haviour, hence simplifying implementations. Howeverstban potentially create
deadlock scenarios and we detected them while developingrqiementation.
Consider two hostsl and B, connected through pathisand2 (with data flowing
from A to B, see Figure 4.5). They can initially use both paths to exgbatata.

If path 1 suddenly fails, the last congestion window sent on path 1 imeisetrans-
mitted on patl®, but this only happens after a TCP RTO (Retransmission Timeo
Until the expiration of the timer on path path2 has enough time to transmit new
data, progressively saturating the receive buffer in iydbecause no data can be
delivered to the application until the lost data from pathas been retransmitted.
If path 2 is fast enough, hostl will eventually receive a zero-window on path
This is a deadlock situation: hosit needs to retransmit lost data to unblock the
communications, but both its paths are closed, one failgtandeceive window of
the other one is zero.

Deadlock solution: The problem of the above deadlock is that subflow-specific
receive windows cannot provide any information about theresth receive buffer.
This is solved by changing the receive window semantic, abitlis understood as
aconnection-leveteceive window, that is, it reflects the size of gtered receive
buffer and its left-edge is given by thbat a ACK instead of the subflow-level
acknowledgement. If we consider again the deadlock saem@scribed above,
where one congestion window worth of data must be retratestngn subflow2,
this will be possible now, as the receiver will not send a aeiedow. If its receive

SMore precisely, the time needed to receive &Y. VWD in MPTCP cannot exceed the maxi-
mum RTT on the set of paths used to transmit that amount of ddtis could be used to compute
an upper bound on the receive buffer, however the resultriecoonly if all paths are used in the
measurement period.
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Figure 4.5: A deadlock may happen if MPTCP uses separateeasgdows

buffer comes to saturation, it will only prevent the transsion of anynewdata,
still accepting lost data, since the left-edge of the cotiordevel receive window
does not move forward until the lost data has been retrateiniiThis change is
now part of the main protocol specification [FRHB11].

Receive queue management

As advised in [FRHB11, Section 3.3.1kubflow-level processing should be un-
dertaken separately from that at connection-leverhis also has the side-effect of
allowing much code reuse from the regular TCP stack.

A regular TCP stack (in Linux at least) maintains a receiveugu(for storing
incoming segments until the application asks for them) andwd-of-order queue
(to allow reordering).

In Linux MPTCP, the subflow-level receive-queue is not Gséacoming seg-
ments are reordered at the subflow-level, just as if they wikaie TCP data. But
once the data is in-order at the subflow level, it can be imatelyi handed to
MPTCP (See [FRF11, Figure 7]) for connection-level reordering. The role of
the subflow-level receive queue is now taken by the MPTCEH®ceive queue.
In order to maximize the CPU cycles spent in user context $&=tion 4.3.1), VJ
prequeues can be used just as in regular TCP. We have reeddty support for
them, and VJ prequeues will be included in the upcoming oaréi.7 of Linux
MPTCP. Once it is ensured that the data is processed in uséextavhenever
possible, one should also take care of handling efficiehtyMPTCP out-of-order
gueue. Whereas regular TCP handles small queues (the safuitoe reordering
being the network and packet losses), MPTCP may need todaedy large re-
ordering queues (the source of reordering being the use tipteuindependent
flows). To handle this, we have implemented several mecimenis

e Segment aggregationWhenever several segments are contiguous in the re-
ordering queue at the connection level, but not yet readyinidusion in

5An alternative design, where the subflow-level receive guisukept active and the MPTCP
receive queue is not used, is discussed in [BPB11a, Appehidix
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Figure 4.6: Structures used to optimise segment reordatitite receiver

the receive queue, we aggregate them imode A nodecontains a list of
contiguous segments, but requires only one iteration wlarcthking the out-
of-order queue for a particular sequence number. The menegujired to
allocate a new node is taken from a cache to reduce the atindane.

e Shortcut pointers It is often the case that more than one segment is sent
over the same subflow. The reason is that when a subflow be@maisble
for sending data, the scheduler feeds it with as many comtigsegments
as it is able to send. We optimise for this by maintaining, ackesubflow,
a shortcut to the slot in the out-of-order queue where the segment is
expected to arrive. Upon arrival of a new segment, the sesacts from the
shortcut slot. This improvement is very interesting asawvites a direct hit
for more thar80% of the received segments (more details on the evaluation
can be found in Section 5.2).

e Binary Search Tree (BSTJo efficiently handle the case where the shortcut
does not work, we have implemented a Binary Search Tree esacement
for the traditional out-of-order queue. While apparentijter than the queue
because of its expected logarithmic lookup time (which @atfudepends on
the extent to which the tree is balanced), it does not nedglsgaprove
the receiver performance because other operations are @rpemsive. In
particular, getting a pointer to a neighbour requires dgesfcing several
node pointers. For instance, in a BST, the closest neightoamoden on
the left is the right-most child of its left child. i has no left child, then the
closest left neighbour is the closest ancestor whose ahilde direction of
n is a right child. In a simple queue, the left neighbour is oomier away.
Initial experiments tend to show that while the BST doesdbanefits over a
regular queue, simply adding shortcut pointers (withoangfing the whole
structure) gives even better results. More details arespted in Section 5.2.

The three optimisation mechanisms are illustrated togeth&igure 4.6, al-
though they can be used separately. The bolded boxes stgwent aggregation
where several contiguous segments (skbs) are stored ineaasod linked list to
reduce the size of the data structure. The nodes are noti@ssbto a particular
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subflow (except for the shortcuts) because this structuuses at the connection
level, where the data is not attached anymore to a partisulaftow and uses only
the connection-level data sequence numbers. The dashmslsashow shortcut
pointers. In the picture, we can see that subflowurrently expects to receive
the segment with data sequence numk@, while subflow2 expects the data
sequence numb@0. The main structure illustrates the binary search tree.

Finally, regular TCP bypasses the receive queue when a sg¢g@rm@/es in
order, and copies the content directly to user space. Thesgaceive queue pro-
cessing time. Similarly, when MPTCP receives data in ordemfthe connection
level point of view, we copy directly data from user spacedmil space.

To summarise, receive-side processing can be optimisezvata levels. Be-
cause MPTCP requires much more reordering compared toare§GlP, it is even
more important to ensure that (i) this processing happenséncontext and (ii) it
requires a minimal amount of iterations. (i) is ensured by Yacobson prequeues,
but also by the backlog (segments received when the sockamtkisd are always
processed in user context by design). (ii) requires MPTdific modifications
that we presented here and that will be evaluated in SectinL&astly, when re-
ordering is not needed, the processing can be made even lfigshypassing the
connection-level receive queue, just like regular TCPaalyedoes.

Scheduling Data ACKs

As specified in [FRHB11, Section 3.3.2)at a ACKs not only help the sender in
having a consistent view of which data has been correctlgived at the connec-
tion level. They are also used as the left edge of the adedrtisceive window.

In regular TCP, if a receive buffer becomes full, the receargnounces a zero
receive window. When finally some bytes are delivered to fi@ieation, freeing
space in the receive buffer, a duplic&€K s sent to act as a window update, so that
the sender knows it can transmit again. Likewise, when th& ®@Pshared receive
buffer becomes full, a zero window is advertised. When sowteshare delivered
to the application, a duplicateat a ACK must be sent to act as a window update.
Such an importanbat a ACK should be sent on all subflows, to maximize the
probability that at least one of them reaches the peer. Welver, allDat a ACKs
are lost, there is no other option than relying on the windoebps periodically
sent by the data source, as in regular TCP.

In theory aDat a ACK can be sent on any subflow, or even on all subflows,
simultaneously. As of version 0.5, Linux MPTCP simply addde Dat a ACK
option to all outgoing segments (regardless of whether dlaig or a puréACK).
There is thus no particuldbat a ACK scheduling policy. The only exception is
for a window update that follows a zero-window. In this cabe, behaviour is as
described in the previous paragraph.
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4.3.6 Atthe data source

In this section we discuss the same topics as in the prevemi®as, in the case of a
data sender. The sender does not have the same view of trengechecause one
has information that the other can only estimate. Also, #ita dource sends data
and receives acknowledgements, while the data sink doagstbese. This results
in a different set of problems to be dealt with by the data seur

Send buffer tuning

As explained in [FRH 11, Section 5.3], the send buffer should have the same size
as the receive buffer. At the sender, we don’t have the RTifmatibn problem de-
scribed in Section 4.3.5, because we can reuse the builE SRTT (smoothed
RTT). Moreover, the sender has the congestion window, wiittkelf an estimate
of the BDP, and is used in Linux to tune the send buffer of rgWiCP. Unfor-
tunately, we cannot use the congestion window with MPTCPabse the buffer
equation does not involve the produBiV; « delay; for the subflows (which is
what the congestion window estimates), but it involNed’; x delay,q., Where
delay_max is the maximum observed delay across all subflows.

An obvious way to compute the contribution of each subflovhtodend buffer
would be: 2 x (cwnd; /SRTT;) «* SRTT,,.,. However, some care is needed be-
cause of the variability of the SRTT (measurements show évan smoothed, the
SRTT is not quite stable). Currently Linux MPTCP estimates handwidth peri-
odically by checking the sequence number progress. Thigbhemintroduces new
mechanisms in the kernel.

Send queue management

As Multipath TCP involves the use of several TCP subflows,hedaler must be
added to decide where to send each byte of data. We have tehtwa possible
places for the Linux MPTCP scheduler. One option is to scleedata as soon
as it arrives from the application buffer. This option, dstiag in pushingdata
to subflows as soon as it is available, was implemented irr ofelsions of Linux
MPTCP and is now abandoned (it is described in [BPB11la, Agpes]). Another
option is to store all data centrally in the Multipath Traogpinside a shared send
buffer (see Figure 4.7). Scheduling is then done at trarsiomigime, whenever
any subflow becomes ready to send more data (usually due mowtddgements
having opened space in the congestion window). In that sicertiae subflowsull
segments from the shared send queue whenever they are Natdythat several
subflows can become ready simultaneously, if an acknowladge advertises a
new receive window that opens more space in the shared sewwi For that
reason, when a subflow pulls data, the Packet Scheduler nghether subflows
may be fed at the same time. This approach, similar to the mpoped in [HS02],
has several advantages:
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Figure 4.7: Send queue configuration

e Each subflow can easily fill its pipe (as long as there is dafaulidfrom the
shared send buffer, and the scheduler is not applying aypthlat restricts
the subflow).

e If a subflow fails, it will no longer receive acknowledgemgnand hence
will naturally stop pulling data from the shared send buff€his removes
the need for an explicit “failed state”, to ensure that aefhisubflow does
not receive data (as opposed to e.g. SCTP-CMT, that needgphcitenark-
ing of failed subflows by design, because it uses a singleesegunumber
space [BDi"11]).

e Similarly, when a failed subflow becomes active again, thelpegy segments
of its congestion window are finally acknowledged, allowiti pull again
data from the shared send buffer. Note that in such a casackmewledged
data is normally just dropped by the receiver, because thesmonding
segments have been retransmitted on another subflow dbharigiture time.

