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est monâme en moi. Mets ton es-
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Preamble

Since the early days of the Internet, efforts have been undertaken to ensure the reli-
ability of the communications [Cla88]. Survivability in case of failure was indeed
a major design priority of the Internet, and the choice of a packet-switched archi-
tecture instead of a circuit-switched architecture was a good basis to support that
goal. Defining the Internet as a set of gateways that can forward datagrams without
keeping any state allowed paths through the Internet to be changed at will, without
needing to update the connection state in the communicatinghosts in case of path
change.

Current research is still ongoing to improve the resilienceof networks, both in
the fields of inter-domain routing [BFF07] and intra-domainrouting [FB07]. But
an obvious requirement in any fault-tolerant system is to duplicate the resources, so
that the sytem can fallback to the backup resources when the main ones fail. In the
Internet the resources are links and routers, and duplicating them only for backup
purposes would be expensive. To ensure the profitability of their investments, In-
ternet operators use various Traffic Engineering techniques [L+06] that allow the
traffic load to be spread across the available links.

Besides, addressing has increasingly become a problem overrecent years. We
have now reached a point where the current address pool (for the Internet Protocol
version 4) is almost fully depleted [NRO10]. Efforts have been pursued to mitigate
the problem, by better dividing the address space [FL06] andsharing one address
amongst several machines [SE01]. Although this has been useful for many years, it
is not enough anymore. Fortunately a new version of the Internet Protocol (IP ver-
sion 6) has been designed, and is now in the deployment phase.IPv6 uses 128-bit
long addresses, which solves the address exhaustion problem, but also brings the
risk for routing tables sizes to increase exponentially, ifthe address allocation pol-
icy is not adapted consequently. In order to achieve efficient IPv6 routing, alloca-
tion authorities try to enforce a hierarchical allocation model [CSP+11]. However,
an interesting side-effect of this hierarchical allocation model is that the end-hosts,
which used to receive in most cases one IPv4 address only, cannow be given sev-
eral IPv6 addresses if their provider is multihomed (that is, connected to more than
one upstream provider)1. In that case the end-host can use its multiple addresses to

1Strictly speaking, this is also true for IPv4, but it is expected to happen more often in the IPv6
case due to the larger available address pool. Moreover, IPv4 stacks are usually not prepared to
handle efficiently multiple IPv4 addresses
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influence the path taken to reach a peer. A particular case of multihoming is when
the host itself uses two interfaces, with one address per interface. In summary, with
IPv6, the path control moves from being fully controlled by the network to being
partly controlled by the end-hosts. An important consequence is that part of the
failure tolerance problem described above must now be handled by the end-host.

After having evaluated many alternatives [dB07, Hus05] to solving the multi-
homing problem in IPv6, the IETF chartered theshim6working group to develop
a host-based IPv6 multihoming solution [NB09] that operates at the network layer.
That solution has the advantage of being deployable withoutmodifying the core of
the Internet. The applications inside the end-hosts also donot need to be upgraded,
as everything is managed transparently inside the Operating System.

Finally, several proposals chose to solve the multihoming problem in the trans-
port layer [MK01, HS02, ROA05, ZLK04]. They showed that adding multipath
capability to TCP allows to achieveparallel use of the available linksfor the same
TCP flow. This cannot be done with shim6 because the TCP connections would
badly react to the incurred reordering. The transport layerapproach to multipath
support can hence potentially multiply the experienced goodput by the number of
links. Moreover, [WHB08, WRGH11] mention yet another benefit of transport-
level multipath: if used at large scale in the Internet, or more likely in the short
term, if used within a smaller scale network (e.g. a data-centre [RPB+10]), it can
achieve an improved resource utilisation, compared to the techniques deployed to-
day. Such changes to the TCP stack are ambitious however, andnone of the afore-
mentioned proposals have been implemented in practice. TheSCTP [SXM+00]
protocol, by its design, allows easier addition of multipath capability, and this has
indeed been implemented in an extension called SCTP-CMT [IAS06]. But SCTP
suffers from deployment problems and is not widely supported by current appli-
cations. Recently, the IETF chartered the MPTCP working group to develop a
solution that would be readily deployable in the current Internet, and would bring
immediate benefit.

Thesis statement:Modern multihoming protocols offer improve-
ments to the end-user experience despite an increased complexity
of the end-host networking stack, and they are implementable in
current operating systems in a modular way.

The contributions of this thesis belong to both the shim6 andMPTCP land-
scapes, studying and improving multihoming in the network and transport layers.
The main goal of this thesis is to understand the implications of new multi-
homing protocols on the end-hosts. We examine these implications from three
angles:

• Usability: To what extent is a new solution actually useable from the end-
user point of view ? In particular some solutions require complex security
mechanisms that should be hidden to the user, yet protectingefficiently the
communications. Another usability aspect is to examine howefficiently a



Preamble iii

solution solves a particular problem. For example, how wellcan a mul-
tihoming protocol solve a mobility problem ? Under what conditions can
Multipath TCP improve data-centre communications ?

• Performance: New protocols should use a limited amount of system mem-
ory and CPU cycles. We also want to ensure that the user experience is ac-
tually improved (e.g. short failure recovery time, higher experienced good-
puts).

• Integration with other mechanisms: This aspect encompasses both proto-
col and system design. From a protocol point of view, we note that many
protocols share functionalities, and would benefit from being combined, so
that the combined solution can do more at a lower cost. The same holds for
Operating System design. The success of a solution does not only depend
on its advantages or integration to existing networks. It also depends on its
integration to existing Operating Systems. We develop architectures that al-
low reusing existing Linux frameworks, but also that can be easily extended
to support future protocols.

We use an experimental approach, through real Linux kernel implementations,
to study, validate and improve the behaviour of shim6 and MPTCP. We also con-
nect shim6 to a mobility protocol, MIPv6, continuing and extending the work by
Bagnulo et al. [BGMA07]. In the context of MPTCP, we propose an architecture
that decouples the MPTCP machinery (path selection, congestion control) from the
technologies used to detect and manage the available paths across a network. We
believe that such an architecture will facilitate the future evolutions of MPTCP to
new path management protocols. Our implementations of shim6, MipShim6(its
mobility-capable companion), and MPTCP are, to our knowledge, the first and
most complete implementations available in an Operating System kernel.
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Road map

This thesis is organized in five Chapters.Chapter 1 introduces the building blocks
of our work: it presents in particular the concepts of multihoming, mobility as they
are currently used today and the IETF proposals that we studyand improve in this
thesis: MPTCP and shim6.

Chapter 2 goes more in depth into the shim6 protocol. It presents our imple-
mentation and evaluation for shim6 and the associated path exploration protocol,
REAP. We also show how shim6 can be combined with Mobile IPv6 to enhance it
with mobility support.

MPTCP is still a recent protocol, and no general overview hasbeen written yet.
We provide one inChapter 3.

In Chapter 4, we present the architectural challenges for a Multipath TCP
implementation in detail, taking our Linux implementationas a starting point, but
emphasising questions that any system implementer needs tosolve.

In Chapter 5, we evaluate the performance of MPTCP, based on lab measure-
ments. We also present how MPTCP can bring significant benefits in data-centre
environments, and present measurement results for this usecase.

We conclude the thesis by comparing the two approaches, shim6 and MPTCP,
and provide perspectives for future work.

Bibliographic Notes

Most of the work presented in this thesis appeared in previously published confer-
ence proceedings and journals. The list of related publications is shown hereafter:
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• S. Barré and O. Bonaventure. Improved Path Exploration in shim6-based
Multihoming. In SIGCOMM Workshop ”IPv6 and the Future of the Inter-
net”, Kyoto, Japan, August 2007. ACM
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Chapter 1

Background

1.1 Multihoming

The core of the Internet is managed by many different stakeholders. They all share
the goal of being able to reach each other with maximum efficiency, reliability, and
with minimum cost. The glue which makes this possible is theBorder Gateway
Protocol (BGP) [RLH06]. In BGP terminology, the stakeholders are called Au-
tonomous Systems. Autonomous Systems (ASes) are defined as a set of network
resources (routers, switches, links, . . . ), that share a single routing policy. Each
Autonomous system is allocated a number, called the AS number. BGP allows
ASes to offer transit services to others (for money), or establish agreements of free
mutual transit1 (this is called apeering business relationship[Gao01]). Peering
refers to an AS relationship where the partners agree to exchange traffic from their
respective customers free of charge. If, on the other hand, an AS (provider) is
paid to offer a transit service to another AS (customer), theagreement is referred
to as acustomer-provider relationship[Gao01]. A simplified Internet is shown in
Figure 1.1. The figure shows that some Autonomous Systems (AS6,7,8) provide
Internet connectivity to their customers (C1,C2,C3 in the example). They are lo-
cated at the edge of the Internet and are calledstub ASes. On the other hand, some
ASes provide only transport services to other ASes. They arelocated at the core
of the Internet, and are calledtransit ASes. In this thesis, we will often use the
term ISP (Internet Service Provider), which refers to an entity (e.g. a stub AS or a
transit AS) that provides Internet connectivity to customers (e.g. end-users or other
ISPs) [Nor01].

A customer will typically be influenced, in its ISP choice, bythe price and the
quality (reliability, performance) of the offered Internet connectivity. This require-
ments translates, for the ISPs, into an attempt to minimize costs and maximize the
reliability and efficiency of the data transfers. In Figure 1.1, AS6 is vulnerable
to a failure in AS3. Even if several physical links connect AS3 to AS6, a simple

1By free mutual transit, it is meant that one partner can freely exchange traffic withthe other
partner or its customers, but not send or receive data from the partner’s providers.

1
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Figure 1.1: Example AS interconnection

configuration error in AS3 could disconnect AS6. In contrast, if AS7 experienced
a similar failure to AS3, it can simply redirect its traffic toAS4.

When possible, Autonomous Systems try to negotiate shared cost peerings, like
AS4 and AS5. AS4 needs to pay AS1 for the connectivity betweenAS7 and AS6
(although in this case AS7 will probably use AS4 for reachingAS6 only in case of
failure of the AS7-AS3 link). But it can reach AS8 for free (The path AS4-AS1-
AS2-AS5-AS8 would have been possible as well, but it is obviously not preferred).
Shared cost peerings are possible when the involved ASes provide a similar level
of connectivity to other ASes.

In the past, end-users used to be connected to one provider only (e.g. C1 in
Figure 1.1). This is changing, and multihoming tends to be present everywhere.
Smart-phones are now equipped with 3G and WiFi interfaces. Many companies
and even individuals now routinely buy Internet connectivity from two providers
(e.g. C3), to improve the resilience of their connection, because a loss of connec-
tivity now becomes increasingly costly for them. Data-centres are designed with
many redundant paths, to achieve load balancing and failureresilience. Finally,
the core of the Internet is heavily redundant and measurements have shown that
per-flow load balancing is a widely used technique [Aug10]. We will come back to
the case of C3 later in this chapter.

Currently, most of the end-users still choose only one Internet Service Provider
(ISP) and rely on the provider to ensure failure resilience.For example C2 is only
connected to AS7, which in turn is connected to AS3 and AS4. AS7 is said to be
multihomed. In general,an AS is said to be multihomed if it can provide con-
nectivity to its customers through more than one upstream provider [de 05].
By extension, in this thesis we will as well qualify C3-like hosts as multihomed.
That is, we will call an end-host multihomed if it has Internet connectivity through
more than one ISP. In contrast C2 is not considered as multihomed.

1.2 Multihoming in IP version 4

BGP is the protocol that translates business relationshipsinto network connectivity.
The Internet Protocol (IP) [Pos81a], is the protocol that transports the data based
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Figure 1.2: The layered model for the Internet data plane

on the reachability information provided by BGP. In other words, BGP forms part
of the control plane of the Internet, while IP forms part of the data plane. The data
plane, for Internet communications, is organized as shown in Figure 1.2 [ISO94]2.
The layers are interchangeably referenced by their name or layer number. Layers
1 and 2 are related to access mediums (WiFi, 3G, Ethernet, . . .). Layer 3 is the
network layer, and provides unreliable packet delivery between two end-hosts3,
anywhere in the Internet. Today, the Internet Protocol (IP)is the most widely used
layer 3 technology. Layer 4 relies on layer 3 to find the way to apeer, identified
by an address (in general, layern relies on the services provided by layern − 1).
While the job of the network layer is to find a host in the Internet, the job of the
transport layer is to address an application (referenced bya port number) inside the
destination. It can also provide a reliable, in order delivery service to the appli-
cation layer. For instance, the User Datagram Protocol (UDP) [Pos80] guarantees
the integrity of the transmitted data (using a checksum), but not the ordering or
the reliability. The Transmission Control Protocol [Pos81b], in contrast, offers a
stream-based interface to the application. It guarantees the integrity of data (using
checksums like UDP), the ordering through sequence numbers, and the reliabil-
ity by using timers and retransmitting upon loss. Additionnally, TCP is able to
dynamically adapt its sending rate to the capacity of the links and the congestion
levels, thanks to a congestion control mechanism. Today, more than95% of the
total Internet traffic is driven by TCP or UDP [LIJM+10]. Finally the application
layer holds specific protocols tuned to fit the needs of any particular application
(e.g., http for web pages, ftp for file transfers, . . . ).

IP multihoming with Provider Independent address blocks : IPv4 addresses
are 32-bits long. An Autonomous System can request to be assigned an address
block by itsRegional Internet Registry (RIR)(RIPE in Europe). If, in the example
of Figure 1.1, AS 7 receives the prefix C/24, it will announce it to its two up-
stream providers AS 3 and AS 4, through BGP. This is shown in Figure 1.3. The
announcement is then propagated in the Internet until the world knows that AS 7

2The original OSI model defines two additional layers betweentransport and application (resp.
the Session and Presentation layers), but we can safely ignore them in the context of this thesis.

3Unreliable packet deliverymeans that a packet may be lost, duplicated or modified on its way to
the destination.
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can be reached through AS 3 or AS 4. Note, however, that part ofthe Internet
will know only one or the other. For example AS 1 will receive aBGP advertise-
ment for prefixC/24 from both AS 3 and AS 4. It will then run the BGP decision
algorithm [RLH06, Section 9.1] and only advertise to its neighbours one of the
available paths, considered best by the algorithm.

Multihoming with Provider Independent (PI) address blocksis no longer an
appropriate technique for two reasons. First, the IPv4 address space is now almost
depleted [NRO10], so it is now almost impossible to receive anew PI prefix from
the RIR. Second, the use of PI prefixes (as opposed to ProviderAggregatable (PA)
prefixes) does not allow prefix aggregation, and hence contributes to the growth of
the Internet routing tables [ALD+05].

Figure 1.3: Multihoming with a PI
address block

Figure 1.4: Multihoming with a PA
address block

IP multihoming with Provider Aggregatable addresses : In contrast to Provi-
der Independent addresses, which are received from the RIR,Provider Aggregat-
able (PA) addresses are received from a provider, as illustrated in Figure 1.4. In that
figure, AS 7 receives an address block,A.x/24 from provider ISP1 (AS 3). This
is a subset of the ISP1 address block (A/16). This mitigates the address depletion
problem mentioned above (although ISP1 neither has an infinite pool of addresses,
and is eventually dependent on the RIR to get an address block). Besides, PA ad-
dress allocation allows for better prefix aggregation, hence smaller Internet routing
tables. ISP 1 needs to only advertise one prefix (A/16) instead of two in the PI
case (A/16 and propagateC/24).

Multihoming somehow breaks this advantage, however. When asite is multi-
homed, it does not want to ask for an IPv4 prefix fromeachof its providers, because
addresses are scarce (hence expensive). Also, current end-host networking stacks
are not prepared to efficiently deal with multiple allocatedIPv4 addresses. A com-
mon IPv4 multihoming technique, for PA-addressed sites, isthen to advertise the
PA prefix to each peer, just as if it were a PI address block. Unfortunately this con-
tributes to the growth of the routing tables because, in the example of Figure 1.4,
ISP2 still needs to propagate theA.x/24 prefix. It can also happen that the PA
prefix is too long (e.g. longer than a /24), and filtered by the transit ASes. In that
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case the multihomed site loses part of the benefits it could otherwise expect from
multihoming [ALD+05]. Finally, the customer needs to renumber4 if it wants to
change its main provider (ISP1 in the example).

In both the PI and PA IPv4 multihoming schemes, the multihomed site needs to
run BGP and have an AS number. This service is thus not available to home users
or small networks.

1.3 The Internet Protocol Version 6

The Internet Protocol version 4 (still most widely in use today) suffers from sev-
eral problems. The main problem it that its address length, of 32 bits, is too
short [NRO10]. Despite several efforts to make more efficient use of the address
pool, like Classless Inter-Domain Routing (CIDR) [FL06] orNetwork Address
Translation [SE01] it has effectively depleted. But increasing the address length is
a major change in the protocol, and the IPv6 [DH98] designersdecided to rethink
other aspects of the protocol, that we briefly describe in thefirst subsection. We
then describe several aspects of IPv6 that matter to properly understand this thesis.

1.3.1 IPv6: core goals

Size of the routing tables: The previous section explains that the IPv4 PI ad-
dressing scheme favours scattered address allocations, which in turn makes aggre-
gation by the routers located in the core of the Internet impossible. Multihoming
makes things even worse by injecting small prefixes in the routing tables. One of
the original intentions, in the IPv6 design, was to enforce ahierarchical allocation
of addresses, hence forcing the PA allocation scheme in mostcases [AAN07].

Unfortunately PA allocation has also drawbacks. In particular, if a PA-addres-
sed client wants to change its provider, it will need to renumber its site. Although
research has been conducted to facilitate IPv6 renumbering[LB09], companies
have not been convinced about the benefits of PA allocations,and are now asking
for PI assignments [Fer11]. Recent revisions of IPv6 allocation policies allow PI
allocations, although PA remains the preferred allocationmodel [CSP+11].

Packet processing in the core: The idea was to allow the heavily loaded core
of the Internet to concentrate on its core business: packet forwarding. This can be
achieved by pushing state to the edges. To facilitate packetprocessing in routers,
the IPv6 header has been simplified [DH98], and several aspects of the protocol
have been removed from the main header and replaced by options located in subse-
quent headers. For example, fragmentation can now be done only in the end-hosts,
while routers were allowed to fragment in IPv4.

4renumberingis the process of changing the address of each host inside a network, due to the
allocated prefix having changed. This usually happens when the prefix is allocated by the provider,
and the network administrator decides to change to a different provider.
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No more NATs: NATs were initially designed to solve the address allocation
problem. With IPv6, this problem is solved as addresses are now four times longer
(i.e. four times more bits). Moreover, NATs were seen as dirty network hacks, and
it was thought that they should be removed because they go against the end-to-end
principle. On the other hand, operators like them, because they “accidentally” have
an interesting property from the “security” viewpoint: NATs allow hiding the net-
work topology and services located behind the NAT. They can also be used to facil-
itate multihoming and avoid renumbering [TZL10]. Solutions have been developed
to provide the side-benefits of NATs [dVHD+07] without having the drawbacks,
but they have yet to convince the users, who often demonstrate an important iner-
tia in the technology choices. In RFC5902 [TZL10] the IAB hassummarised the
pros and cons of IPv6 Network Address Translation, without taking a clear posi-
tion about whether or not it should be used. A hybrid solutionhas been proposed
in [WB11], where only prefix translation is performed. That solution mainly facili-
tates IPv6 multihoming, but may still break communicationsthat perform referrals
(that is, exchanging an IPv6 address in the data flow).

Automatic configuration: With IP version 4, an end-host must configure its ad-
dresses itself. Although protocols (the most common one being DHCP [Dro97])
and software allow to automate the process to some extent, itremains common
for a user to manipulate IPv4 addresses. A simple example is the connection of
two laptops through an Ethernet cable. In that case, there isno DHCP server in
place, and the users need to agree on the addresses they will use, and configure
them manually. With IPv6, a full address auto-configurationmechanism has been
defined [TNJ07], that allows hosts to configure addresses without any help from a
user or DHCP. The auto-configuration mechanism relies on aNeighbour Discovery
protocol [NNSS07], that allows discovering the other hosts in the network (hence
replacing the ARP protocol used in IPv4), as well as the available routers (to auto-
configure the routing table). Later, an auto-configuration mechanism has also been
defined for IPv4 [CAG05], but it is limited to defining link-local addresses. Com-
pared to DHCP, IPv6 address auto-configuration has the advantage of requiring no
state in the network, while DHCP needs to maintain a pool of available addresses.
Still, there exists an IPv6 version of DHCP [DBV+03], which is useful in cases
where there is a desire to centrally manage addresses, but also to easily obtain
configuration parameters such as DNS or NTP servers, or to register DNS host
names. For an in-depth comparison between IPv6 Neighbour Discovery and the
corresponding mechanisms in IPv4, see [NNSS07, Section 3.1].

The IPv6 autoconfiguration process is described in Section 1.3.3.

Improved mobility, multihoming and security: Support for mobility has been
added to IPv4 [Per10] long after IPv4 itself had been designed. This created sev-
eral constraints that limited the flexibility and efficiencyof the Mobile IP archi-
tecture [Ciz05]. In particular it was not possible to bidirectionnally communicate
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without using tunnelling to a middlebox (called the Home Agent), which increases
the distance between hosts and inserts a single point of failure in the path. In IPv6,
Mobile IP is fully integrated in the protocol [JPA04], and includes aRouting Op-
timisationservice, that provides the option to communicate directly between two
hosts, without passing through a Home Agent5.

IPv6 also intended to improve the way multihoming was performed. Sec-
tion 1.2 describes the current IPv4 multihoming practice, and emphasises that it
contributes to a size increase for the routing tables in the core of the Internet, in
addition to requiring the multihomed network to own an AS number. The most de-
ployable IPv6 multihoming mechanism is probably shim6 [NB09], although other
mechanisms have been proposed that generally require deeper changes of the Inter-
net architecture (e.g. HIP [MNJH08], ILNP [Atk11], LISP [FFML11]). The shim6
protocol is described in more detail in Section 1.4.

At the IP layer (both v4 and v6), the IPsec protocol [KS05] provides authenti-
cation and encryption services for IP communications. In IPv4 this was an optional
addition to the protocol, but it has been made a requirement for any IPv6 imple-
mentation [Lou06, Section 8.1] (it has been recently proposed, however, to modify
this to a recommendation instead of a requirement [JLN11]).

1.3.2 IPv6 addressing scheme

Notation: As IPv6 addresses are 128-bits long, it has been necessary todefine a
different notation, compared to IPv4. An IPv6 address is composed of 8 groups of
4 hexadecimal digits, separated by a colon, as illustrated in the following example:
1234:0000:0000:0000:5678:9ABC:0000:0023. As this is very long, a
short notation has been defined. First, a set of consecutive zeros can be omitted
in the writing. However only one such set can be omitted, to avoid ambiguities.
Second, in any four-digits group, leading zeros can be omitted as well. Applying
this rule, the above address can also be written:1234::5678:9ABC:0:23.
Prefixes are written the same as in IPv4, e.g.1234::/16.

Special addresses: Just like in IPv4, some addresses or prefixes are reserved for
special purposes:

• :: means “no address”. It can be used only in the source field of a packet
and is useful in the autoconfiguration process (when the local address is not
known yet).

• ::1 is the loopback address (as was127.0.0.1 in IPv4).

5Routing Optimisation has also been proposed for IPv4 [PJ01], but it never acquired the RFC
status, probably due to the requirement in IPv4 to avoid changing the implementation of the corre-
spondent node, for deployment reasons [Ciz05]. IPv6 does not suffer from that limitation because
mobility support has been part of the IPv6 design from the beginning.
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Figure 1.5: IPv6 global unicast address format

• link-local addresses: To be used only for communications with directly con-
nected hosts. Their prefix isFE80::/64.

• Other special types:FF00::/8 is reserved for multicast.::/96 are used
for transition from IPv4 to IPv6 (IPv4-compatible IPv6 addresses [GN00]).
They are useful to traverse non-IPv6 network sections (by tunnelling).
::FFFF:0:0/96 (IPv4-mapped IPv6 addresses) is also for transition from
IPv4 but helps communicating with non-IPv6 end-hosts [HD06].
FC00::/7 (Unique Local Addresses or ULAs) [HH05] are the equivalent
of IPv4 private addresses.

Global unicast addresses: They are the equivalent of the IPv4 public, routable
addresses and are taken from the prefix2000::/3 [HD06]. A global unicast
address is made up of three fields, as shown in Figure 1.5. The first is a global
routing prefix, encoded in 48 bits. Then comes the subnet prefix, 16 bits, and
finally an interface identifier encoded in 64 bits following the modified-EUI-64
specification [HD06]. This number references an interface rather than a machine.
Thus, each interface has a different address. An interface may otherwise have
multiple addresses (e.g. link-local and global unicast). The identifier is generally
calculated from the Layer 2 address, such as the MAC address.As this address is
encoded in 48 bits, a mechanism is set to convert it to the EUI-64 format [Cra98].
Sometimes it is not possible to use the link-layer address togenerate the IPv6
identifier, or it is not desired for confidentiality reasons.In this case it is possible
to define an EUI-64, the uniqueness of which is only guaranteed locally, the only
constraint being that each IPv6 address must be unique. Hence, an IPv6 identifier
need only be unique within the local sub-network (since the 64-bits prefix provides
global uniqueness).

Two bits of an EUI-64 identifier have a special meaning:

• Bit ’u’ (Universal / Local): when set to 1, it indicates that the identifier is
globally unique, otherwise its uniqueness is guaranteed only locally.

• Bit ’g’ (Individual / group): indicates if the identifier corresponds to a group.
This means that the address formed from such an identifier is multicast.

These bits are respectively the seventh and eighth bit from the left of the identifier.



1.3. The Internet Protocol Version 6 9

Figure 1.6: Automatic address allocation

1.3.3 Neighbour discovery

Figure 1.6 shows an example of automatic address allocationin IPv6, using the
Neighbour Discovery Protocol [NNSS07]. The allocation happens in three steps
(numbered in the picture):

1. Router R periodically advertises all prefixes that can be used on the link. In
this case it is the prefix1000:10:123::0/64. Alice can trigger the send-
ing of this message (Router Advertisement) by sending a Router Sollicitation
to theall routersmulticast address (FF02::2).

2. Alice generates an interface identifier, that is, the64 least significant bits
of the address. Several methods exist to generate this identifier, see e.g.
[Cra98, Aur05, ND01]. Since the interface identifier is generated locally,
we must now check its uniqueness (on the link only, because the prefix ad-
vertised by the router ensures uniqueness at the Internet level). This step
(number 2 in Figure 1.6), is handled by the DAD algorithm (Duplicate Ad-
dress Detection [TNJ07]): Alice asks if someone already owns the address
she wants to take.

3. Since nobody answered, she stores it and can use it.

The above paragraph only illustrates a portion of the Neighbour Discovery pro-
tocol, but it can actually do more. Link local addresses allow hosts to communicate
locally even in the absence of a router. They are also generated as shown in Fig-
ure 1.6, but starting at step 2 and using the prefixFE80::/64. Finally, Neighbour
Discovery allows nodes to monitor the reachability of others hosts and routers, and
find alternate routers when the current one stops being reachable.

Security in Neighbour Discovery: The principle explained above works well if
one has confidence in people who connect to the network. It’s less and less the
case today, notably due to the wide development of wireless hotspots in airports,
motorway service stations etc. If we consider Figure 1.6, weobserve that a mali-
cious user may intervene in the Duplicate Address Detectionalgorithm, answering
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Figure 1.7: CGA Address generation

all DAD queries by claiming he possesses any address. Thus every tentative ad-
dress is immediately considered as invalid, and Alice is unable to connect. Other
examples of possible attacks to Neighbour Discovery can be found in [AAK+02].
The obvious solution to the problem is to sign the Neighbour Discovery protocol
messages. This is what is proposed in [AKZN05], which definesSEND (Secure
Neighbour Discovery). Messages now include a signature andpublic key to verify
the message. If we take the example above, where Alice is trying to acquire address
A, and assuming Bob (whose machine is not shown in the drawing)actually owns
this address, it will send a NA (Neighbour Advertisement) message indicating that
he already holds the address. His message is signed and the public key is attached.
It is observed that the public key is used here to prove, not that the issuer is Bob, but
rather that the issuer is the holder of the address. Therefore, rather than relying on
a certificate mechanism, it is enough to bind the public key toBob’s address, thus
defining a new type of address. This is the main idea behind Cryptographically
Generated Addresses (CGAs) [Aur05], which are covered in the next subsection.

1.3.4 Cryptographically Generated Addresses

IPv6 CGAs (Cryptographically Generated Addresses) differfrom others only by
the 64-bit long interface identifier. As mentioned in Section 1.3.1, this interface
identifier can be calculated from the Layer 2 address (e.g. MAC) or generated by
another process. The goal here is to bind an address to a public key. For this, a
device wishing to use an address will first generate a public/private key pair. The
public key is then used as input to calculate a hash, which provides a result of 59
bits. These 59 bits, associated with bits u and g (described in Section 1.3.1) and
the three bits of the security parameter (described below) form the 64-bit interface
identifiers (see Figure 1.5). The combination of these 64 bits with the 64 bits prefix
is the final useable address.

Basing the security on a 59-bits hash is obviously too weak: abrute force attack
could crack the hash in259 iterations. The security (sec) parameter is designed to
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overcome this weakness. Depending on the desired security level, thesec param-
eter can take a value ranging from0 to 7 in order toartificially extend the length
of the hash bysec ∗ 16 bits. The principle, since only 59 bits are included in the
address, is to force one of its generation parameters (modifier, see Figure 1.7), so
that the calculation of a hash of this modifier gives 0. Unfortunately, the legiti-
mate address generator must check this constraint in a bruteforce manner (216∗sec

iterations): This is to increment the modifier and recalculate the left-hand hash of
Figure 1.7, until the16 ∗ sec most significant bits are zero. This additional cost is
acceptable since the calculation is made only once per address, andneeds not be
done by the verifieras the modifier is sent along with the verification parameters.

In summary, the price of a calculation is of216∗sec iterations for the creator
of the address. It requires, for an attacker to be successful, to make a brute force
calculation of259+16∗sec iterations. An attacker could also create a dictionary of
pre-calculated public/private keypairs, and try to scan networks for a known ad-
dress. To complicate this type of attack, the subnet prefix isincluded in the hash
computation. This forces an attacker to build one dictionary per subnet (as the
hash-result, hence the address, becomes subnet-dependent). The CGA generation
algorithm makes collisions improbable but not impossible.The DAD (Duplicate
Address Detection) algorithm is still needed to check if an address is already as-
signed. The technique of CGA address generation takes into account the possibility
of collisions, and provides a “collision count”. It is incremented each time some-
one claims to already own the address, thus providing a new address directly (in
one iteration, since only the right-hand hash of Figure 1.7 needs to be recalculated).
Note that this parameter can not exceed 2, since the collision count would other-
wise facilitate the work of an attacker (who could also try several addresses for the
same price) and experiencing a number of collisions above three certainly indicates
an anomaly [Aur05].

Finally, the CGA designers have anticipated that one could want to link some-
thing else than a public key to an address. For this purpose, an extension field
can be attached as an input to calculate the hash. We describethe use of such an
extension in Section 2.2.1.

If we come back to the address allocation example (Figure 1.6), adapting it
so that it uses CGA addresses, we get the following behaviour(standardized as
SEcure Neighbour Discovery[AKZN05]):

• Alice gets the prefix1000:10:123::/64 from router R, and uses it to
generate a CGA address. The generated identifier iscga a, which leads,
by concatenating the prefix and identifier, to the construction of the address
1000:10:123:0:cga a.

• Alice sends a Neighbour Sollicitation to ask if someone already has this ad-
dress. As Alice does not assert anything, but merely asking for information,
it is pointless to sign.

• If a normal user has the same address, he also owns a private key (not neces-
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sarily the same as the one that Alice uses) allowing him to sign a NA message
(Neighbour Advertisement). The NA message contains not only the address,
but also a signature made with the private key associated with the public key
that was used to generate the address. All generation parameters are included
in the message (i.e. the public key, collision count, modifier and extension
field). Alice can verify the signatureand the binding between the public
key and the address. This verifies that the NA originator actually owns the
address already, and Alice can increment the collision count to get a new
address.

• If an attacker wants to claim the ownership of the address, then he must sign
his message with a certain private key. He must find a private key whose
associated public key provides the same address according to the generation
algorithm described above. This will cost259+16∗sec iterations.

A more detailed description of CGA addresses and the SEND protocol can be
found in [Aur03] and [AAK+02], respectively.

1.4 Shim6 host-based IPv6 multihoming

Before delving into the details of shim6, consider that there are at least two sce-
narios that can provide multihoming. The first type is when a single host has two
or more IPv6 addresses assigned to two or more layer-2 interfaces connected to
separate networks. This can be the case of a laptop having both WiFi and 3G net-
work interfaces, or servers having multiple Ethernet interfaces. In these cases, the
multihomed host would like to either be able to efficiently use both interfaces si-
multaneously or use a primary interface, with automatic redirection of all packets
over another interface upon failure of the primary one.

The second type of multihoming occurs when a campus, corporate or ISP net-
work is attached to two different service providers. In sucha network, each host
gets an address from each service provider, and is accessible over both. A host in
such a multihomed network can select, for itself, the provider to use for a given
flow, through appropriate selection of the source address6. Shim6 was designed
with the latter form of multihoming in mind but also supportsthe former.

As described previously, in today’s IPv4 Internet, when a network is multi-
homed, it receives one IPv4 address range, and uses BGP to advertise its IPv4
prefix to its upstream providers which, in turn, advertise the network to the global
Internet. This contributes to the growth of the BGP routing tables. If a link be-
tween the multihomed network and one of its providers fails,BGP re-converges,
to ensure that the multihomed network remains reachable viaits other providers.
However, a network relying on shim6 for its multihoming behaves differently. The
main difference from IPv4 multihoming is that each shim6 host has several IPv6

6Note that this requires support for source-address based routing in the network, as the source
address now carries information on what outgoing path to use.
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Figure 1.8: Example Shim6 network configuration

addresses, one from each of its providers or one on each of itsinterfaces. This is
illustrated in Figure 1.8. The corporate network shown at the bottom of the figure
is attached toISP1 andISP2. Each ISP has allocated a prefix to the corporate
network. Each shim6 host has one IPv6 address inside each of these subnets. From
a BGP routing table viewpoint, the main advantage of shim6 host-based multihom-
ing is thatISP1 andISP2 only need to advertise their global/32 IPv6 prefix and
not the more specific prefixes allocated to their customers. However, this also im-
plies that if the link between the corporate network andISP1 fails, BGP will not
announce the failure to the global Internet. This problem issolved in shim6 by us-
ing a new failure detection and recovery mechanism, the REAPprotocol [AvB09],
that allows shim6 hosts to detect a failure and switch trafficto an available working
path.

1.5 Mobility in IPv6: MIPv6

While multihoming is about making use of several paths that are availablein par-
allel, mobility is about making use of paths that are availablesequentially. The
problem is hence not completely different, as we will show inmore detail in Sec-
tion 2.8. In this background chapter, however, we keep describing the default mo-
bility mechanism defined for IPv6: MIPv6.

The goal of Mobile IPv6 (MIPv6) [JPA04] is to ensure session continuity while
an end-host is on the move. In a mobile environment, the location of hosts is
always changing. At each network change, the mobile nodes must modify the
routing of data packets without breaking the ongoing communications. For this,
MIPv6 (as does MIPv4) introduces a new element in the networkarchitecture:
the Home Agent (HA). The Home Agent assigns IPv6 addresses tohosts present
in its network (called the home network). Such an address is called the Home
Address (HoA) and represents the permanent identity of the mobile node. This
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Figure 1.9: MIPv6 with tunnelling Figure 1.10: MIPv6 with Routing Opti-
misation

is the address to be used by applications to start communications, even if at the
routing level other addresses may be used. During its visit,a mobile node gets
temporary addresses (or Care-of Address, CoA) that are topologically correct and
can be used for routing packets to the current location of themobile node.

The first feature provided by the Home Agent is to maintain themapping be-
tween the identity of a node and its current location, that is, between the home
and care-of addresses of the mobile node. For this, the HA keeps a cache (called
the Binding Cache) updated by the mobile node each time a new address is ac-
quired or after a certain period of time. The update of the Binding Cache is done
by exchanging Binding Update (BU) and Binding Ack (Back) messages. The BU
message, originated by the mobile node, contains its HoA andits new CoA, and is
acknowledged by a Back sent by the HA. The second feature provided by the Home
Agent is to capture all traffic destined for the mobile node and relay it to its new
location. This is achieved by establishing an IPv6-in-IPv6tunnel [CD98] between
the HA and the new location of the mobile node, as illustratedin Figure 1.9.

The outgoing traffic of the mobile node is also relayed to its correspondents
through the Home Agent via the same tunnel. Thus, any exchange between the
mobile node and its correspondents passes through the Home Agent, creating a
so-calledtriangular routing situation (unless routing optimisation is used, as de-
scribed in the next paragraph). The third feature provided by the Home Agent
is that it can act as a rendez-vous point. Indeed, two mobile nodes can move si-
multaneously from one network to another one, and still continue to communicate
through their respective Home Agent. This is referred to asdouble jump.

One strong point of MIPv6 is that it does not require a corresponding node to
implement MIPv6. However, if the corresponding node does also support MIPv6,
it has the possibility to use a direct path to the mobile (thusavoiding the triangular
routing problem). This is made possible by the MIPv6Routing Optimisation(RO),
which consists in updating not only the HA upon a move, but also the correspond-
ing node. No tunnel is needed in this case, as shown in Figure 1.10.
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1.6 Multihoming in the Transport layer: MPTCP

We have so far concentrated on network layer multihoming, mainly describing the
shim6 protocol. Although shim6 does provide failure recovery capability, it can-
not be used as a way tosimultaneouslyuse several paths for a single transport
connection, because the resulting packet reordering wouldbadly impact the TCP
congestion control mechanism. To achieve efficient load balancing across multiple
paths, a modification of the transport layer is required. Theside effect of modify-
ing the transport layer instead of the network layer is that the resulting multipath
transport protocol can be used over both IPv4 and IPv6.

Several attempts to do that already happened in the past, first as extensions to
the TCP protocol [MK01, HS02, ROA05, ZLK04]. However, to ourknowledge
these extensions have never been implemented nor deployed.The Stream Control
Transmission Protocol (SCTP) [Ste07] protocol was designed with multihoming in
mind and supports fail-over. Several SCTP extensions [IAS06, ASL04, LWZ08]
enable hosts to use multiple paths at the same time. Althoughimplemented in
several operating systems [IAS06], SCTP is still not widelyused besides specific
applications. The main drawbacks of SCTP on the global Internet are first that
application developers need to change their application touse SCTP. Second, vari-
ous types of middle-boxes such as NATs or firewalls do not understand SCTP and
block all SCTP packets.

During the last two years, the MPTCP working group of the IETFhas been
developing multipath extensions to TCP [FRHB11] that enable hosts to use several
paths, possibly through multiple interfaces, to carry the packets that belong to a
single connection. This is probably the most ambitious extension to TCP to be
standardized within the IETF.

Multipath TCP [FRHB11] is different from existing TCP extensions like the
large windows, timestamps or selective acknowledgement extensions. These older
extensions defined new options that slightly change the reaction of hosts when
they receive segments. Multipath TCP allows a pair of hosts to use several paths to
exchange the segments that carry the data of a single connection.

When an application opens a new TCP socket in a multipath-enabled network-
ing stack, the underlying stack actually discovers the number of paths available to
reach the peer, and opens as many TCP subflows as its internal heuristic dictates,
up to the maximum number of known paths. The detailed establishment procedure
for Multipath TCP is described in Section 3.3. The data produced by the client
and the server can be sent over any of the subflows that composea Multipath TCP
connection, and if a subflow fails, data may need to be retransmitted over another
subflow. For this, Multipath TCP relies on two principles. First, each subflow is
equivalent to a normal TCP connection with its own 32-bits sequence numbering
space. This is important to allow Multipath TCP to traverse complex middle-boxes
like transparent proxies or traffic normalizers. Second, Multipath TCP maintains a
64-bits data sequence numbering space. When a host sends a TCP segment over
one subflow, it indicates inside the segment, by using the Data Sequence Signal
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(DSS [FRHB11]) option, the mapping between the 64-bits data sequence number
and the 32-bits sequence number used by the subflow. Thanks tothis mapping,
the receiving host can reorder the data received, possibly out-of-sequence over
the different subflows. In Multipath TCP, a received segmentis acknowledged
at two different levels. First, the TCP cumulative or selective acknowledgements
are used to acknowledge the reception of the segments on eachsubflow. Second,
a connection-level acknowledgement is returned by the receiving host to provide
cumulative acknowledgements at the data sequence level. The sameDSS option
is used to inform the peer about the connection level sequence number and the
connection-level acknowledgement. When a segment is lost,the receiver detects
the gap in the received 32-bits sequence number and traditional TCP retransmis-
sion mechanisms are triggered to recover from the loss. Whena subflow fails,
Multipath TCP detects the failure and retransmits the unacknowledged data over
another subflow that is still active.

Another important difference between Multipath TCP and regular TCP is the
congestion control scheme. Multipath TCP cannot use the standard TCP control
scheme without being unfair to normal TCP flows. Consider twohosts sharing a
single bottleneck link. If both hosts use regular TCP and open one TCP connec-
tion, they should achieve almost the same throughput. If onehost opens several
subflows for a single Multipath TCP connection that all pass through the bot-
tleneck link, it should not be able to use more than its fair share of the link.
This is achieved by the coupled congestion control scheme that is discussed in
details in [RHW11, WRGH11]. The standard TCP congestion control [APB09]
increases and decreases the congestion window and slow-start threshold upon re-
ception of acknowledgements and detection of losses. The coupled congestion
control scheme also relies on a congestion window, but it is updated according to
the following principle [RHW11]:

• For each non-duplicate ack on subflowi, increase the congestion window of
subflowi bymin(α∗bytes acked∗mssi

cwndtot
, bytes acked∗mssi

cwndi
) (wherecwndtot is the

total congestion window of all the subflows andα = cwndtot
maxi(

cwndi

RTT2

i

)

(
∑

i

cwndi

RTTi
)2

).

• Upon detection of a loss on subflowi, decrease the subflow congestion win-
dow bycwndi/2.

The goal of being fair to competing TCP flows is achieved in theabove algo-
rithm by constraining the windows in two ways. First, windowincreases are capped
at the increase value that would be applied by a regular TCP flow. This ensures that
MPTCP does not take more of the available bandwidth comparedto regular TCP
flows, on any of its subflows. Second, theα parameter controls the aggressiveness
of the increases. Its formula comes from solving the equilibrium equation (where
window increases and decreases balance out), under the constraint that any combi-
nation of paths cannot take more capacity than a regular TCP flow using the best



1.7. Conclusions 17

of those paths. This prevents a set of multipath subflows sharing a bottleneck link
from taking more capacity than a competing regular TCP flow [WRGH11].

1.7 Conclusions

The presence of multiple available network paths is now increasingly becoming the
norm in many environments. Smartphones can now connect to the Internet through
WiFi or 3G, data-centres use many redundant paths to achieveincreased bandwidth
and failure tolerance. Even the transition from IPv4 to IPv6will allow endpoints
to choose over which paths to exchange data.

In this chapter, we have set the foundations for this thesis.The central point
of this thesis being the use of multiple paths, we have covered the main options to
make use of multiple paths in today’s Internet. We emphasised that the current most
deployed IPv4 multihoming technique (using BGP) is not ideal, given it makes use
of the routing system which is not initially designed for that, and requires from a
multihomed network to own an AS number.

As IPv4 is going to be progressively replaced by IPv6, we presented the main
solution envisaged by the IETF to solve the multihoming problem (without BGP) in
the case of IPv6. We note that mobility is also about using multiple paths, the only
difference being that the paths are available sequentiallyinstead of simultaneously.
We thus presented Mobile IPv6, as we will show later in this thesis an interesting
use case for Shim6 as part of an integrated architecture thatincludes MIPv6 as
well.

Finally, we moved one layer up, where multihoming can also bedealt with, al-
though differently. We explained that several efforts had been done in past research
to achieve transport layer multihoming, but none of them gotto the point of real
deployment. We also explained that the most recent of those efforts, MPTCP, is
receiving much interest from the IETF community, and is especially interesting in
that it isdesigned for deployment, that is, it can be deployed in the current Internet
as it is, even robust to many of the existing middleboxes thatare more and more
placed on Internet paths.

One clear question that arises from this first chapter isShould we support mul-
tiple paths at the transport or at the network layer ?Working at the network layer
seems more natural, and is still the current way of handling multihoming (by us-
ing BGP). Shim6 is still located in the network layer, but itsfunctionality is now
located in the endpoints instead of the Internet core. From that viewpoint, MPTCP
is the continuation of a trend to push multipath control to the edge. Working at the
transport layer actually brings impressive additional benefits compared to network
layer multihoming. Most noteworthy is the possibility to use the pathssimulta-
neously, still handling elegantly the case of shared bottlenecks, by coupling the
congestion control of subflows. The other advantage of transport layer multihom-
ing is that failure handling is more timely, as timeouts can be computed based on
the available RTT estimations.
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In the rest of this thesis, we will show thatmodern multihoming protocols
offer improvements to the end-user experience despite an increased complex-
ity of the end-host networking stack, and they are implementable in current
operating systems in a modular way.We will present our contributions in both
kinds of multihoming, shim6 and MPTCP. We will conclude the thesis with lessons
learnt from studying multihoming at the network and transport layers, and briefly
compare the benefits and drawbacks of these two approaches.



Chapter 2

Shim6: implementation and
evaluation

2.1 Introduction

The shim6 approach relies on an ID/locator split concept, where the mapping is
done inside the end-hosts, thanks to a new shim sublayer located in the IPv6 part
of the networking stack. If a host owns several locators (IPv6 addresses), an appli-
cation willing to connect to another end point will use one ofthem as Upper Layer
IDentifier (ULID), and the new shim6 sublayer will provide the ability to change
the locators at will while keeping the identifiers constant (rewriting the source
and destination address fields on-the-fly). Another protocol, REAP [AvB09] (for
REAchability Protocol), adds failure detection and recovery capabilities to shim6.
It is able to detect a failure and sends probes to the available locator pairs until a
new working path is found, after which the shim6 layer is toldto change the cur-
rently used locators and the communication can continue without any change in
the application.

Because this approach allows a host to change locators during an exchange, it
is necessary to provide a means to verify that the used locators are actually owned
by the peer. Shim6 can use two mechanisms for that : HBA and CGA. Hash Based
Addresses [Bag09] are a set of addresses linked together, sothat one can verify that
two addresses have been generated by the same host. Cryptographically Generated
Addresses [Aur05] are a hash of a public key and allow, together with a signature,
to verify that the sender of a signed message is the actual owner of the CGA address
used. CGA addresses have been detailed in Section 1.3.4. HBAaddresses have
been proposed in parallel with shim6, although they are expected to be useful in
other environments as well [AKZN05]. We describe them in Section 2.2.1.

Since 2006, we published evolving versions of the first publicly available im-
plementation of shim6,LinShim6. In this chapter, we present the architecture of
the latest version, 0.9.11. The design provides good performance and is easily ex-

1http://inl.info.ucl.ac.be/LinShim6
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tensible to support cooperation with other protocols that,like LinShim6, use the
xfrm2 architecture (e.g. IPsec [KME04] and MIPv6 [MN04]).

In this chapter, we first provide more details of the shim6 protocol and our
implementation of it. Then we provide a detailed evaluationof many aspects of the
protocol, including security, efficiency, failure recovery and mobility. We close the
chapter with a summary of the open issues and related work.

2.2 Shim6

Internet
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Figure 2.1: Basic operation of a shim6 host

A shim6 host has several IPv6 addresses. All these addressesare locators, i.e.
they identify where a network interface is located within the global routing context.
For example, in Figure 2.1, a packet whose destination isISP1.Awill be delivered
via ISP1. On the other hand, a packet whose destination isISP2.A will be
delivered viaISP2. A current best practice [BS04] recommends that ISPs verify
the source address of packets received from their customers: a packet produced by
hostA that containsISP1.A as its source address must always be sent viaISP1.
Such a packet will never be forwarded byISP2 if it implements [BS04].

When an application on host A contacts an application on hostB using an
upper-layer protocol (ULP), the default address selected [Dra03] by host A is de-
termined to be the upper-layer identifier (ULID) to identifythe transport flows be-
tween the hosts. Conceptually, the shim6 sublayer belongs to the network layer and

2xfrm stands fortransform. It is a modular architecture that allows dynamically inserting sublay-
ers in the networking stack, and was originally designed forIPSec
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Figure 2.2: Networking stack with shim6

the locators are attached to the lower part of the network layer while the identifier
is attached to the upper part of the network layer (Figure 2.2).

The main purpose of shim6 is to preserve established flows despite of network
failures, while operating transparently to upper-layer protocols such as TCP or
UDP. This is illustrated in Figure 2.1. Host A has established a flow between
ULID ISP1.A and destinationISPX.B. In addition to its ULID, host A also has
theISP2.A locator. Upon failure of the path betweenISP1.A andISPX.B, host
A will use shim6 to switch its flow on theISP2.A→ISPX.B path. For this, all
of host A’s packets destined toISPX.Bmust be sent from sourceISP2.A. Shim6
ensures the transparency of this operation to the applications.

The shim6 sublayer performs three different tasks. Firstly, two communicating
shim6 hosts need to discover their respective locator sets.This is performed during
the establishment of the shim6 session. Secondly, during the lifetime of a flow, it
may be necessary to switch from the current path to an alternate, e.g. after a failure.
Thirdly, shim6 can be used to advertise any change in the set of locators available
on a host.

Discovering locator sets: This happens at the beginning of a communication.
When an application is requested to initiate an exchange towards a host (i.e. a http
or other such request), the usual process is that its name is looked up from the Do-
main Name System (DNS). The DNS answers with one or several addresses. The
application then initiates a connection with one of the obtained addresses (through
default address selection) [Dra03, MFHK08a, MFHK08b].

A heuristic on one of the shim6-enabled hosts determines whether it is worth
the extra shim6 overhead to protect the communication flow. In the case where the
host decides that it is worth the effort, the end hosts communicate to each other their
entire set of locators. This is the shim6 initial exchange. After this negotiation,
each host has a set of local and peer addresses that it can use to exchange packets.

The establishment of a shim6 session is performed by using a four-way hand-
shake as shown in Figure 2.3. This handshake is based on the handshake used by
HIP [MNJH08]. It was designed [NB09] to protect against replay attacks, to en-
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Figure 2.3: Shim6 session establishment

sure that all announced addresses belong to the same peer, and to protect against
Denial-of-Service (DoS) attacks. More details about how and why the messages
are exchanged this manner are discussed in [NB09, Section 7].

Changing the current path: Typically a path change is triggered when the asso-
ciated REAP protocol has detected a failure and found an alternate working locator
pair. More generally, any appropriately interfaced entity(an application interface
for example [KBSS11]) could trigger a path change. Changingthe path in the
course of a communication is made possible by rewriting the address pair in use.
Obviously one particular path is the one corresponding to the ULIDs. In this case
the ULIDs and the locators are identical and no rewriting is needed. In all other
cases, rewriting is needed and an extension header is added to the outgoing pack-
ets. The extension header contains acontext tagused to identify the flow at the
receiver, so that locators can be replaced by the correct ULIDs in the receiver.

The rewriting function of shim6 is located in a new IP-sublayer in the network-
ing stack, as shown in Figure 2.2. Anything located above theshim6 layer sees
stable addresses (ULIDs). This includes parts of the IP layer such as IPsec or frag-
mentation, so that those functions can operate on stable ULIDs, even though shim6
may have had to rewrite the packet header. Conversely, the forwarding function-
ality of the IP layer must be located below the shim6 layer, sothat the locators
chosen by shim6 are correctly used to select a path. The effect of address rewriting
over the chosen path is illustrated in Figure 2.1.

Locator update: This is useful if a new locator appears after the initial exchange,
that is, after the set of locators has been announced by each peer. This could happen
should another Ethernet or WiFi interface become operational. If a locator appears
or disappears on a host, it is possible to tell the peer about an updated locator set,
so that changes in available paths are taken into account. These locator updates are
useful in some IP mobility scenarios as we will show in Section 2.8.
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TheLinShim6negotiation involves cryptographic mechanisms. These mecha-
nisms have been carefully designed [NB09] to prevent an attacker from injecting
fake addresses, and thus use this attack vector as a basis fornew types of attacks.
We summarise the critical parts in the next subsection.

2.2.1 Securing locator sets

A key problem faced by host-based techniques that rely on multiple locators is
that a receiver must be able to verify the origin of a packet that uses a new locator.
RFC4218 [NL05] describes the threats that must be considered while designing any
IPv6 multihoming solution in detail. The way shim6 respondsto those attacks is
described in [NB09, Section 16]. While the solution to many of the threats resides
in using well-known protection mechanisms, one particulartype of attack, namely
address injection, is addressed by a new mechanism that is worth describing here.
Address injection consists of an attacker presenting a modified address set to one
of the communicating hosts (either by sending fake announcements or modifying
existing packets).

The first option proposed by [NB09] to solve this issue is to use Cryptograph-
ically Generated Addresses (CGAs) [Aur05]. As explained inSection 1.3.4 this
method relies on the use of a signature to prove that all signed addresses have been
generated by the same entity. For a given public/private keypair, the private key is
used to sign the locator set, while the public key is hashed soas to generate the 64
low order bits of the ULID. Consequently, the security is dependent on an attacker
not being able to find a hash collision with a self-generated public key. The time
needed to find a collision when thesec parameter is as low as 1 makes such an
attack infeasible in short timescales. Over time, when Moore’s law does eventually
make such an attack practical, or for servers that keep a stable address over time,
the attack complexity can be increased further by incrementing the security pa-
rameter(sec) on the host that generates the signature [Aur05]. With eachincrease
in thesecurity parameter, the complexity required to generate a collision will in-
crease by216∗sec iterations. This increases the cost of address generation,and thus
of brute-force attacks, while keeping the cost of address verification constant.

The second option is to bind all addresses together, withoutusing a signature.
This type of address is called Hash Based Addresses (HBA) [Bag09]. The 64 low
order bits of each address is the result of a hash computationover all the prefixes
of the set. An attacker who wishes to inject his own address into the locator set
would need to find an input to the hash function that produces,at least, the locator
used for forwarding as part of the generated locator set. Since this is made easier
by the short length of the hash, HBA uses the samesecurity parameteras CGA to
tune the cryptographical strength of the locator set.

HBA is computationally cheaper than CGA, but it also has lessflexibility. Its
main drawback is that the addition of a new address in a locator set requires regen-
erating the whole set. This is where CGA-compatible HBA addresses are useful.
In that case the hash input includes both a public key and the set of prefixes. This
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is initially seen by the peer as normal HBA addresses, but if anew prefix must be
added afterwards, it can be signed with the public key.

With both these mechanims in place, shim6, as part of the initial context estab-
lishment, verifies that the host claiming to be representingISP2.A (for example,
see Figure 2.3) can be cryptographically tied to that locator (using either the CGA
or HBA mechanisms). While an attacker can generate a new address from a sub-
net prefix and a public key, this attacker cannot impersonateanother hosts address.
This is, of course, based on the premise that it is currently beyond the capability of
an attacker to harness enough computing power to generate a collision in either the
HBA or CGA hash functions.

2.2.2 Failure detection and recovery

REAP is responsible for suggesting to shim6 when to change the current path, as
well as for finding an alternate path when the current one becomes unavailable.
REAP is closely tied to shim6 because it uses its state to monitor the active flows.
REAP can be divided in two main features:Flow monitoringandpath exploration.

Flow monitoringis started immediately after the shim6 initial locator discov-
ery. It is designed in such a way as to minimise the amount of active probing. The
main mechanism that allows for reaching that goal is called Forced Bidirectional
Detection (FBD). The communication is forced to be bidirectional in the sense that
if an end-host receives Upper Layer Protocol (ULP) data, butdoes not send any-
thing, then control packets (keepalives) are automatically generated. Given this,
it can be concluded that a failure has occurred if a host is sending ULP pack-
ets without receiving back any data or keepalives3. A host decides that a failure
has occurred if itsSend Timerexpires. The default expiry timeTsend is defined
as 15s in [AvB09]. That timer is reset whenever a packet enters the network-
ing stack. In addition to theSend timer, a host maintains aKeepalive Timer,
that sends a keepalive packet on expiry. This is to ensure that the peer does not
think that a failure occurred when in fact the application just stopped sending
data. The requirement for aKeepalive Timeris to have an expiry time that ver-
ifies Tka + one-way delay< TSend. [AvB09] recommends to setTka as one
third of Tsend.

The second feature of REAP is path exploration. Due to its flowmonitoring
capability, REAP can react to failures by probing the known paths (address com-
binations). The probing process allows for finding an alternate working path, for
each direction of the communication. It can even result in the use of different paths
for each direction, as it is able to detect unidirectional paths.

REAP relies on a state machine that can be in one of three states :operatio-
nal, exploring or inbound ok. If the communication is not experiencing
any problem, the state isoperational. This means that end hosts receive either
data packets or keepalives from each other. Keepalives are sent if a host has not sent

3Note that the number of control packets is kept minimal sinceno keepalive is needed if data
exchange is either bidirectional or paused.
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any packet during some time defined askeepalive interval(default is 3 seconds).
If data traffic stops for a while, keepalives are sent everykeepalive interval, for the
keepalive timeoutduration (default is 15 seconds as per the RFC). Then no more
keepalives are sent until data packets are sent again or the context is destroyed.

The second state defined in [AvB09] isexploring. A context reaches that
state if a failure has been detected by expiration of thesend timer. This timer
is started when sending a data packet and only if it was not already running. It
is reset upon reception of any packet from the peer. Because REAP ensures that
the peer will reply with either data or keepalives, not receiving anything from him
means that a failure occurred. There are additional ways to detect failures such
as indications from upper layers, lower layers or ICMP errormessages [AvB09].
Some of these indications may be faster than the timer expiry, but they are not
always available.

The third state is namedinbound ok. A host is in this state if it is receiv-
ing packets (either data, keepalives or probes) from its peer, but there is indica-
tion that the peer doesn’t receive anything. A host may reachtheinbound ok
state fromoperational if it receives an exploring probe from its peer, or from
exploring if it receives anything from its peer.

probe timeout
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B1,B2,B3

(A1,B1)

(B1,A1)

(A1,B1)
(A1,B1)

Operational Operational

Exploring

send 
timeout

report : a

probe timeout

Operational

(A1,B1) (B1,A1)

(A1,B1)

Operational
(B2,A3)

probe timeout

probe timeout
id=c

report : a,b

report : a,b

report : r

(A1,B1),exploring,id=a

Inbound ok

(A1,B1)operational,id=d

BA

(A1,B2),id=b
(B1,A1)inbound ok,id=p

(B3,A2)inbound ok,id=q

(B2,A3)inbound ok,id=r

��
��
��
��

��
��
��
��

Figure 2.4: Example of failure detection and recovery

A probe contains the state of the sender, a nonce used as identifier and a number
of reports. A report is defined as a summary of a sent or received probe. According
to [AvB09] a report contains the source and destination addresses, the nonce and
an option field (currently unused). As we will see in the following example, reports
of received probes are necessary to learn a new operational path.

Figure 2.4 shows the case of the failure of the path from locator B1 to locator
A1. {A1,A2,A3} and{B1,B2,B3} are the locators assigned to A and B respec-
tively. The first few arrows show the exchange of data packetsusing locatorsA1
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andB1, when the first answer from B is lost. This packet loss triggers asend timer
expiry inside hostA. The consequence is that A switches to theexploring state
and starts sending probes. The first one,a (with locators(A1,B1)), goes through,
and B learns that its packets no longer reach host A, with the effect of B going to the
inbound ok state. After that, both hosts are sending probes along everyknown
path. In our example, all probes from B precedingr are lost. Upon reception, host
A reads the reports and learns that probesa andb were successful, that is, locator
pairsA1,B1 andA1,B2 are eligible as current locators. The first one is chosen,
and a final probe is sent to host B with this new locator pair to announce the switch
to theoperational state. Because this final probe is sent using a working loca-
tor pair, it reaches host B. B learns that its only successfulprobe has been the one
with id=r . This means that the only working locator pair isB2,A3. Both hosts
update theirshim6 context, for address mapping inside theshim6 sublayer, and
the conversation continues, without upper layers seeing anything else than some
delay.

2.3 The LinShim6 implementation

In this section we provide an overview of ourLinShim6implementation. As will
be shown through measurements, it has been carefully designed to allow good
perfomance and modularity. While we only provide a high-level description here,
full details can be found in our technical report [Bar08]. The current version (0.9.1)
of LinShim6contains around30000 lines of code in the user space daemon (around
14000 of them from third-party code: timer management, hash functions, netlink
interface, part of the crypto operations). The kernel side of LinShim6has3556 lines
only because it reuses a lot of existing kernel functions andmoves functionality to
user space whenever possible.

2.3.1 The xfrm framework

Xfrm (for transformer) is a network programming framework included in the Linux
kernel [WPR+04] to permit flexible transformation of packets. The framework
obeys aSerialized Data Statemodel, as described by Yoshifuji et al. in [YMN+04].

The idea is to be able to modify the path of packets through thenetworking
stack based on some policies. The framework, originally designed to implement
IPsec [KME04], has later been used for the Mobile IPv6 implementation [MN04].

A policy contains aselector, adirection, anactionand atemplate. The policy
is applied to a packet if it matches theselectorand is flowing in thedirection of
that policy (inbound or outbound). The selector mechanism allows one to use the
addresses, ports, address family and protocol number as fields for the matching
(see [KS05, sec. 4.4.1] for the precise semantics of a selector). Now let us as-
sume that a packet matches a given policy. In that case thetemplateis used to get
a description of the tranformations needed for that kind of packet. Let us further



2.3. The LinShim6 implementation 27

assume that the packet needs AH (Authentication Header) andESP (Encapsulating
Security Payload) transformations [KS05]. Then the corresponding states (one for
AH and the other one for ESP) are found and a linked list ofdst structures is cre-
ated. Adst structure is normally the result of a routing table lookup, and contains
information about the outgoing interface as well as a pointer to the function that
must be called to send the packet (for exampleip output or ip6 output). As
shown in figure 2.5, those structures may be linked together,so that several output
functions are called sequentially.