Despite the adoption of that approach in Linux MPTCP, theeestill two draw-
backs:

e There is one single queue, in the Multipath Transport, frohictv all sub-
flows pull segments. In Linux, queue processing is optimisedchandling
segments, not bytes. This implies that the shared send gunasicontain
pre-built segments, hence requiring ttemeMSS to be used for all sub-
flows. We note however that today, the most frequently natgdi MSS is
around 1380 bytes [BPB11b], so this approach sounds relalgon&hould
this requirement become too constraining in the future, gerflexible ap-
proach could be devised (e.g. supporting a few Maximum Sag®iees).

e Because the subflows pull data whenever they get new free spabeir
congestion window, the Packet Scheduler must run at tha. tiBut that
time most often corresponds to the reception of an acknael®ent, which
happens in software interrupt context (see Section 4.3 hjs is both un-
fair to other system processes, and slightly inefficienthigh speed flows.
The problem is that the packet scheduler performs more tipesahan the
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usual “copy packet to NIC”. One way to solve this problem wibhe to

have a small subflow-specific send queue, which would agtledld to a

hybrid architecture between the pull approach (descrileed)rand the push
approach (described in [BPB11la, Appendix 5]). Doing thatldaequire

solving non-trivial implementation problems, though, aeduires further
study.

As shown in Figure 4.7, a segment first enters the shared sendeq Then,
when reaching the bottom of that queue, it is pulled by sonbéi@a. In Linux
MPTCP, the segment data is kept in the shared send queuet{Bpoirthe queue)
until it is acknowledged. Thel portion of the shared send queue contains data
that has never been transmitted on any subflow. Any pull dipertakes data from
the bottom of theA “sub-queue”. When a subflow pulls a segment, it actually
only copies the control structuret(r uct sk _buf f) (which Linux calls packet
cloning) and increments its reference count. The pullingragon is a bit special in
that it can result in sending a segment over a different switfhan the one which
initiated the pull. This is because an acknowledgementivedeon any subflow
can unblock all subflows, given the receive window is corrgidet the connection
level. Hence, the Packet Scheduler is run as part of the whikh can result in
selecting any subflow. In most cases, though, the subflowhwdriginated the pull
will get fresh data, given it has space for that in the conigestindow. Note that
the subflows have no A portion in Figure 4.7, because they idmtely send the
data they pull.

Note on the send window: A subflow can be stopped from transmitting by the
congestion window, but also by the send window (that is, &oeive window an-
nounced by the peer). Given that the receive window has aecbion level mean-
ing, abDat a ACK arriving on one subflow could unblock another subflow. Imple-
mentations should be aware of this to avoid stalling parhefgubflows in such
situations. In the case of Linux MPTCP, that follows the abaxchitecture, this is
ensured by running the Packet Scheduler at each pull operati

Scheduling data

As several subflows may be used to transmit data, MPTCP miest sesubflow
to send each byte of data. First, we need to know which subftoesavailable
for sending data. The mechanism that controls this is thg@estion controller,
which maintains a per-subflow congestion window. The aim ofudtipath con-

gestion controller is to move data away from congested Jiskal ensure fair-
ness when there is a shared bottleneck. The handling of thgestion win-

dow is explained in [RHW11, WRGH11]. Its implementation imux MPTCP

has been contributed by Christoph Paasch, and the implatimnis documented
in [BPB11b, BPB11a].
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Whenever the Congestion Controller (described abovejvalleew data for at

least one subflow, the Packet Scheduler executes. When oalgubflow is avail-
able the Packet Scheduler just decides which packet to pohk the A section of
the shared send buffer (see Figure 4.7). Currently Linux EIPpicks the bottom
most segment. If more than one subflow is available, ther¢haee decisions to

take:

e Which of the subflows to feed with fresh dafe the only Packet Scheduler

currently supported in Linux MPTCP aims at filling all pipéslways feeds
data to all subflows as long as there is data to send. Othedsehng would
be possible. One example would be to keep a path for backyp nthat
case the path would be used only when all other paths faik Milakes sense
if a link is very expensive compared to others (e.g. 3G vs WiRinother
possible scheduler would be to use a patbvarflow modeln that configu-
ration the scheduler would use the path only when all othieesady have a
full congestion window worth of data in flight, and cannotegicmore data
until an ACK has been received.

In what order to feed selected subflowathen several subflows become
available simultaneously, they are fed by order of timéagtise to the client.
We define the time-distance as the time needed for the pazkeath the
peer if transmitted on a particular subflow. This time degeod the RTT,
bandwidth and queue size (in bytes), as follows:

time_distance; = queue_size; /bw; + RTT;

Given that with the architecture described in Section 4.8é subflow-
specific queue size cannot exceed a congestion windowjithedistance
becomesgime_distance; = RT'T;. This scheduling policy favours fast sub-
flows for application-limited communications (where albfiows need not
be used). However, for network-limited communicationss ttheduling
policy has little effect because all subflows will be usedams point, even
the slow ones, to try minimizing the connection-level coatioin time.

How much data to allocate to a single subflothis question concerns the
granularity of the allocation. Using large allocation grétlows for better
support of TCP Segmentation Offload (TSO). TSO allows théesyso ag-
gregate several times the MSS into one single segmentngpaemory and
CPU cycles, by leaving the fragmentation task to the NIC. Elmv, this
is only possible if the large single segment is made of cootig data, at
the subflow level and the connection level. On the other hasithg small
allocation units allows more evenly using the subflows fev-toaffic appli-
cations (such applications could end up using only one o$tidlows with
large allocation units). Our implementation currentlye#ites on a per-MSS
basis as TSO is not supported yet.
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Figure 4.8: Send queue configuration

Note about segment aggregation: When scheduling data to subflows, an imple-
mentation must be careful that if two segments are contigabthe subflow-level,
but non-contiguous at the connection level, they cannogigesgiated into one. As
the Linux kernel merges segments when it is under memorgpresit could easily
decide to merge non-contiguous MPTCP segments, simplyusedaey look con-
tiguous from the subflow viewpoint. This must be avoided aose thdDATA_SEQ
mapping option would lose its meaning in such a case, congiphe bytestream.
Our implementation does that by doing an additional checkherdata sequence
number before to merge a segment with another one.

Note about the shared send queue: Our scheduler currently takes the bottom-
most segment from the shared send queue, whenever it isl.c@llpossible im-
provement would be to intelligently chooséhich segment to allocate, from the
shared send queue. We show in Figure 4.8 an example case thiseveould be
useful. In this example, two subflows are used. Subflpwn the left, has an es-
timated RTT ofl00ms, while subflow2, on the right, has an RTT d0ms. They
both have a current congestion window 38100 bytes. As the congestion win-
dow approximates the Bandwidth-Delay Product (BDP), we @aduate B/,
and BW5 resp. to30000bytes/s and300000bytes/s. Figure 4.8 shows that sub-
flow 1 is asking for new data to the scheduler, because its congestndow has
been fully acknowledged. On the other hand, the faster sut¥ls not available
currently.

In such a situation, our current scheduler would allocatgnamts3 and 4
(assuming a MSS of500 bytes) to subflowl, and would have received the corre-
sponding acknowledgement80ms later. This is clearly suboptimal, as by wait-
ing a maximum ofl0ms, subflow2 would have been able to transmit, allowing
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Figure 4.9: Retransmission mechanism

the data to be acknowledged withitims instead ofl00ms. Continuing this rea-
soning, we see that as many as 18 segments (with a M$®)0fbytes) would be
faster acknowledged if sent over subflaw The modified scheduler would then
take directly segment$9, 20 and feed them to subflow. Doing so would re-
duce the connection-level reordering at the receiver, &éme required amount of
receive buffer and the burstiness of packet delivery to gmieation.

Handling retransmissions

Data retransmission is more complicated in MPTCP compareedular TCP, be-
cause a lost segment may be retransmitted on any subfloweMguwas slightly
simplified because it did not take retransmissions into aetcorl he full transmis-
sion mechanism is illustrated in Figure 4.9. A specific qusuesed for retransmis-
sions. Itis located above the scheduler because these sexgaa be retransmitted
on any subflow. Since retransmissions can block the pragreséthe data trans-
fer, the scheduler does not take data from the shared sene quéil the shared
retransmission queue is empty.

The retransmission mechanism is best explained througkaampde. Consider
a host with two subflows (Figure 4.9). Subflawreceives an acknowledgement.
It updates its congestion window and asks the schedulerdar data. Further
consider that the retransmission queue is empty at thig,mmrthat the scheduler
allocates segmerft from the shared send queue to subflobw The segment is
cloned that is, it remains in the shared send queue (until it is ackedged at the
connection level), and a new structure (sdy) pointing to the segment data is
stored in the send queue of subflows; is given subflow sequence numbers from
the sequence number space of subflovA bitmap inS (pat h_bi t map( .S) ) is
updated to remember th&thas currently been cloned only on pdtifand hence
can still be cloned to pathlater if needed).

Assume thatS; is never acknowledged. After a subflow-level timeout, itgs r
transmitted. Busince we consider a timeout as an indication of potential f&i
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func timeoufsubflowsf ):
for each segmentsS in unackedsegmentsf ):
for each pathi in available paths()
if 7is not in path.bitmap(S)

[* There is at least one possible alternative
* subflow for retransmission */
enqueussegmer(tlone(S), ret ransm t queue);
break;

schedule()

return;

Figure 4.10: Retransmission algorithm

ure, we decide that it is worth trying to retransmit as well on another subflow’.

Our retransmission algorithm is detailed in Figure 4.10ounexample, the result
of the algorithm is that subflow is found to have never been allocated segment
S, s0S is appended to the retransmit queue. The scheduler is inategdiun. In
our case the only allocation option is subflawHowever,if several subflows are
eligible for retransmission (i.e. have never been allocatethe segment before),
the scheduler decides which one will receive the next retramission This is
important as it allows using the same scheduling policy asmfwmal transmis-
sions.

Now, consider that subflo® (our only option) is currently not accepting data,
because it has already sent one full congestion window anaiting for the ac-
knowledgements. In that case the scheduler returns immegdidBut as soon as
an acknowledgement opens new space in the congestion wioidewbflow?2, the
subflow initiates gull operation. The scheduler then takes data from the retrans-
mission queue, and only when it is empty does it take new data the send
queue.

In the general case, a segment is initially allocated to abfw, judged the
best one by the scheduler. If the subflow experiences a tinbedore the segment
has been acknowledged, MPTCP tries to transmit on one maftosu In the
worst case (where the endpoint becomes fully disconnectad the Internet),
the unacknowledged segments are finally sent over all &kailsubflows, with
exponential backoff as in regular TCP. This situation i®he=d by either a time
out at the connection level or the recovery of any of the swsldrhe full MPTCP
transmission mechanism is summmarized in Table 4.2.

"In contrast, fast retransmits are only done on the same suhfdhey indicate a single loss and
do not necessarily imply a reduction of the path quality.
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event action

Segment acknowledged at the subflolRemove the reference to the segment
level from the subflow-level queue

Segment acknowledged at connectioRemove the reference to the segment
level from the connection-level queue
Timeout (subflow-level) Push the segment to the best run-

ning subflow (according to the Packet
Scheduler). If no subflow is available,
push it to the retransmit queue.
3 duplicate ACKs Retransmit segment only on local sup-
flow
Ready to put new data on the wirdf the retransmit queue is not empty,
(normally triggered by an incoming first pull from there. Otherwise, take
ack) new segment(s) from the connection
level send queue (A portion).