After thedst path has been created, the linked list is cached for that socket,
so that additionnal packets will flow through the IPsec layeras if it was part of the
standard networking stack.

While outgoing packets are attached to one or several statesby usingdst
entries (as shown in Figure 2.5), incoming packets are processed differently. Since
those packets already have extension headers (for example AH and ESP), with
lookup keys such as the SPI (Security Parameter Index), it isonly necessary to
lookup the xfrm states according to the information contained inside each extension
header.

Xfrm policies and states are created and managed from user space, with akey
manager(as called inside the kernel) that communicates with the kernel part of
xfrm by using the Netlink API [SKKK03].

Figure 2.5: Dynamically created path for IPsec packets

2.3.2 LinShim6 0.9.1 : overall architecture

The shim6 mechanism introduces a new sublayer inside the IPv6 layer (below
IPsec), similar to AH, ESP or Mobile IPv6. The flexible and modular, yet effi-
cient xfrm framework thus fulfills particularly well the needs of the shim6 trans-
formations: after a shim6 context (negotiated in user space) becomes established,
xfrm policies and states are created, so that the packets matching the policies
now go through the shim6-handling functions:shim6 output() (pointed to
by dst->output, see Figure 2.5) andshim6 input().

A global view of our design is given in Figure 2.6 (For clarityreasons, the
network data flow is not represented and the arrows representonly the control
flow). The upper part of the figure runs in user space as a daemon, and currently
works with four threads (represented as dashed boxes). Figure 2.7 clarifies the
particular ations (described below) undertaken by each of the modules presented
in Figure 2.6, based on a common scenario.

One thread is thetelnet server that provides a Command Line Interface
(CLI) to the daemon. The second one is thetimer thread, that wakes up each
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Figure 2.6: Shim6 overall architecture
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time an expiration event happens. TheXFRM manager listens to messages from
the xfrm framework. Finally the main thread listens to messages from the network
or the kernel, and reacts appropriately.

One of the major elements of this architecture is therequest manager.
Its role is to simplify concurrency problems caused by external threads4 (that is,
all threads except the main one) wanting to access shim6 datastructures (also
used by the main thread). For example thetelnet thread may want to dump
the shim6 states, or thetimer thread may want to access the appropriate context
before sending a probe. This led in earlier versions ofLinShim6to complex mutex
schemes, that did not improve the concurrency, since each event was handled by
only a few lines of code.

A better scheme for avoiding concurrent access to critical data structures (con-
texts and hashtables) is to prohibit direct access to those structures from threads
other than the main one. Instead, a genericRequest manager has been writ-
ten, so that external threads now send a request for service through a pipe. The
main thread then performs the service as soon as it is ready. If several requests are
sent concurrently, they are queued inside the pipe, hence implementing a message-
passing concurrency model. Note that the major benefit of this approach is not
an increased efficiency, given that in both cases the problemto solve is to ensure
sequential access to ressources that are accessed from different threads. Instead,
the benefit isincreased encapsulation, which in turn improves the overall stability.
However, this is efficient only if the message processing time is low for whatever
kind of request message (otherwise the response time would increase due to queue-
ing). Fortunately this assumption is true with the shim6 daemon: Each individual
action consists only in a single read and/or write to the kernel or the network, with
a few memory accesses.

When a new shim6 session starts, packets flow through the kernel and are
counted by thepacket listenermodule. This module uses the netfilter hooks
NF IP6 LOCAL IN andNF IP6 LOCAL OUT to detect new exchanges and no-
tify the daemon through the Netlink interface when the implemented heuristic de-
cides that it is worth starting a new shim6 session. Our default heuristic, that we
further explain in Section 2.3.3, triggers a context establishment when either 2KB
of data have been exchanged or one minute has elapsed. This avoids shim6 estab-
lishments for small and short flows. Since shim6 works at the IP layer, if several
transport flows are started between two ULIDs, only one network flow is seen by
thepacket listenermodule.

When theshim6d daemon is asked to create a new context, a four way hand-
shake is performed, across theraw socket, attached to the shim6 protocol
(IPPROTO SHIM6). An important point to note is that the same protocol num-
ber is used for control and data plane in the shim6 protocol, which means that the
raw socket would normally receive any data message equippedwith a shim6 ex-
tension header. For efficiency reasons, we prevent this by adding a shim6 filter in-

4LinShim6 makes use of POSIX threads.
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side the raw socket implementation, as already done for several ICMPv6 messages
(ICMPv6 filters may be configured from user space through theICMP6 FILTER
socket option).

Now suppose that the shim6 (user space) context becomes established. We
need to start the failure detection module, and thus make thepackets go through
the shim6 transformers,shim6 output() andshim6 input() (shim6 trans-
formsbox in Figure 2.6). Actually the transformer only performs address rewrit-
ing if ULIDs differ from locators. If not, it simply notifies the REAPFailure
detection module that a packet has been seen. That module maintains the
Keepalive and Send timers [AvB09], and notifies the Shim6d userspace daemon
if a failure has been detected (Netlink arrow in Figure 2.6). The result is that
theREAP path exploration module starts sending probes across theraw
socket until a new operational path has been found.

We decided to split the REAP protocol in two parts, respectively for kernel and
user space. Again, this is for efficiency reasons: we try to keep as much as possible
the protocols in user space, without sacrificing efficiency.But failure detection
needs a timer to be updated for each packet sent or received, and thuscannotbe
implemented in user space.

Finally, when a new path has been found, theXFRM manager is notified to
update the shim6 xfrm states, so that theShim6 transform module now adds
the extension header and rewrites the addresses.

2.3.3 Heuristic for initiating a new shim6 context

When starting a new exchange, it is not necessarily a good idea to immediately ne-
gotiate a shim6 context. The obvious case is the one of short flows: for short flows,
the shim6 control data may take as much of the communication transmitted bytes
as the useful data. Worse, since the flow is short, there are very low chances that
the shim6 capability to recover from failures is used at all.In this subsection we
examine two heuristics (respectively based on the durationand size of the flows),
that may help a shim6 host in deciding whether it is worth negotiating a shim6
context.

Figures 2.8 and 2.9 present the CDF of the duration and size offlows observed
on our campus network using NetFlow Version 5 traces, taken on a Cisco Catalyst
6509. Netflow [Cla04] is a tool that monitors network traffic and recordsflow-level
information (as opposed to e.g. wireshark that recordspacket-levelinformation)
about the observed traffic. Flow-level information is enough however to evaluate
the number of flows that would benefit from using shim6, and allows much more
efficient capture and analysis. NetFlows were collected at the single Internet con-
nection of the campus. The analysis was performed for every TCP, UDP, GRE or
ESP packet sent or received (the flows belonging to those categories represent more
than99.9% of the total collected information). Flows of0 bytes or0 packets were
ignored. A total of6.4GB of NetFlow log files was collected between 10/27/2007
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Figure 2.8: Flow-based evaluation: Flow duration

Figure 2.9: Flow-based evaluation: Flow size
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Figure 2.10: Traffic classification

and 11/02/20075.
In order to evaluate for what flows to start shim6, we define a flow as follows:

a flow is a stream of IP packets with the same source and destination IP addresses,
in which packets are never separated by more than∆ seconds, where∆ is a tuning
parameter. We consider flows as bi-directional streams of IPpackets. Figures 2.8
and 2.9 suggest that it would not be interesting to protect every flow by a shim6
context. Indeed, we can observe that more than80% of the flows last less than60
seconds for reasonable∆ values. On the same manner, more than80% of the flows
transmit less than 2KB.

Figure 2.10 shows the kind of flows that carry the majority of bytes in our
campus network (∆ is 300 seconds in that figure). That is, for each flow class,
sorted by size and duration, the number of bytes pertaining to that class is plotted.
While Figures 2.8 and 2.9 show that the majority of the flows are small and short,
Figure 2.10 shows that the majority of the bytes are carried by long and heavy
flows. This means that a few flows would greatly benefit from shim6 support,
with only little overhead. We also observe that if we adequately choose which
communication to protect with Shim6, we can both maintain a low global overhead
(many small flows will stay unprotected), and enhance the quality and stability of
the critical flows. To evaluate the shim6 initialization overhead, we compute it
for the realistic case of two peers performing a shim6 negotiation and announcing
two CGA locators. This exchange requires the transmission of 1, 032 bytes and
represents a150% overhead for a2KB flow. On the other hand, some flows have
a small size, but a long duration. Such flows may need to be protected by shim6,
even if the size overhead is high. LinShim6 thus uses a default trigger heuristic that

5The NetFlow parameters were as follows: normal aging timeout: 300; fast aging timeout:60;
fast aging packet threshold:100; long aging timeout:1920.



2.3. The LinShim6 implementation 33

starts a negotiation if either a flow is larger than2KB, or if it lasts more than one
minute. According to the observations from Figure 2.8, thisis sufficient to avoid
triggering many useless negotiations (actually80% of the observed flows).

Apart from the size and length considerations, a network administrator may be
interested in starting immediately a shim6 negotiation forsome flows, or prevent it
from being ever triggered for other flows. An example is that DNS requests should
not be protected by shim6, while a VPN connection could be protected since its
beginning, because it is usually long lived and of high importance.

2.3.4 Incoming packets

As other extension headers, the shim6 extension header is registered in the kernel
as a protocol. This allows the standard dispatching function of the Linux kernel
(ip6 input finish()) to direct the packet through the correct xfrm state.

The receiving process is illustrated in Figure 2.11 : first the packet is sent to the
raw sockets that are listening for that protocol number (left part of the figure). If the
next header value in the IPv6 header isIPPROTO SHIM6 for example, the packet
is delivered to theraw socket module of the daemon (if not filtered before).

Next,ip6 input finish() enters a loop that parses each next header and
calls the appropriate handler. If a shim6 header is found, the corresponding handler
is called and a context tag-based lookup is performed to find an xfrm context.

Packets that do not contain the extension header also need togo through the
shim6 input() function, since they may be using the ULIDs of an existing
shim6 context. This is needed to update the shim6 context timestamp (for garbage
collection) and the REAP timers (for failure detection). Inthat case the standard
dispatching function will not send the packet through xfrm,so we do that man-
ually by callingshim6 input std(). Actually in that case we do as if the
shim6 header was present, looking at what would be its place regarding extension
header order, so as to go through shim6 at the right step (see Nordmark and Bag-
nulo [NB09, sec. 4.6]). This case is shown in the right part ofFigure 2.11.

Note that keepalives and probes are processed by both thefailure detec-
tion (kernel) andpath exploration (daemon) modules. In that case, the
next handler (after functionreap input()) is ipv6 nodata rcv() which
simply terminates the processing since the next header isIPPROTO NONE (59).

We extended the xfrm lookup functions to support ULID and context tag-based
lookups. The current xfrm framework maintains three hashtables : one uses the
IPsec Security Parameter Index (SPI) as key [KS05], the second one uses the ad-
dress pair and the last one uses a request ID (manually configured identifier used
by IPsec). Rather than creating new data structures, we use the address pair based
lookup for ULIDs, and SPI based lookup to find contexts on the basis of the con-
text tag (the 32 low order bits of the context tag are used for that purpose). This
way we can benefit from the performance of hashtable lookups,while keeping the
existing data structures.
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Figure 2.11: Incoming packet flow

2.3.5 Keeping one context for each direction

Since IPsec works on a unidirectional basis, the xfrm framework only supports
unidirectional contexts. For this reason, we split the shim6 context into two xfrm
contexts. The outbound context stores the peer’s context tag and the locator pair
(written in each outgoing packet), while the inbound context stores the local con-
text tag and ULID pair.

But this solution is not sufficient for the failure detectionmodule, which really
needs a shared data area: when a packet goes out, a timer is started (Send timer).
Thus we should maintain a timer structure inside theoutboundcontext. But the
same timer is stopped when a packet comes in. It means that, when we have one
context in hand, we actually need to get the corresponding reverse context also.

We solve this problem by using the private data pointer of an xfrm context. It
is private in the sense that its meaning is not known by the xfrm framework and
its usage is let to the particular instance of the transformer (shim6). This allows
us to do a reverse lookup at context creation only. After that, the shared memory
area (only used by REAP) is accessible from both contexts. A reference counter is
used to ensure that we free this memory only when the last xfrmcontext has been
destroyed.

2.4 HBA/CGA

CGA and HBA addresses, which are used to secure shim6, are an integral part of
the protocol. At the time of writing and to the best of our knowledge,LinShim6is
the only implementation with full support of HBA and CGA. Supporting these ad-
dresses raises operational and performance challenges. From a performance view-
point, using CGA and HBA addresses may lower the performanceof shim6 when
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compared to normal IPv6. HBA and CGA operations are the most computationally
expensive parts ofLinShim6. We evaluate here the computational impact of using
those addresses, first at generation time (can be done offline), then at signature and
generation time (always online).

In the LinShim6design, a separate tool allows for CGA/HBA address gener-
ation6. The tool can be configured to favour either speed of address generation
or the strength of generated addresses, incurring extra computational cost for the
latter. Also, address generation can optionally be run on a configurable number of
parallel processor threads, thus taking advantage of multi-core processors. Much
of this address generation code was originally written by DoCoMo [KWRG04] for
SEcure Neighbour Discovery [AKZN05], it was integrated into LinShim6for the
purposes of address generation, and thus it is very similar to the SEND implemen-
tation, although our tool features HBA generation as well.

2.4.1 HBA/CGA address generation

As the CGA addresses depend on a public/private key pair, ourimplementation
automatically generates such a key-pair during its installation. This is done so that
LinShim6will work “out-of-the-box”, without complex configurationeffort from
the user.LinShim6configures itself automatically with CGA addresses by using
this public/private key-pair. It is, of course, perfectly possible to manually config-
ure several public/private key pairs, and also to define any number of HBA-sets.
For LinShim6, as CGA addresses can be generated as soon as the host discovers
the IPv6 prefix for a network interface, we selected CGA addresses as the de-
fault. This implies that CGA addresses are useable on laptops that move regularly,
whereas HBA’s are not for reasons mentioned previously in Section 2.2.1.

As explained in [Aur05], the cost of the CGA generation is of216∗sec itera-
tions in the worst case, wheresec is the security parameter (a largersec increases
the security but also the time required to generate an address). The same worst
case cost applies to HBA generation [Bag09]. The worst case complexity for an
attacker to find a matching hash for the address is of the orderof 259+16∗sec it-
erations [Aur05], which means that the generator has259 times less iterations to
perform as an advantage in computational cost over the attacker. Consequently, in
general, as processing power increases one should considerincreasing the value of
the security parameter to protect against brute-force attacks.

To evaluate the cost of generating HBA and CGA addresses, we used a Sun-
blade x6440 equipped with 4 AMD Opteron 8431 processors, each with 6 cores,
clocked at 2.4GHz. Figure 2.12 shows the mean time required to generate HBA
or CGA addresses, each bar being the mean of 100 trials. Each bar shows the
mean generation time oftwo addresses (with different prefixes), in log scale. For
this experiment the HBA addresses are CGA-compatible, and both CGA and HBA
measurements include the 1024-bit RSA key generation time.The first two sets of

6Address generation could potentially be done on a completely separate, more powerful machine
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Figure 2.12: HBA/CGA generation time

bars are generated with a security parameter of 1. The other bars were generated
with a security parameter of 2. It is worth noting that the standard deviation (not
shown in the figure) is very large, because of the brute-forcealgorithm [Aur05]
used in the generation process. For the results presented inFigure 2.12, we ob-
served a standard deviation ranging from 23% to 77% of the reported mean.

The address generation tool [KWRG04] is able to use any number of concur-
rent threads. This capability was retained and extended in order to support HBA.
With the security parameter set to2, multithreading is necessary in order to obtain
a result in a reasonable time. Hence using a security parameter of1 is the only op-
tion on current commodity hardware. When the computationaltime increases due
to a required higher security level, it is clearly beneficialto use as many threads as
possible (see the results with 8 threads in the figure, and note that the scale is log-
arithmic). On the other hand, multithreading gives slightly worse results when the
security parameter is 1, because the threading overhead takes a higher proportion
of the processing time.

While Figure 2.12 shows the generation time for two addresses, we note that if
the number of generated addresses is increased, the CGA generation time increases
linearly with the number of addresses. On the other hand, there is a barely percep-
tible increase in HBA generation time. This is because the expensive part (called
modifier generationin [Aur05]) is conducted only once for the whole set, in the
HBA case.

2.4.2 Address signature and verification

Both operations take place during the initialisation of a shim6 exchange, or when
one of the peers announces changes in its locator set. To evaluate the cost of these
cryptographical operations we measured the time needed to carry a shim6 negotia-
tion with different security mechanisms. These tests were performed between two
hosts on a 100 Mbps Ethernet. The initiator was a Pentium 4 dual core, 2.6GHz
with 1GB RAM while the responder was a Pentium 3, 600MHz with 256MB RAM.
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Figure 2.13: HBA/CGA evaluation

The results are reported in Figure 2.13. For each security configuration, the
case of each peer announcing 2, 5 or 10 addresses in its locator set is compared. The
negotiation timeis defined as the time elapsed between the transmission of thefirst
I1 message, and the reception of the last negotiation message (R2) (see Figure 2.3).
Note that the negotiation time includes two signatures and two verifications, that is,
one for each peer. Each bar shows the median negotiation timeover 20 consecutive
runs.

Looking at the right hand side of Figure 2.13, we note that there is a strong
correlation between the length of the RSA key used for signing messages and the
negotiation time. Conversely, HBA addresses involve a negotiation time that is
almost the same as if no security were used at all. This is because no signature is
needed in the case of HBA addresses.

An important consideration, discussed previously, is thatHBA addresses re-
quire the knowledge of all the prefixes before commencing a shim6 negotiation.
This motivates the use of CGA-compatible HBA addresses, defined in [Bag09].
While pure HBA addresses use a random number as input of the SHA-1 hash used
during the generation process, CGA-compatible HBA addresses use a public key
instead of such a number. However, no signature is needed until the host learns of a
new prefix that can be used. At this point a CGA address is generated based on the
new prefix, and the key used to generate the previous HBA set. Asigned message
can be sent to the peer, which will use the already known public key to verify the
locator update. In Figure 2.13, the bar labelledhbacompatshows the negotiation
time needed when an HBA set generated based on a 1024-bit public key is used.

This shows very similar results to the use of pure HBA. The small increase in
time is explained by the fact that pure-HBA uses a random number formatted as
a 384-bit RSA key, as defined in [Bag09], as opposed to a real 1024-bit key with
the CGA-compatible variant. A final observation is that the impact of the number
of announced addresses (2, 5 or 10 in the figure) is insignificant compared to the
security mechanism used.
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From the above observations, we conclude that from a performance point of
view, there is a strong argument to be made for using HBA addresses, or even
better, CGA-compatible HBA addresses.LinShim6allows for the generation of
HBA/CGA addresses in advance of their use7. Once they are generated, they
become active only when configured in the system, either manually or by auto-
configuration through thecgaddaemon. By default,LinShim6disables the stan-
dard IPv6 auto-configuration mechanism, in order to avoid having both unsecured
addresses and HBA/CGA addresses in the system. This mechanism is replaced
by thecgad daemon, that listens for Router Advertisements, and configures the
appropriate addresses when a new prefix is received.

2.5 Improving Shim6 path exploration
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Figure 2.14: Shim6 testbed 1

In this section, we used a testbed composed of three Linux computers. Two of
them support shim6, and the third acts as a Click router [KMC+00], used to em-
ulate different paths. The router and one of the end hosts arePentium II, 300Mhz
with 128MB of RAM and 100baseTx-FD Ethernet cards. The otherend host is a
Pentium Pro 200Mhz with 64MB of RAM and 100baseTx-FD Ethernet cards. Both
end hosts run the Linux kernel 2.6.17.11 patched withshim6/REAP release 0.4.3.
The Click router runs Linux kernel 2.6.16.13 patched with Click release 1.5.0. In
order to make measurements faster, thesend timerhas been set to 3 seconds. The
setup is shown in Figure 2.14. The router runs the Router Advertisement Daemon8,
that distributes the three prefixes of host A and host B. One Click queue is defined
for each possible pair of addresses. Because each shim6 computer receives three
prefixes, 9 queues are defined for each direction. Each queue may be configured to
be delayed or stopped. Thus we have a total of 18 configurable queues inside the
router. This gives the flexibility of simulating unidirectional paths in the Internet,
with a configurable delay for each one separately. We may alsocreate a failure in
one direction while letting the other direction operational.

7By defaultLinShim6will generate CGA addresses on installation
8http://www.litech.org/radvd/
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2.5.1 Validation

To show the benefits of shim6 for a TCP application, we presentin Figure 2.15
the effect of a path failure on the throughput of an iperf TCP session. The path
is broken approximately 20 seconds after starting the iperfclient. The different
curves are obtained by artificially adding delay to paths, inside the Click router.
This figure shows one of the most important benefits of shim6, that is, transport
layer survivability across failures, without any change toTCP. Note that normal
TCP/IP is already able to survive if the broken path eventually comes back to life.
The difference here is that TCP behavesas if the path came back to life, while in
fact another path is selected thanks to REAP path exploration. After the recovery,
ULIDs are kept constant, while locators are changed, as a result of the path change.
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Figure 2.15: Evolution of throughput for an iperf TCP session

The throughput drop of Figure 2.15 represents the full recovery time, including
send timerexpiry (3 seconds)9. Now it would be desirable to make this recovery
time as short as possible, that is, the throughput drop of Figure 2.15 should be as
narrow as possible. This is the subject of the next subsection.

2.5.2 Exploration time

We define theexploration timeas the duration between leaving and coming back to
the REAPoperational state. This is different from thedetection time, defined
as the interval between the occurrence of a failure, and failure detection by REAP.
Finally, therecovery timeis the sum of the detection and exploration times. The
detection time is mainly influenced by the value of thesend timer. But this timer
being started every time a data packet is sent (if not alreadyrunning), the detection
time is also influenced by the frequency of outgoing data packets. For example,

9Our lab described in Figure 2.14 uses fixed-length queues regardless of the configured artificial
delays. This in turns causes more packet drops for higher artificial delays, hence lower throughput.
This however is not related to shim6 as it only enters into action after the failure event.
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if one starts anssh session, then stops activity during some time, keepalives will
be sent by shim6 untilkeepalive timeout, but after that no keepalives will be ex-
changed anymore untilssh becomes active again. In that case the failure will be
detectedsend timeoutseconds after the first data packet is sent. This is of course a
worst case. There is also a best case, which may occur if we canavoid to rely on
timers for failure detection (e.g. when the current interface goes down).
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Figure 2.16: CDF of exploration times when n paths are broken

The exploration time depends exponentially on the number ofprobes sent by
each of the peers before finding a successful path for each direction of communi-
cation, due to the exponential backoff. It is important hereto specify how often
a host may send probes, according to [AvB09]. Four initial probes are sent with
an interval of 500 ms. Then exponential backoff is started, the interval is doubled
each time a probe is sent. When the time interval between probes reaches 60 sec-
onds, exponential backoff is stopped and one probe is sent every 60 seconds. Our
implementation introduces an additional 20% jitter to the above intervals, to avoid
self-synchronisation [FJ94] (the value of 20% has been fixedarbitrarily). It is also
important to note that this version of our implementation selects address pairs by
cycling randomly over all possible paths. We present in Section 2.6 another way to
cycle over the paths, that tries to probe most distinct pathsfirst.

Figure 2.16 shows the cumulative distribution of exploration times for the
testbed described in Section 2.5. Because failure detection requires the existence of
a data stream, a UDP client and server have been placed on eachhost, to establish
a UDP bidirectional flow of one small packet every second.

Figure 2.16 has been obtained by measuring exploration times for different
values of the numbern of broken paths. Broken paths are emulated by tearing
down queues inside the Click router. Note that one queue inside the Click router
corresponds to aunidirectional path from A to B or from B to A, as shown in
Figure 2.14. In this experiment we simulate only bidirectional failures, thus we tear
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down at least the currently used queues for each simulated failure. Therefore, the
minimum value forn is 2. Additional queues (thus additional unidirectional paths)
are selected by running through the possible queue combinations, without taking
twice the same combination when possible. For each value ofn, 200 measurements
have been conducted. No artificial delay has been introducedinside queues for that
experiment.

The best performance is achieved forn = 2 as can be seen in Figure 2.16. We
see that if only the current queues are disabled, letting 16 queues enabled, the first
probe sent is successful in 86% of the trials. The second probe is always successful.
We can conclude this because the initial probes are sent witha 500 ms interval, and
100% of the trials take less than 600 ms (that is, 500 ms plus the 20% jitter).

As we shutdown more and more queues, we decrease the probability for a
randomly chosen path to be successful. This gives lower curves as n increases,
because each exploration has a higher probability of demanding more probes, thus
more time. This is observed in Figure 2.16, where the curves are lower and lower
with increasing values ofn.

Because the testbed has 18 paths (9 in each direction), we have measured the
worst case of breaking 16 paths, letting only one available path for each direction.
In that case we obtain a curve with several steps, where each step occurs after one
probe interval, due to the exponential backoff. 50% of the explorations lasted less
than 7 seconds, 80% less than 17 seconds and 95% lasted less than 31 seconds.
This scenario is rather unlikely to happen in practice as in the real world, it can be
considered a rare event to have only two operational paths among 18 available.

2.5.3 Paths with different delays

After having studied the impact of the number of broken pathson the exploration
time, we now evaluate how well the protocol performs to choose the path with low-
est delay. For that experiment, we have compared each queue with an increasing
delay in Click. We assigned a delay starting at 0 ms with a 10 msincrement. The
last queue (ninth) has a delay of 80 ms. The 9 queues from A to B and from B
to A have a symmetric configuration. 500 failures have been simulated. For each
failure, we save the path selected after recovery. Figure 2.17 shows a histogram
that gives the frequency of selection for each kind of path, sorted by delays. For
example, if REAP has selected a path with 0 ms for one direction, and another one
with 10 ms for the other direction, we increment each of theseclasses by one.

The ideal case is plotted as a reference : 50 % of use for each ofthe two best
paths. This is because in the case of the 0 ms path being broken(if it is the current
one), an ideal REAP would select the 10 ms path. The next trialwould lead to
break the 10 ms path and selecting the 0 ms path. Thus, in a perfect world, this
experiment would consist of continously jumping between the best path and the
second best path.

We can observe that standard REAP gives a uniform distribution, due to the
random selection of paths. We have also tried to slightly modify REAP, replac-
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Figure 2.17: Proportions of use for paths with different delays

ing the 500ms initial inter-probe delay with a 0 ms delay. That is, sending four
probes in burst. The dashed histogram shows the same measurements made with
the modified REAP. While the two best paths have a total selection proportion of
21,5% with legacy REAP, we obtain a proportion of 46,1% when sending 4 probes
in burst. This is due to the fact that if probes are sent in burst, the first received
answer is taken as the new current path. But that answer is theone corresponding
to the path with lowest round trip time among the four tried. If we increase the size
of the burst, we will get a higher proportion of selection forthe best paths, at the
expense of more control packets being sent.

2.6 Improving failure recovery time

In the previous section, we concentrated on the REAP path exploration mechanism.
The path exploration is however only a part of the failure recovery mechanism (the
first part being failure detection). In this section, we lookat how to reduce the
overall failure recovery time.

The REAP Failure detection mechanism has been evaluated by simulations
in [dBGMS07]. In [dBGMS07], de la Oliva et al. emphasise thatthe TCP expo-
nential backoff has a negative impact on the recovery time seen by an application.
The reason is that after a failure, TCP tries to retransmit until a response is re-
ceived. The delay between successive retransmissions is exponentially increased.
Consequently, when REAP finds a new path, TCP unnecessarily waits for its next
retransmission before noticing that the communication path is operational again.
[dBGMS07] suggests informing TCP when a new path is found so that it immedi-
ately retransmits and recovers. Figure 7 of [dBGMS07] provides simulation results
that show the effect of the improvement.

In LinShim6, we have added a mechanism that allows for notifications to beis-
sued when any multihoming event occurs. This uses the Linuxnetevent frame-
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Figure 2.18: Shim6 testbed 2

Figure 2.19: Tsend impact on ART

work. Any module in the kernel can register for such notifications, without the
knowledge of the shim6 module. This is important for maintaining the layer sep-
aration inside the kernel. TCP thus registers for thePATH UPDATE event, and
receives a notification when a path has been updated. It reacts by resetting all its
RTO (Retransmission TimeOut) timers for the TCP sessions that use that path.Lin-
Shim6is also modular enough to support external control from informed entities
(such as network monitoring daemons), for example to force achange to another
path. John Ronan has written such a controlling daemon to take ECN information
into account [RM10].

In this section, we use a testbed consisting of a Juniper M10i, as the router,
with two Dual Pentium III Blade servers with 512MB of Ram and Gigabit Inter-
faces (Figure 2.18). Both computers were running the IPerf tool for traffic gener-
ation. To simulate link failures, links were switched off inthe Juniper router via
expect scripts. The gain in recovery time is presented in Figure 2.19. This figure is
deliberately very similar to Figure 7 of [dBGMS07]. The goalwas to compare the
simulation results with the implementation results. We measure the Application
Recovery Time (ART), defined in [dBGMS07] as the time elapsedbetween the
last packet reception before a failure, and the first packet received after the recov-
ery. The measurement is repeated for different values ofTSend (Failure detection
timeout). Each point in the figure is the median of 45 measurements performed
in the same conditions. Error bars with percentiles 5 and 95 are also shown, al-
though almost invisible (they appear as small squares) due to the high stability of
the results.

With our testbed setup, an Application Recovery Time (ART) cannot be below
Tsend, because the time of the last packet received is almost equalto the time of
the last packet sent (due to the configured packet rate), and the path exploration
startsTsend seconds after the last packet has been sent. In the more general case
the lower bound for an ART can be slightly lower as explained in [dBGMS07].
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Figure 2.19 confirms the simulation results from [dBGMS07].We observe an
ART that increases linearly withTsend if the RTO (TCP Retransmission TimeOut)
is reset. On the other hand, in the absence of RTO reset, we observe steps in the
curve that are due to TCP waiting for its RTO before performing a retransmission.

Regarding the path exploration, our implementation separates the address pairs
used for sending probes into two sets, each one randomized. The first set contains
all pairs that are completely distinct from the current (stalled) address pair. The
second set contains all other address pairs. The first probessent use address pairs
from the first set, in the hope that using an orthogonal path increases the chance
our implementation can find a working path on the first attempt. Indeed, in the
testbed setup, this proved to be the case. This also confirms what was simulated
in [dBGMS07].

While many things are common between our figure and Figure 7 ofthe afore-
mentioned paper, all our experiments (either with or without RTO reset) reveal a
faster ART than the one obtained in [dBGMS07]. One explanation is that while
[dBGMS07] sends a probe to the current address pair before actually triggering an
exploration, our implementation begins exploration immediately upon expiration
of theSendtimer.

Probing the current locator pair, before commencing the exploration process,
is useful when there is some doubt about the failure. For example, a host could
receive a spoofed ICMP destination unreachable message, which should trigger
a probe on the current pair, but not an exploration. This is sothat the host can
attempt to detect whether it was a genuine ICMP message or not. In Figure 2.19
and Figure 7 of [dBGMS07], there is a timer expiry that indicates that no traffic
has been seen duringTsend seconds. Since REAP ensures (through keepalives)
that the Tsend timer expires only when there is truly a network failure, we argue
that this is a sufficient condition to immediately start the path exploration, with the
benefit of lowering the ART.
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Figure 2.20: I2 generation time under high load

2.7 Cost of state maintenance

Shim6 requires state to be maintained at both the initiator (client) and responder
(server). Obviously servers usually manage many connections simultaneously, this
would then mean that a server could potentially have to manage many shim6 con-
texts. In order to reduce the load on a server, it may be preferable to disable the
LinShim6heuristic. i.e. the context establishment trigger mechanism. That way,
the server will never initiate a shim6 negotiation, but onlyrespond to context cre-
ation requests from clients. The first step of a shim6 contextinitialisation would be
the sending of an I1 message by the client. The server would reply with an R1 with-
out creating state. Finally the client would send an I2, at which point context state
would be created in the server. The I2 message holds the list of locators from the
client, secured with a signature that the server is requiredto verify. If the I2 mes-
sage is found to be valid, the server would then create a new context, and reply with
an R2 message containing it’s own signed locator set. As the locators of a server
generally do not change all that often, our implementation computes the signatures
in advance, in order to spare computing time during the context negotiation.

In our testbed (the same one as used to generate Figure 2.13),we evaluated
the I2 processing time, the results of which can be seen in Figure 2.20. Our tests
consisted of the following. Every50ms, a client initiated a new context negotia-
tion, each client used a different CGA source address, in order to force the creation
of a new context in the server. The CGA was generated with a 1024-bit public
key. 1000 such contexts have been created, and the I2 processing time measured.
The x-axis shows the number of the clients (and hence contextcreation requests),
sorted in chronological order (context1000 is created1000∗50ms = 50s after the
first one). The figure shows that even when a hosts has 1000 active contexts, the I2
processing time remains at around 2 milliseconds.

Figure 2.21 shows the result of a case study of shim6 context management in
our university. The netflow traces of several critical servers in our campus have
been analysed (Full IPv4 netflow). Traffic was collected fromthe1st to the7th of
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Figure 2.21: Case study of state maintenance on selected servers

August, 2008. In our analysis, we assume that each peer wouldtrigger a shim6
negotiation immediately after the first packet is exchangedand that servers are
configured with a garbage collection time of10 seconds (that is, if no traffic is
seen during 10 seconds related to a particular context, thenthe server decides that
it is no longer used and removes it. Peers having more than 10 seconds of idle
time then need to renegotiate their context). By comparing with Figure 2.20, we
can infer that the I2 processing time (cost of creating a new context) would not
exceed2ms for any of those servers. We also observe from Figure 2.21 that even
in the worst case where each peer would trigger a shim6 context establishment,
the number of concurrent shim6 contexts that need to be maintained is less than
800. Note that in case an administrator wants to reduce the observed number of
simultaneous shim6 contexts, he can lower the garbage collection time, in order to
more aggressively drop shim6 states. This tuning corresponds to moving state from
the server to the network: the more aggressive a server is in dropping contexts, the
more often clients will need to refeed the context data through network messages.

Having just explained that servers can avoid unnecessary context creation by
simply disabling the shim6 heuristic, and only create contexts upon request from
the clients, one simple method that clients could use to reduce their shim6 activity
would be to introduce “hints” into the heuristic about whether the peer supports
shim6. In particular we know that, currently, the majority of IPv6 addresses cor-
respond to auto-generated MAC-based addresses. Those addresses can easily be
detected thanks to their format, i.e.ff:fe in the middle of the interface identi-
fier. If the peer uses such an address, most probably it has no support for shim6,
because the use of multiple addresses by shim6 requires their format to be either
HBA or CGA. Heuristics can be implemented as a kernel module,and a user can
define his/her own (or indeed modify the existing one), without having to modify
the core implementation. So, for example, a heuristic couldbe defined to ignore
auto-generated addresses, or to limit to some maximum the number of simultane-
ous shim6 contexts.
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MIPv6 Shim6 MipShim6
Routing V− V+ V+

Optimisation
Movement V+ V− V+

Detection
Support of simultaneous V X V
movement
Failure detection X V V
Path X V V
exploration

V/X: Feature is supported/unsupported
V+/V−:V+ Indicates a more efficient support.

Figure 2.22: Features supported by Mipv6, Shim6 et MipShim6

2.8 Combining Shim6 with Mobile IPv6

We have explained in Section 2.3 that the architecture ofLinShim6is extensible,
thanks to the usage of the modular xfrm framework. In this section we show how
LinShim6can be combined with Mobile IPv6 to produce a new solution,Mip-
Shim6, able to handle simultaneously multihoming and mobility.MipShim6can be
downloaded fromhttp://inl.info.ucl.ac.be/linshim6.

Bagnulo et al. already proposed a similar architecture (without testing it, how-
ever, as it was not implemented at the time) in [BGMA07]. We implement and
evaluate this architecture. We also modify it slightly, removing the Routing Op-
timisation mode of MIPv6 completely, as we justify how shim6can achieve the
same benefits at a lower cost.

Figure 2.22 summarises the services supported by MIPv6, shim6 and Mip-
Shim6, showing the benefit from unifying these technologies. Routing Optimisa-
tion (RO) and movement detection are supported by both MIPv6and shim6, but
shim6 (which uses only direct paths) negotiates more efficiently the use of a new
path. On the other hand, MIPv6 has received a lot of attentionfrom researchers
around movement detection [KMN+07, MN06a, DPN03], and therefore is better
at detecting movements compared to shim6, which considers amovement as a fail-
ure. The double jumps (where a host and its peer move simultaneously) are only
supported by MIPv6 because of the need for a rendezvous point(the home agent),
non-existent in shim6. Finally, shim6 is able to monitor a path end-to-end, and try
to find another pair of addresses in case of failure of the current path. This allows
supporting failures of the home agent, by simply switching to another one.

The architecture we propose is illustrated in Figure 2.23. To ensure the stability
of the transport and application layer identifiers, a singleaddress is presented to
them. As recommended also by Bagnulo et al. [BGMA07], the address used at this
level is a home address, because of its longer lifetime compared to CoAs. We call
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Figure 2.23: Architecture of the MipShim6 stack

this a ULID (Upper Layer IDentifier) to use the shim6 terminology. If a mobile
node has multiple home addresses, anyone of them can serve asa ULID.

Any packet leaving the transport layer passes first through the shim6 sublayer,
which provides an end-to-end address translation service.The shim6 service is
illustrated in Figure 2.23, and has two components, numbered 1 and2 in the figure.
In the first component, the ULID is rewritten into one of the available Care-of
addresses discovered in the visited network. We call this type of translationShim6-
RO, because the immediate use of a care-of address without using MIPv6 allows to
reach the correspondent node through a direct path, as wouldthe MIPv6 RO were
it used.

In the second component, the ULID is rewritten into one of thehome addresses.
This is useful only when the home address used as ULID has failed and the mobile
node has moved simultaneously with the correspondent node (CN), hence needing
to pass through the rendezvous point (the home agent) to get back in contact with
the CN (see Figure 2.24). In the absence of double jump, only care-of addresses are
used and home agent failures do not need to be detected. When doing home address
rewriting, two successive transformations take place. First, shim6 replaces the
home address used as ULID by the current locator (if necessary). This is the case
of the MN in Figure 2.24, which replacesHoA1 by HoA2, the home agentHA1

being down. Then the packet passes through the MIPv6 layer, which encapsulates
the packet in order to send it to the home agent. Shim6 addressrewriting from
one HoA into another one allows supporting both the multihoming of the home
network and the failure of a home agent.
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Figure 2.24: Double jump scenario with MipShim6

The third component is the MIPv6 layer. It is mainly responsible for managing
double jumps, but also the movement detection and the initialization of a communi-
cation context when a shim6 context has not yet been established (when away from
home, the only option to start a new exchange is to use the homeagent). MIPv6
provides encapsulation for sending packets to the corresponding node through the
home agent. As stated in the specification [JPA04], it is possible to maintain mul-
tiple Care-of Addresses, although only one of them may be registered at the Home
Agent. This allows MIPv6 to try another Care-of address, should the current bind-
ing attempt fail.

Shim6 can trigger a locator change when a failure is detectedby REAP, or fol-
lowing a movement notification from MIPv6. In that case a REAPexploration is
initiated. This involves sending probes on each of the paths, CoAs being preferred
as they allow using direct paths to the Correspondent Node (CN). Figure 2.25
shows an example whereMipShim6switches to Shim6-RO mode after a move-
ment: shim6 waits until the tunnel is established before sending anUpdate Request
(UR) to the CN. The remote node however still needs to do a REAP reachability
test, before actually using the new path. This is to prevent amalicious node from
redirecting the traffic from the correspondent node.

Support for multiple home addresses: Multiple Home Addresses (HoAs) can
be given to a mobile node for two main reasons. The first one is that the home
network can be multihomed and receive multiple IPv6 prefixes. In this case each
prefix is used to generate a new HoA. The second reason is the use of redundant
Home Agents. One prefix is assigned to each home agent so that the host can
choose (using the shim6 layer) through which of them to send its traffic. This is
useful to allow tolerance to Home Agent failures and load distribution across Home
Agents.
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Figure 2.25: Message sequence during a move

Support for multiple Care-of Addresses: The use of multiple CoAs allows sup-
porting multihoming of the visited network. [WDT+09] proposes an extension to
support multiple CoAs, but it is not needed thanks to the integrated support of
shim6.

2.8.1 Movement with MipShim6

Movement is characterized by the loss of the current CoA and the acquisition of a
new CoA. MIPv6 uses generic IPv6 techniques to detect movement and then makes
a Binding Update/Binding Ack exchange with the Home Agent when acquiring a
new CoA. Our architecture can reuse the movement detection optimisations already
developed for MIPv6 [MN02, DPN03].

Depending on whether or not the mobile node is in Shim6-RO mode at the time
of movement, we distiguish two cases. If it is not in Shim6-ROmode, the tunnel
is simply updated and Shim6 can receive the movement notification, enabling it
to trigger an immediate switch to Shim6-RO (as shown in Figure 2.25). In the
second case, the mobile node has moved while using the Shim6-RO mode. MIPv6
also updates its tunnel, although it is not used. As in the previous case, it sends a
notification to shim6, which may change the current locator.

It is possible that Shim6 detects a movement before MIPv6 or at the same time.
This happens when the failure detection timer is set to a value lower than the time
required for MIPv6 to accomplish its movement detection andfailover. In this case,
the movement is actually perceived as a failure by Shim6 which immediately be-
gins to send probes. These will be unsuccessful until MIPv6 has finished updating
its tunnel with the Home Agent. Although this case leads to the same result as the
second scenario, it is better to avoid it because it generates more control traffic. It is
possible to avoid this competition between shim6 and MIPv6 by setting the shim6
failure detection timer to a higher value compared to the average MIPv6 movement
recovery time.
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Figure 2.26: Recovery time after a failure of the Home Agent vs TSend timer

2.8.2 Validation

We validatedMipShim6by running it in two scenarios. In the first scenario, a
Mobile Node communicates with a peer in tunnel mode and experiences a failure.
Figure 2.26 shows the application recovery time as a function of the shim6 failure
detection timer, when a mobile node experiences a failure ofthe Home Agent. The
result is quite similar to what we obtained for pure shim6 in Figure 2.19, where
the transport layer is informed about the path change and resets its retransmission
timer.

In the second scenario, we verify the correct behaviour ofMipShim6in case
of double jump. This result is shown in Figure 2.27. After an interruption of a
few seconds, the TCP exchange recovers. Note that this uses the MIPv6 part of
MipShim6, given that the Home Agent is needed in this case to act as a rendezvous
point. The goodput is highly variable because our lab uses 802.11g wireless con-
nectivity.

More discussion on MipShim6, its implementation and the validation can be
found in ourMipShim6paper [BDMB09].

2.9 Open Issues with shim6 multihoming

From a standardisation viewpoint, the shim6 IETF working group has concluded
and several RFC’s have been published [NB09, AvB09, Bag09].Our implementa-
tion supports all the important features of shim6. However,there are still several
outstanding issues to be solved before there will be a widespread deployment of
shim6.

A primary issue is that shim6 requires IPv6. As of this writing, the Internet
still mainly uses IPv4, but given the expected exhaustion ofthe IPv4 address space,
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Figure 2.27: TCP goodput before/after a double jump

more and more networks are seriously considering IPv6 and have started deploy-
ments [Hus10]. Shim6 could be a very useful feature for multihomed networks.
Initially, shim6 could be used for important flows such as VPN, e-commerce or IP
telephony servers where rapid recovery from link or interface failures is important.
An important advantage of shim6 over other multihoming solutions such as HIP
or SCTP, is that shim6 does not require any change to the applications running on
hosts. Thus, applications can benefit of shim6 without beingaware of it. Simu-
lation studies performed during the early phases of the shim6 development have
shown that host-based multihoming techniques such as shim6allow hosts to use
many more paths to send their packets than traditional IPv4 BGP-based multihom-
ing [de 05]. Furthermore, measurements have shown that by using these additional
paths, it is possible to achieve much better performance, e.g. lower delays [de 05].

However, there are also some forces against a widespread shim6 deployment.
At present, Internet Service Providers are very reluctant to consider it [Sch05].
Their main concern with shim6 is that it allows hosts to influence the path used
to send and receive packets towards any multihomed destination. ISP operators
have become accustomed to performing traffic engineering byrefining their BGP
configurations to take into account business policies. Consequently many consider
that the deployment of shim6 would limit their traffic engineering capabilities and
make the network more difficult to manage [Sch05]. This is notnecessarily true.
Shim6 provides benefits to both ISPs and their clients. ISPs can benefit from a
much more scalable interdomain routing system while clients can benefit from a
much larger number of paths providing better performance and more redundancy.

In fact, peer-to-peer applications are also exploiting these alternative paths.
Network operators could market shim6 as an added value service to their customers
willing to obtain improved performance or reliability. This service could be com-
bined with a path selection service provided by the ISP that allows its clients to
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easily determine the best path to reach a given destination.This type of service is
already being developed to support peer-to-peer applications [AFS08]. Recently,
the IETF has chartered the ALTO working group to work on such aservice [SB09]
which would be very useful for shim6 to integrate with.

A second issue concerning a widespread deployment of shim6 is that many cor-
porate networks insist on using Provider Independent IP addresses, even for IPv6,
instead of Provider Aggregatable addresses [Pal09]. This is because most operators
consider that renumbering a network is too complex. Despitea lot of discussions
on this topic [CAF10], the IETF does not provide a solution toeasily renumber
a corporate network. Thanks to DHCP and IPv6’s stateless auto-configuration,
most hosts can easily change their address, but for servers and routers this remains
difficult. For the specific case of shim6, a complete renumbering solution is not
necessary. To easily support provider changes, a corporatenetwork could use pri-
vate addresses internally (e.g. for the routers and the management servers) and
simply add the prefixes allocated by their providers to all their routers. Solutions
to address this issue have been proposed in [LB09].

2.10 Related Work

Other solutions have been developed to solve the multihoming problem. The SCTP
transport protocol [Ste07] was initially designed to support signalling servers in IP
telephony environments. It has now been extended to supportwider deployment
scenarios and is supported by several operating systems. Another example is the
Host Identity Protocol (HIP) [MN06b]. HIP has been developed to evaluate the
benefits and drawbacks of using a new cryptographical identifier namespace on
top of IP. HIP has been extended to support multihoming and mobility [NHVA08]
and there are several implementations of HIP available [KVG07]. Compared to
these solutions, the main benefit of shim6 is that it does not require any change
to the applications. This is very important for a new technique that needs to be
incrementally deployed.

Several years ago, based on the recommendation from [MZF07], the Routing
Research Group of the Internet Research Task Force (IRTF) was rechartered to
consider the evolution of the Internet architecture. Several of the techniques being
evaluated within this working group [Atk11, FFML11, Vog08]rely on separating
the identifier and locator roles of the IP addresses, as in shim6. Although the details
between these protocols and shim6 vary, the experience gained by the implemen-
tation and improvements of shim6 will be beneficial for the development of these
new protocols.

Two other prototype implementations have been developed respectively by
Park et al. [PCC+07] and Ahrenholz and Henderson [AH08], also on the Linux
platform. They are mainly user-space implementations withnetfilter hooks
to capture the shim6 packets and process them in user space daemons. In contrast,
our implementation uses the xfrm framework and is implemented partially in the
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kernel with the non time-sensitive functions in user space.Another important dif-
ference is that our implementation completely supports thesecurity mechanisms
designed for shim6.

Finally, recently an IETF working group has been created (MPTCP) to design a
modified version of TCP, called Multipath TCP [FRHB11], thatis able to failover
from one path to another, and to spread one single transport flow across several
paths. MPTCP will be our main topic starting at Chapter 3, andwe propose in
Section 4.4.2 an architecture that allows integrating shim6 with MPTCP.

2.11 Conclusions

Multihoming is one of the problems that limits the scalability of the current In-
ternet architecture, because it is currently obtained through injection of additional
routes in the BGP system. Shim6 brings a solution to that, by making possible a
hierarchical allocation of IPv6 addresses, through increased path management by
the end-hosts.

In this chapter, we have studied in details the HBA and CGA mechanisms.
Although HBA is computationally cheaper compared to CGA, CGA does offer in-
teresting capabilities in terms of flexibility. For example, an interesting possible
extension of our work could be to augment shim6 with IPv4 support, by simply
including IPv4 addresses in the CGA signature. The only requirement for this to
work would be to use an IPv6 address as ULID, so that the host public key can be
encoded in this ULID. This would effectively allow a host to use both IPv4 and
IPv6 protocols in the same communication, without the knowledge of the applica-
tion.

We also analysed in depth the failure recovery capability ofshim6, and ex-
plained that the associated REAP protocol allows moving thetraffic from one path
to another. But one could wonder whether it is possible to useseveral shim6 paths
simultaneously. Although this cannot be done autonomouslyin the shim6 layer,
because TCP performance would drop due to the incurred reordering, the concept
of context forking[NB09] has been proposed in the shim6 specification to allow an
upper layer (e.g. a shim6-aware application) to control thepaths on its own. This
is costly, however, as it requires creating a full shim6 context per path that needs to
be handled simultaneously (more memory required). Moreover, each of these con-
texts must be negotiated separately with the peer (more timerequired for context
establishment). This can be useful in specific cases where anapplication needs full
control of the shim6 context and hence needs to “own” one. However, for simul-
taneous use of shim6 paths, we will instead propose in Section 4.4.2 a completely
local interface (that is, without change in the shim6 protocol or additional network
exchanges) that enhances shim6 with simultaneous multipath capability, given an
appropriately interfaced upper layer can control it (we do this with Multipath TCP).

Finally, we described our MipShim6 proposal, that combinesMobile IPv6 with
Shim6. An interesting future work would be to put together MipShim6 with the
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Multipath TCP protocol, presented in the next chapter. Thiswould indeed result in
a full solution for handling multihoming, mobility and simultaneous use of multiple
paths.





Chapter 3

Understanding Multipath TCP

In the previous chapters, we have studied multihoming as seen from the network
layer. We will now concentrate on a recently developed protocol, MPTCP, that can
handle multiple paths at the transport layer. Before presenting our contributions,
we provide a short introduction to regular TCP and to MPTCP asit is defined
currently by the IETF [FRHB11].

3.1 Regular TCP

The Transmission Control Protocol (TCP), standardized in 1981 [Pos81b], is used
in the vast majority of Internet communications. Together with the User Datagram
Protocol (UDP [Pos80]), this transport layer protocol carries95% of the network
traffic on the Internet [LIJM+10].

TCP provides a reliable bytestream abstraction to applications. Reliablemeans
that any lost or corrupted data is retransmitted until it is received. A TCP sender
knows that a range of bytes have correctly reached the destination thanks toac-
knowledgements. The data bytes are givensequence numbersthat are referenced
in the acknowledgements to indicate the amount of data that has been correctly
received. For example, an acknowledgement of1000 means that the bytes with
sequence numbers0 through999 have been successfully received (assuming an
initial sequence number of0 in this case). TCP estimates theRound Trip Time
(RTT) as the time elapsed between the transmission of a segment and the reception
of the corresponding acknowledgement. This RTT is used to configure a timer that
triggers an automatic retransmission of data when it expires. All of this is done
without the knowledge of the application, that only needs tofeed a socket with
bytes and can be confident that the data will reach the peer, aslong as the network
path used for the communication is not completely broken.

Bytestream abstraction means that TCP allows the application layer to ex-
change a flow of bytes with the peer, which requires handling segmentation on
behalf of the application because the underlying network layer can only handle
packets (see Figure 1.2 in Chapter 1 for a reminder on Internet layering). TCP
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Figure 3.1: Example TCP exchange

can negotiate aMaximum Segment Sizeat the beginning of a connection, and later
on tries to fill all segments up to their maximum size (in orderto benefit from
the best possible control/data ratio in each segment), thanks to the Nagle algo-
rithm [Nag84].

[Pos81b] has been very careful with the establishment and termination phases
of a TCP connection, and a full state machine is defined in [Pos81b, Figure 6]. We
show a simple example of TCP communication in Figure 3.1 (thestate names on
the left and right of the picture refer to the state machine in[Pos81b, Figure 6]).

A TCP server waits for incoming connection requests. Until arequest is re-
ceived, it is inLISTEN state (TheCLOSED state refers to the absence of a socket).
A connection request segment, in TCP terminology, is calleda SYN. The server
creates no connection specific state until theSYN is received (IfSYN cookies are
enabled [Ber], state creation is even delayed until the third message (ACK) has been
received). For this reason, no data can be sent by the client until theSYN has been
acknowledged. If after some time the acknowledgement is notreceived (meaning
that either theSYN or theACK has been lost in transit through the network), the
SYN segment is retransmitted. The server neither enters theESTABLISHED state
until its own SYN has been acknowledged. This is important because theSYN
segment contains the Initial Sequence Number (ISN), randomized for security rea-
sons. Entering theESTABLISHED state before the reception of theACK would
result in potentially sending data that the receiver will not be able to localize in the
sequence number space. This initial exchange of three segments is traditionnally
called thethree-way handshake.

A similar handshake happens when terminating the connection. A FIN is is-
sued when the application performs aclose() system call on the TCP socket.
The reception of theFIN generally triggers aclose() in the application on the
server as well, which allows sending the serverFIN and the acknowledgement of
the clientFIN in the same segment. When the server receives theACK from the
client, it can safely remove any state related to that connection. However, the client
has no way to know if hisACK has actually reached the peer. If not, it must be
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prepared to receive a retransmittedFIN+ACK. For this reason, [Pos81b] defines an
arbitrary timeout of four minutes, during which the client socket must remain open
in order to resend anACK in response to any retransmittedFIN+ACK.

[Pos81b] defines some important state variables. We explainsome of them
here, as we will discuss them later as well in the case of MPTCP.

• RCV.NXT : Next expected sequence number, that is, all the bytes until
RCV.NXT − 1 have been correctly received.

• RCV.WND: Receive window. TCP ensures that bytes are transmitted in
the correct order, thanks to the sequence number. In case segments arrive
out of sequence, they are reordered in a buffer on the receiver. In particu-
lar, if a segment is lost, a TCP receiver must be able to store all the data
that follows the lost segment until it is retransmitted. This can quickly fill
up the receive buffers. Another case where buffering is needed at the re-
ceiver is when an application is very slow at reading the incoming data. In
those cases where buffering is needed, it is important to prevent the sender
from providing data that cannot be stored. The receive window is an in-
dication, included in each segment, of the current available receive buffer.
RCV.WND indicates a window in the sequence number space that the
sender is allowed to use for sending new data. The exact window is defined
as[RCV.NXT,RCV.NXT +RCV.WND − 1].

• SND.NXT : Next byte to send. The sequence numbers increase monoton-
ically after each new sent byte. If, for instance, a1500 bytes segment is to
be sent, it is given sequence numberSND.NXT and thenSND.NXT is
incremented by1500.

• SND.UNA: First unacknowledged byte. It stores the highest cumulative
acknowledgement received so far. All data with sequence numbers lower
thanSND.UNA can be discarded from the send buffers, as it has been
correctly received by the peer.

• SND.WND: This is the sender view of theRCV.WND state variable de-
fined above. From the sender point of view, the allowed windowfor sending
new segments is[SND.UNA,SND.UNA+ SND.WND − 1].

Congestion control: We have mentioned above the case of a TCP flow being
limited by the receiving application. In that case the receiver advertises a small
receive window, to force the sender not to send faster than itcan read. It is also
possible (and this case is more frequent), that a TCP flow is limited by the network.
A flow is network-limited when it uses all the available capacity on the bottleneck
link. In such a case, the bottleneck router starts dropping segments, which requires
retransmissions, as explained above. If the sending rate isnot controlled, however,
there is an amplifying congestion effect: The losses induceretransmissions,in
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addition tothe new data being sent in parallel at the same rate. Hence theoverall
transmission rate is effectively increased, while a drop normally means that the
sender is already transmitting too fast.

To control congestion, the solution is to maintain a separate window called the
congestion window(cwnd) [Ste97]. A sender can send a new segment only if it fits
in both its send window and congestion window. The intuition is thatit can send
only if both the network and the receiver are able to handle the new data. The con-
gestion control always happens in two steps. The first step,slow start, is used when
the congestion level is unknown and a first probing is needed.A more accurate term
for it however would be “fast start”, as the sending rate is increased exponentially
until the first loss event. At that moment, another variable,the slow start thresh-
old, is set to one half of the congestion window (ssthresh = cwnd/2). ssthresh
determines when the sender must be more conservative in increasing its conges-
tion window. This more conservative, second step is calledcongestion avoid-
ance. In the first implementation of congestion avoidance (BSD4.3, Tahoe), the
increase was linear, again until a loss happened. There are other congestion avoid-
ance mechanisms in modern TCP implementations such as TCP Vegas [BOP94],
CUBIC [HRX08] or Illinois [LBS08], which will not be discussed here.

3.2 Multipath protocols

MPTCP is the most recent but not the first effort to handle simultaneous use of
multiple paths at the transport layer. Previous multipath efforts can be classi-
fied based on the directions taken by the authors. One obviousdirection is the
chosen transport protocol: SCTP or TCP. We remark that in many aspects the
conclusions for one or the other of those protocols are very similar, because the
main problems encountered when designing a multipath protocol are not related
to the specificities of SCTP or TCP. Both protocols need to solve reordering prob-
lems when data is spread across multiple paths, and adjust their buffer allocation.
SCTP-based [IAS06, ASL04, LWZ08] multipath approaches justify their protocol
choice by SCTP’s built-in ability to define multiple streams[Ste07], which can be
more easily turned into concurrent subflows. But the TCP adopters [MK01, HS02,
ROA05, ZLK04] have shown that it is equally feasible to turn TCP into a multipath
protocol. The reason is that while SCTP provides a socket interface for controlling
the subflows, such an interface is not needed when only one flowis presented to
the application and the spreading of data across subflows is done internally. In the
end, TCP was chosen to implement multipath capabilities because, in contrast to
SCTP, it is widely deployed in today’s Internet.

Another important direction is the choice of the sequence space. Some propos-
als use a single sequence number space [MK01, ROA05, IAS06].This choice may
lead to significant reordering of sequence numbers at the receiver. Since reorder-
ing is normally considered as a failure indication, new lossdetection heuristics are
needed to distinguish between normal multipath reorderingand failures. To get rid
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Figure 3.2: MPTCP is transparent to both the network and the applications

of that problem, MPTCP defines a dual sequence number space, where one space
is subflow specific and identifies bytes within a subflow. [FRHB11] defines a Data
Sequence Number (DSN) space, which takes care of reorderingat the aggregate
connection level, but these DSNs do not have any impact on retransmission deci-
sions. The closest related work from that point of view is [HS02].

A third design choice is the way to deal with shared bottlenecks. There is a
fairness problem when several multipath flows share a bottleneck when employ-
ing regular TCP congestion control per subflow, because theywould get a higher
proportion of the available capacity compared to standard TCP flows. Zhang et
al. solve that problem by trying to avoid establishing several subflows across
the same bottleneck, thanks to an external tool [ZLK04]. Other approaches sim-
ply ignore the problem. In MPTCP, the congestion control algorithm is coupled
across all subflows, so as to ensure fairness without needingto detect shared bot-
tlenecks [RHW11, WRGH11]. A good, detailed overview of multipath transport
approaches can be found in [Ong09].

3.3 Starting a new MPTCP session

One of the main design goals behind MPTCP was to be completelytransparent
to both the application and the network. This is illustratedin Figure 3.2. The
application opens a regular TCP socket, which initially starts one regular TCP sub-
flow. Up to that point, there is no major difference between TCP and MPTCP. But
if both endpoints support Multipath TCP, additional subflows can be initiated by
either host. Outgoing data is then scheduled according to some implementation
dependent policy. Incoming data from all TCP subflows is reordered to maintain
the in-order bytestream abstraction of TCP, as seen by the application. Scheduling
and reordering operations are represented by the ellipse inthe center of Figure 3.2.

Subflow establishment is shown in Figure 3.3. It is slightly simplified for the
sake of describing the main idea, and the full version will bedetailed in Sec-
tion 3.6, in Figure 3.7.Host A wants to contactHost B. From the DNS, it
learns thatHost B can be reached through addressB.1. Because MPTCP must
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Figure 3.3: MPTCP initial exchange and subflow establishment

be transparent to the network, any new TCP subflow (includingthe first one)
must be established using a three-way handshake1. It is augmented with MPTCP-
specific TCP options, that need to be understood by the end-system stacks only
(not by the network). Thanks to theMP CAPABLE option inserted in theSYN
andSYN+ACK, bothHost A andHost B can know that the other end supports
MPTCP.MP CAPABLE is also present in the third message of the three-way hand-
shake to allow the server to defer the state creation until the end of the handshake,
and make use of SYN cookies [Ber]. If nothing more is done, MPTCP runs exactly
like TCP.