Table 4.2: (event,action) pairs implemented in the Muttipgransport queue man-
agement

Related work:  The mostimportant retransmission mechanism for tran$gyet
multipath that has been proposed before was for SCTP-CM$QIA. This paper
emphasises that poor retransmission choices may sigrificacrease the flow
completion time due to a problem that the authors mdkive buffer blocking
Receive buffer blockingappens when a fast sender is slowed down by a small
receive window, that the receiver is forced to advertiseabse its receive buffer
comes to saturation. A receive buffer can easily be sadinateen one subflow
experiences a time out, requiring from the receiver to sitbe data coming from
other subflows until the lost segments are finally retrartechit[IASO7] explains
that the only way to mitigate this problem is to intelliggndhoose the subflow
used to retransmit. They evaluate five possible retrangmigwmlicies, that we
will compare with our unified approach (The quoted text innfrof the policy
name is the definition of the policy according to [IAS07]):

e RTX-SAME: “Once a new data chunk is scheduled and sent to a destina-
tion, all retransmissions of the chunk are sent to the sanséirddion”. In
MPTCP, even if it is decided to retransmit on another subflogegment is
alwaysretransmittedas wellon the initial subflow, with exponential back-
off. This is actually a requirement from [FRHB11], that carfeom the
constraint thabnce subflow sequence numbers are assigned to a segment
and sent to the network, they cannot be re-assigned to otie?.dT his con-
straint is not present in SCTP-CMT because it does not uskosulevel
sequence numbers.

8The rationale for this is that middleboxes could replay @gdraents, confusing the receiver with
different data attached to the same sequence numbers
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e RTX-ASAP: “A retransmission of a data chunk is sent to any destinatan f
which the sender has cwnd space available at the time ofnetnéssion. If
multiple destinations have available cwnd space, one is@hoandomly.”
In MPTCP, the scheduler is run to decide where to send the daiawe
have explained previously that only flows with availablend space are
eligible for selection by our scheduler. Hence, in some WaY<-ASAP is
also applied by our schedulder. However, RTX-ASAP usesaansklection
as tie-break. We use shortest delivery time (estimateditirahe RTT and
gueue size as explained in the previous subsection).

e RTX-CWND: “A retransmission is sent to the destination for which the
sender has the largest cwnd. A tie is broken by random sef€ttiThis
approach is quite different from what we do, because it maggicto delay
the retransmission if that allows sending on a subflow wigfher congestion
window. We discuss hereafter a possible improvement to aehiamism,
that would also delay the transmission in the hope that theeat finally
reaches the peer faster.

e RTX-SSTHRESH: “A retransmission is sent to the destination for which
the sender has the largest ssthresh. A tie is broken by rarsiection.”
This is very similar to the previous policy, and gives indeg@dilar results
according to [IAS07].

e RTX-LOSSRATE: “Aretransmission is sent to the destination with the low-
est loss rate path. If multiple destinations have the sarse ate, one is se-
lected randomly. This policy is not explicitly included in our Linux MPTCP.
However, paths with low loss rates have a much higher préibato be
chosen by our retransmission mechanism, because the docgigestion
control favours paths with low loss rates.

Discussion: According to the simulations results of [IAS07]. The best re
sults are obtained from the policies RTX-CWND and RTX-SSHSR. Those
two policies are precisely the most different ones comptredir implementation.
However, we note that our retransmission policy is not anhefother three poli-
cies considered by [IAS07], but instead@mbinationof them. Finally, our retrans-
mission mechanism could be further improved as describdelgare 4.8. That
moadification would have in common with RTX-CWND and RTX-SSHHSH that
the scheduler does not necessarily allocate a segment fiosthevailable subflow,
but instead takes into account the time needed for that sggmeeach the peer.

4.3.7 At connection/subflow termination

In Linux MPTCP, subflows are terminated only when the wholenaztion termi-
nates, because the heuristic for terminating subflows @witklosing the connec-
tion) is not yet mature, as explained in Section 4.3.4.
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At connection termination, an implementation must enshed &ll subflows
plus the meta-socket are cleanly remové&tie obvious choice to propagate the
cl ose() system call on all subflows does not work.The problem is that a
cl ose() on a subflow appendsk Nat the end of the send queue. If we trans-
pose this to the meta-socket, we would apperdhtia Fl N on the shared send
gueue (see Section 4.3.6). That operation results in thedls&nd queue not ac-
cepting any more data from the application, which is corrdut it also results
in the subflow-specific queues not accepting any more data fine shared send
gueue. The shared send queue may however still be full of egmwhich will
never be sent because all subflows are closed.

Inferred implementation rule:  Upon acl ose() system call, an implementa-
tion must refrain from sending & N on all subflows, unless the implementation
uses an architecture with no connection-level send quékestfie one described
in [BPB11a, Appendix 5]). Even in that case, it makes senseép all subflows
open until the last byte is sent, to allow retransmissionmngath, should any one
of them fail.

Currently, upon &l ose() system call, Linux MPTCP append®at a FI N
to the connection-level send queue. Only whenlleta FI Nreaches the bottom
of the send queue is the reguRrN sent on all subflows (which requires that the
retransmission queue be empty as well).

Note: In the Linux MPTCP behaviour described above, a connectiadcstill
stall near its end if one path fails while transmitting itstl@ongestion window
of data (because the maximum size of the subflow-specific geede iscwnd).

A way to avoid this has been proposed: instead of sending lthedgether with
theDat a FI N, send theDat a FI Nalone and wait for the correspondigit a
ACK to trigger aFIl N on all subflows. This however prolongs the duration of the
overall connection termination by one RTT.

4.4 Implementing alternative Path Managers

In Section 4.2, the Path Manager is defined as an entity thattanas a (pathin-
dex, endpoint ID) mapping. This is enough in the case of tlieiouPath Manager,
because the segments are associated to a path within thet $isellf, thanks to
its endpoint ID. However, it is expected that other Path Mgna may need to
apply a particular action, on a per-packet basis, to assotieem with a path.
Example actions could be writing a number in a field of the sagnfwhich we
call colouringa packet for clarity) or choosing a different gateway thandbfault
one in the routing table. In an earlier version of Linux MPTG&sed on a Shim6
Path Manager, the action was used and consisted in rewtitengddresses of the
packets.
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path index | Action (Write x in DSCP)
1 red (write 1)

2 blue (write 2)

3 green (write 3)

Table 4.3: Example mapping table for a colouring PM

Control plane Data plane

|
S——
ontrol structure
T~ Data packet

Multipath transport |
Setting path index
Announcing new paths
(referred as Path Indices)
|Path manager |

Path index action
1 XXXXX
2 yyyyy

3 777777

Figure 4.11: Extended Path Manager with per-packet actions

To reflect the need for a per-packet action, the PM mapping {an example
of which is given in Figure 4.2) needs to be extended with aoadield. We
show in Table 4.3 an example mapping table for a Path Managgadoon writing
a value into a field of the packets. Additionnally, while thelbin Path Manager is
active only in the control plane, the extended Path Manamih per-packet action
ability) needs also be active in the data plane, as showrgimw&i4.11.

The Path Manager being now extended withaation field, we can illustrate
the modularity of the architecture by defining other Path &pers. Path Managers
are not attached to a particular layer. The only requirenf@nthem is to be lo-
cated below the Multipath Transport (MT) in the networkimgck, so that outgoing
packets can be marked by the MT before being handled by tteNPatager. The
actual layer in which the Path Manager is located deterntimescope of the paths
that are managed. For example a link layer Path Manager émtidks directly
connected to the host. On the other hand, a network layerNeatlager could in-
fluence part or all of the end-to-end path. We provide a fewrgptas of alternative
Path Managers in the followings subsections (of them, dmyShim6-based Path
Manager has been implemented as of this writing).

4.4.1 Next-hop selection

If a host has several interfaces, or one interface with ségateways on the same
link, it can happen that multiple routes are available t@hethe same destination.
Currently, such cases usually result in the host using ofeutieoute, and keep
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Figure 4.12: Path management with next-hop selection

the other ones for backup connectivity. Solutions existlisas théproute2 pack-
age in Linux) to allow the end-host to perform load balancimga per-transport
flow basis, but per-packet load balancing is not recommenddedo the classical
reordering problem in TCP. The Path Manager abstractioridwvallow announc-
ing the MT that multiple paths are available, while hiding fact that those paths
have actually multiple next-hops. The Path Manager basatkgtihop selection
is shown in Figure 4.12. Note that it is possible, in Figur&24.that theet hl
interface uses its own address. This will simply be refleatatie source address
of the third subsocket (that is, the subsocket with pathxrigle because the PM
can tell what addresses to use for a particular subflow (spe¢-4.2).

4.4.2 Shim6-based Path Manager

In the previous chapters, we have presented our work on ih&gbrotocol. In

fact, shim6 can very well provide a path management sereiddRTCP. As cur-
rently defined [NB09], shim6 is a sub-layer of the IPv6 layard is completely
invisible to the upper layers. It is able to detect failures a path, identified
by an address pair, and switch a flow to another path, whilerags transport
layer survivability of the connections. Such survivalilis obtained by rewrit-
ing the address fields of a packet when the address seen bysT&R the one
that Shim6 wants to use (because it is known to have failegxXample). Shimé
can be used almost as is for playing the role of a Path Managehat case, its
failure detection capability is not needed anymore, siheeMultipath Transport
layer sees failures on a link as an infinite level of congestand it is assumed
to be able to react accordingly. Shim6 contains all the resggsfeatures to act
as a Path Manager: It discovers the available paths by eguiwits address set
with its peer. It is able to direct packets to any of the avddapaths by rewrit-

ing addresses. For experimentation, we have modified o8Him6 implemen-

tation of shim6 to enable its use as a Path Manager. It can Wwaldaded from
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https://scminfo.ucl.ac. be/trac/ nptcp/w ki/nptcp_shi nb.

We expect that the shim6 based Path Manager could be uspdiaky when
a user wants to use shim6 anyway (i.e. to provide a path mar&geservice to
MPTCP,and a regular shim6 service to other transport protocols). heiotases,
the MPTCP built-in Path Manager remains the best choicet agpiports IPv6
together with IPv4, even in the same communication. A motailéel comparison
between MPTCP and shim6 is given in the conclusion of thisighe

4.4.3 Link aggregation

Link aggregation provides at layer 2 a function similar te tayer 3 next-hop se-
lection. Here, only one route is seen in layer 3, but sevdmgbipal links exist,

although they appear as one logical link from layer 3 upwaghkin, the problem

of TCP reordering currently makes it necessary to ensuteathmatransport flow

is always carried over the same link. Adding the Path Manaderface to a link

aggregation mechanism would allow bringing knowledge efrtultiple available

links to the MT (Multipath Transport), and so perform padkased load balancing.
This kind of Path Managers can reveal to be very useful in soat@-centre con-
figurations, where several Gigabit interfaces use link egation. MPTCP could
be easily made aware of the multiple physical links, in otdense them to their
full capacity.

4.4.4 Remotely controlled Path Managers

All the above end-host mechanisms have an equivalent indghveonk. Some of
them are even more frequently deployed in networks thandrhersts. For exam-
ple, possible “network-based Path Managers” are ECMP [TH@Qltipath rout-
ing [MFB*11] or proxy-shimé [Bag08]. It would thus be interesting émotely
control them. Whereas host-based Path Managers read thmBex in the control
structure associated with a packet, network-based Patladéas will read the Path
Index in the packet itself. Whereas host-based Path Masaged notifications
about path properties to registered entities inside thal legstem, network-based
Path-Managers send their notifications to registered hsitde the network. This
introduces the need for a means to perform the announcerientghe network
to the hosts. This mean could be ICMP, DHCP or another pratddternatively,
a static version of remotely controlled Path Managers waoulay local configu-
ration in the hosts, rather than using a network protocol.