At any moment either host can try to establish a new subflow. Again, this is
done through a regular TCP three-way handshake. The option used for additional
subflows must be different, however. The peer must be able to understand that
the new subflow must be attached to an existing MPTCP connection, and this is
made possible by thetoken. During the first three-way handshake bothHost A
andHost B choose a token to identify the new connection locally. The token
is announced to the peer in theMP CAPABLE option. SinceHost A has two
addresses, it can establish a new subflow using addresses< A.2, B.1 >, and join
it to the correct context inHost B by attachingtoken B to theMP JOIN option.
Note thattoken A does not need to be included in theSYN+ACK becauseHost
A has state for that subflow already, which is not the case of host B. Similarly,
Host B could establish the subflow< A.1, B.2 >. But neitherHost A nor
Host B can establish the subflow< A.2, B.2 > since none of them knows the
second address of the remote host. This address pair precisely corresponds to the
most distinct path (in most network configurations). Thus a new MPTCP option
is needed:ADD ADDRESS. Its use is shown in the right part of Figure 3.3. After
Host B has announced that it can be reached at addressB.2 as well,Host A

1The finalACK makes it actually a four-way handshake, but it is seen by the network as a reg-
ular TCPACK, independent from the establishment. The reason for using afour-way handshake is
explained in Section 3.6
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Figure 3.4: MPTCP Data Sequence Numbers (DSNs)

Figure 3.5: MPTCP retransmission

has the opportunity to establish one more subflow.
To close this section, we note that MPTCP subflows can be established over

IPv4 or IPv6. A single connection can make use of both underlying networks.
This is a very interesting property of MPTCP, as it facilitates the transition from
IPv4 to IPv6 and allows hosts having both kinds of addresses to use two different
underlying network protocols simultaneously.

3.4 Exchanging data across multiple flows

At the sender, an implementation specific scheduler (represented as a ellipses in
Figures 3.4 and 3.5) decides over which subfow to send any byte of data (we de-
scribe our design of such a scheduler in the next chapter). Asa result, the initial
ordering of the application bytestream is lost, and holes appear in the sequence
numbers of the bytestream (e.g. subflow 2 in Figure 3.4). Thisis not desirable as
some network devices (e.g. TCP normalizers [HPK01]) analyse the TCP sequence
numbers and block a TCP flow when holes appear in the sequence numbering. This
motivated the definition of asecond sequence number space. One sequence num-
ber space is related to subflow sequence numbers. Each subflowmaintains its own
subflow sequence number space, and writes sequence numbers in the same field as
regular TCP. Again, the MPTCP information is stored in options, and a DSS (Data
Sequence Signal) option has been defined by [FRHB11] to carrythe data sequence
numbers. Subflow sequence numbers and data sequence numbersare illustrated in
Figure 3.4.

Retransmissions: When a loss is detected (loss detection is performed on each
subflow individually), it is not necessarily the best choiceto retransmit on the same
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subflow. For instance, if the loss happened on a high delay path, it may be wise
to retransmit the segment on another subflow. This can be donenaturally with
MPTCP, by simply remapping the data sequence numbers to new subflow sequence
numbers, as shown in Figure 3.5. However, the original segment must still be
retransmitted on its initial subflow to avoid confusing middleboxes that check for
payload consistency upon retransmissions.

Acknowledgements: Due to the subflows behaving like regular TCP connec-
tions on the wire, the subflow sequence numbers are acknowledged normally on
each subflow. In theory this should be sufficient, because thesender can infer the
acknowledged data sequence numbers from the received subflow acknowledge-
ment. However, two practical problems exist with that solution:

• Various kinds of middleboxes have been developed to improvethe behaviour
of TCP, and are grouped under the termPerformance Enhancing Proxies
(PEPs) [BKG+01]. Some of them acknowledge TCP data before it is actu-
ally acknowledged by the peer. If the data happens to be lost after it has been
acknowledged by the PEP, it is the responsability of the device to retransmit
it. However if the path has failed (that is, any retransmission from the PEP
fails), or if the receiver is mobile, so that the PEP retransmissions cannot
reach it anymore, the other subflows cannot be used to retransmit the lost
data, as the sender has released the corresponding memory.

• In regular TCP, the receive window is defined as follows [Pos81b]:

[RCV.NXT,RCV.NXT +RCV.WND]

RCV.NXT is determined by theACK field in the TCP segment. However,
in MPTCP there is no subflow-specific receive window (for reasons that we
describe in Section 4.3.5). The advertised receive window is related to the
data sequence number space, and is redefined as follows:

[DATA.RCV.NXT,DATA.RCV.NXT +DATA.RCV.WND]

That is, the receive window is no longer a fraction of the subflow sequence
number space, but instead a fraction of the data sequence number space. If
the data acknowledgement is inferred from the subflow acknowledgement, it
is not cumulative, and hence does not reflectDATA.RCV.NXT (which is
the next data sequence number expected by the receiver).

To solve the above problems, the protocol specification has defined adata ac-
knowledgementoption, that is included in the same option as the data sequence
number. It solves the first problem because the cumulative Data Acknowledge-
ment can be sent on any subflow, and truly reflects the state of the receiver, even
in the presence of PEPs. It also solves the second problem because it explicitly
defines the left edge of the data level receive window. Finally, it even simplifies
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implementations, by removing the need to infer the data acknowledgement from
the subflow-level acknowledgement2.

Congestion Control: Congestion control algorithms for regular TCP try to use
their fair share of the available capacity. Two TCP subflows belonging to a logical
connection would then use twice their fair share. Moreover,[WRGH11] describes
a scenario (with multiple bottlenecks) where even an aggressive MPTCP would
fail to obtain the best possible bandwidth. The authors explain that it is desirable,
in multipath scenarios, to use only the less congested pathsinstead of spreading
the traffic equally among the available paths. Starting froman existing theoretical
solution [KV05, HSH+06], [WRGH11] develops an algorithm, and adapts it to
fulfill the following two goals:“A multipath flow should give a connection at least
as much throughput as it would get with single-path TCP on thebest of its paths.
This ensures there is an incentive for deploying multipath.” and“a multipath flow
should take no more capacity on any path or collection of paths than if it was a
single-path TCP flow using the best of those paths. This guarantees that it will not
unduly harm other flows at a bottleneck link, no matter what combination of paths
passes through that link.”

The resulting congestion control algorithm is as follows:

• For each non-duplicate ack on subflowi, increase the congestion window
of the subflowi by min(α ∗ bytes acked ∗MSSi/cwndtot, bytes acked ∗
MSSi/cwndi) (wherecwndtot is the total congestion window of all the

subflows andα = cwndtot
maxi(

cwndi

RTT2

i

)

(
∑

i

cwndi

RTTi
)2

). This formula assumes that the con-

gestion window is measured in bytes andbytes acked is the number of bytes
acknowledged by the received ack segment.

• Upon detection of a loss on subflowi, decrease the subflow congestion win-
dow bycwndi/2.

This congestion control algorithm has been proposed by the same authors in an
IETF draft [RHW11]. The MPTCP specification [FRHB11] does not mandate the
use of that algorithm, however, and emphasises that congestion control is separate
from the main specification, to leave space for future definition of other congestion
controllers. As of this writing, this is the only congestioncontrol scheme that has
been adapted to MPTCP.

3.5 Terminating an MPTCP connection

In the previous sections, we described the motivations thatdrove the definition of
data sequence numbers and data acknowledgements. In this section, we explain

2Our implementation initially worked without data acknowledgements, but this forced us to main-
tain a list of acknowledged fragments in the data sequence number space, just like the SACK imple-
mentation in TCP
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Figure 3.6: MPTCP example connection termination

why MPTCP also includes aData FIN [FRHB11].

One could assume that, to close an MPTCP connection, it is sufficient to send a
regularFIN on all subflows. This works indeed if all subflows are operational, but
will fail if any of the subflows is broken. In regular TCP, if the flow is broken, the
connection cannot be closed gracefully anyway, but MPTCP would not be affected
by such a failure, as every useful information about the connection can be moved
to another working subflow.

The semantics of theData FIN is the same as the semantics of theFIN, at
the data level. A regularFIN does not close a connection, it closes a subflow. A
Data FIN can be sent onany subflow. It is acknowledged with aData ACK,
and occupies one byte in the data sequence number space.

An example connection termination is shown in Figure 3.6. Wedeliberately
show a particular case, where subflow< A.1, B.1 > fails, to illustrate the be-
haviour of MPCTP in that case.[end data stream] represents the last block
of application data. Since the application has issued aclose() system call after
this last block, MPTCP appends aData FIN to the transmission queue. Sub-
flow < A.1, B.1 > is selected by the scheduler. Since theData FIN is present,
MPTCP knows that it can as well close the subflow, and also setstheFIN flag.
Unfortunately this termination segment is lost, and after atimeout it is retrans-
mitted. Thanks to MPTCP’s ability to retransmit segments onother subflows (see
Section 3.4), the lost segment is also retransmitted on subflow < A.2, B.1 >. The
retransmission successfully reaches the peer, and the finalgraceful shutdown can
happen on this second subflow. From the application viewpoint, the stack can re-
turn that the connection has been correctly closed in the outgoing direction. From
the viewpoint of MPTCP, the failed subflow will continue to retransmit aFIN seg-
ment, with exponential backoff, and finally terminate aftera timeout. This is done
without the knowledge of the application. Note that [FRHB11] proposes to reduce
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Figure 3.7: MPTCP authentication

the timeout value when the subflow is not needed anymore for the connection.

3.6 Security mechanisms for MPTCP

The security mechanisms for MPTCP have been subject to a longdebate in the
IETF, and consensus has been reached only recently. For thatreason they are not
yet included in our Linux MPTCP implementation. In this section we give an
overview of the problems and solutions as defined in [FRHB11].

A threat analysis for MPTCP is detailed in [Bag11]. It statestwo important
issues about MPTCP:

• An important design goal of MPTCP is to be no worse than TCP from a
security point of view. For example, TCP being vulnerable toMan-in-the-
Middle (MiTM) attacks, it is explicitly not a goal for MPTCP to be protected
against those attacks.

• The main new threat introduced by MPTCP is related to locatoragility. An
attacker could send anADD ADDRESS with his own address and divert part
of the data stream, if not all, to himself. Or he could send anADD ADDRESS
with the address of a target, so that it can force a server to flood a chosen
victim.

From the above, it comes that the most critical part in MPTCP,from a security
point of view, is the subflow establishment. [Bag11] emphasises that a tradeoff is
needed between the level of protection we want, and the complexity of the result-
ing security mechanisms. The currently adopted tradeoff, as defined in [FRHB11]
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is that the protection of new subflows is based on the premise that the initial three-
way handshake cannot be intercepted by an attacker. Other security mechanisms
(e.g. using a Diffie-Hellman exchange) were considered too computationally ex-
pensive, and hence no protection is given against the time-shifted attack described
in [Bag11] (where an attacker is on-path at the beginning of the communication
and then moves away but can still hijack the communication).The protocol could
be extended to support other security mechanisms in the future.

Based on the assumption that an attacker cannot see the initial handshake, a key
is exchanged in clear text between the peers.Host A generateskey A, Host B
generateskey B. Key A is sent only in the third segment of the handshake, to al-
low the utilisation of SYN cookies on the server. Note that the token, introduced
in Section 3.3 (Figure 3.3), does not appear anymore in the initial exchange of Fig-
ure 3.7. This is because the token is derived from the key:tokenA = hash(keyA)
andtokenB = hash(keyB).

The key is then used to authenticate further subflow establishments, thanks to a
Hash-based Message Authentication Code (HMAC), whith the SHA1 [EH06] hash
function. Due to the fact that the addresses and ports may be changed on the path
to the destination (e.g. by a NAPT device [SE01]), they cannot be included in the
HMAC authentication. Instead, [FRHB11] specifies that a pair of random numbers
(RA andRB), one generated locally and one generated by the peer, must be used as
the message to be hashed.Host A authenticates itself by showing that it is able to
provide the right keyed hash ofRA +RB , usingkeyA andkeyB . Similarly,Host
B shows that it is able to generate the correct HMAC based onRB +RA and using
keyB andkeyA. Since onlyHost A andHost B know the keys, only them can
create new subflows with each other (again, given the assumption that the attacker
cannot see the initial exchange and that the random keys are long enough to prevent
brute force attacks). Moreover, to protect against replay attacks, the numbersRA

andRB arenonces, meaning that they are used only once.
Figure 3.7 shows that the handshakes are actually four-way handshakes, for

both the initial and additional subflows. In fact the regularTCP three-way hand-
shake is maintained, but MPTCP forces the server to send an acknowledgement
after the three-way handshake to ensure that the final MPTCP security data is re-
ceived. For the initial exchange, the data iskeyA andkeyB. For the additional
subflows, it isMACA. This acknowledgement can and should be used to carry
application data, if available.

3.7 Conclusions

In this chapter, after a quick introduction to regular TCP, we have presented Multi-
path TCP, as defined in [FRHB11]. The main goal of Multipath TCP is to enhance
TCP in such a way that two or more paths can be used simultaneously. This has
many advantages, including better resource utilisation, better throughput obtained
thanks to the resulting pooling of network resources, and smoother reaction to fail-
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ures. One important design decision was to make MPTCPreadily deployable, that
is, transparent to applications and to a maximum of network middleboxes. An in-
teresting novelty of MPTCP was the proposal for theCoupled Congestion Control.
Established from theoretical models, this new algorithm allows moving traffic away
from congested paths, while being fair to regular TCP flows inshared bottlenecks.
We concluded with a presentation of the security mechanismscurrently defined for
MPTCP. They are only intended to be no worse than regular TCP.In that matter,
MPTCP is not completely successful in its current specification, however, as the so
calledtime shifted attack [Bag11]is still possible with MPTCP, while it is not with
regular TCP. The other attacks presented in [Bag11] are covered, though.

The next chapter presents our modular implementation of Multipath TCP, in
the Linux kernel. We then evaluate the protocol, by using ourimplementation, in
Chapter 5.





Chapter 4

Linux-MPTCP: A modular
MPTCP implementation

4.1 Introduction

The Multipath TCP protocol [FRHB11] is a major TCP extensionthat allows for
simultaneous use of multiple paths, while being transparent to the applications, fair
to regular TCP flows [RHW11] and deployable in the current Internet. The MPTCP
design goals and the protocol architecture that allow reaching them are described
in [FRH+11]. Besides the protocol architecture, a number of non-trivial design
choices need to be made in order to extend an existing TCP implementation to
support Multipath TCP. The objective of this chapter is to achieve a future-proof,
yet realistic implementation architecture for MPTCP. In particular we will illus-
trate in Section 4.4 how MPTCP can be set to take benefit from path management
techniques different from the default one, defined in the current specification.

The proposed architecture is expected to be applicable regardless of the Op-
erating System (although the MPTCP implementation described here is done in
Linux). Another goal is to achieve the greatest level of modularity without impact-
ing efficiency, hence allowing other multipath protocols tonicely coexist in the
same stack.

This chapter is based on the code that we implemented in our Multipath TCP-
aware Linux kernel (the version covered here is 0.6) which isavailable from the
addresshttp://inl.info.ucl.ac.be/mptcp. We also list configuration
guidelines that have proven to be useful in practice. The current version of Linux
MPTCP contains around10000 lines of code, currently without user space program
(that is, all the processing takes place in the kernel).

During our work on implementing Multipath TCP, we evaluatedother designs.
Some of them are not used anymore in our implementation. However, we explain
in [BPB11a] the reason why these particular designs have notbeen considered
further, and why some of them could be reconsidered in the future, when more
experience is gained.

71
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This chapter is structured as follows. First we propose an architecture that
allows supporting MPTCP in a protocol stack residing in an operating system.
Then we consider a range of problems that must be solved by an MPTCP stack
(compared to a regular TCP stack). In Section 4.5, we give recommendations on
how a system administrator could correctly configure an MPTCP-enabled host.
Finally, we discuss future work, in particular in the area ofMPTCP optimisation.

4.1.1 Terminology

In addition to the concepts introduced in the previous chapter, we define here the
following terms, useful to understand the Linux MPTCP implementation. The
main ones are illustrated in Figure 4.1.

• Meta-socket: A socket structure used to reorder incoming data at the con-
nection level and schedule outgoing data to subflows.

• Master subsocket:The socket structure that is visible from the application.
If regular TCP is in use, this is the only active socket structure. If MPTCP
is used, this is the socket corresponding to the first subflow (hence the name
subsocket).

• Slave subsocket:Any socket created by the kernel to provide an additional
subflow. Those sockets are not visible to the application (unless a specific
API [SF11] is used). The meta-socket, master and slave subsockets are ex-
plained in more detail in Section 4.2.2.

• Endpoint ID: Endpoint identifier. It is the tuple that identifies a partic-
ular subflow, hence a particular subsocket: (saddr, sport, daddr,
dport).

• Fendpoint ID: First Endpoint identifier. It is the endpoint identifier of the
Master subsocket.

• Connection ID or token: It is a locally unique number, defined in [FRHB11,
Section 2], that allows finding a connection during the establishment of new
subflows.

• local addr table: A table of local addresses. It stores, on a per-connection
basis, the set of local addresses that an MPTCP connection can use for its
subflows.

• remote addr table: A table of remote addresses. It stores, per connection,
the set of remote addresses that an MPTCP connection has learnt from its
peer, either through theADD ADDRESS MPTCP option, or through sponta-
neousSYNs sent by the peer using new addresses.
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Figure 4.1: Overview of the multipath architecture

4.2 An architecture for Multipath transport

Section 4 of the MPTCP architecture document [FRH+11] describes the functional
decomposition of MPTCP. It lists four entities, namely PathManagement, Packet
Scheduling, Subflow Interface and Congestion Control. These entities can be fur-
ther grouped based on the layer at which they operate:

• Transport layer: this includes Packet Scheduling, Subflow Interface and
Congestion Control, and is grouped under the term “Multipath Transport
(MT)”. From an implementation point of view, they all involve modifica-
tions to TCP.

• Transport layer and below1: path management. Path management can be
done in the transport layer, as is the case of the built-in Path Manager (PM)
described in the MPTCP architecture document [FRHB11]. That PM dis-
covers paths through the exchange of TCP options of typeADD ADDR or
the reception of aSYN on a new address pair, and defines a path as an end-
point ID (saddr, sport, daddr, dport). But, more generally, a
PM could be any module able to expose multiple paths to MPTCP,located
either in kernel or user space, and acting on any OSI layer (e.g. a bonding
driver that would expose its multiple links to the MultipathTransport).

Because of the fundamental independence of path managementcompared to
the three other entities, we draw a clear line between both, and define a simple inter-
face that allows MPTCP to benefit easily from any appropriately interfaced multi-
path technology. In this Section, we stick to describing howthe functional elements
of MPTCP are defined, using the built-in Path Manager described in [FRHB11],
and we leave for Section 4.4 the description of other Path Managers. We describe
in the first subsection the precise roles of the Multipath Transport and the Path
Manager. Then we detail how they are interfaced with each other.

1The exact constraint is that the path management function must “see” packets marked by the
Multipath Transport, and hence be located below or inside the transport layer.
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4.2.1 MPTCP architecture

Although, when using the built-in PM, MPTCP is fully contained in the transport
layer, it can still be organized as a Path Manager and a Multipath Transport Layer
(each with its own control and data plane) as shown in Figure 4.2. The Path Man-
ager announces to the Multipath Transport which paths can beused through path
indices for an MPTCP connection, identified by the fendpointID (first endpoint
ID). The fendpoint ID is the tuple(saddr, sport, daddr, dport) seen
by the application that uniquely identifies the MPTCP connection (an alternative
way to identify the MPTCP connection is the connection ID, which is a token as
described in [FRHB11, Section 2]). The Path Manager maintains the mapping be-
tween the pathindex and an endpoint ID. The endpoint ID is the tuple(saddr,
sport, daddr, dport) that is to be used for the corresponding path index.

Note that the fendpoint ID itself represents a path and is thus a particular end-
point ID. By convention, we always represent the fendpoint ID as path index 1.
As explained in [FRH+11, Section 5.6], it is not yet clear how an implementation
should behave in the event of a failure of the first subflow. We expect, however,
that the Master subsocket should be kept in use as an interface with the application,
even if no data is transmitted anymore over it. It also allowsthe fendpoint ID to
remain meaningful throughout the life of the connection. This behaviour has yet to
be tested and refined with Linux MPTCP.

Figure 4.2 shows an example sequence of MT-PM interactions happening at
the beginning of an exchange. When the MT starts a new connection (through
an applicationconnect() or accept()), it can request the PM to be updated
about possible alternative paths for this new connection (step 0 in Figure 4.2). The
PM can also spontaneously update the MT at any time (normallywhen the path set
changes). This is step 1 in Figure 4.2. In the example, 4 pathscan be used, hence
3 new ones. Based on the update, the MT can decide whether to establish new
subflows, and how many of them. Here, the MT decides to establish one subflow
only, and sends a request for endpoint ID to the PM. This is step 2. In step 3,
the answer is given:<A2,B2,0,pB2>. The source port is unspecified to allow
the MT ensure the unicity of the new endpoint ID, thanks to thenew port()
primitive (present in regular TCP as well). Note that messages 1,2,3 need not be
real messages and can be function calls instead (as is the case in Linux MPTCP,
where anADD ADDR option causes the Path Manager to directly call the subsocket
creation function).

The following options, described in [FRHB11], are managed by the Multipath
Transport:

• MULTIPATH CAPABLE (MP CAPABLE): Tells the peer that we support
MPTCP and announces our local token.

• MP JOIN/MP AUTH: Initiates a new subflow (MPAUTH is not yet part of
our Linux implementation at the moment)
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Figure 4.2: Functional separation of MPTCP in the transportlayer

• DATA SEQUENCE NUMBER (DSN MAP): Identifies the position of a set of
bytes in the meta-flow.

• DATA ACK: Acknowledge data at the connection level (subflow level ac-
knowledgements are contained in the normal TCP header).

• DATA FIN (DFIN): Terminates a connection.

• MP PRIO: Asks the peer to revise the backup status of the subflow on which
the option is sent. Although the option is sent by the Multipath Transport
(because this allows using the TCP option space), it may be triggered by the
Path Manager. This option is not yet supported by our MPTCP implementa-
tion.

• MP FAIL: Checksum failed at connection-level. Currently the Linuximple-
mentation does not implement the checksum in optionDSN MAP, and hence
does not implement theMP FAIL option.

The Path Manager applies a particular technology to give theMT the possibility
to use several paths. The built-in MPTCP Path Manager uses multiple IPv4/v6
addresses2 as its means to influence the forwarding of packets through the Internet.

When the MT starts a new connection, it chooses a token that will be used to
identify the connection. This is necessary to allow future subflow-establishment
SYNs (that is, containing theMP JOIN option) to be attached to the correct con-
nection.

An example mapping table is shown in Figure 4.2. In that example, two
MPTCP connections are active. One is identified bytoken 1, the other one with
token 2. As per [FRHB11], the tokens must be unique locally.

Since the endpoint identifier may change from one subflow to another, the at-
tachment of incoming new subflows (identified by aSYN + MP JOIN option) to
the right connection is achieved thanks to the locally unique token.

2v6 support is a contribution by Jaakko Korkeaniemi, HIIT
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The following options (defined in [FRHB11]) are included in the built-in Path
Manager:

• Add Address (ADD ADDR): Announces a new address we own

• Remove Address (REMOVE ADDR): Withdraws a previously announced ad-
dress

Those options form the built-in MPTCP Path Manager, based ondeclaring IP
addresses, and carry control information in TCP options.

4.2.2 Structure of the Multipath Transport

Our Multipath Transport module handles three kinds of sockets. The relations
between them are illustrated in Figure 4.1, page 73. We definethem here and use
this notation throughout this chapter:

• Master subsocket:This is the first socket in use when a connection (TCP or
MPTCP) starts. It is also the only one in use if we need to fall back to reg-
ular TCP. This socket is initiated by the application through thesocket()
system call. Immediately after a new master subsocket is created, MPTCP
capability is enabled by the creation of the meta-socket.

• Meta-socket: It holds the multipath control block, and acts as the connec-
tion level socket. As data source, it holds the main send buffer. As data sink,
it holds the connection-level receive queue and out-of-order queue (used for
reordering). We represent it as a normal (extended) socket structure in Linux
MPTCP because this allows reusing much of the existing TCP code with few
modifications. In particular, the regular socket structurealready holds point-
ers toSND.UNA, SND.NXT, SND.WND, RCV.NXT, RCV.WND (as defined
in [Pos81b]). It also holds all the necessary queues for sending/receiving
data.

• Slave subsocket:Any subflow created by MPTCP, in addition to the first
one (the master subsocket is always considered as a subflow even though
it may be in failed state at some point in the communication).The slave
subsockets are created by the kernel (not visible from the application) The
master subsocket and the slave subsockets together form thepool of available
subflows that the MPTCP Packet Scheduler (called from the meta-socket)
can use to send packets.

4.2.3 Structure of the Path Manager

In contrast to the Multipath Transport, which is more complex and divided in sub-
entities (namely Packet Scheduler, Subflow Interface and Congestion Control, see
Section 4.2), the Path Manager just maintains the mapping table and updates the
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event action
master sk bound: This is triggered
upon either abind() system call, a
connect(), or when a new server-
side socket becomes established.

Discovers the set of local addresses.
This set is then maintained in the lo-
cal addr table structure.

ADD ADDR or SYN + MP JOIN re-
ceived on new address

Updates remoteaddr table
correspondingly.

local/remote addr table updated Updates themapping table struc-
ture by adding any new address com-
binations, or removing the ones that
have disappeared. Each address pair
is given a path index.

Mapping table updated Sends a notification to the Multipath
Transport (Figure 4.2, msg 1).

Endpoint ID request received from
MT (Figure 4.2, msg 2)

Retrieves the endpoint IDs for the cor-
responding path index from the map-
ping table and returns them to the MT
(Figure 4.2, msg 3).

Table 4.1: (event,action) pairs implemented in the built-in PM

Multipath Transport when the mapping table changes. The mapping table has been
described above (Figure 4.2). We detail in Table 4.1 the set of (event,action)
pairs that are implemented in the Linux MPTCP built-in Path Manager. For ref-
erence, we discuss an earlier architecture for the path management in [BPB11a,
Appendix 1].

In the example of Figure 4.2, we show the beginning of an MPTCPconnection,
where the Path Manager tells the Multipath Transport about the number of useable
paths. When the MT asks for the endpoint ID of path index2, the PM answers
with < A2, B2, 0, pB1 >. The zero value for the source port indicates that the
Path Manager does not mandate any source port (it could if it had some intelligence
about an ECMP hash function for example), and the source portis just chosen by
the MT in that case (using the regular TCP source port selection algorithm).

4.3 MPTCP challenges for the OS

MPTCP is a major modification to the TCP stack. We have described above an
architecture that separates Multipath Transport from pathmanagement. Path Man-
agement can be implemented rather simply. But Multipath Transport involves a
set of new challenges, that do not exist in regular TCP. We first describe how an
MPTCP client or server can start a new connection, or a new subflow within a con-
nection. Then we propose techniques (a concrete implementation of which is in
Linux MPTCP) to efficiently implement data reception (at thedata sink) and data
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sending (at the data source).

4.3.1 Charging the application for its CPU cycles

As this chapter is about implementation, it is important notonly to ensure that
MPTCP is fast, but also that it is fair to other applications that share the same
CPU. Otherwise one could have an extremely fast file transfer, while the rest of the
system is just hanging. CPU fairness is ensured by the scheduler of the Operating
System when CPU cycles are consumed in user space. But insidethe kernel, we
can choose to run code in “user context”, that is, in a mode where each CPU cycle
is charged to a particular application. Or we can (and must insome cases) run code
in “software interrupt context”, that is, interrupting everything else until the task
has finished. In Linux, the arrival of a new packet on a NIC triggers a hardware
interrupt, which in turn schedules a software interrupt that will pull the packet
from the NIC and perform the initial processing. The challenge is to stop the
processing of the incoming packet in software interrupt as soon as it can be attached
to a socket, and wake up the application. With TCP, an additional constraint is
that incoming data should be acknowledged as soon as possible, which requires
reordering. Van Jacobson has proposed a solution for this [Jac93]: If an application
is waiting on arecv() system call, incoming packets can be placed into a special
queue (called prequeue in Linux) and the application is woken up. Reordering
and acknowledgement are then performed in user context. Theexecution path for
outgoing packets is less critical from that point of view, because the vast majority
of processing can be done very easily in user context.

In this chapter, when discussing CPU fairness, we will use the following terms:

• User context: Execution environment that is under control of the OS sched-
uler. CPU cycles are charged to the associated application,which allows to
ensure fairness with other applications.

• Software Interrupt context: Execution environment that runs with a higher
priority than any process. Although it is impossible to completely avoid
running code in software interrupt context, it is importantto minimize the
amount of code running in such a context. Note that, here, “software” does
not imply a relation with any application, but instead corresponds to ker-
nel code that is programmed for urgent execution, usually after a hardware
interrupt or timer expiry.

• VJ prequeues:This refers to Van Jacobson prequeues, explained in [Jac93].

4.3.2 At connection/subflow establishment

As described in [FRHB11], the establishment of an MPTCP connection is quite
simple, being just a regular three-way exchange with additional options. As ex-
plained in Section 4.2.2 this is done in the master subsocket. Currently Linux
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MPTCP attaches a meta-socket to a socket as soon as it is created, that is, upon
a socket() system call (client side), or when a server side socket enters the
ESTABLISHED state. An alternative solution is described in [BPB11a, Appendix
3].

An implementation can choose the best moment, maybe depending on the OS,
to instantiate the meta-socket. However, if this meta-socket is needed to accept
new subflows (as in Linux MPTCP), it should be attached at the latest when the
MP CAPABLE option is received. Otherwise incoming new subflow requests(SYN
+ MP JOIN) may be lost, requiring retransmissions by the peer and delaying the
subflow establishment.

The establishment of subflows, on the other hand, is more tricky. The problem
is that newSYNs (with theMP JOIN option) must be accepted by a socket (the
meta-socket in the proposed design) as if it was inLISTEN state, while its state is
actuallyESTABLISHED. The following are common properties with aLISTEN
socket:

• Temporary structure: Between the reception of theSYN and the finalACK, a
mini-socket is used as a temporary structure.

• Queue of connection requests: The meta-socket, like aLISTEN socket,
maintains a list of pending connection requests. There are two such lists.
One contains mini-sockets, because the finalACK has not yet been received.
The second list contains sockets in theESTABLISHED state that have not
yet been accepted. “Accepted” means, for regular TCP, returned to the ap-
plication as a result of anaccept() system call. For MPTCP it means that
the new subflow has been integrated in the set of active subflows.

We can list the following differences with a normalLISTEN socket.

• Socket lookup for aSYN: When aSYN is received, the corresponding socket
(in LISTEN state) is found by using the endpoint ID. This is not possible
with MPTCP, since we can receive aSYN on any endpoint ID. Instead, the
token must be used to retrieve the meta-socket to which theSYN must be
attached. A new hashtable must be defined, with tokens as keys.

• Lookup for connection request: In regular TCP, this lookup is quite simi-
lar to the previous one (in Linux at least). The 5-tuple is used, first to find
theLISTEN socket, next to retrieve the corresponding mini-socket, stored
in a private hashtable inside theLISTEN socket. With MPTCP, we cannot
do that, because there is no way to retrieve the meta-socket from the final
ACK segment. The 5-tuple can be anything, and the token was only present
in theSYN segments in the first versions of the MPTCP draft. Our Linux
MPTCP implementation uses a global hashtable for pending connection re-
quests, where the key is the 5-tuple of the connection request3.

3In the latest version of the MPCTP specification as of this writing [FRHB11], the token has
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An implementation must carefully check the presence of theMP JOIN option
in incomingSYNs before performing the usual socket lookup. If it is present,only
the token-based lookup must be done. If this lookup does not return a meta-socket,
theSYN must be discarded. Failing to do that could lead to mistakenly attach the
incomingSYN to aLISTEN socket instead of attaching it to a meta-socket.

Whenever a new path is created at either the client or server side, the corre-
sponding slave subsocket is prepended to a linked list inside the meta-socket, so
that it can be accessed by the scheduler to decide where to transmit data. From
this linked list, only the slave subsockets that are inESTABLISHED state can be
selected by the scheduler for data transmission.

4.3.3 Locking strategy

In Figure 4.1, we have shown how the meta-socket, master subsocket and slave
subsocket relate to each other to form an MPTCP connection. Access to those
structures may happen in software interrupt context or usercontext, or simultane-
ously in both, on different CPU cores. A careful locking strategy is needed to avoid
corrupting the data structures.

The removal of the data structures is another critical point. In particular, an
implementation must ensure that the meta-socket remains accessible until the last
subsocket disappears, even if any subsocket needs to wait for a timeout.

In this section we will describe the regular TCP locking strategy as it is used in
the Linux kernel, before to explain how we extend it to make itsafe in a multipath
use.

Existing locking strategy for regular TCP: When it comes to locking, it is cru-
cial to understand the difference between the user context and the software interrupt
context. We described them succinctly in section 4.3.1. We now explain how they
interact from a locking point of view.

• User context: Code running in user context can sleep. Locking is ensured
typically through mutexes when a code region must be protected from si-
multaneous accesses that run both in user context (e.g. two processes). If a
mutex is locked, the corresponding code simplysleeps(calls the scheduler)
until the mutex is released.

• Software Interrupt context: It is not possible to sleep in software interrupt
context, hence mutexes are not an option. Instead, so-called spinlocksare
used. They simply actively wait in a loop until the lock is released. Because

been added in the final ack to support SYN cookies. The side effect is that it facilitates the lookup
described in this paragraph, allowing the global connection request hashtable to be replaced with a
local one (specific to each multipath control block). This will make the design closer to that of a
regularLISTEN socket, although the lookup must still be done based on the token instead of the
5-tuple.
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func lock sock(sk):
disableinterrupts local CPU();
spin lock(sk);
sk->sk owned by user = 1;
spin unlock(sk);
mutexacquire(sk->sk mutex);
enableinterrupts local CPU();
return ;

Figure 4.3: User context socket locking

of this active loop, the kernel always tries to minimize the amount of time
spent in a spinlock.

It is also possible that a piece of code be run from either usercontext or
software interrupt context. An example is the TCP packet transmission mecha-
nism. Packets are transmitted from user context if the transmission is a result of a
sendmsg() system call. They are transmitted from software interrupt context if
a received acknowledgement opened space in the congestion window, allowing to
send more segments from the send buffer. In that case both theuser context and
the software interrupt context need to use a spinlock. Moreover the user context
must disable the software interrupts on the local CPU core, otherwise a deadlock
situation is possible. The deadlock would happen if a user context grabs a spin-
lock, and is later interrupted by a software interrupt. The interrupt having higher
priority, the user context has no chance to run until the software interrupt is done.
On the other hand if the software interrupt tries to grab the lock, it loops forever.
Disabling software interrupts (on the local CPU) during thewhole locking period
is the only solution to prevent this kind of deadlock. Obviously this gives an addi-
tional motivation for shortest possible spinlock periods.

Back to TCP, there is a simple way to manage locking in the above example of
TCP transmission.

• When sending from user context, disable interrupts and lockthe socket.

• When sending from software interrupt context, only lock thesocket.

Unfortunately the above mechanism does not respect the requirement to hold
a spinlock for very short periods. For that reason the Linux kernel applies the
pseudo-code shown in Figure 4.3 for locking in user context.The idea is that
instead of holding the spinlock for the whole locking period, it is only used to set
a flag. If packet reception happens (in software interrupt context), the flag causes
the receive function to enqueue the newly received segment in the backlog instead
of processing it. In that case, the segment processing is delayed until the user
context releases the lock, as shown in Figure 4.4. Finally, according to Figure 4.4,
one could think that the socket spinlock is still held for a long time if the backlog
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func releasesock(sk):
mutexrelease(sk->sk mutex);
disableinterrupts local CPU();
spin lock(sk);
if not empty(sk->backlog queue):

processbacklog(sk->backlog queue);
sk->sk owned by user = 0;
if is processsleeping():

wakeup process();
spin unlock(sk);
enableinterrupts local CPU();
return ;

Figure 4.4: Releasing a socket locked withlock sock()(user context)

contains several segments. The kernel solves this by re-enabling software interrupts
after each segment processed from the backlog queue. Moreover, the spinlock is
not held during the segment processing itself, because thesock owned by user
flag already prevents new incoming segments from being processed immediately.
The final result is thatLinux ensures that software interrupts are not blocked
for more than the time needed to processone segment.

MPTCP general locking policy: Given that MPTCP uses several subflows in
parallel, it would be natural to think of running each subflowon a separate core
when possible. However, the data converges to a single process in the end, and if
it were spread among several CPU local caches, some efficiency would be lost (as
data would need to be moved between the caches). For this reason,we use a single
lock for the whole MPTCP connection4.

A lock is associated to a socket structure. In MPTCP, we couldpotentially
make use ofn + 1 locks if n flows are available, as the meta-socket itself uses
a socket structure. Given the above design decision to use a single socket lock,
a natural choice would be to use the meta-socket lock for any packet processing
activity, on any subsocket. This would complicate the fallback procedure to regular
TCP, which is needed when the peer does not support MPTCP or the network
drops some options. When performing a fallback, the meta-socket is destroyed and
only the master-socket lock can be used. This motivates our second design choice:
Socket locking for MPTCP is performed by using only the master socket lock.
Note that the network path corresponding to the master socket could fail at some
point, but in that case only the path stops being used. The socket structure remains
available for locking and providing the interface with the application.

The locking procedure is the same as in regular TCP (see Figure 4.3). Regard-

4However, for the most efficient result, it will be necessary to ensure that all subflows run on the
same core, which is not the case yet in Linux MPTCP.
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ing the backlog queues, we use the subsocket-specific backlog queues as in regular
TCP. Doing so avoids needing to perform a second tuple-basedsocket lookup when
processing the backlog. We modify the algorithm of Figure 4.4 to include an iter-
ation over all backlog queues, so as to ensure that all backlogs are empty after the
releasesock()call.

Attaching a new subflow to the meta-socket: When we attach a new subflow
to the meta-socket, we extend the linked list of available subflows. This requires
to grab the master socket lock, so as to avoid corrupting the linked list. Hence,
we need a backlog-queue mechanism for the processing of incoming new subflows
(SYN+JOINs). We use the meta-socket backlog queue for that. If aSYN+JOIN is
received and the socket is locked by the userspace (sock owned by user is 1),
the segment is enqueued in the meta-socket backlog queue andprocessed during
the releasesock()operation. Likewise, the finalACK of the three-way handshake
for a new subflow may be queued in the meta-socket backlog, causing the full
socket to be created and attached to the meta-socket in thereleasesock()function.

Reference counting: Reference counting is the mechanism that ensures the clean
removal of data structures from the Linux kernel. Each user increases the reference
count, before using the structure and decreases the counterwhen it is done with its
task. This guarantees that the structure is properly released (avoiding memory
leaks), and prevents the release from happening when a user still holds a reference
to it (avoiding pointer faults). In the case of sockets structures, asockhold() func-
tion is called to increase the reference count.sockput() is used to decrease it, and
releases the structure if the counter reaches 0.

For MPTCP, as opposed to the locking mechanism that uses onlythe master
socket lock, we use the reference counts from all the subsockets. This is needed
because a slave subsocket does not necessarily disappear simultaneously with the
master subsocket. However, we note that the master subsocket and the meta-socket
are tied together, so we use the same reference count for them. We define a ref-
erence count policy that guarantees the integrity of the pointers. The following
sockhold()/sockput() pairs are applied:

• meta-socket allocation/destruction:sockhold/put(mastersk). This ensures
that the master socket does not disappear before the meta-socket. The reverse
is possible however, and happens in case of fallback to regular TCP.

• new slave subsocket/release of slave subsocket:sockhold/put(mastersk).
This ensures that the master and meta-sockets do not disappear until the last
slave subsocket has been released.

• packet reception:sockhold/put(sub sk), resp. at the beginning or end of
TCP reception procedure. This behaviour is unchanged compared to regular
TCP. This is safe because the reference count increase prevents the release of
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the subsocket. In turn, the presence of the subsocket prevents decrementing
the master socket reference count.

• timer started/stopped:sockhold/put(sub sk). This is also the same beha-
viour as regular TCP.

The meta-socket is released either during the fallback operation or at the end
of the master socket release.

4.3.4 Subflow management

Further research is needed to define the appropriate heuristics to solve problems
with subflow management. Initial thoughts are provided in Section 4.6.

Currently, in a Linux MPTCP client, the Multipath Transporttries to open
all subflows advertised by the Path Manager. On the other hand, the server only
accepts new subflows, but does not try to establish new ones. The rationale for
this is that the client is the connection initiator. New subflows are only established
if the initiator requests them. This is subject to change in future releases of our
MPTCP implementation.

4.3.5 At the data sink

There is a symmetry between the behaviour of the data source and the data sink.
Yet, the specific requirements are different. The data sink is described in this sec-
tion while the data source is described in the next section.

Receive buffer tuning

MPTCP needs that the receive buffer be larger than the sum of the buffers required
by the individual subflows. The reason for this and proper values for the buffer are
explained in [FRH+11, Section 5.3]. Not following this could result in the MPTCP
throughput being capped at the bandwidth of the slowest subflow.

An interesting way to dynamically tune the receive buffer according to the
bandwidth/delay product (BDP) of a path, for regular TCP, isdescribed in [FF01]
and implemented in recent Linux kernels. It uses theCOPIED SEQ sequence vari-
able (sequence number of the next byte to copy to the application buffer) to count,
every RTT, the number of bytes received during that RTT. Thisnumber of bytes is
precisely the BDP. The tuning algorithm is conservative, inthat it never shrinks a
previously increased receive buffer. The accuracy of this receive buffer tuning is
directly dependent on the accuracy of the RTT estimation. Unfortunately, the data
sink does not have a reliable estimate of the SRTT. To solve this, [FF01] proposes
two techniques:

1. Using the timestamp option (quite accurate).
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2. Computing the time needed to receive oneRCV.WND [Pos81b] worth of data.
It is less precise and Linux considers as outliers such RTT estimates that are
more than 8 times larger than the last estimate.

The receive window advertised by MPTCP is shared by all subflows. Hence,
no per-subflow information can be deduced from it, and the second technique
from [FF01] cannot be used5.

As mentioned in [FRH+11], the connection-level receive buffer that is allo-
cated should be2 ∗

∑
i BWi ∗ RTTmax, whereBWi is the bandwidth seen by

subflow i andRTTmax is the maximum RTT estimated among all the subflows.
We achieve this in Linux MPTCP by slightly modifying the firsttuning algorithm
from [FF01], and disabling the second one. The modification consists in counting
on each subflow, everyRTTmax, the number of bytes received during that time on
this subflow. Per subflow, this provides its contribution to the total receive buffer
of the connection.

Receive window handling: The original design of the MPTCP protocol used
subflow-specific receive windows. This looks interesting indeed as a way for the
receiver to perform ingress load balancing, and it is also close to regular TCP be-
haviour, hence simplifying implementations. However, this can potentially create
deadlock scenarios and we detected them while developing our implementation.
Consider two hostsA andB, connected through paths1 and2 (with data flowing
from A to B, see Figure 4.5). They can initially use both paths to exchange data.
If path1 suddenly fails, the last congestion window sent on path 1 must be retrans-
mitted on path2, but this only happens after a TCP RTO (Retransmission Timeout).
Until the expiration of the timer on path1, path2 has enough time to transmit new
data, progressively saturating the receive buffer in hostB, because no data can be
delivered to the application until the lost data from path1 has been retransmitted.
If path 2 is fast enough, hostA will eventually receive a zero-window on path2.
This is a deadlock situation: hostA needs to retransmit lost data to unblock the
communications, but both its paths are closed, one fails andthe receive window of
the other one is zero.

Deadlock solution:The problem of the above deadlock is that subflow-specific
receive windows cannot provide any information about the shared receive buffer.
This is solved by changing the receive window semantic, so that it is understood as
a connection-levelreceive window, that is, it reflects the size of theshared receive
buffer and its left-edge is given by theData ACK instead of the subflow-level
acknowledgement. If we consider again the deadlock scenario described above,
where one congestion window worth of data must be retransmitted on subflow2,
this will be possible now, as the receiver will not send a zero-window. If its receive

5More precisely, the time needed to receive oneRCV.WND in MPTCP cannot exceed the maxi-
mum RTT on the set of paths used to transmit that amount of data. This could be used to compute
an upper bound on the receive buffer, however the result is correct only if all paths are used in the
measurement period.
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Figure 4.5: A deadlock may happen if MPTCP uses separate receive windows

buffer comes to saturation, it will only prevent the transmission of anynewdata,
still accepting lost data, since the left-edge of the connection-level receive window
does not move forward until the lost data has been retransmitted. This change is
now part of the main protocol specification [FRHB11].

Receive queue management

As advised in [FRHB11, Section 3.3.1],“subflow-level processing should be un-
dertaken separately from that at connection-level”. This also has the side-effect of
allowing much code reuse from the regular TCP stack.

A regular TCP stack (in Linux at least) maintains a receive queue (for storing
incoming segments until the application asks for them) and an out-of-order queue
(to allow reordering).

In Linux MPTCP, the subflow-level receive-queue is not used6. Incoming seg-
ments are reordered at the subflow-level, just as if they wereplain TCP data. But
once the data is in-order at the subflow level, it can be immediately handed to
MPTCP (See [FRH+11, Figure 7]) for connection-level reordering. The role of
the subflow-level receive queue is now taken by the MPTCP-level receive queue.
In order to maximize the CPU cycles spent in user context (seeSection 4.3.1), VJ
prequeues can be used just as in regular TCP. We have recentlyadded support for
them, and VJ prequeues will be included in the upcoming version 0.7 of Linux
MPTCP. Once it is ensured that the data is processed in user context whenever
possible, one should also take care of handling efficiently the MPTCP out-of-order
queue. Whereas regular TCP handles small queues (the sourceof the reordering
being the network and packet losses), MPTCP may need to handle very large re-
ordering queues (the source of reordering being the use of multiple independent
flows). To handle this, we have implemented several mechanisms:

• Segment aggregation: Whenever several segments are contiguous in the re-
ordering queue at the connection level, but not yet ready forinclusion in

6An alternative design, where the subflow-level receive queue is kept active and the MPTCP
receive queue is not used, is discussed in [BPB11a, Appendix4].
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Figure 4.6: Structures used to optimise segment reorderingat the receiver

the receive queue, we aggregate them in anode. A nodecontains a list of
contiguous segments, but requires only one iteration when searching the out-
of-order queue for a particular sequence number. The memoryrequired to
allocate a new node is taken from a cache to reduce the allocation time.

• Shortcut pointers: It is often the case that more than one segment is sent
over the same subflow. The reason is that when a subflow becomesavailable
for sending data, the scheduler feeds it with as many contiguous segments
as it is able to send. We optimise for this by maintaining, in each subflow,
a shortcut to the slot in the out-of-order queue where the next segment is
expected to arrive. Upon arrival of a new segment, the searchstarts from the
shortcut slot. This improvement is very interesting as it provides a direct hit
for more than80% of the received segments (more details on the evaluation
can be found in Section 5.2).

• Binary Search Tree (BST): To efficiently handle the case where the shortcut
does not work, we have implemented a Binary Search Tree, as a replacement
for the traditional out-of-order queue. While apparently better than the queue
because of its expected logarithmic lookup time (which actually depends on
the extent to which the tree is balanced), it does not necessarily improve
the receiver performance because other operations are moreexpensive. In
particular, getting a pointer to a neighbour requires dereferencing several
node pointers. For instance, in a BST, the closest neighbourof a noden on
the left is the right-most child of its left child. Ifn has no left child, then the
closest left neighbour is the closest ancestor whose child in the direction of
n is a right child. In a simple queue, the left neighbour is one pointer away.
Initial experiments tend to show that while the BST does bring benefits over a
regular queue, simply adding shortcut pointers (without changing the whole
structure) gives even better results. More details are presented in Section 5.2.

The three optimisation mechanisms are illustrated together in Figure 4.6, al-
though they can be used separately. The bolded boxes showsegment aggregation,
where several contiguous segments (skbs) are stored in a node as a linked list to
reduce the size of the data structure. The nodes are not associated to a particular
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subflow (except for the shortcuts) because this structure isused at the connection
level, where the data is not attached anymore to a particularsubflow and uses only
the connection-level data sequence numbers. The dashed arrows show shortcut
pointers. In the picture, we can see that subflow1 currently expects to receive
the segment with data sequence number300, while subflow2 expects the data
sequence number90. The main structure illustrates the binary search tree.

Finally, regular TCP bypasses the receive queue when a segment arrives in
order, and copies the content directly to user space. This saves receive queue pro-
cessing time. Similarly, when MPTCP receives data in order from the connection
level point of view, we copy directly data from user space to kernel space.

To summarise, receive-side processing can be optimised at several levels. Be-
cause MPTCP requires much more reordering compared to regular TCP, it is even
more important to ensure that (i) this processing happens inuser context and (ii) it
requires a minimal amount of iterations. (i) is ensured by Van Jacobson prequeues,
but also by the backlog (segments received when the socket islocked are always
processed in user context by design). (ii) requires MPTCP-specific modifications
that we presented here and that will be evaluated in Section 5.2. Lastly, when re-
ordering is not needed, the processing can be made even faster by bypassing the
connection-level receive queue, just like regular TCP already does.

Scheduling Data ACKs

As specified in [FRHB11, Section 3.3.2],Data ACKs not only help the sender in
having a consistent view of which data has been correctly received at the connec-
tion level. They are also used as the left edge of the advertised receive window.

In regular TCP, if a receive buffer becomes full, the receiver announces a zero
receive window. When finally some bytes are delivered to the application, freeing
space in the receive buffer, a duplicateACK is sent to act as a window update, so that
the sender knows it can transmit again. Likewise, when the MPTCP shared receive
buffer becomes full, a zero window is advertised. When some bytes are delivered
to the application, a duplicateData ACK must be sent to act as a window update.
Such an importantData ACK should be sent on all subflows, to maximize the
probability that at least one of them reaches the peer. If, however, allData ACKs
are lost, there is no other option than relying on the window probes periodically
sent by the data source, as in regular TCP.

In theory aData ACK can be sent on any subflow, or even on all subflows,
simultaneously. As of version 0.5, Linux MPTCP simply adds the Data ACK
option to all outgoing segments (regardless of whether it isdata or a pureACK).
There is thus no particularData ACK scheduling policy. The only exception is
for a window update that follows a zero-window. In this case,the behaviour is as
described in the previous paragraph.
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4.3.6 At the data source

In this section we discuss the same topics as in the previous section, in the case of a
data sender. The sender does not have the same view of the exchange, because one
has information that the other can only estimate. Also, the data source sends data
and receives acknowledgements, while the data sink does thereverse. This results
in a different set of problems to be dealt with by the data source.

Send buffer tuning

As explained in [FRH+11, Section 5.3], the send buffer should have the same size
as the receive buffer. At the sender, we don’t have the RTT estimation problem de-
scribed in Section 4.3.5, because we can reuse the built-in TCP SRTT (smoothed
RTT). Moreover, the sender has the congestion window, whichis itself an estimate
of the BDP, and is used in Linux to tune the send buffer of regular TCP. Unfor-
tunately, we cannot use the congestion window with MPTCP, because the buffer
equation does not involve the productBWi ∗ delayi for the subflows (which is
what the congestion window estimates), but it involvesBWi ∗ delaymax, where
delay max is the maximum observed delay across all subflows.

An obvious way to compute the contribution of each subflow to the send buffer
would be:2 ∗ (cwndi/SRTTi) ∗ SRTTmax. However, some care is needed be-
cause of the variability of the SRTT (measurements show that, even smoothed, the
SRTT is not quite stable). Currently Linux MPTCP estimates the bandwidth peri-
odically by checking the sequence number progress. This however introduces new
mechanisms in the kernel.

Send queue management

As Multipath TCP involves the use of several TCP subflows, a scheduler must be
added to decide where to send each byte of data. We have evaluated two possible
places for the Linux MPTCP scheduler. One option is to schedule data as soon
as it arrives from the application buffer. This option, consisting in pushingdata
to subflows as soon as it is available, was implemented in older versions of Linux
MPTCP and is now abandoned (it is described in [BPB11a, Appendix 5]). Another
option is to store all data centrally in the Multipath Transport, inside a shared send
buffer (see Figure 4.7). Scheduling is then done at transmission time, whenever
any subflow becomes ready to send more data (usually due to acknowledgements
having opened space in the congestion window). In that scenario, the subflowspull
segments from the shared send queue whenever they are ready.Note that several
subflows can become ready simultaneously, if an acknowledgement advertises a
new receive window that opens more space in the shared send window. For that
reason, when a subflow pulls data, the Packet Scheduler runs and other subflows
may be fed at the same time. This approach, similar to the one proposed in [HS02],
has several advantages:
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Figure 4.7: Send queue configuration

• Each subflow can easily fill its pipe (as long as there is data topull from the
shared send buffer, and the scheduler is not applying a policy that restricts
the subflow).

• If a subflow fails, it will no longer receive acknowledgements, and hence
will naturally stop pulling data from the shared send buffer. This removes
the need for an explicit “failed state”, to ensure that a failed subflow does
not receive data (as opposed to e.g. SCTP-CMT, that needs an explicit mark-
ing of failed subflows by design, because it uses a single sequence number
space [BDI+11]).

• Similarly, when a failed subflow becomes active again, the pending segments
of its congestion window are finally acknowledged, allowingit to pull again
data from the shared send buffer. Note that in such a case, theacknowledged
data is normally just dropped by the receiver, because the corresponding
segments have been retransmitted on another subflow during the failure time.

Despite the adoption of that approach in Linux MPTCP, there are still two draw-
backs:

• There is one single queue, in the Multipath Transport, from which all sub-
flows pull segments. In Linux, queue processing is optimisedfor handling
segments, not bytes. This implies that the shared send queuemust contain
pre-built segments, hence requiring thesameMSS to be used for all sub-
flows. We note however that today, the most frequently negotiated MSS is
around 1380 bytes [BPB11b], so this approach sounds reasonable. Should
this requirement become too constraining in the future, a more flexible ap-
proach could be devised (e.g. supporting a few Maximum Segment Sizes).

• Because the subflows pull data whenever they get new free space in their
congestion window, the Packet Scheduler must run at that time. But that
time most often corresponds to the reception of an acknowledgement, which
happens in software interrupt context (see Section 4.3.1).This is both un-
fair to other system processes, and slightly inefficient forhigh speed flows.
The problem is that the packet scheduler performs more operations than the
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usual “copy packet to NIC”. One way to solve this problem would be to
have a small subflow-specific send queue, which would actually lead to a
hybrid architecture between the pull approach (described here) and the push
approach (described in [BPB11a, Appendix 5]). Doing that would require
solving non-trivial implementation problems, though, andrequires further
study.

As shown in Figure 4.7, a segment first enters the shared send queue. Then,
when reaching the bottom of that queue, it is pulled by some subflow. In Linux
MPTCP, the segment data is kept in the shared send queue (B portion of the queue)
until it is acknowledged. TheA portion of the shared send queue contains data
that has never been transmitted on any subflow. Any pull operation takes data from
the bottom of theA “sub-queue”. When a subflow pulls a segment, it actually
only copies the control structure (struct sk buff) (which Linux calls packet
cloning) and increments its reference count. The pulling operation is a bit special in
that it can result in sending a segment over a different subflow than the one which
initiated the pull. This is because an acknowledgement received on any subflow
can unblock all subflows, given the receive window is considered at the connection
level. Hence, the Packet Scheduler is run as part of the pull,which can result in
selecting any subflow. In most cases, though, the subflow which originated the pull
will get fresh data, given it has space for that in the congestion window. Note that
the subflows have no A portion in Figure 4.7, because they immediately send the
data they pull.

Note on the send window: A subflow can be stopped from transmitting by the
congestion window, but also by the send window (that is, the receive window an-
nounced by the peer). Given that the receive window has a connection level mean-
ing, aData ACK arriving on one subflow could unblock another subflow. Imple-
mentations should be aware of this to avoid stalling part of the subflows in such
situations. In the case of Linux MPTCP, that follows the above architecture, this is
ensured by running the Packet Scheduler at each pull operation.

Scheduling data

As several subflows may be used to transmit data, MPTCP must select a subflow
to send each byte of data. First, we need to know which subflowsare available
for sending data. The mechanism that controls this is the congestion controller,
which maintains a per-subflow congestion window. The aim of amultipath con-
gestion controller is to move data away from congested links, and ensure fair-
ness when there is a shared bottleneck. The handling of the congestion win-
dow is explained in [RHW11, WRGH11]. Its implementation in Linux MPTCP
has been contributed by Christoph Paasch, and the implementation is documented
in [BPB11b, BPB11a].
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Whenever the Congestion Controller (described above) allows new data for at
least one subflow, the Packet Scheduler executes. When only one subflow is avail-
able the Packet Scheduler just decides which packet to pick from the A section of
the shared send buffer (see Figure 4.7). Currently Linux MPTCP picks the bottom
most segment. If more than one subflow is available, there arethree decisions to
take:

• Which of the subflows to feed with fresh data:As the only Packet Scheduler
currently supported in Linux MPTCP aims at filling all pipes,it always feeds
data to all subflows as long as there is data to send. Other schedulers would
be possible. One example would be to keep a path for backup only. In that
case the path would be used only when all other paths fail. This makes sense
if a link is very expensive compared to others (e.g. 3G vs WiFi). Another
possible scheduler would be to use a path inoverflow mode. In that configu-
ration the scheduler would use the path only when all others already have a
full congestion window worth of data in flight, and cannot accept more data
until anACK has been received.

• In what order to feed selected subflows:when several subflows become
available simultaneously, they are fed by order of time-distance to the client.
We define the time-distance as the time needed for the packet to reach the
peer if transmitted on a particular subflow. This time depends on the RTT,
bandwidth and queue size (in bytes), as follows:

time distancei = queue sizei/bwi +RTTi

Given that with the architecture described in Section 4.3.6, the subflow-
specific queue size cannot exceed a congestion window, thetime distance
becomestime distancei ∼= RTTi. This scheduling policy favours fast sub-
flows for application-limited communications (where all subflows need not
be used). However, for network-limited communications, this scheduling
policy has little effect because all subflows will be used at some point, even
the slow ones, to try minimizing the connection-level completion time.

• How much data to allocate to a single subflow:this question concerns the
granularity of the allocation. Using large allocation units allows for better
support of TCP Segmentation Offload (TSO). TSO allows the system to ag-
gregate several times the MSS into one single segment, sparing memory and
CPU cycles, by leaving the fragmentation task to the NIC. However, this
is only possible if the large single segment is made of contiguous data, at
the subflow level and the connection level. On the other hand,using small
allocation units allows more evenly using the subflows for low-traffic appli-
cations (such applications could end up using only one of thesubflows with
large allocation units). Our implementation currently allocates on a per-MSS
basis as TSO is not supported yet.
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Figure 4.8: Send queue configuration

Note about segment aggregation: When scheduling data to subflows, an imple-
mentation must be careful that if two segments are contiguous at the subflow-level,
but non-contiguous at the connection level, they cannot be aggregated into one. As
the Linux kernel merges segments when it is under memory pressure, it could easily
decide to merge non-contiguous MPTCP segments, simply because they look con-
tiguous from the subflow viewpoint. This must be avoided, because theDATA SEQ
mapping option would lose its meaning in such a case, corrupting the bytestream.
Our implementation does that by doing an additional check onthe data sequence
number before to merge a segment with another one.

Note about the shared send queue: Our scheduler currently takes the bottom-
most segment from the shared send queue, whenever it is called. A possible im-
provement would be to intelligently choosewhich segment to allocate, from the
shared send queue. We show in Figure 4.8 an example case wherethis would be
useful. In this example, two subflows are used. Subflow1, on the left, has an es-
timated RTT of100ms, while subflow2, on the right, has an RTT of10ms. They
both have a current congestion window of3000 bytes. As the congestion win-
dow approximates the Bandwidth-Delay Product (BDP), we canevaluateBW1

andBW2 resp. to30000bytes/s and300000bytes/s. Figure 4.8 shows that sub-
flow 1 is asking for new data to the scheduler, because its congestion window has
been fully acknowledged. On the other hand, the faster subflow 2 is not available
currently.

In such a situation, our current scheduler would allocate segments3 and 4
(assuming a MSS of1500 bytes) to subflow1, and would have received the corre-
sponding acknowledgements100ms later. This is clearly suboptimal, as by wait-
ing a maximum of10ms, subflow2 would have been able to transmit, allowing
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Figure 4.9: Retransmission mechanism

the data to be acknowledged within20ms instead of100ms. Continuing this rea-
soning, we see that as many as 18 segments (with a MSS of1500 bytes) would be
faster acknowledged if sent over subflow2. The modified scheduler would then
take directly segments19, 20 and feed them to subflow1. Doing so would re-
duce the connection-level reordering at the receiver, hence the required amount of
receive buffer and the burstiness of packet delivery to the application.

Handling retransmissions

Data retransmission is more complicated in MPTCP compared to regular TCP, be-
cause a lost segment may be retransmitted on any subflow. Figure 4.7 was slightly
simplified because it did not take retransmissions into account. The full transmis-
sion mechanism is illustrated in Figure 4.9. A specific queueis used for retransmis-
sions. It is located above the scheduler because these segments can be retransmitted
on any subflow. Since retransmissions can block the progression of the data trans-
fer, the scheduler does not take data from the shared send queue until the shared
retransmission queue is empty.

The retransmission mechanism is best explained through an example. Consider
a host with two subflows (Figure 4.9). Subflow1 receives an acknowledgement.
It updates its congestion window and asks the scheduler for new data. Further
consider that the retransmission queue is empty at this point, so that the scheduler
allocates segmentS from the shared send queue to subflow1. The segment is
cloned, that is, it remains in the shared send queue (until it is acknowledged at the
connection level), and a new structure (say,S1) pointing to the segment data is
stored in the send queue of subflow1. S1 is given subflow sequence numbers from
the sequence number space of subflow1. A bitmap inS (path bitmap(S)) is
updated to remember thatS has currently been cloned only on path1 (and hence
can still be cloned to path2 later if needed).