Remotely controlled Path Managers include a host part anehaonk part.
The host part is actually a special kind of host-based Pathalgler, with the same
interface as any other one. But the mechanism embedded tifP#t Manager
only consists of reading path information from either a agunfation file or some
network protocol and forwarding that information in therfoof Path Indices to the
MT. In the data plane, the local Path Manager writes the Fatéd into some field
of the packet (for example DSCP in IPv4 or the flow label in [PvBhe remote
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Figure 4.13: Remotely controlled Path Manager

Path Manager then reads the Path Index of incoming packadstranslates that
number into an action, in exactly the same way as local Patialfers. Figure 4.13
illustrates the operation of a remotely controlled Path dger. Inside the host, the
Path Index makes the Path Manager set a colour for the paldkatis, some field
holds a Path Selector value (the colour) which is used byahmwte Path Manager,
and can differ from the one used inside the host. The packwire coloured until
it reaches the remote Path Manager. Then the colour is rahanetranslated into
an action (in Figure 4.13, direct packet to ISP2).

Related work: Another way to remotely control a Path Manager, using DHCP,
has been proposed in [WR11]. The idea is to use only the MPTW@Rib Path
Manager (using multiple IP addresses), and configure DHGmounce one ad-
dress per path. A small extension to DHCP allows exchangifagration about
the multiple paths between the DHCP server and client. Byhioimg the pro-
tocol modification from [WR11] with the above Path Managesiiig colours) it
would be possible to increase its benefits by widening itdiegipns and remov-
ing the requirement for several IP addresses. For exampEeDHCP message
np- pr oxy- avai | defined in [WR11] can be used to allow the DHCP server to
announce how many paths the remote Path Manager suppdatitsg(ltihe precise
nature of the PM, e.g. proxy-shim6, multiple next-hops asthar one). The sec-
ond message from [WR11fp- r ange, could be used to ask what Path Selector
to use for a particular path index (currently it is used to ablataddressto use).
Note that the address is a particular case of path selectioer @ath selectors could
be ports or special values to be written in a particular fiélgarkets. By gener-
alizing that way, we could benefit from multipath even wher gablic address
only is available, and no NAT is in place (hence no option te omiltiple private
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Adresses:
Wl fromISP1:AL1
e from ISP2:A.2.1

A.2/48

Figure 4.14: Example instantiation of cascaded Path Masage

addresses).

4.4.5 Combining Path Managers

The previous subsection presented several examples oMgathgers, each with
different capabilities and scopes. The Path Manager aisinaenables different
path selection mechanisms, while presenting a stablefacteito the Multipath
Transport. We note also that several path selection mesinanay coexist in the
network. It would thus be useful to benefit from all of themphder to optimise
the path offer for the MT. We explore here how future versiohMPTCP could
support the simultaneous use of several Path Managers. alledktvaluation of
implementation details is left for future work, however.

When several Path Managers are used simultaneously, wegardpat each
one be given a depth attribute. The depth attribute refleettayering requirement
of each PM. Outgoing packets first flow through the PM of depthén the PM of
depth 1 and so on. We must also adapt the PM interface to supgewaded PMs.
Two new rules are introduced:

e The MT can only listen to the Path Manager of depth O

e A Path Manager of depthlistens to events from a Path Manager of depth
i+1.

To illustrate a useful case of cascaded Path Managers, wéhasgcenario
described in Figure 4.14. In that figure, a host is locatechitiPa6 network that
is dual-homed. It receives one address from ISP1 and anotlgefrom ISP2. We
assume that it uses the built-in MPTCP PM (usingAD®_ADDRESS TCP option)
to manage its two addresses. But ISP1 has itself two majdragms providers,
and offers its clients the option of choosing what upstreaoviger is selected by
routers in ISP1, based on the flow label field of the IPv6 header

To map this situation to our architecture, we use two Pathdgars. One is
the built-in MPTCP Path Manager, with depth 0 (which we expéglt be enabled
by default in any setup). The built-in MPTCP PM sees two |le@chdresses, giving
the possibility to choose between ISP1 and ISP2. The otheri®oma remotely
controlled Path Manager (depth 1), the host part of whichesrthe flow-label
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Figure 4.15: Cascaded Path Managers, only the built-in PAdtise
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Figure 4.16: Cascaded Path Managers, final setup

field of IPv6 packets. The network part, located on the reautéiSP1, selects the
outgoing interface based on the flow-label field, which dbtieolds a Path Index.
Blue packets (e.g. flow label=1) are directed to one upstne@wider, while red
packets (e.g. flow label=2) are directed to the other one.

The two Path Managers are layered as shown in Figure 4.15bdittén PM
has Depth 0, while the Colouring Path Manager (that rematehtrols ISP1) has
Depth 1.

Let’'s suppose that an application Appl wants to start a conization with
address paik A.2.1, B1 >. The built-in PM detects the new flow and exchanges
address information with the peer. The colouring PM remaiastive, because it
knows only one path for source addre$2.1 (thus ISP2). As soon as MPTCP
has found that two paths can be used to reach B1 (through IEFEPR), it tells
it to the MT, which immediately starts balancing packetsrdwe paths (see Fig-
ure 4.15). But now the Colouring Path Manager perceives aftoewfor address
pair < A.1.1, B1 >, since MPTCP has opened a new subflow with this address
pair. The administrator has written a configuration file tiedis that two paths are
available through flow label tagging if source address préfix/48 is used. The
Colouring Path Manager announces the two paths upwardsy @&alPM with
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Source Address Prefix| path index | Action (Write x in flowlabel)
A.1/48 1 1
A.1/48 2 2

Table 4.4: Mapping table for the colouring Path Manager ttaédp

token | pathidx | Endpointid Action (rewrite path idx to x)
tokenl | 1 < A12,B1,0,pB1 > |0
tokenl | 2 <A1.1,B1,0,pB1 > | 1
tokenl | 3 < A11,B1,0,pB1 > | 2

Table 4.5: Example mapping table for the built-in PM (depth 0

depth 0 listens to that notification, and learns that it caelfitbehave as an MT for
the Colouring Path Manager.

We emphasise that in the case of Cascaded Path Managerpatadianager
on the path of a packet may need to rewrite the Path Indexdddatthe control
structure of the packet, in order to control the followinghP&anager. In our
example, the Colouring Path Manager has announced no pdei for address
pair < A.2.1, B1 >, and path index 1, 2 for address pairA.1.1, B1 >. From
now on, the built-in PM knows that it can not only apply its asmechanism for
its own path selection, but also set a path index 1 or 2 in cases< Al, B1 >
as addresses for its packets. In order to allow upper lagemsake use of this
additional path, the built-in PM tells upper layers that owmsv path is available.
The final setup is shown in Figure 4.16 and tables 4.4, 4.5 Miigpath Transport
is now able to use all paths without having any idea of the rmeicims (combined
in this case) that are used to select the paths.

4.5 Configuring the OS for MPTCP

Previous sections concentrated on our MPTCP implementdiiathis section, we
gather guidelines that help getting the full potential frfRCTP through appro-
priate system configuration. By providing configurationdglines, we also shed
light on how difficult it is for a user to get benefits from MPT.CP

4.5.1 Source address based routing

As already pointed out by [BS10], the default behaviour obtperating systems
is not appropriate for the use of multiple interfaces. Mgstrating systems are
typically configured to use at most one IP address at a timis. nitore and more
common to maintain several active links (e.g. using the avirderface as main
link, but maintaining a ready-to-use wireless link in thekground, to facilitate

fallback when the wired link fails). But MPTCP is not abouaith MPTCP is

aboutsimultaneouslysing several interfaces (when available). It is expediadl t
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one of the mostly used MPTCP configurations will be througb éwmore NICs,
each being assigned a different address. Another possioiggaration would
be to assign several IP addresses to the same interface,i¢h wdise the path
diverges later in the network, based on the particular soaddress that is used in
the packet.

Usually an operating system has a single default route, avitimgle source IP
address. If the host has several IP addresses and we wantMaltdpath TCP,
it is necessary to configure source address based routing.midans that based
on the source address selected by Multipath TCP, the roetiggne consults a
different routing table. Each of these routing tables dsfim&lefault route to the
Internet. This is different from defining several defaulites in the same routing
table (which is also supported in Linux), because in thae @asy the first one is
used. Any additional default route is considered as a fellbvaute, used only in
case the main one fails.

For instance, consider a host with two interfaces, 11 antbd®) connected to
the public Internet and assigned addresses resp. Al and é¢h &host needs
3 routing tables. One of them is the classical routing taptesent in all sys-
tems. This default routing table is used to find a route basethe destination
address only, when a segment is issued with the undeterrmmede address. The
undetermined source address is typically used by appitatihat initiate a TCP
connect () system call, specifying the destination address but tpttie system
choose the source address. In that case, after the defatifigéable has been con-
sulted, an address is assigned to the socket by the systenP{fs the RFC3484
source address selection algorithm [Dra03] is applied.IFe4 no such algorithm
is defined and the address selection is operating systenmaiept}.

The additional routing tables are used when the source sslisespecified. If
the source address has no impact on the route that shouldserchihen the default
routing table is sufficient. But this is a particular casg.(ea host connected to one
network only, but using two addresses to exploit ECMP pattes in the network).
In most cases, a source address is attached to a specifimdeteor at least a
specific gateway. Both of those cases require defining aaepanuting table, one
per(gateway, outgoing interfaceair.

To select the proper routing table based on the source ajdresadditional
indirection level must be configured. It is called “policyutimg” in Linux and is
illustrated at the bottom of Figure 4.17.

If only the default routing table were used, only the firstadgf route would be
used, regardless of the source address. For example, & pattkesource address
A2 would leave the host through interface |1, which is ineotr

Note that this isource address based routinghich is different fronmsource routingwhere the
end-host encodes in the packet header the addresses dfeitmeadiate hops that should be used for
forwarding.
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| Dst: 0.0.0.0/0 Via: Gateway-|P1 Dev: |1 |
| Dst: 0.0.0.0/0 Via: Gateway-1P2 Dev: 12 |
| Dst: CGatewayl-Subnet Dev: |1 Src: Al Scope: Link |
| Dst: Gateway2-Subnet Dev: |12 Src: A2 Scope: Link |

e +
e +
| Table 1 |
e +

| Dst: 0.0.0.0/0 Via: Gateway-|P1 Dev: |1 |
| Dst: Gatewayl-Subnet Dev: |1 Src: Al Scope: Link |

e +
e +
| Table 2 |
e +

| Dst: 0.0.0.0/0 Via: Gateway-|P2 Dev: |2 |
| Dst: Gateway2-Subnet Dev: 12 Src: A2 Scope: Link |

e +
e +
| Policy Table |
e +
| If src == , Table 1 |
| If src == A2 , Table 2 |
T T L T +

Figure 4.17: Example Routing table configuration for Mutip TCP with two
interfaces
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4.5.2 Buffer configuration

[FRHT11, Section 5.3] describes in details the new, higher buéfguirements of
MPTCP. Sections 4.3.5 and 4.3.6 describe how the MPTCPrsutin be tuned
dynamically. However, it is important to note that even tlestituning is capped
by a maximum configured at the system level.