Assume thatS1 is never acknowledged. After a subflow-level timeout, it is re-
transmitted. Butsince we consider a timeout as an indication of potential fail-
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func timeout(subflowsf):
for each segmentS in unackedsegments(sf):

for each pathi in available paths():
if i is not in path bitmap(S):

/* There is at least one possible alternative
* subflow for retransmission */
enqueuesegment(clone(S), retransmit queue);
break;

schedule();
return ;

Figure 4.10: Retransmission algorithm

ure, we decide that it is worth trying to retransmit as well onanother subflow7.
Our retransmission algorithm is detailed in Figure 4.10. Inour example, the result
of the algorithm is that subflow2 is found to have never been allocated segment
S, soS is appended to the retransmit queue. The scheduler is immediately run. In
our case the only allocation option is subflow2. However,if several subflows are
eligible for retransmission (i.e. have never been allocated the segment before),
the scheduler decides which one will receive the next retransmission. This is
important as it allows using the same scheduling policy as for normal transmis-
sions.

Now, consider that subflow2 (our only option) is currently not accepting data,
because it has already sent one full congestion window and iswaiting for the ac-
knowledgements. In that case the scheduler returns immediately. But as soon as
an acknowledgement opens new space in the congestion windowof subflow2, the
subflow initiates apull operation. The scheduler then takes data from the retrans-
mission queue, and only when it is empty does it take new data from the send
queue.

In the general case, a segment is initially allocated to one subflow, judged the
best one by the scheduler. If the subflow experiences a timeout before the segment
has been acknowledged, MPTCP tries to transmit on one more subflow. In the
worst case (where the endpoint becomes fully disconnected from the Internet),
the unacknowledged segments are finally sent over all available subflows, with
exponential backoff as in regular TCP. This situation is resolved by either a time
out at the connection level or the recovery of any of the subflows. The full MPTCP
transmission mechanism is summmarized in Table 4.2.

7In contrast, fast retransmits are only done on the same subflow as they indicate a single loss and
do not necessarily imply a reduction of the path quality.
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event action
Segment acknowledged at the subflow
level

Remove the reference to the segment
from the subflow-level queue

Segment acknowledged at connection
level

Remove the reference to the segment
from the connection-level queue

Timeout (subflow-level) Push the segment to the best run-
ning subflow (according to the Packet
Scheduler). If no subflow is available,
push it to the retransmit queue.

3 duplicate ACKs Retransmit segment only on local sub-
flow

Ready to put new data on the wire
(normally triggered by an incoming
ack)

If the retransmit queue is not empty,
first pull from there. Otherwise, take
new segment(s) from the connection
level send queue (A portion).

Table 4.2: (event,action) pairs implemented in the Multipath Transport queue man-
agement

Related work: The most important retransmission mechanism for transportlayer
multipath that has been proposed before was for SCTP-CMT [IAS07]. This paper
emphasises that poor retransmission choices may significantly increase the flow
completion time due to a problem that the authors callreceive buffer blocking.
Receive buffer blockinghappens when a fast sender is slowed down by a small
receive window, that the receiver is forced to advertise because its receive buffer
comes to saturation. A receive buffer can easily be saturated when one subflow
experiences a time out, requiring from the receiver to storeall the data coming from
other subflows until the lost segments are finally retransmitted. [IAS07] explains
that the only way to mitigate this problem is to intelligently choose the subflow
used to retransmit. They evaluate five possible retransmission policies, that we
will compare with our unified approach (The quoted text in front of the policy
name is the definition of the policy according to [IAS07]):

• RTX-SAME : “Once a new data chunk is scheduled and sent to a destina-
tion, all retransmissions of the chunk are sent to the same destination”. In
MPTCP, even if it is decided to retransmit on another subflow,a segment is
alwaysretransmittedas wellon the initial subflow, with exponential back-
off. This is actually a requirement from [FRHB11], that comes from the
constraint thatonce subflow sequence numbers are assigned to a segment
and sent to the network, they cannot be re-assigned to other data8. This con-
straint is not present in SCTP-CMT because it does not use subflow-level
sequence numbers.

8The rationale for this is that middleboxes could replay old segments, confusing the receiver with
different data attached to the same sequence numbers
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• RTX-ASAP: “A retransmission of a data chunk is sent to any destination for
which the sender has cwnd space available at the time of retransmission. If
multiple destinations have available cwnd space, one is chosen randomly.”
In MPTCP, the scheduler is run to decide where to send the data. But we
have explained previously that only flows with availablecwnd space are
eligible for selection by our scheduler. Hence, in some way,RTX-ASAP is
also applied by our schedulder. However, RTX-ASAP uses random selection
as tie-break. We use shortest delivery time (estimated through the RTT and
queue size as explained in the previous subsection).

• RTX-CWND : “A retransmission is sent to the destination for which the
sender has the largest cwnd. A tie is broken by random selection.” This
approach is quite different from what we do, because it may accept to delay
the retransmission if that allows sending on a subflow with higher congestion
window. We discuss hereafter a possible improvement to our mechanism,
that would also delay the transmission in the hope that the segment finally
reaches the peer faster.

• RTX-SSTHRESH: “A retransmission is sent to the destination for which
the sender has the largest ssthresh. A tie is broken by randomselection.”
This is very similar to the previous policy, and gives indeedsimilar results
according to [IAS07].

• RTX-LOSSRATE : “A retransmission is sent to the destination with the low-
est loss rate path. If multiple destinations have the same loss rate, one is se-
lected randomly.”This policy is not explicitly included in our Linux MPTCP.
However, paths with low loss rates have a much higher probability to be
chosen by our retransmission mechanism, because the coupled congestion
control favours paths with low loss rates.

Discussion: According to the simulations results of [IAS07]. The best re-
sults are obtained from the policies RTX-CWND and RTX-SSTHRESH. Those
two policies are precisely the most different ones comparedto our implementation.
However, we note that our retransmission policy is not any ofthe other three poli-
cies considered by [IAS07], but instead acombinationof them. Finally, our retrans-
mission mechanism could be further improved as described inFigure 4.8. That
modification would have in common with RTX-CWND and RTX-SSTHRESH that
the scheduler does not necessarily allocate a segment to thefirst available subflow,
but instead takes into account the time needed for that segment to reach the peer.

4.3.7 At connection/subflow termination

In Linux MPTCP, subflows are terminated only when the whole connection termi-
nates, because the heuristic for terminating subflows (without closing the connec-
tion) is not yet mature, as explained in Section 4.3.4.
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At connection termination, an implementation must ensure that all subflows
plus the meta-socket are cleanly removed.The obvious choice to propagate the
close() system call on all subflows does not work.The problem is that a
close() on a subflow appends aFIN at the end of the send queue. If we trans-
pose this to the meta-socket, we would append aData FIN on the shared send
queue (see Section 4.3.6). That operation results in the shared send queue not ac-
cepting any more data from the application, which is correct. But it also results
in the subflow-specific queues not accepting any more data from the shared send
queue. The shared send queue may however still be full of segments, which will
never be sent because all subflows are closed.

Inferred implementation rule: Upon aclose() system call, an implementa-
tion must refrain from sending aFIN on all subflows, unless the implementation
uses an architecture with no connection-level send queue (like the one described
in [BPB11a, Appendix 5]). Even in that case, it makes sense tokeep all subflows
open until the last byte is sent, to allow retransmission on any path, should any one
of them fail.

Currently, upon aclose() system call, Linux MPTCP appends aData FIN
to the connection-level send queue. Only when thatData FIN reaches the bottom
of the send queue is the regularFIN sent on all subflows (which requires that the
retransmission queue be empty as well).

Note: In the Linux MPTCP behaviour described above, a connection could still
stall near its end if one path fails while transmitting its last congestion window
of data (because the maximum size of the subflow-specific sendqueue iscwnd).
A way to avoid this has been proposed: instead of sending the FIN together with
theData FIN, send theData FIN alone and wait for the correspondingData
ACK to trigger aFIN on all subflows. This however prolongs the duration of the
overall connection termination by one RTT.

4.4 Implementing alternative Path Managers

In Section 4.2, the Path Manager is defined as an entity that maintains a (pathin-
dex, endpoint ID) mapping. This is enough in the case of the built-in Path Manager,
because the segments are associated to a path within the socket itself, thanks to
its endpoint ID. However, it is expected that other Path Managers may need to
apply a particular action, on a per-packet basis, to associate them with a path.
Example actions could be writing a number in a field of the segment (which we
call colouringa packet for clarity) or choosing a different gateway than the default
one in the routing table. In an earlier version of Linux MPTCP, based on a Shim6
Path Manager, the action was used and consisted in rewritingthe addresses of the
packets.
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path index Action (Write x in DSCP)
1 red (write 1)
2 blue (write 2)
3 green (write 3)

Table 4.3: Example mapping table for a colouring PM

Figure 4.11: Extended Path Manager with per-packet actions

To reflect the need for a per-packet action, the PM mapping table (an example
of which is given in Figure 4.2) needs to be extended with an action field. We
show in Table 4.3 an example mapping table for a Path Manager based on writing
a value into a field of the packets. Additionnally, while the built-in Path Manager is
active only in the control plane, the extended Path Manager (with per-packet action
ability) needs also be active in the data plane, as shown in Figure 4.11.

The Path Manager being now extended with anaction field, we can illustrate
the modularity of the architecture by defining other Path Managers. Path Managers
are not attached to a particular layer. The only requirementfor them is to be lo-
cated below the Multipath Transport (MT) in the networking stack, so that outgoing
packets can be marked by the MT before being handled by the Path Manager. The
actual layer in which the Path Manager is located determinesthe scope of the paths
that are managed. For example a link layer Path Manager handles links directly
connected to the host. On the other hand, a network layer PathManager could in-
fluence part or all of the end-to-end path. We provide a few examples of alternative
Path Managers in the followings subsections (of them, only the Shim6-based Path
Manager has been implemented as of this writing).

4.4.1 Next-hop selection

If a host has several interfaces, or one interface with several gateways on the same
link, it can happen that multiple routes are available to reach the same destination.
Currently, such cases usually result in the host using one default route, and keep
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Figure 4.12: Path management with next-hop selection

the other ones for backup connectivity. Solutions exist (such as theiproute2pack-
age in Linux) to allow the end-host to perform load balancingon a per-transport
flow basis, but per-packet load balancing is not recommendeddue to the classical
reordering problem in TCP. The Path Manager abstraction would allow announc-
ing the MT that multiple paths are available, while hiding the fact that those paths
have actually multiple next-hops. The Path Manager based onnext-hop selection
is shown in Figure 4.12. Note that it is possible, in Figure 4.12, that theeth1
interface uses its own address. This will simply be reflectedin the source address
of the third subsocket (that is, the subsocket with path index 3), because the PM
can tell what addresses to use for a particular subflow (see Figure 4.2).

4.4.2 Shim6-based Path Manager

In the previous chapters, we have presented our work on the shim6 protocol. In
fact, shim6 can very well provide a path management service to MPTCP. As cur-
rently defined [NB09], shim6 is a sub-layer of the IPv6 layer,and is completely
invisible to the upper layers. It is able to detect failures on a path, identified
by an address pair, and switch a flow to another path, while ensuring transport
layer survivability of the connections. Such survivability is obtained by rewrit-
ing the address fields of a packet when the address seen by TCP is not the one
that Shim6 wants to use (because it is known to have failed forexample). Shim6
can be used almost as is for playing the role of a Path Manager.In that case, its
failure detection capability is not needed anymore, since the Multipath Transport
layer sees failures on a link as an infinite level of congestion, and it is assumed
to be able to react accordingly. Shim6 contains all the necessary features to act
as a Path Manager: It discovers the available paths by exchanging its address set
with its peer. It is able to direct packets to any of the available paths by rewrit-
ing addresses. For experimentation, we have modified our LinShim6 implemen-
tation of shim6 to enable its use as a Path Manager. It can be downloaded from
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https://scm.info.ucl.ac.be/trac/mptcp/wiki/mptcp_shim6.
We expect that the shim6 based Path Manager could be useful especially when

a user wants to use shim6 anyway (i.e. to provide a path management service to
MPTCP,and a regular shim6 service to other transport protocols). In other cases,
the MPTCP built-in Path Manager remains the best choice, as it supports IPv6
together with IPv4, even in the same communication. A more detailed comparison
between MPTCP and shim6 is given in the conclusion of this thesis.

4.4.3 Link aggregation

Link aggregation provides at layer 2 a function similar to the layer 3 next-hop se-
lection. Here, only one route is seen in layer 3, but several physical links exist,
although they appear as one logical link from layer 3 upward.Again, the problem
of TCP reordering currently makes it necessary to ensure that any transport flow
is always carried over the same link. Adding the Path Managerinterface to a link
aggregation mechanism would allow bringing knowledge of the multiple available
links to the MT (Multipath Transport), and so perform packetbased load balancing.
This kind of Path Managers can reveal to be very useful in somedata-centre con-
figurations, where several Gigabit interfaces use link aggregation. MPTCP could
be easily made aware of the multiple physical links, in orderto use them to their
full capacity.

4.4.4 Remotely controlled Path Managers

All the above end-host mechanisms have an equivalent in the network. Some of
them are even more frequently deployed in networks than in end-hosts. For exam-
ple, possible “network-based Path Managers” are ECMP [TH00], Multipath rout-
ing [MFB+11] or proxy-shim6 [Bag08]. It would thus be interesting to remotely
control them. Whereas host-based Path Managers read the Path Index in the control
structure associated with a packet, network-based Path Managers will read the Path
Index in the packet itself. Whereas host-based Path Managers send notifications
about path properties to registered entities inside the local system, network-based
Path-Managers send their notifications to registered hostsinside the network. This
introduces the need for a means to perform the announcementsfrom the network
to the hosts. This mean could be ICMP, DHCP or another protocol. Alternatively,
a static version of remotely controlled Path Managers wouldimply local configu-
ration in the hosts, rather than using a network protocol.

Remotely controlled Path Managers include a host part and a network part.
The host part is actually a special kind of host-based Path Manager, with the same
interface as any other one. But the mechanism embedded in that Path Manager
only consists of reading path information from either a configuration file or some
network protocol and forwarding that information in the form of Path Indices to the
MT. In the data plane, the local Path Manager writes the Path Index into some field
of the packet (for example DSCP in IPv4 or the flow label in IPv6). The remote
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Figure 4.13: Remotely controlled Path Manager

Path Manager then reads the Path Index of incoming packets, and translates that
number into an action, in exactly the same way as local Path Managers. Figure 4.13
illustrates the operation of a remotely controlled Path Manager. Inside the host, the
Path Index makes the Path Manager set a colour for the packet.That is, some field
holds a Path Selector value (the colour) which is used by the remote Path Manager,
and can differ from the one used inside the host. The packet remains coloured until
it reaches the remote Path Manager. Then the colour is removed and translated into
an action (in Figure 4.13, direct packet to ISP2).

Related work: Another way to remotely control a Path Manager, using DHCP,
has been proposed in [WR11]. The idea is to use only the MPTCP built-in Path
Manager (using multiple IP addresses), and configure DHCP toannounce one ad-
dress per path. A small extension to DHCP allows exchanging information about
the multiple paths between the DHCP server and client. By combining the pro-
tocol modification from [WR11] with the above Path Manager (using colours) it
would be possible to increase its benefits by widening its applications and remov-
ing the requirement for several IP addresses. For example, the DHCP message
mp-proxy-avail defined in [WR11] can be used to allow the DHCP server to
announce how many paths the remote Path Manager supports (hiding the precise
nature of the PM, e.g. proxy-shim6, multiple next-hops or another one). The sec-
ond message from [WR11],mp-range, could be used to ask what Path Selector
to use for a particular path index (currently it is used to askwhataddressto use).
Note that the address is a particular case of path selector. Other path selectors could
be ports or special values to be written in a particular field of packets. By gener-
alizing that way, we could benefit from multipath even when one public address
only is available, and no NAT is in place (hence no option to use multiple private
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Figure 4.14: Example instantiation of cascaded Path Managers

addresses).

4.4.5 Combining Path Managers

The previous subsection presented several examples of PathManagers, each with
different capabilities and scopes. The Path Manager abstraction enables different
path selection mechanisms, while presenting a stable interface to the Multipath
Transport. We note also that several path selection mechanisms may coexist in the
network. It would thus be useful to benefit from all of them, inorder to optimise
the path offer for the MT. We explore here how future versionsof MPTCP could
support the simultaneous use of several Path Managers. A detailed evaluation of
implementation details is left for future work, however.

When several Path Managers are used simultaneously, we propose that each
one be given a depth attribute. The depth attribute reflects the layering requirement
of each PM. Outgoing packets first flow through the PM of depth 0, then the PM of
depth 1 and so on. We must also adapt the PM interface to support cascaded PMs.
Two new rules are introduced:

• The MT can only listen to the Path Manager of depth 0

• A Path Manager of depthi listens to events from a Path Manager of depth
i+1.

To illustrate a useful case of cascaded Path Managers, we usethe scenario
described in Figure 4.14. In that figure, a host is located in an IPv6 network that
is dual-homed. It receives one address from ISP1 and anotherone from ISP2. We
assume that it uses the built-in MPTCP PM (using theADD ADDRESSTCP option)
to manage its two addresses. But ISP1 has itself two major upstream providers,
and offers its clients the option of choosing what upstream provider is selected by
routers in ISP1, based on the flow label field of the IPv6 header.

To map this situation to our architecture, we use two Path Managers. One is
the built-in MPTCP Path Manager, with depth 0 (which we expect will be enabled
by default in any setup). The built-in MPTCP PM sees two localaddresses, giving
the possibility to choose between ISP1 and ISP2. The other one is a remotely
controlled Path Manager (depth 1), the host part of which writes the flow-label
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Figure 4.15: Cascaded Path Managers, only the built-in PM isactive

Figure 4.16: Cascaded Path Managers, final setup

field of IPv6 packets. The network part, located on the routers of ISP1, selects the
outgoing interface based on the flow-label field, which actually holds a Path Index.
Blue packets (e.g. flow label=1) are directed to one upstreamprovider, while red
packets (e.g. flow label=2) are directed to the other one.

The two Path Managers are layered as shown in Figure 4.15. Thebuilt-in PM
has Depth 0, while the Colouring Path Manager (that remotelycontrols ISP1) has
Depth 1.

Let’s suppose that an application App1 wants to start a communication with
address pair< A.2.1, B1 >. The built-in PM detects the new flow and exchanges
address information with the peer. The colouring PM remainsinactive, because it
knows only one path for source addressA.2.1 (thus ISP2). As soon as MPTCP
has found that two paths can be used to reach B1 (through ISP1 or ISP2), it tells
it to the MT, which immediately starts balancing packets over two paths (see Fig-
ure 4.15). But now the Colouring Path Manager perceives a newflow for address
pair < A.1.1, B1 >, since MPTCP has opened a new subflow with this address
pair. The administrator has written a configuration file thattells that two paths are
available through flow label tagging if source address prefixA.1/48 is used. The
Colouring Path Manager announces the two paths upwards. Only the PM with
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Source Address Prefix path index Action (Write x in flowlabel)
A.1/48 1 1
A.1/48 2 2

Table 4.4: Mapping table for the colouring Path Manager (depth 1)

token path idx Endpoint id Action (rewrite path idx to x)
token 1 1 < A.1.2, B1, 0, pB1 > 0
token 1 2 < A.1.1, B1, 0, pB1 > 1
token 1 3 < A.1.1, B1, 0, pB1 > 2

Table 4.5: Example mapping table for the built-in PM (depth 0)

depth 0 listens to that notification, and learns that it can itself behave as an MT for
the Colouring Path Manager.

We emphasise that in the case of Cascaded Path Managers, eachpath Manager
on the path of a packet may need to rewrite the Path Index located in the control
structure of the packet, in order to control the following Path Manager. In our
example, the Colouring Path Manager has announced no path index for address
pair < A.2.1, B1 >, and path index 1, 2 for address pair< A.1.1, B1 >. From
now on, the built-in PM knows that it can not only apply its usual mechanism for
its own path selection, but also set a path index 1 or 2 in case it uses< A1, B1 >
as addresses for its packets. In order to allow upper layers to make use of this
additional path, the built-in PM tells upper layers that onenew path is available.
The final setup is shown in Figure 4.16 and tables 4.4, 4.5. TheMultipath Transport
is now able to use all paths without having any idea of the mechanisms (combined
in this case) that are used to select the paths.

4.5 Configuring the OS for MPTCP

Previous sections concentrated on our MPTCP implementation. In this section, we
gather guidelines that help getting the full potential fromMPCTP through appro-
priate system configuration. By providing configuration guidelines, we also shed
light on how difficult it is for a user to get benefits from MPTCP.

4.5.1 Source address based routing

As already pointed out by [BS10], the default behaviour of most operating systems
is not appropriate for the use of multiple interfaces. Most operating systems are
typically configured to use at most one IP address at a time. Itis more and more
common to maintain several active links (e.g. using the wired interface as main
link, but maintaining a ready-to-use wireless link in the background, to facilitate
fallback when the wired link fails). But MPTCP is not about that. MPTCP is
aboutsimultaneouslyusing several interfaces (when available). It is expected that
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one of the mostly used MPTCP configurations will be through two or more NICs,
each being assigned a different address. Another possible configuration would
be to assign several IP addresses to the same interface, in which case the path
diverges later in the network, based on the particular source address that is used in
the packet9.

Usually an operating system has a single default route, witha single source IP
address. If the host has several IP addresses and we want to doMultipath TCP,
it is necessary to configure source address based routing. This means that based
on the source address selected by Multipath TCP, the routingengine consults a
different routing table. Each of these routing tables defines a default route to the
Internet. This is different from defining several default routes in the same routing
table (which is also supported in Linux), because in that case only the first one is
used. Any additional default route is considered as a fallback route, used only in
case the main one fails.

For instance, consider a host with two interfaces, I1 and I2,both connected to
the public Internet and assigned addresses resp. A1 and A2. Such a host needs
3 routing tables. One of them is the classical routing table,present in all sys-
tems. This default routing table is used to find a route based on the destination
address only, when a segment is issued with the undeterminedsource address. The
undetermined source address is typically used by applications that initiate a TCP
connect() system call, specifying the destination address but letting the system
choose the source address. In that case, after the default routing table has been con-
sulted, an address is assigned to the socket by the system (For IPv6, the RFC3484
source address selection algorithm [Dra03] is applied. ForIPv4 no such algorithm
is defined and the address selection is operating system dependent).

The additional routing tables are used when the source address is specified. If
the source address has no impact on the route that should be chosen, then the default
routing table is sufficient. But this is a particular case (e.g., a host connected to one
network only, but using two addresses to exploit ECMP paths later in the network).
In most cases, a source address is attached to a specific interface, or at least a
specific gateway. Both of those cases require defining a separate routing table, one
per(gateway, outgoing interface)pair.

To select the proper routing table based on the source address, an additional
indirection level must be configured. It is called “policy routing” in Linux and is
illustrated at the bottom of Figure 4.17.

If only the default routing table were used, only the first default route would be
used, regardless of the source address. For example, a packet with source address
A2 would leave the host through interface I1, which is incorrect.

9Note that this issource address based routing, which is different fromsource routing, where the
end-host encodes in the packet header the addresses of the intermediate hops that should be used for
forwarding.
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+----------------------------------------------------+
| Default Table |
+----------------------------------------------------+
| Dst: 0.0.0.0/0 Via: Gateway-IP1 Dev: I1 |
| Dst: 0.0.0.0/0 Via: Gateway-IP2 Dev: I2 |
| Dst: Gateway1-Subnet Dev: I1 Src: A1 Scope: Link |
| Dst: Gateway2-Subnet Dev: I2 Src: A2 Scope: Link |
+----------------------------------------------------+

+----------------------------------------------------+
| Table 1 |
+----------------------------------------------------+
| Dst: 0.0.0.0/0 Via: Gateway-IP1 Dev: I1 |
| Dst: Gateway1-Subnet Dev: I1 Src: A1 Scope: Link |
+----------------------------------------------------+

+----------------------------------------------------+
| Table 2 |
+----------------------------------------------------+
| Dst: 0.0.0.0/0 Via: Gateway-IP2 Dev: I2 |
| Dst: Gateway2-Subnet Dev: I2 Src: A2 Scope: Link |
+----------------------------------------------------+

+----------------------------------------------------+
| Policy Table |
+----------------------------------------------------+
| If src == A1 , Table 1 |
| If src == A2 , Table 2 |
+----------------------------------------------------+

Figure 4.17: Example Routing table configuration for Multipath TCP with two
interfaces
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4.5.2 Buffer configuration

[FRH+11, Section 5.3] describes in details the new, higher bufferrequirements of
MPTCP. Sections 4.3.5 and 4.3.6 describe how the MPTCP buffers can be tuned
dynamically. However, it is important to note that even the best tuning is capped
by a maximum configured at the system level.

When using Multipath TCP, the maximum receive and send buffer should be
configured to a higher value than for regular TCP. There is no universal guideline
on what value is best there. Instead, the most appropriate action for an administra-
tor is probably to roughly estimate the maximum bandwidth and delay that can be
observed on a particular connectivity setup, and apply the equation from [FRH+11,
Section 5.3], to find a reasonable tradeoff. This exercise could lead an administra-
tor to decide to disable MPTCP on some interfaces, because itallows consuming
less memory while still achieving reasonable performance.

4.6 Future work

Although Linux MPTCP is already an operational and efficientprototype, there
is still much space for improvements. In this section we assemble a list of future
improvements that would make the MPTCP implementation evenbetter.

• Today’s host processors have more and more CPU cores. Given Multipath
TCP tries to exploit another form of parallelism, there is a challenge in find-
ing how those can work together optimally. An important question is how to
work with hardware that behaves intelligently with TCP (e.g. flow to core
affinity). This problem is discussed in more detail in [Wat10]. Our current
design is optimised for handling per-core connections (a whole connection
with all of its subflows runnning on the same core). But for this to work with
best efficiency, all subflows should be forced on the same core(to benefit
from cache sharing), which is not the case yet. Another completely differ-
ent design that could be evaluated is to handle per-core subflows, where each
subflow is forced on a different core. We expect less benefit from this second
option however, as the data must be gathered in the same memory pool in
the end (the user-context buffer), which could involve cross-caches copies.

• An evaluation of Linux MPTCP exists (see Chapter 5) and some optimisa-
tions have been implemented already, but many optimisations are still pos-
sible and should be evaluated. Examples of them include MPTCP fast path
(that is, a translation of the existing TCP fast path to MPTCP) or DMA sup-
port.

• Currently, support for TCP Segmentation Offload remains a challenge be-
cause it modifies the Maximum Segment Size. Linux MPTCP currently
works with a single MSS shared by all subflows (see Section 4.3.6). Adding
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TSO support to MPTCP is certainly possible, but requires further work.
Also, support for Large Receive Offload has not been investigated yet.

• There are ongoing discussions in the IETF on heuristics thatwould be used
to decide when to start new subflows. Those discussions are summarised in
the next paragraph, but none of the proposed heuristics has been evaluated
yet.

Heuristics for subflow management: An interesting discussion on future pos-
sible improvements happened on the IETF MPTCP mailing list10. We summarise
it here, as it can provide valuable input for future implementation work.

MPTCP is not useful for very short flows, so three questions appear:

• How long is a “too short flow”

• How to predict that a flow will be short ?

• When to decide to add/remove subflows ?

To answer the third question, it has been proposed to use hints from the application.
On the other hand the experience shows that socket options are quite often poorly
or not used, which motivates the parallel use of a good default heuristic. This
default heuristic may be influenced in particular by the particular set of options
that are enabled for MPTCP (e.g. an administrator can decidethat some security
mechanisms for subflow initiation are not needed in his environment, and disable
them, which would change the cost of establishing new subflows). The following
elements have been proposed to feed the heuristic:

• Check the size of the write operations from the applications. Initiate a new
subflow if the write size exceeds some threshold. This information can be
taken only as a hint because applications could send big chunks of data split
in many small writes. A particular case of checking the size of write oper-
ations is when the application uses thesendfile() system call. In that
situation MPTCP can know precisely how many bytes will be transferred.

• Check if the flow is network limited or application limited. It is network
limited if the sender is paced mainly by its congestion window. It is applica-
tion limited when either the receiver or the sender application is limiting the
transmission rate, by respectively using theread() andwrite() system
calls rarely and/or with small amounts of data. A possible heuristic would
be to initiate a new subflow only if a flow is network limited.

• It may be useful to establish new subflows even for application-limited com-
munications, to provide failure survivability. A way to do that would be to

10MPTCP mailing list archive,mptcp-multiaddressed: How long before multipath starts ?, from
January 31st, 2011 to February 2nd, 2011
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initiate a new subflow (if not done before by another trigger)after some time
has elapsed, regardless of whether the communication is network or applica-
tion limited.

• Wait until slow start is done before to establish a new subflow. Measurements
with Linux MPTCP (see Chapter 5) suggest that the end of the slow start
could be a reasonable hint for determining when it is worth starting a new
subflow (without increasing the overall completion time). More analysis is
needed in that area, however. Also, this should be taken as a hint only if the
slow start is actually progressing (otherwise a stalled subflow could prevent
the establishment of another one, precisely when a new one would be useful).

• Use information from the application-layer protocol. Someof them (e.g.
HTTP) carry flow length information in their headers, which can be used to
decide how many subflows are useful.

• Allow the administrator to configure subflow policies on a per-port basis.
The host stack could learn as well for what ports MPTCP turns out to be
useful.

• Check the underlying medium of each potential subflow. For example, if the
initial subflow is started over 3G, and WiFi is available, it probably makes
sense to immediately negotiate an additional subflow over WiFi.

It is not only useful to determine when to start new subflows, one should also
sometimes decide to abandon some of its subflows. An MPTCP implementation
should be able to determine when removing a subflow would increase the aggregate
bandwidth. This can happen, for example, when the subflow hasa significantly
higher delay compared to other subflows, and the maximum buffer size allowed by
the administrator has been reached (Linux MPTCP currently has no such heuristic
yet).

4.7 Conclusions

In this chapter, we have presented our implementation of Multipath TCP in the
Linux kernel. That implementation is the first and most complete available in an
operating system. We explained our main design choices, especially the need for
buffering data at the connection level in order for the scheduler to make decisions
about packet path attributions as close as possible to the actual sending of the
packet. We also explained that doing this does unfortunately not come without
drawbacks, and that all subflows must use the same MSS.

We emphasised that the size of the buffers required to actually get benefits
from MPTCP is higher than the buffer size required by regularTCP, especially
when the available paths have very different delays. Such differences could lead
an administrator to disable some of the slowest paths.
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In section 4.4, we explained in detail our division of MPTCP in two main com-
ponents, namely Multipath Transport and Path Management. We showed through
various examples the benefits that can be obtained from decoupling path manage-
ment, and illustrated how Path Managers could be combined inorder to benefit
from multipath at several layers during a single MPTCP connection.

Finally, we described the areas of improvements that could be given to Multi-
path TCP, to make it even more competitive in today’s Internet and on multicore
hosts.





Chapter 5

MPTCP evaluation

5.1 Introduction

In this chapter we use our Linux MPTCP implementation to evaluate the protocol
behaviour in real-world scenarios. We first look at the performance of our im-
plementation, in Section 5.2. We then show that the coupled congestion control
correctly achieves the fairness goals presented in [WRGH11], allowing MPTCP
to efficiently use several paths simultaneously, while still being fair to competing
TCP flows. We conclude with a presentation of a concrete, promising, but initially
not expected application for MPTCP: data-centres.