When using Multipath TCP, the maximum receive and send bsfieuld be
configured to a higher value than for regular TCP. There ismeeusal guideline
on what value is best there. Instead, the most appropritéitndor an administra-
tor is probably to roughly estimate the maximum bandwidttl delay that can be
observed on a particular connectivity setup, and apply go@ton from [FRH 11,
Section 5.3], to find a reasonable tradeoff. This exercisgddead an administra-
tor to decide to disable MPTCP on some interfaces, becaadews consuming
less memory while still achieving reasonable performance.

4.6 Future work

Although Linux MPTCP is already an operational and efficipratotype, there
is still much space for improvements. In this section we m&de a list of future
improvements that would make the MPTCP implementation eetier.

e Today’s host processors have more and more CPU cores. GiudtipMh
TCP tries to exploit another form of parallelism, there isaltenge in find-
ing how those can work together optimally. An important diogsis how to
work with hardware that behaves intelligently with TCP (eflgw to core
affinity). This problem is discussed in more detail in [Wgt1Our current
design is optimised for handling per-core connections (alevbonnection
with all of its subflows runnning on the same core). But fos i work with
best efficiency, all subflows should be forced on the same (torbenefit
from cache sharing), which is not the case yet. Another cetalyl differ-
ent design that could be evaluated is to handle per-coressuhfivhere each
subflow is forced on a different core. We expect less benefit fihis second
option however, as the data must be gathered in the same m@walrin
the end (the user-context buffer), which could involve sroaches copies.

e An evaluation of Linux MPTCP exists (see Chapter 5) and soptenisa-
tions have been implemented already, but many optimisatioe still pos-
sible and should be evaluated. Examples of them include MPf&&t path
(that is, a translation of the existing TCP fast path to MPTQ@FDMA sup-
port.

e Currently, support for TCP Segmentation Offload remainsalehge be-
cause it modifies the Maximum Segment Size. Linux MPTCP atigre
works with a single MSS shared by all subflows (see Sectio®}.Adding
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TSO support to MPTCP is certainly possible, but requireshéur work.
Also, support for Large Receive Offload has not been invati)yet.

e There are ongoing discussions in the IETF on heuristicswoatd be used
to decide when to start new subflows. Those discussions ammatised in
the next paragraph, but none of the proposed heuristics d&xs dévaluated
yet.

Heuristics for subflow management: An interesting discussion on future pos-
sible improvements happened on the IETF MPTCP mailingfistVe summarise
it here, as it can provide valuable input for future impletadon work.

MPTCP is not useful for very short flows, so three questionmeap

e How long is a “too short flow”
e How to predict that a flow will be short ?
e When to decide to add/remove subflows ?

To answer the third question, it has been proposed to usefhimh the application.
On the other hand the experience shows that socket optierguée often poorly
or not used, which motivates the parallel use of a good defeuristic. This
default heuristic may be influenced in particular by the ipatar set of options
that are enabled for MPTCP (e.g. an administrator can debatesome security
mechanisms for subflow initiation are not needed in his envirent, and disable
them, which would change the cost of establishing new sulsjlowhe following
elements have been proposed to feed the heuristic:

e Check the size of the write operations from the applicatidngiate a new
subflow if the write size exceeds some threshold. This infdiom can be
taken only as a hint because applications could send bigkshafrdata split
in many small writes. A particular case of checking the size/ite oper-
ations is when the application uses thendfi | e() system call. In that
situation MPTCP can know precisely how many bytes will baegfarred.

e Check if the flow is network limited or application limitedt ik network
limited if the sender is paced mainly by its congestion windh is applica-
tion limited when either the receiver or the sender appbeais limiting the
transmission rate, by respectively using tread() andwri t e() system
calls rarely and/or with small amounts of data. A possibleriséic would
be to initiate a new subflow only if a flow is network limited.

e It may be useful to establish new subflows even for applioaiimited com-
munications, to provide failure survivability. A way to dieat would be to

OMPTCP mailing list archivemptcp-multiaddressed: How long before multipath startér@m
January 31st, 2011 to February 2nd, 2011
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initiate a new subflow (if not done before by another triggdtgr some time
has elapsed, regardless of whether the communicationvi®riebr applica-
tion limited.

e Wait until slow start is done before to establish a new subfMeasurements
with Linux MPTCP (see Chapter 5) suggest that the end of the start
could be a reasonable hint for determining when it is wordhntistg a new
subflow (without increasing the overall completion time)ond analysis is
needed in that area, however. Also, this should be taken et arly if the
slow start is actually progressing (otherwise a stalledlswbcould prevent
the establishment of another one, precisely when a new ounklwe useful).

e Use information from the application-layer protocol. Soofethem (e.g.
HTTP) carry flow length information in their headers, whi@nde used to
decide how many subflows are useful.

e Allow the administrator to configure subflow policies on a-pert basis.
The host stack could learn as well for what ports MPTCP tumtst@ be
useful.

e Check the underlying medium of each potential subflow. Fangde, if the
initial subflow is started over 3G, and WiFi is available, ibpably makes
sense to immediately negotiate an additional subflow ovéti Wi

It is not only useful to determine when to start new subflows should also
sometimes decide to abandon some of its subflows. An MPTCRingmtation
should be able to determine when removing a subflow woul@éas® the aggregate
bandwidth. This can happen, for example, when the subflonalgignificantly
higher delay compared to other subflows, and the maximunebsitte allowed by
the administrator has been reached (Linux MPTCP curregtfyrfo such heuristic

yet).

4.7 Conclusions

In this chapter, we have presented our implementation oftivath TCP in the
Linux kernel. That implementation is the first and most castglavailable in an
operating system. We explained our main design choicegcedly the need for
buffering data at the connection level in order for the sciferdto make decisions
about packet path attributions as close as possible to th@lagending of the
packet. We also explained that doing this does unfortupatet come without
drawbacks, and that all subflows must use the same MSS.

We emphasised that the size of the buffers required to &gtgat benefits
from MPTCP is higher than the buffer size required by regii@pP, especially
when the available paths have very different delays. Suitéreinces could lead
an administrator to disable some of the slowest paths.
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In section 4.4, we explained in detail our division of MPT@RWO0 main com-
ponents, namely Multipath Transport and Path Managemeatsiwed through
various examples the benefits that can be obtained from giagpath manage-
ment, and illustrated how Path Managers could be combinedtdar to benefit
from multipath at several layers during a single MPTCP catios.

Finally, we described the areas of improvements that coeldiven to Multi-
path TCP, to make it even more competitive in today’s Inteemel on multicore
hosts.






Chapter 5

MPTCP evaluation

5.1 Introduction

In this chapter we use our Linux MPTCP implementation to watd the protocol
behaviour in real-world scenarios. We first look at the panfance of our im-
plementation, in Section 5.2. We then show that the coupbedjestion control
correctly achieves the fairness goals presented in [WREHilbwing MPTCP
to efficiently use several paths simultaneously, whilé b&ing fair to competing
TCP flows. We conclude with a presentation of a concrete, iog) but initially

not expected application for MPTCP: data-centres.

5.2 MPTCP performance

To evaluate the performance of our implementation, we peréd lab measure-
ments in the HEN testbed at University College Londbht(p: // hen. cs.
ucl . ac. uk/). Our testbed is depicted in figure 5.1.

It is composed of three workstations. Two of them act as soard destina-
tion while the third one serves as router. The source andhdéisin are equipped
with AMD Opteron™ Processor 248 single-core 2.2 GHz CPUs, 2GB RAM and
two IntelR) 82546GB Gigabit Ethernet controllers. The links and theeoare
configured to ensure that the router does not cross-roufe triee. the packets

Figure 5.1: Testbed used for the performance evaluation

113
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that arrive from the solid-shaped link in figure 5.1 are alsvéyrwarded over the
solid-shaped link to reach the destination. This implieg the network has two
completely disjoint paths between the source and the deistin We configure the
bandwidth orLi nk AandLi nk B by changing their Ethernet configuration.
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Figure 5.2: Impact of the maximum receive buffer size

As explained in section 4.3.5, one performance issue tliattaf Multipath
TCP is that it may require large receive buffers when subfloaxe different de-
lays. To evaluate this impact, we configurednk AandLi nk B with a band-
width of 100 Mbps. Figure 5.2 shows the impact of the maximegeive buffer
on the performance achieved by MPTCP with different del&gs.these measure-
ments, we use two MPTCP subflows. One is routed bverk A while the second
is routed oveti nk B. The router is configured to insert an additional delay of 0,
10, 100 or 500 milliseconds dri nk B. No delay is inserted oni nk A. This al-
lows us to consider an asymmetric scenario where the twossub#re routed over
very different paths. Such asymmetric delays force the MPTé&eiver to store
many packets in its receive buffer to be able to deliver alrdceived data in se-
qguence. As a reference, we show in figure 5.2 the throughpig\zed byi per f
with a regular TCP connection ovéi nk A. When the two subflows have the
same delay, they are able to saturate the two 100 Mbps linksanieceive buffer
of 2 MBytes or more. When the delay difference is of only 10lisecond, the
goodput measured hiyper f is not affected. With a delay difference of 100 mil-
liseconds between the two subflows, there is a small perimcedecrease. The
performance is slightly better with 4 MBytes which is thealdf maximum receive
buffer in the Linux kernel. When the delay difference reacB80 milliseconds,
an extreme case that would probably involve satellite linkihe current Internet,
the goodput achieved by Multipath TCP is much more affectédids is mainly be-



5.2. MPTCP performance 115

190} [ No loss

180} ;
170 [ Lossy-link |
160 — Regular TCP reference ||
wn
2 150 |
)
140
=
=]
: 120
=
2 110

< 1001

Average goo

0 1 2 3 4 5
Fraction of losses on grey subflow (%)

Figure 5.3: Impact of packet losses

cause the router drops packets and these losses causetteérpioations and force
MPTCP to slowly increase its congestion window due to thgdaound-trip-times.

The losses are a second factor that affects the performfinevaluate whether
losses on one subflow can affect the performance of the ativfioss due to head-
of-line blocking in the receive buffer, we configured thetasuto drop a percentage
of the packets ohi nk B but no packets ohi nk A and set the delays of these
links to 0 milliseconds. Figure 5.3 shows the impact of thekpalosses on the per-
formance achieved by the MPTCP connection. The figure shiogvtato subflows
that compose the connection, as stacked bars (10 measusgmebar, 95% confi-
dence intervals). We obtain the contribution of each subftothie overall goodput
by considering the aggregated goodput as measured by tiieiple and weighting
by the total number of data bytes effectively sent on each@tbflows, without
taking retransmissions into account. This number of bysesiéasured directly
on the packet trace. The subflow shown in the lower bar paksasghLi nk A
while the subflow shown in the upper bar (in gray) passes girdii nk B. The
goodput achieved by a regular TCP connection running theRemo congestion
control algorithm is shown as a reference (94.8Mbps). Wheretare no losses,
the MPTCP connection is able to saturate the two 100 Mbps.lids expected,
the gray subflow that passes throughnk B is affected by the packet losses and
its goodput decreases with the fraction of packet losses.gblodput of the other
subflow does not suffer from sharing transmissions with aylaabflow. With a
loss fraction 0% on the grey subflow, we also remark that the aggregate goodput
goes beyond 100Mbps.
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Intel Xeon 2.66GHz
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Figure 5.4: Testbed with 3 Gigabit links
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Figure 5.5: Impact of the MSS on the performance

This is better than the throughput achieved when the cougadestion con-
trol is disabled, because in that case the higher amount of traffic sent orsisg |
link causes timeouts, that in turn saturate the receive ovinand slow down the

whole connection.

The last factor that we analyze is the impact of the Maximumgnsant Size
(MSS) on the achieved goodput. TCP implementors know theapa IMSS enables
higher goodput [Bor89] since it reduces the number of e that need to be
processed. To evaluate the impact of the MSS, we do not intedelays nor
losses on the router and use either one, two or three Gig#idriet interfaces
on the source and the destination (see Figure 5.4). FigbreHaws the goodput
in function of the MSS size. With a standard 1400 bytes MSSTNIP can fill
one 1 Gbps link, and partly use a second or third one. It is @bkaturate two
Gigabit Ethernet links with an MSS &f000 bytes, and three Gigabit Ethernet
links with an MSS oft500 bytes. Note that we do not use TSO (TCP Segmentation

1This case, not shown in the picture, corresponds to eactosubihning new-Reno separately.
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Histogram bar BST Segment aggregation  Shortcuts

Regular Disabled Disabled Disabled
Tree Enabled Enabled Disabled
Shortcuts Disabled Disabled Enabled
Aggreg Disabled Enabled Enabled

Table 5.1: Optimisations enabled for Figure 5.6

Offload) [Cur04] for these measurements. With TSO the segsiea handled by
the system could have grown virtually to 64KB and allowedit¢ach the same
goodput with a lower CPU utilisation. TSO support will be addater in our
MPTCP implementation.

Finally, we have looked at the CPU consumption in the systetind data sink.
Most TCP implementations support Van Jacobson’s fast pattegsing [Jac93].
The receiver assumes that data is received in-order and TiCK\yplaces the data
received in-sequence in its receive buffer, at the end oirtfzeder receive-queue
(which the application can read). If the packet cannot bequlan the receive
gueue, it is then placed in the out-of-order queue, whicimisrdered sequence of
segments with holes. This queue is searched for an appi®piece starting at the
end, because in most cases this queue is used when a packetehdsst and all
subsequent packets arrive in sequence until the hole id fillat is, the missing
segment is retransmitted). In the rare case where a segaeiiecplaced neither
at the end of the receive queue nor at the end of the out-afrapadeue, TCP scans
the out-of-order queue to find the exact location of the xezkdata.

With MPTCP the situation is completely different: while flolv sequence
numbers are received in-order, data sequence numbergeameooat-of-order, forc-
ing receivers to scan the large out-of-order queue. An alviix is to use a binary
search tree to reduce the out-of-order queue lookup timis. adds complexity to
the code, and still takes logarithmic time to place a packet.

To obtain a simple, constant time receive algorithm we take account the
way packets are sent. when a subflow is ready to send datacla dfasegments
with contiguous data sequence numbers are allocated byotireection and sent
on this subflow. Each subflow then receives ordered segmetite data level as
long as the batch size is large. To take advantage of thispgment each subflow
data structure with a pointer to the out-of-order queuetjposthat is expected to
receive the next segment to arrive on that subflow. If thetpoiis wrong, we
revert to scanning the whole out-of-order queue (the implesation details for the
binary search tree and the shortcut pointers have been igivgection 4.3.5).

Figure 5.6 compares the CPU load (measured withntpstatLinux utility)
for the different receive algorithrAs The exact configuration used to generate
each of the bars is shown in Table 5.1. TCP (with 2 and 8 coiome)tis used
as a benchmark. The optimising algorithms are evaluatedbgidering a client

2This set of measurements has been performed by Costin Raiciu
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CPU Utilisation

Figure 5.6: Effect of ofo receive algorithms on CPU load

directly connected to a server by using two 1 Gbps links. Tiemicstarts a long
download and the CPU load of the receiver is measured. Witle rsgbflows the
number of out-of-order segments increases. For clarig/réilsults are presented
only with 2 subflows, a lower bound to utilise the links, andubffows beyond
which results are similar.

The shortcut pointers are particularly efficient as theykfmr 80% of the
received segments. THeeealgorithm reduces CPU utilisation, b8hortcutsand
its variantAggreghelp much more. When 8 subflows are used, CPU utilisation
drops from42% to 30%, and when 2 subflows are used it drops fr@#fio to 20%.

Regarding the repartition of the load between the softwatesriupts and the
user context, we found that the majority of the processing deme in user context
for the receiver. For example, with a 1400 bytes MSS and desfagabit Ethernet
link, with 16 subflows, less thamn% of the receive-side MPTCP processing time
was spent in software interrupt context. The bigger amotiptacessing for user
context comes from backlog queue processing: if the matkesds locked by the
user context, all segments received during that time areearegl in the backlog
gueue. They are handled during thel ease_sock() operation, in user context
(see Section 4.3.3). Van Jacobson prequeues (which welukxsan Section 4.3.1)
are in use in these measurements, but the backlog queuegtagse significant
role in this set of measurements.

The sender spends arouf@f; of the total MPTCP processing time in software
interrupt context under the same conditions. The signifigdarger amount of
work performed in software interrupt context comes fromftw that the majority
of the segments are sent when an incoming acknowledgemens apore space
in the congestion or sending window. This event happensténrimpt context and
requires (currently) running the scheduler for each segmen
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5.3 MPTCP congestion control

The support for Coupled Congestion Control [RHW11, WRGH14g been added
by Christoph Paasch in our MPTCP implementatiofo test it, a specific topology
has been used in the HEN testbed, as shown in Figure 5.7.

I

Wr TCP-flows
>

~ i
- 100Mbps
MPTCP-session

Figure 5.7: Congestion testbed

This topology is composed of four Linux workstations thag UistelR) Xeon
CPUs (2.66GHz, 8GB RAM) and Intg) 82571EB Gigabit Ethernet Controllers.
The two workstations on the left are connected with a Gightit to a similar
workstation that is configured as a router. The router is eotad with a 100
Mbps link to a server. The upper workstation in figure 5.7 wsasandard TCP
implementation while the bottom host uses our Multipath Ti@plementation.

Detailed simulations performed by Wischik et al. in [WRGH ¥how that
the coupled congestion control fulfills its goals. In thigtgen we illustrate that
our Linux MPTCP with the Coupled Congestion Control achéethe desired ef-
fects, even if it is facing additional complexity due to fixpdint calculations com-
pared to the user-space implementation used in [WRGHZ11]théncongestion
testbed shown in figure 5.7, the coupled congestion cortialld be fair to TCP.
This means that an MPTCP connection should behave like éesiigP connec-
tion at the bottleneck. Furthermore, an MPTCP connectiah tbes several sub-
flows should not slow down regular TCP connections. To meatha fairness of
MPTCP, the bandwidth measurement softwiaper f 4 has been used to establish
sessions between the hosts on the left and the server ogti@airt of the figuré.
Different numbers of regular TCP connections are estadadigstom the upper host,
as well as different numbers of MPTCP subflows used by thelmotiost. Iperf
sessions were run for a duration of 10 minutes, to allow th@-f&rness over the
bottleneck link to converge [LLS07]. Each measurement iisfive times and the
average throughput is reported, as well asdig confidence intervals.

Thanks to the flexibility of the Linux congestion control ilementation, tests
have been performed by using the standard NewReno congestidrol scheme
with regular TCP and either NewReno or the coupled congestimtrol scheme
with MPTCP.

3The evaluation presented in this subsection is the resaljaifit work presented in [BPB11b].
“http://sourceforge.net/projects/iperf/
5This set of measurements has been conducted by ChristopbHPaa
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The measurements show that MPTCP with the coupled congestiatrol is
fair to regular TCP. Figures 5.8 and 5.9 present the amoutiiefvailable bot-
tleneck link capacity (100Mbps) taken by TCP and MPTCP. Vesal TCP flows
coexist (Figure 5.8), they are summed and presented in the stack bar. When
an MPTCP connection with two subflows shares a bottleneskwiith a regular
TCP connection, the coupled congestion control behavestas MPTCP session
was just one single TCP connection. However, when Reno stiogecontrol is
used on the subflows, MPTCP gets more bandwidth becauseticatbatwo TCP
subflows are really competing against one regular TCP flogufi 5.8).

The second scenario that is evaluated with the coupled stingecontrol is
the impact of the number of MPTCP subflows on the throughphiesed by a
single TCP connection over the shared bottleneck. Measmenare performed
by using one regular TCP connection running the Reno coiogesbntrol scheme
and one MPTCP connection using one, two or three subflows.MPECP con-
nection uses either the Reno congestion control scheme @otlpled congestion
control scheme. Figure 5.9 shows first that when there is@esiMPTCP sub-
flow, both Reno and the coupled congestion control schemamras there is no
difference between the regular TCP and the MPTCP connect\men there are
two subflows in the MPTCP connection, figure 5.9 shows thatoRawours the
MPTCP connection over the regular single-flow TCP connactibhe unfairness
of the Reno congestion control scheme is even more impontaen the MPTCP
connection is composed of three subflows. In contrast, thesorements indicate
that the coupled congestion control provides the samedsérmvhen the MPTCP
connection is composed of one, two or three subflows.

5.4 MPTCP in the data-centre

In a collaboration with University College London, we havadsed the benefits
of Multipath TCP in a data-centre environment. We combinietliation results
(from UCLondon) with experimental results, using our Lind®TCP implemen-
tation. The results of this work have been published in [RP® RBP 11].

5.4.1 Context

One issue that could slow down the deployment of MPTCP is¢heirement to
support it at both ends of the communication. Data-centwveg@mments do not suf-
fer from this, because the sender and the receiver are um@lsaime administrative
control. Moreover, MPTCP can bring major benefits to suchirenments as they
are already built with multiple paths for both failure t@ace and load sharing.
Today, data-centres can involve hundreds of thousands reérse[Sha08].
Routing traffic between them requires the use of a hieraattdpology of switches
and/or routers. To understand this, consider that we wahtild a data-centre
using 1 Gbps NICs and at most 10 Gbps switch ports. Those s/ateerealis-
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Figure 5.10: Simple data-centre topology

tic with today’s hardware, as data-centres often run disteid applications that
need fast transfers to and from arbitrary servers in the-cltire. A data-centre
topology is often characterized by its bisection bandwidifined by [HP06] as
follows:“For a given topology, bisection bandwidtt3 W g;scction, IS calculated
by dividing the network into two roughly equal parts - eacthwialf the nodes

- and summing the bandwidth of the links crossing the imayginividing line.
For nonsymmetric topologies, bisection bandwidth is thallest of all pairs of
equal-sized divisions of the networklIf the worst-case bisection of the network
allows one half to communicate at interface speed with therdalf, the network
is said to havdull bisection bandwidth In that case the bisection bandwidth is
iface_speed x N/2, where N is the number of hosts. The network shown in
Figure 5.10 has full bisection bandwidth (assuming the wvitch is powerful
enough): N is 100 (note the dots between the two fat links), and the bisection
bandwidth isi face_speed x N/2 = 50Gbps.

Full bisection bandwidth topologies are not the norm howeagthey require
using prohibitively expensive devices for a capacity tlsahdt even necessarily
used. For that reason the core links are usually designethteve less than full bi-
section bandwidth. The extent to which such topologies ddpan full bisection
bandwidth is given by theversubcription ratio %TJXM For example, we
can increase the number of host2@9 in figure 5.10 by just connecting ten more
hosts per lower-level switch. In that case the bisectiordiadith is still 50Gbps
but N/2 is 100, giving an oversubscription ratio of 1:2. The lower-levelitthes
indeed become potential bottlenecks.

The network of Figure 5.10 is a kind of fat-tree [Lei85] (thstthe links be-
come “fatter” when moving away from the leaves to the root)s thAe network
switches needed to handle the fat links are significantlyenexpensive than the
smaller ones, [AFLV08] has proposed to instantiate a Clpsltmy [Clo53§ for
data-centres. An example is shown in figure 5.11, where & garitches are used,
and only Gigabit Ethernet links are used (meaning that gér& of the topology

5Clos proposed, in 1953, a topology for telephone switchiegarks, when also facing high
price differences between low and high bandwidth switches.
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Figure 5.11: Clos-based data-centre topology (Al-Fares et

can use commodity switches). Ironically, Al Fares et al. sehto call their archi-
tecture proposal “Fat-Tree”. We will not follow that termology and will instead
refer to this structure as a Clos topology, given the maip@ity of the topology is
precisely thathere is no fat linkin the proposal from [AFLV08] described in Fig-
ure 5.11. An example otal Fat Tree is instead Figure 5.10 [Lei85]. The particular
small example of Figure 5.11 is obviously not interestinthase are more switches
than hosts. However, it scales much better than the higcatdat-tree approach
and is cheaper. For example a Clos-based data-centre #wf8gorts switches
can support up t87648 hosts according to [AFLV08], and requires 2880 GigE 48-
ports switches. This topology iearrangeably non-blockin§Ben65], that is, it is
always possible to find a combination of paths (as this tapolse multipath) that
allows all hosts to communicate with another host at fubifce speed. However,
[AFLV08] recognizes that TCP does not allowrtarrangethe paths easily (other-
wise reordering would cause a performance drop). In a seppaper [AFRR 10],
the same authors propose the use of a centralized schedukartange only the
big flows (as it would be too costly to rearrangiéflows centrally). Unfortunately
this centralized scheduler suffers from slow reaction tand may need to be run
very frequently under some communication patterns [RBH. This is exactly
where MPTCP can bring great benefits. MPTCP just uses alleopéths, hence
rearranging “automatically”, at the time-scale of a Rodmigh-Time. Simulation
results have been published in [RBPL] and show that MPTCP indeed performs
much better than regular TCP in such topologies.

Similar to the Clos topology proposed by [AFLV08], VL2 (Midl Layer 2)
is also a Clos topology but it uses fewer faster links neardoés [GHJ 09]. It
has also multiple paths and tries to efficiently use them hyléementing Valiant
Load Balancing [KLS04, ZSM04] and ECMP inside the end-hosts ECMP
and VLB are blind to actual traffic conditions in the netwotlkere is also much
benefit to expect from running MPTCP in such networks, as shHavgimulations
in [RBP*11].

Finally, another recent data-centre proposal is BCube [@19]. Here the ap-
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proach is completely different as the hosts themselves swé to forward traffic.
The topology is arranged recursively (see Figure 5.12).slihplest element (level
0) is a set of servers directly connected through a rudimersaitch. Additional
server ports can be used to connect to other recursive lagelsown for level in
Figure 5.12. In general, Bcube;, hask + 1 recursive levels((throughk) that use
simple n-ports switches to connect togetheBcube,_,. Like the other topolo-
gies, the Bcube leverages multiple paths between eachagsti pair. Although
a specific routing protocol is proposed to take benefit froim thultipath topol-
ogy, Bcube is forced to assign flows, not packets to any pdatiqath. Again,
MPTCP brings the possibility to get finer-grained path at@m. Moreover, given
that this topology uses several interfaces per host, MPTdDRegen allow band-
widths that ardnigherthan the interface rate, a feature that was not possibledefo
[RBP11] also presents simulation results that emphasise thefiteof MPTCP
in a BCube environment.

5.4.2 Experimental evaluation

To complement the simulation results presented in [RBH, we have used our
implementation to evaluate the MPTCP behaviour in realldvoonditions.

Completion time for short flows: We conducted a first experiment using the
HEN testbed presented in Figure 5.1. The question we waotethgwer was:
Should MPTCP be enabled for all TCP connections in a datae@niNe measured
the time to setup a connection and transfer a short file. $nntt@asurement the file
transfer is initiated by the client immediately after theeitway handshake. TCP
can only use one interface; MPTCP can also use the seconanhutfter the
first subflow has negotiated the use of MPTCP and the secorithsutias been
established. Figure 5.13 shows that TCP is faster for fildegs than about 10
packets, but much slower thereafter. This comes from theheael of establishing
an additional subflow, and the fact that this subflow cannogédiablished before
the initial three-way handshake has completed. To avoiclfzemg short flows,
the code just needs to wait two RTTs after data transmisgemsgor until the
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Figure 5.13: Time to transfer short files

window of the first subflow is big enough) and only then stareosd subflow.

To achieve such a good result as depicted in Figure 5.13, Jewae have
needed to revise our implementation of the context estatd@ah and accept hav-
ing more code running in sofware interrrupt context comgiaoehe initial version,
hence being slightly less fair to other system processesréVised version, in the
server side, creates an MPTCP meta-socket as soon as thpadi#tuttapable SYN
message is received, without waiting until the correspog@ipplication user con-
text is woken up again. This necessarily happens in softiméeerupt context and
is not completely free as it requires atomic memory all@rafas opposed to inter-
ruptible user context memory allocation). However, wedadithis is acceptable,
especially given the benefit it provides, as this is how ragulCP establishment is
implemented. We just allocate one more structure (the mat&et). If the MPTCP
structure were not created immediately upon SYN receptimserver could miss
the first JOIN request, delaying the use of multiple paths.

MPTCP performance in the Amazon’s EC2 cloud: Amazon’'s EC2 compute
cloud’ allows us to run real-world experiments on a production-datare. Ama-
zon has several data-centres; their older ones do not appdsve redundant
topologies, but their latest data-centres (USEastlc artdast3d) use a topology
that provides many parallel paths between most pairs afalirhachines.

"http://aws. amazon. conl ec2/
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Figure 5.14: 12 hours of throughput, all paths between fa@2 nodes

We do not know the precise topology of the US East data-cefithe mea-
surements are complicated because each instance is d mdahine, sharing the
physical hardware with other users. Background trafficlleaee also unknown to
us, and may vary between experiments.

To understand the variability of the environment and theptal for MPTCP
to improve performance, our MPTCP-capable Linux kernelbbeen run on forty
EC2 instances, and for 12 hours throughput was sequentredBsured with iperf
between each pair of hosts, using MPTCP wi#nd4 subflows and TCP as trans-
port protocols. The resultant dataset total800 measurements for each configu-
ration, and samples across both time and topology.

Figure 5.14 shows the results ordered by throughput for eadffiguration.
Traceroute shows that a third of paths have no diversityhe$e paths 60% are
local to the switch (2 IP hops), while the others have four d#psh They roughly
correspond to the right-hand 35% of the flows in the figurey thehieve high
throughput, and their bottleneck is most likely the sharest INIC. MPTCP can-
not help these flows; in fact some of these flows show a vertstigduction in
throughput; this is likely due to additional system ovedweaf MPTCP.

The remaining paths are four IP hops, and the number of élaifmths varies
between two (50% of paths), three (25%) up to nine. Tracershibws all of them
implement load balancing across a redundant topology. MPWith four subflows
achieves three times the throughput of a single-path TCRifapst every path
across the entire 12-hour period.
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5.5 Conclusions

Multipath TCP is a major extension to TCP that is being dgwetbwithin the IETF.
Its success will depend on the availability of a referencel@mentation. We have
analyzed the performance of our implementation in the HE&, looking at the
impact of the delay on the receive buffers and the throughpetalso showed that
losses on one subflow had limited impact on the performanamaother subflow
from the same Multipath TCP connection. From a performaruiet pf view, we
have shown that our implementation is able to efficientlisgiGigabit Ethernet
links when using large packets, and identified the next stepsptimisation, based
on the current CPU consumption results of our implemenigtiersion 0.6).

Another critical aspect of MPTCP is the coupled congestiomtrol. This has
been already developed and evaluated in details by Wisctlak én [WRGH11].
We showed that Linux MPTCP fulfills the fairness goals dématiin [RHW11].

Finally, we presented the benefits of MPTCP in a data-cemtreament. We
explained that current data-centres already leverageipieuppaths, and usually
attempt to optimise their use by randomisation of flow alimres. We showed
that MPTCP can bring high benefits even in existing dataresr{by running our
implementation in the Amazon EC2 cloud). Another intergstiesult is that, even
for very short flows, MPTCP can provide lower completion tartean regular
TCP.






Conclusion

Throughout this thesis, we focused on two IETF proposalsédima at improving
the utilisation of multiple paths in the Internet. The firatpshime6, is actually one
of the multiple attempts by the IETF to make IPv6 a more sigfoéprotocol than
IPv4, in particular by enabling effective multihoming iretipresence of the new
hierarchical address allocation model of IPv6.

The second one is Multipath TCP. This effort is even more s, as it not
only tries to improve multihoming, but uses multiple paslisiultaneously Fur-
thermore, MPTCP can use both IPv4 and IPv6 in the same coane&hould we
have to rank these two protocols based on these sole tworppleg we would
probably select MPTCP as the clear winner. But MPTCP alsallesbacks com-
pared to shim6. Its broad range of capabilities could becamandicap compared
to the very focused shim6 solution.

The main contribution of this thesis is to evaluate the failisi of these new
proposals in real world conditions. For this, we adoptedagpratic approach, im-
plementing everything including all details. The main Héraf implementation-
based evaluations is that this allows to answer importaestipns like:

e Does the protocol allow optimisations to run efficiently agihend servers ?
For shim6, we have proposed a simple way to identify peersdbanot
support the protocol, based on a simple check of the peedeeas. For
MPTCP, we have discussed current TCP optimisations and eyvdan be
mapped to a multipath version of TCP.

e What kind of protocol optimisations can be envisaged andt\alethe in-
volved tradeoffs ?For shim6 we have proposed a simple way to find low
delay paths, but this is at the cost of more control traffic. Nsge also
proposed that highly loaded servers drop shim6 contexte mggressively,
but again this may generate more shimé6 traffic as the clieatsattempt to
re-create the server state. MPTCP has tradeoffs in the anobwaquired
buffering. More buffering allows getting a higher througihm the presence
of paths with high bandwidth-delay products. But some patifigurations
may consume a huge amount of memory.

e Does the wheel really need to be reinventeilVhen a new protocol is de-
veloped to answer a particular problem, it is often the chaethe protocol

129
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designers reinvent existing functionalities for their n@etocol, hence tend-
ing to individual monolithic solutions instead of combinpbtocols. This
holds particularly true for shimé and MIPv6 where severakeschers have
tried to support mobility with shimé6 [RBKY08, DM08] or muttoming with
MIPv6 [WDT"09]. But even for the newer MPTCP proposal, several mech-
anisms are very similar to shim6 (e.g. address knowledgbamge and
connection identifier). Although those similar mechanidiorspath man-
agement solve problems that shim6 cannot solve (in paatidBv4 support
is not offered by shim6), shim6 can still be useful as a Patimadament
service for MPTCP in an IPv6 environment. More generally, praposed
a functional separation of the MPTCP functionality [FRHL], to allow it
running over any path management solution.

e Are there ambiguities in the protocol specification When evaluating a
new protocol, simulations require making simplifying as@tions that may
hide some design problems. For instance if the simulationgentrate on
congestion control, buffering problems may be ignored. dthtshim6 and
MPTCP, we have contributed to the improvement of the prdtspecifica-
tions.

Simulation-based studies are important as well and haverfately been con-
ducted by others [dBGMS07, RBR1, WRGH11], so that both shim6 and Multi-
path TCP benefit now already from a good set of evaluationscandolidations.
Obviously MPTCP in particular is still a work in progress ahere are several
important problems that still need to be solved. To conclinitethesis, we briefly
compare the MPTCP and shim6 proposals, and finally sumnihesesearch av-
enues that remain open.

MPTCP vs Shim6

At first sight, MPTCP could simply replace shim6, its funatidity being a su-
perset of shim6. It is capable of exchanging addresses hétlpéer, and failure
recovery is naturally handled by TCP retransmission mdsh@ Even better, the
failure recovery time by MPTCP ialwayslower than the shim6 failure recovery
time. Indeed, although it would be theoretically possiblednfigure low enough
timeout values for shimé to beat MPTCP, that would unavdidabply many use-
less REAP explorations because of erroneous failure datsct

Trying to find a winner

Beside capabilities that are shared by MPTCP and shim6, NFPdi€sents huge
advantages, the main one being frgallel multipathcapability, whereas shim6
has onlysequential multipatitapability. By using multiple paths in parallel, Mul-
tipath TCP can just get rid of a REAP-like protocol, as thehpatploration is
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permanent. Finally, MPTCP is designed to support both ImdlBv6, whereas
shimé6 is specialized for IPv6. An important consequenchas éven if a host has
only one IPv4 address and one IPv6 address, it is alreadyhowoled as far as
MPTCP is concerned. But shim6 does not lose everywhere. el$ goesent the
advantage of being located in the network layer. The layéerénce brings the
following consequences:

e Supported protocols: shim6 can offer multihoming support to any trans-
port layer protocol. MPTCP is limited to offering multihong support for
TCP applications. This is important as from the user petsgednstalling
MPTCP alone in an IPv6-only environment (this situationikelly to be-
come realistic in the near future) would result in partialui@ support. If
the user pays for multihoming, he probably expects that @sddDP flows
can failover across the providers. If shim6 is not used the TGP trans-
port flows are on their own to detect and recover from failufgss can be
implemented in the application layer however for UDP flowscduse any
source address can be used for each datagram. RTP multipasnaiso
being proposed at the IETF [SKQ1].

e Amount of state to maintain: one of the major drivers for the MPTCP
design is to require no change to existing applications.eBigting applica-
tions often opemany TCP connections to the same destination, in particular
web browsers. At the time of designing shim6, people wereeored about
the amount of state required by shim6 in high end serverss fativated
our proposal for fast identification of non-shim6 peers aggressive con-
text removal. But things are much worse with MPTCP: MPTCPtipligs
its amount of state by the number of TCP subflows, while shinaétains
onesmall state per host pair (unless special treatment is stegielike con-
text forking). For each single connection MPTCP maintaisegarate con-
nection identifier, it handles the security mechanisms,aadtes complete
sockets for each of the subflows. Even worse, the individueiets maintain
reordering queues, and a meta-socket (per MPTCP conngatiaintains a
meta-reordering queue that may grow large, especially énpilesence of
paths with high-delay-bandwidth products. This is the etz pay for the
parallel multipathcapability. It is important to understand that this is not
free in terms of memory consumption, as we have shown in ouf GHP
evaluation.

e Address management: shimé6 is slightly handicapped by the fact that it
needs to perform address rewriting, while MPTCP just needstdre the
correct addresses in the corresponding sockets, sincadidsone socket
per path. However this is counter-balanced by the fact tHaT ®P needs to
run a scheduler at the sending side and an intensive reogdaigorithm at
the receiving side.
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Or are they both losers ?

The title of this section is obviously exagerated. Howevem$& and MPTCP
share a drawback because of their similar way to handle sslelse In both shim6
and MPTCP, the application uses a stable address, whilectbaladdress in use
may change over time. In case of renumbering, it may happanatinost starts
using a newly acquired address, while another one still tteesame address at
the application layer, although the topological addres®ig different because of
the renumbering. This possibility lead the IETF shim6 WogkGroup to decide
thatshim6 does not support renumberingand a shim6 context must be dropped
when the ULID is no longer topologically owned by the endtho$his IETF
consensus has been reflected in Section 1.5 of [NB09]. Tolerent, one should
also assume thaflPTCP does not support renumbering it indeed shares the
exact same limitation as shim6, given an address can be tighd application
layer while being topologically assigned to another hdstpisubflow is using the
address.

By extension, we can conclude that MPTCP and shim6 do notostippobil-
ity, at least if they are usedlone Mobility indeed involves regularly losing the
ownership of an address, and get another one from anotheorket Mobility is
however possible if the application-layer address (thelJas$ per the shimé6 ter-
minology) is a stable address belonging to the home netwamks the case for
MipShim6

Recently a paper has been published about the use of MPTO# andin
building block of a mobility [RNBH11] architecture. Unfanmately it does not
take into account the address ownership problem just nmedio This problem
could however be solved probably by combining MPTCP with MolP, as we
did for shim6. Mobile IP would provide a stable, owned addifes the application
layer, and MPTCP could make use of care-of addresses whilehnm@r even use
several of them simultaneously). An initial architectuhattcombines MPTCP
with Mobile IP has been proposed by Bagnulo et al. in [BEB]. In the extreme
case, we can imagine that the home network itself could bembered, and the
home address reassigned. Supporting that case would éngolwg further into
the locator/identifier separation and use non-routealeletifiers in the application
layer.

Finally a related problem is the handling of referrals. B&tim6 and MPTCP
present a stable address to the application, while usinth@none for the routing.
A consequence is that the application may advertise thatestgaidress to a third-
party, thinking that it works while the corresponding pathactually broken. In
both cases the third-party won't be able to reach the refesiciiress, unless it is
able to retrieve the corresponding alternate locatorsktham a global mapping
system.
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Stop fighting and become good friends ?

We have described in Section 4.4.2 our work on combining 8hirith MPTCP.
They indeed share some functions regarding path managethahtve can avoid
duplicating by combining the two protocols:

e Address exchange:MPTCP uses TCP options to advertise the local set of
addresses to the peer. Shim6 uses the dedicated shim6qiroMdETCP
and shim6 share the new kinds of attacks that are made podsibhost
multihoming, and both define their own mechanisms. MulbpeEP is lim-
ited however in what it can do, partly by the limited lengthT&@P options,
partly by the time required to perform cryptographic opierst. Shim6 on
the other hand takes benefit from the long IPv6 addressesftend a bet-
ter protection thanks to HBA or CGA addresses. An exampldtatla that
is possible only with MPTCP is when an attacker can listerhé&ofirst few
packets of a communication. With MPTCP, the attacker wil akthe keys
and be able to impersonate one or both of the involved hosith $him6
this is not possible because a public/private key pair il useverify the
exchanged addresses. One way to enhance MPTCP with stkien6dcu-
rity would be to integrate the HBA/CGA mechanisms into MPTRIR such
mechanisms would be available only when the initial subfleasulPv6 ad-
dresses (additional subflows can use IPv4 or IPv6, given aneyauthenti-
cated with the key stored in the initial address).

e Context identification: MPTCP uses a token to find the connection corre-
sponding to a new join requedt®_JO N). There is one token per MPTCP
connection. With shim6, the equivalent mechanism is a corag that iden-
tifies an association between two hosts. The MPTCP tokersredtt used
only in the SYN exchange, as further packets are attachédmktodrrect con-
nection thanks to the 5-tuple. Shimé6 cannot use the 5-tupleia located
in the network layer. The context tag is thus included in atiets unless
the locators in use are the ULIDs. When shimé6 is used as patiagea for
MPTCP, the MPTCP address exchange options and the tokerincply be
ignored.

Shim6 seems to be a good candidate for MPTCP path manageRmmever
it is not currently designed to support IPv4, which is prdipabshowstopper, at
least until IPv6 becomes largely dominfint

Still, shim6 does offer multihoming support for any trangdayer protocol,
and it can be used for protocols other than TCP. MPTCP codd #tcess both
IPv4 and IPv6 networks, and other transport protocols cbelgefit from multi-

8A possible extension to shimé would be allow IPv4 addressestarnate locators. The Upper
Layer IDentifier must be an IPv6 address, however, as its 1t88ke required by the HBA/CGA
security mechanisms. It would also be necessary to defineahdncoding for the shim6 extension
header, used to attach a packet to the correct shim6 context.
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homing support over the IPv6 topology (IPv4 multihoming son being usually
handled by the routing system anyway).

Open perspectives

Our work has opened interesting research opportunities.ofAbur implemen-
tations CinShim§ MipShimg MPTCP over shim6, Linux MPTCP) are publicly
available and can certainly be further improved. In paldéicthey can be used to
further understand how to improve the shim6 and MPTCP paigoc

In this thesis we have presented a lot of lab measurementdh dBim6 and
MPTCP would benefit from experiments across the Interngiaiicular to study
their deployability, as middleboxes of all kinds are beimgpldyed on the Internet
and may filter or transform unknown protocols.

We have mentioned in the previous section the problem ofrdaauing, faced
by both MPTCP and shim6. Currently the most obvious way teesthis prob-
lem is to go further into the locator/identifier separatioimg@ple: wheras shim6
and MPTCP use a particular locator as identifier, other moiatsuch as HIP are
based on a non-routeable identifier and can thus naturallyvsia rehoming event.
These approaches are however a greater architecturalebangpared to the cur-
rent Internet and their advantages come at the cost of mffieuttideployments.

It is interesting to consider how shim6 and MPTCP can be adiajat handle
mobility as well. We have proposed a solution for shitiShim6 but it has only
be shortly evaluated, and the implementation is still agiyge. Likewise, efforts
from other researchers lead to an interesting proposal ébilenMPTCP, although
we do not support the idea of using an arbitrary address impipdication layer.
Hence, a modification of MPTCP that integrates Mobile IP widag an interesting
research topic.

From an implementation viewpoint, MPTCP still has sevemgbartant chal-
lenges, as mentioned in Section 4.6. In particular it shbeldptimised for SMP
systems and NICs with flow-to-core affinity. The TCP fasthpstiould be adapted
in an equivalent “MPTCP fast path”. An efficient algorithmositd be devised for
handling reordering at the connection level, as the queaes sinvolved are much
larger compared to regular TCP.

Finally, we have used our MPTCP implementation to evaluatgototocol for
the use case of data-centre deployments. MPTCP is a veryigingnsolution, and
many other use cases can be evaluated. An example is thefaasbite devices
with multiple interfaces, where mobile operators coulepifinproved service with
MPTCP.
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