5.2 MPTCP performance

To evaluate the performance of our implementation, we performed lab measure-
ments in the HEN testbed at University College London (http://hen.cs.
ucl.ac.uk/). Our testbed is depicted in figure 5.1.

It is composed of three workstations. Two of them act as source and destina-
tion while the third one serves as router. The source and destination are equipped
with AMD OpteronTM Processor 248 single-core 2.2 GHz CPUs, 2GB RAM and
two Intel R© 82546GB Gigabit Ethernet controllers. The links and the router are
configured to ensure that the router does not cross-route traffic, i.e. the packets

Figure 5.1: Testbed used for the performance evaluation

113
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that arrive from the solid-shaped link in figure 5.1 are always forwarded over the
solid-shaped link to reach the destination. This implies that the network has two
completely disjoint paths between the source and the destination. We configure the
bandwidth onLink A andLink B by changing their Ethernet configuration.
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Figure 5.2: Impact of the maximum receive buffer size

As explained in section 4.3.5, one performance issue that affects Multipath
TCP is that it may require large receive buffers when subflowshave different de-
lays. To evaluate this impact, we configuredLink A andLink B with a band-
width of 100 Mbps. Figure 5.2 shows the impact of the maximum receive buffer
on the performance achieved by MPTCP with different delays.For these measure-
ments, we use two MPTCP subflows. One is routed overLink Awhile the second
is routed overLink B. The router is configured to insert an additional delay of 0,
10, 100 or 500 milliseconds onLink B. No delay is inserted onLink A. This al-
lows us to consider an asymmetric scenario where the two subflows are routed over
very different paths. Such asymmetric delays force the MPTCP receiver to store
many packets in its receive buffer to be able to deliver all the received data in se-
quence. As a reference, we show in figure 5.2 the throughput achieved byiperf
with a regular TCP connection overLink A. When the two subflows have the
same delay, they are able to saturate the two 100 Mbps links with a receive buffer
of 2 MBytes or more. When the delay difference is of only 10 millisecond, the
goodput measured byiperf is not affected. With a delay difference of 100 mil-
liseconds between the two subflows, there is a small performance decrease. The
performance is slightly better with 4 MBytes which is the default maximum receive
buffer in the Linux kernel. When the delay difference reaches 500 milliseconds,
an extreme case that would probably involve satellite linksin the current Internet,
the goodput achieved by Multipath TCP is much more affected.This is mainly be-
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Figure 5.3: Impact of packet losses

cause the router drops packets and these losses cause timeout expirations and force
MPTCP to slowly increase its congestion window due to the large round-trip-times.

The losses are a second factor that affects the performance.To evaluate whether
losses on one subflow can affect the performance of the other subflow due to head-
of-line blocking in the receive buffer, we configured the router to drop a percentage
of the packets onLink B but no packets onLink A and set the delays of these
links to 0 milliseconds. Figure 5.3 shows the impact of the packet losses on the per-
formance achieved by the MPTCP connection. The figure shows the two subflows
that compose the connection, as stacked bars (10 measurements per bar, 95% confi-
dence intervals). We obtain the contribution of each subflowto the overall goodput
by considering the aggregated goodput as measured by the iperf tool, and weighting
by the total number of data bytes effectively sent on each of the subflows, without
taking retransmissions into account. This number of bytes is measured directly
on the packet trace. The subflow shown in the lower bar passes throughLink A
while the subflow shown in the upper bar (in gray) passes through Link B. The
goodput achieved by a regular TCP connection running the new-Reno congestion
control algorithm is shown as a reference (94.8Mbps). When there are no losses,
the MPTCP connection is able to saturate the two 100 Mbps links. As expected,
the gray subflow that passes throughLink B is affected by the packet losses and
its goodput decreases with the fraction of packet losses. The goodput of the other
subflow does not suffer from sharing transmissions with a lossy subflow. With a
loss fraction of5% on the grey subflow, we also remark that the aggregate goodput
goes beyond 100Mbps.
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Figure 5.4: Testbed with 3 Gigabit links

Figure 5.5: Impact of the MSS on the performance

This is better than the throughput achieved when the coupledcongestion con-
trol is disabled1, because in that case the higher amount of traffic sent on the lossy
link causes timeouts, that in turn saturate the receive window and slow down the
whole connection.

The last factor that we analyze is the impact of the Maximum Segment Size
(MSS) on the achieved goodput. TCP implementors know that a large MSS enables
higher goodput [Bor89] since it reduces the number of interrupts that need to be
processed. To evaluate the impact of the MSS, we do not introduce delays nor
losses on the router and use either one, two or three Gigabit Ethernet interfaces
on the source and the destination (see Figure 5.4). Figure 5.5 shows the goodput
in function of the MSS size. With a standard 1400 bytes MSS, MPTCP can fill
one 1 Gbps link, and partly use a second or third one. It is ableto saturate two
Gigabit Ethernet links with an MSS of3000 bytes, and three Gigabit Ethernet
links with an MSS of4500 bytes. Note that we do not use TSO (TCP Segmentation

1This case, not shown in the picture, corresponds to each subflow running new-Reno separately.
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Histogram bar BST Segment aggregation Shortcuts
Regular Disabled Disabled Disabled
Tree Enabled Enabled Disabled
Shortcuts Disabled Disabled Enabled
Aggreg Disabled Enabled Enabled

Table 5.1: Optimisations enabled for Figure 5.6

Offload) [Cur04] for these measurements. With TSO the segment size handled by
the system could have grown virtually to 64KB and allowed it to reach the same
goodput with a lower CPU utilisation. TSO support will be added later in our
MPTCP implementation.

Finally, we have looked at the CPU consumption in the system in the data sink.
Most TCP implementations support Van Jacobson’s fast path processing [Jac93].
The receiver assumes that data is received in-order and TCP quickly places the data
received in-sequence in its receive buffer, at the end of thein-order receive-queue
(which the application can read). If the packet cannot be placed in the receive
queue, it is then placed in the out-of-order queue, which is an ordered sequence of
segments with holes. This queue is searched for an appropriate place starting at the
end, because in most cases this queue is used when a packet hasbeen lost and all
subsequent packets arrive in sequence until the hole is filled (that is, the missing
segment is retransmitted). In the rare case where a segment can be placed neither
at the end of the receive queue nor at the end of the out-of-order queue, TCP scans
the out-of-order queue to find the exact location of the received data.

With MPTCP the situation is completely different: while subflow sequence
numbers are received in-order, data sequence numbers are often out-of-order, forc-
ing receivers to scan the large out-of-order queue. An obvious fix is to use a binary
search tree to reduce the out-of-order queue lookup time. This adds complexity to
the code, and still takes logarithmic time to place a packet.

To obtain a simple, constant time receive algorithm we take into account the
way packets are sent: when a subflow is ready to send data, a batch of segments
with contiguous data sequence numbers are allocated by the connection and sent
on this subflow. Each subflow then receives ordered segments at the data level as
long as the batch size is large. To take advantage of this, we augment each subflow
data structure with a pointer to the out-of-order queue position that is expected to
receive the next segment to arrive on that subflow. If the pointer is wrong, we
revert to scanning the whole out-of-order queue (the implementation details for the
binary search tree and the shortcut pointers have been givenin Section 4.3.5).

Figure 5.6 compares the CPU load (measured with thempstatLinux utility)
for the different receive algorithms2. The exact configuration used to generate
each of the bars is shown in Table 5.1. TCP (with 2 and 8 connections) is used
as a benchmark. The optimising algorithms are evaluated by considering a client

2This set of measurements has been performed by Costin Raiciu
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Figure 5.6: Effect of ofo receive algorithms on CPU load

directly connected to a server by using two 1 Gbps links. The client starts a long
download and the CPU load of the receiver is measured. With more subflows the
number of out-of-order segments increases. For clarity, the results are presented
only with 2 subflows, a lower bound to utilise the links, and 8 subflows beyond
which results are similar.

The shortcut pointers are particularly efficient as they work for 80% of the
received segments. TheTreealgorithm reduces CPU utilisation, butShortcutsand
its variantAggreghelp much more. When 8 subflows are used, CPU utilisation
drops from42% to 30%, and when 2 subflows are used it drops from25% to 20%.

Regarding the repartition of the load between the software interrupts and the
user context, we found that the majority of the processing was done in user context
for the receiver. For example, with a 1400 bytes MSS and a single Gigabit Ethernet
link, with 16 subflows, less than1% of the receive-side MPTCP processing time
was spent in software interrupt context. The bigger amount of processing for user
context comes from backlog queue processing: if the meta-socket is locked by the
user context, all segments received during that time are enqueued in the backlog
queue. They are handled during therelease sock() operation, in user context
(see Section 4.3.3). Van Jacobson prequeues (which we described in Section 4.3.1)
are in use in these measurements, but the backlog queue playsa more significant
role in this set of measurements.

The sender spends around20% of the total MPTCP processing time in software
interrupt context under the same conditions. The significantly larger amount of
work performed in software interrupt context comes from thefact that the majority
of the segments are sent when an incoming acknowledgement opens more space
in the congestion or sending window. This event happens in interrupt context and
requires (currently) running the scheduler for each segment.
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5.3 MPTCP congestion control

The support for Coupled Congestion Control [RHW11, WRGH11]has been added
by Christoph Paasch in our MPTCP implementation3. To test it, a specific topology
has been used in the HEN testbed, as shown in Figure 5.7.

Figure 5.7: Congestion testbed

This topology is composed of four Linux workstations that use IntelR© Xeon
CPUs (2.66GHz, 8GB RAM) and IntelR© 82571EB Gigabit Ethernet Controllers.
The two workstations on the left are connected with a Gigabitlink to a similar
workstation that is configured as a router. The router is connected with a 100
Mbps link to a server. The upper workstation in figure 5.7 usesa standard TCP
implementation while the bottom host uses our Multipath TCPimplementation.

Detailed simulations performed by Wischik et al. in [WRGH11] show that
the coupled congestion control fulfills its goals. In this section we illustrate that
our Linux MPTCP with the Coupled Congestion Control achieves the desired ef-
fects, even if it is facing additional complexity due to fixed-point calculations com-
pared to the user-space implementation used in [WRGH11]. Inthe congestion
testbed shown in figure 5.7, the coupled congestion control should be fair to TCP.
This means that an MPTCP connection should behave like a single TCP connec-
tion at the bottleneck. Furthermore, an MPTCP connection that uses several sub-
flows should not slow down regular TCP connections. To measure the fairness of
MPTCP, the bandwidth measurement softwareiperf4 has been used to establish
sessions between the hosts on the left and the server on the right part of the figure5.
Different numbers of regular TCP connections are established from the upper host,
as well as different numbers of MPTCP subflows used by the bottom host. Iperf
sessions were run for a duration of 10 minutes, to allow the TCP-fairness over the
bottleneck link to converge [LLS07]. Each measurement is run five times and the
average throughput is reported, as well as the95% confidence intervals.

Thanks to the flexibility of the Linux congestion control implementation, tests
have been performed by using the standard NewReno congestion control scheme
with regular TCP and either NewReno or the coupled congestion control scheme
with MPTCP.

3The evaluation presented in this subsection is the result ofa joint work presented in [BPB11b].
4http://sourceforge.net/projects/iperf/
5This set of measurements has been conducted by Christoph Paasch.
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Figure 5.8: Multipath TCP with coupled congestion control behaves like a single
TCP connection over a shared bottleneck with respect to regular TCP.

Figure 5.9: With coupled congestion control on the subflows,Multipath TCP is not
unfair to TCP when increasing the number of subflows.
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The measurements show that MPTCP with the coupled congestion control is
fair to regular TCP. Figures 5.8 and 5.9 present the amount ofthe available bot-
tleneck link capacity (100Mbps) taken by TCP and MPTCP. If several TCP flows
coexist (Figure 5.8), they are summed and presented in the same stack bar. When
an MPTCP connection with two subflows shares a bottleneck link with a regular
TCP connection, the coupled congestion control behaves as if the MPTCP session
was just one single TCP connection. However, when Reno congestion control is
used on the subflows, MPTCP gets more bandwidth because in that case two TCP
subflows are really competing against one regular TCP flow (Figure 5.8).

The second scenario that is evaluated with the coupled congestion control is
the impact of the number of MPTCP subflows on the throughput achieved by a
single TCP connection over the shared bottleneck. Measurements are performed
by using one regular TCP connection running the Reno congestion control scheme
and one MPTCP connection using one, two or three subflows. TheMPTCP con-
nection uses either the Reno congestion control scheme or the coupled congestion
control scheme. Figure 5.9 shows first that when there is a single MPTCP sub-
flow, both Reno and the coupled congestion control scheme arefair as there is no
difference between the regular TCP and the MPTCP connection. When there are
two subflows in the MPTCP connection, figure 5.9 shows that Reno favours the
MPTCP connection over the regular single-flow TCP connection. The unfairness
of the Reno congestion control scheme is even more importantwhen the MPTCP
connection is composed of three subflows. In contrast, the measurements indicate
that the coupled congestion control provides the same fairness when the MPTCP
connection is composed of one, two or three subflows.

5.4 MPTCP in the data-centre

In a collaboration with University College London, we have studied the benefits
of Multipath TCP in a data-centre environment. We combined simulation results
(from UCLondon) with experimental results, using our LinuxMPTCP implemen-
tation. The results of this work have been published in [RPB+10, RBP+11].

5.4.1 Context

One issue that could slow down the deployment of MPTCP is the requirement to
support it at both ends of the communication. Data-centre environments do not suf-
fer from this, because the sender and the receiver are under the same administrative
control. Moreover, MPTCP can bring major benefits to such environments as they
are already built with multiple paths for both failure tolerance and load sharing.

Today, data-centres can involve hundreds of thousands of servers [Sha08].
Routing traffic between them requires the use of a hierarchical topology of switches
and/or routers. To understand this, consider that we want tobuild a data-centre
using 1 Gbps NICs and at most 10 Gbps switch ports. Those values are realis-
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Figure 5.10: Simple data-centre topology

tic with today’s hardware, as data-centres often run distributed applications that
need fast transfers to and from arbitrary servers in the data-centre. A data-centre
topology is often characterized by its bisection bandwidth, defined by [HP06] as
follows:“For a given topology, bisection bandwidth,BWBisection, is calculated
by dividing the network into two roughly equal parts - each with half the nodes
- and summing the bandwidth of the links crossing the imaginary dividing line.
For nonsymmetric topologies, bisection bandwidth is the smallest of all pairs of
equal-sized divisions of the network.”. If the worst-case bisection of the network
allows one half to communicate at interface speed with the other half, the network
is said to havefull bisection bandwidth. In that case the bisection bandwidth is
iface speed × N/2, whereN is the number of hosts. The network shown in
Figure 5.10 has full bisection bandwidth (assuming the coreswitch is powerful
enough): N is 100 (note the dots between the two fat links), and the bisection
bandwidth isiface speed×N/2 = 50Gbps.

Full bisection bandwidth topologies are not the norm however, as they require
using prohibitively expensive devices for a capacity that is not even necessarily
used. For that reason the core links are usually designed to achieve less than full bi-
section bandwidth. The extent to which such topologies depart from full bisection
bandwidth is given by theoversubcription ratio: BWBisection

iface speed×N/2 . For example, we
can increase the number of hosts to200 in figure 5.10 by just connecting ten more
hosts per lower-level switch. In that case the bisection bandwidth is still 50Gbps
butN/2 is 100, giving an oversubscription ratio of 1:2. The lower-level switches
indeed become potential bottlenecks.

The network of Figure 5.10 is a kind of fat-tree [Lei85] (thatis, the links be-
come “fatter” when moving away from the leaves to the root). As the network
switches needed to handle the fat links are significantly more expensive than the
smaller ones, [AFLV08] has proposed to instantiate a Clos topology [Clo53]6 for
data-centres. An example is shown in figure 5.11, where 4-ports switches are used,
and only Gigabit Ethernet links are used (meaning that all layers of the topology

6Clos proposed, in 1953, a topology for telephone switching neworks, when also facing high
price differences between low and high bandwidth switches.
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Figure 5.11: Clos-based data-centre topology (Al-Fares etal.)

can use commodity switches). Ironically, Al Fares et al. chose to call their archi-
tecture proposal “Fat-Tree”. We will not follow that terminology and will instead
refer to this structure as a Clos topology, given the main property of the topology is
precisely thatthere is no fat linkin the proposal from [AFLV08] described in Fig-
ure 5.11. An example ofreal Fat Tree is instead Figure 5.10 [Lei85]. The particular
small example of Figure 5.11 is obviously not interesting asthere are more switches
than hosts. However, it scales much better than the hierarchical fat-tree approach
and is cheaper. For example a Clos-based data-centre that uses 48-ports switches
can support up to27648 hosts according to [AFLV08], and requires 2880 GigE 48-
ports switches. This topology isrearrangeably non-blocking[Ben65], that is, it is
always possible to find a combination of paths (as this topology is multipath) that
allows all hosts to communicate with another host at full interface speed. However,
[AFLV08] recognizes that TCP does not allow torearrangethe paths easily (other-
wise reordering would cause a performance drop). In a separate paper [AFRR+10],
the same authors propose the use of a centralized scheduler to rearrange only the
big flows (as it would be too costly to rearrangeall flows centrally). Unfortunately
this centralized scheduler suffers from slow reaction timeand may need to be run
very frequently under some communication patterns [RBP+11]. This is exactly
where MPTCP can bring great benefits. MPTCP just uses all of the paths, hence
rearranging “automatically”, at the time-scale of a Round-Trip-Time. Simulation
results have been published in [RBP+11] and show that MPTCP indeed performs
much better than regular TCP in such topologies.

Similar to the Clos topology proposed by [AFLV08], VL2 (Virtual Layer 2)
is also a Clos topology but it uses fewer faster links near theroots [GHJ+09]. It
has also multiple paths and tries to efficiently use them by implementing Valiant
Load Balancing [KLS04, ZSM04] and ECMP inside the end-hosts. As ECMP
and VLB are blind to actual traffic conditions in the network,there is also much
benefit to expect from running MPTCP in such networks, as shown in simulations
in [RBP+11].

Finally, another recent data-centre proposal is BCube [GLL+09]. Here the ap-
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Figure 5.12: BCube data-centre topology (k = 1, n = 4)

proach is completely different as the hosts themselves are used to forward traffic.
The topology is arranged recursively (see Figure 5.12). Thesimplest element (level
0) is a set of servers directly connected through a rudimentary switch. Additional
server ports can be used to connect to other recursive levelsas shown for level1 in
Figure 5.12. In general, aBcubek hask+ 1 recursive levels (0 throughk) that use
simple n-ports switches to connect togethern Bcubek−1. Like the other topolo-
gies, the Bcube leverages multiple paths between each destination pair. Although
a specific routing protocol is proposed to take benefit from this multipath topol-
ogy, Bcube is forced to assign flows, not packets to any particular path. Again,
MPTCP brings the possibility to get finer-grained path allocation. Moreover, given
that this topology uses several interfaces per host, MPTCP can even allow band-
widths that arehigher than the interface rate, a feature that was not possible before.
[RBP+11] also presents simulation results that emphasise the benefits of MPTCP
in a BCube environment.

5.4.2 Experimental evaluation

To complement the simulation results presented in [RBP+11], we have used our
implementation to evaluate the MPTCP behaviour in real-world conditions.

Completion time for short flows: We conducted a first experiment using the
HEN testbed presented in Figure 5.1. The question we wanted to answer was:
Should MPTCP be enabled for all TCP connections in a data-centre ? We measured
the time to setup a connection and transfer a short file. In this measurement the file
transfer is initiated by the client immediately after the three-way handshake. TCP
can only use one interface; MPTCP can also use the second, butonly after the
first subflow has negotiated the use of MPTCP and the second subflow has been
established. Figure 5.13 shows that TCP is faster for files ofless than about 10
packets, but much slower thereafter. This comes from the overhead of establishing
an additional subflow, and the fact that this subflow cannot beestablished before
the initial three-way handshake has completed. To avoid penalizing short flows,
the code just needs to wait two RTTs after data transmission starts (or until the
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Figure 5.13: Time to transfer short files

window of the first subflow is big enough) and only then start a second subflow.
To achieve such a good result as depicted in Figure 5.13, however, we have

needed to revise our implementation of the context estabishment and accept hav-
ing more code running in sofware interrrupt context compared to the initial version,
hence being slightly less fair to other system processes. Our revised version, in the
server side, creates an MPTCP meta-socket as soon as the Multipath capable SYN
message is received, without waiting until the corresponding application user con-
text is woken up again. This necessarily happens in softwareinterrupt context and
is not completely free as it requires atomic memory allocation (as opposed to inter-
ruptible user context memory allocation). However, we believe this is acceptable,
especially given the benefit it provides, as this is how regular TCP establishment is
implemented. We just allocate one more structure (the meta-socket). If the MPTCP
structure were not created immediately upon SYN reception,the server could miss
the first JOIN request, delaying the use of multiple paths.

MPTCP performance in the Amazon’s EC2 cloud: Amazon’s EC2 compute
cloud7 allows us to run real-world experiments on a production data-centre. Ama-
zon has several data-centres; their older ones do not appearto have redundant
topologies, but their latest data-centres (USEast1c and USEast1d) use a topology
that provides many parallel paths between most pairs of virtual machines.

7http://aws.amazon.com/ec2/
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Figure 5.14: 12 hours of throughput, all paths between fortyEC2 nodes

We do not know the precise topology of the US East data-centre. The mea-
surements are complicated because each instance is a virtual machine, sharing the
physical hardware with other users. Background traffic levels are also unknown to
us, and may vary between experiments.

To understand the variability of the environment and the potential for MPTCP
to improve performance, our MPTCP-capable Linux kernel hasbeen run on forty
EC2 instances, and for 12 hours throughput was sequentiallymeasured with iperf
between each pair of hosts, using MPTCP with2 and4 subflows and TCP as trans-
port protocols. The resultant dataset totals3, 000 measurements for each configu-
ration, and samples across both time and topology.

Figure 5.14 shows the results ordered by throughput for eachconfiguration.
Traceroute shows that a third of paths have no diversity; of these paths 60% are
local to the switch (2 IP hops), while the others have four IP hops. They roughly
correspond to the right-hand 35% of the flows in the figure; they achieve high
throughput, and their bottleneck is most likely the shared host NIC. MPTCP can-
not help these flows; in fact some of these flows show a very slight reduction in
throughput; this is likely due to additional system overheads of MPTCP.

The remaining paths are four IP hops, and the number of available paths varies
between two (50% of paths), three (25%) up to nine. Traceroute shows all of them
implement load balancing across a redundant topology. MPTCP with four subflows
achieves three times the throughput of a single-path TCP foralmost every path
across the entire 12-hour period.
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5.5 Conclusions

Multipath TCP is a major extension to TCP that is being developed within the IETF.
Its success will depend on the availability of a reference implementation. We have
analyzed the performance of our implementation in the HEN testbed, looking at the
impact of the delay on the receive buffers and the throughput. We also showed that
losses on one subflow had limited impact on the performance ofanother subflow
from the same Multipath TCP connection. From a performance point of view, we
have shown that our implementation is able to efficiently utilise Gigabit Ethernet
links when using large packets, and identified the next stepsfor optimisation, based
on the current CPU consumption results of our implementation (version 0.6).

Another critical aspect of MPTCP is the coupled congestion control. This has
been already developed and evaluated in details by Wischik et al. in [WRGH11].
We showed that Linux MPTCP fulfills the fairness goals described in [RHW11].

Finally, we presented the benefits of MPTCP in a data-centre environment. We
explained that current data-centres already leverage multiple paths, and usually
attempt to optimise their use by randomisation of flow allocations. We showed
that MPTCP can bring high benefits even in existing data-centres (by running our
implementation in the Amazon EC2 cloud). Another interesting result is that, even
for very short flows, MPTCP can provide lower completion times than regular
TCP.





Conclusion

Throughout this thesis, we focused on two IETF proposals that aim at improving
the utilisation of multiple paths in the Internet. The first one, shim6, is actually one
of the multiple attempts by the IETF to make IPv6 a more successful protocol than
IPv4, in particular by enabling effective multihoming in the presence of the new
hierarchical address allocation model of IPv6.

The second one is Multipath TCP. This effort is even more ambitious, as it not
only tries to improve multihoming, but uses multiple pathssimultaneously. Fur-
thermore, MPTCP can use both IPv4 and IPv6 in the same connection. Should we
have to rank these two protocols based on these sole two paragraphs, we would
probably select MPTCP as the clear winner. But MPTCP also hasdrawbacks com-
pared to shim6. Its broad range of capabilities could becomea handicap compared
to the very focused shim6 solution.

The main contribution of this thesis is to evaluate the feasibility of these new
proposals in real world conditions. For this, we adopted a pragmatic approach, im-
plementing everything including all details. The main benefit of implementation-
based evaluations is that this allows to answer important questions like:

• Does the protocol allow optimisations to run efficiently on high-end servers ?
For shim6, we have proposed a simple way to identify peers that do not
support the protocol, based on a simple check of the peer’s address. For
MPTCP, we have discussed current TCP optimisations and how they can be
mapped to a multipath version of TCP.

• What kind of protocol optimisations can be envisaged and what are the in-
volved tradeoffs ?For shim6 we have proposed a simple way to find low
delay paths, but this is at the cost of more control traffic. Wehave also
proposed that highly loaded servers drop shim6 contexts more aggressively,
but again this may generate more shim6 traffic as the clients may attempt to
re-create the server state. MPTCP has tradeoffs in the amount of required
buffering. More buffering allows getting a higher throughput in the presence
of paths with high bandwidth-delay products. But some path configurations
may consume a huge amount of memory.

• Does the wheel really need to be reinvented ?When a new protocol is de-
veloped to answer a particular problem, it is often the case that the protocol
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designers reinvent existing functionalities for their newprotocol, hence tend-
ing to individual monolithic solutions instead of combinedprotocols. This
holds particularly true for shim6 and MIPv6 where several researchers have
tried to support mobility with shim6 [RBKY08, DM08] or multihoming with
MIPv6 [WDT+09]. But even for the newer MPTCP proposal, several mech-
anisms are very similar to shim6 (e.g. address knowledge exchange and
connection identifier). Although those similar mechanismsfor path man-
agement solve problems that shim6 cannot solve (in particular IPv4 support
is not offered by shim6), shim6 can still be useful as a Path Management
service for MPTCP in an IPv6 environment. More generally, weproposed
a functional separation of the MPTCP functionality [FRH+11], to allow it
running over any path management solution.

• Are there ambiguities in the protocol specification ?When evaluating a
new protocol, simulations require making simplifying assumptions that may
hide some design problems. For instance if the simulations concentrate on
congestion control, buffering problems may be ignored. In both shim6 and
MPTCP, we have contributed to the improvement of the protocol specifica-
tions.

Simulation-based studies are important as well and have fortunately been con-
ducted by others [dBGMS07, RBP+11, WRGH11], so that both shim6 and Multi-
path TCP benefit now already from a good set of evaluations andconsolidations.
Obviously MPTCP in particular is still a work in progress andthere are several
important problems that still need to be solved. To concludethis thesis, we briefly
compare the MPTCP and shim6 proposals, and finally summarisethe research av-
enues that remain open.

MPTCP vs Shim6

At first sight, MPTCP could simply replace shim6, its functionality being a su-
perset of shim6. It is capable of exchanging addresses with the peer, and failure
recovery is naturally handled by TCP retransmission mechanisms. Even better, the
failure recovery time by MPTCP isalwayslower than the shim6 failure recovery
time. Indeed, although it would be theoretically possible to configure low enough
timeout values for shim6 to beat MPTCP, that would unavoidably imply many use-
less REAP explorations because of erroneous failure detections.

Trying to find a winner

Beside capabilities that are shared by MPTCP and shim6, MPTCP presents huge
advantages, the main one being theparallel multipathcapability, whereas shim6
has onlysequential multipathcapability. By using multiple paths in parallel, Mul-
tipath TCP can just get rid of a REAP-like protocol, as the path exploration is
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permanent. Finally, MPTCP is designed to support both IPv4 and IPv6, whereas
shim6 is specialized for IPv6. An important consequence is that even if a host has
only one IPv4 address and one IPv6 address, it is already multihomed as far as
MPTCP is concerned. But shim6 does not lose everywhere. It does present the
advantage of being located in the network layer. The layer difference brings the
following consequences:

• Supported protocols: shim6 can offer multihoming support to any trans-
port layer protocol. MPTCP is limited to offering multihoming support for
TCP applications. This is important as from the user perspective, installing
MPTCP alone in an IPv6-only environment (this situation is likely to be-
come realistic in the near future) would result in partial failure support. If
the user pays for multihoming, he probably expects that evenits UDP flows
can failover across the providers. If shim6 is not used the non-TCP trans-
port flows are on their own to detect and recover from failures. This can be
implemented in the application layer however for UDP flows, because any
source address can be used for each datagram. RTP multihoming is also
being proposed at the IETF [SKO+11].

• Amount of state to maintain: one of the major drivers for the MPTCP
design is to require no change to existing applications. Butexisting applica-
tions often openmanyTCP connections to the same destination, in particular
web browsers. At the time of designing shim6, people were concerned about
the amount of state required by shim6 in high end servers. This motivated
our proposal for fast identification of non-shim6 peers and aggressive con-
text removal. But things are much worse with MPTCP: MPTCP multiplies
its amount of state by the number of TCP subflows, while shim6 maintains
onesmall state per host pair (unless special treatment is requested, like con-
text forking). For each single connection MPTCP maintains aseparate con-
nection identifier, it handles the security mechanisms, andcreates complete
sockets for each of the subflows. Even worse, the individual sockets maintain
reordering queues, and a meta-socket (per MPTCP connection) maintains a
meta-reordering queue that may grow large, especially in the presence of
paths with high-delay-bandwidth products. This is the price to pay for the
parallel multipathcapability. It is important to understand that this is not
free in terms of memory consumption, as we have shown in our MPTCP
evaluation.

• Address management: shim6 is slightly handicapped by the fact that it
needs to perform address rewriting, while MPTCP just needs to store the
correct addresses in the corresponding sockets, since it handles one socket
per path. However this is counter-balanced by the fact that MPTCP needs to
run a scheduler at the sending side and an intensive reordering algorithm at
the receiving side.



132 Conclusion

Or are they both losers ?

The title of this section is obviously exagerated. However shim6 and MPTCP
share a drawback because of their similar way to handle addresses. In both shim6
and MPTCP, the application uses a stable address, while the actual address in use
may change over time. In case of renumbering, it may happen that a host starts
using a newly acquired address, while another one still usesthe same address at
the application layer, although the topological address isnow different because of
the renumbering. This possibility lead the IETF shim6 Working Group to decide
thatshim6 does not support renumbering, and a shim6 context must be dropped
when the ULID is no longer topologically owned by the end-host. This IETF
consensus has been reflected in Section 1.5 of [NB09]. To be coherent, one should
also assume thatMPTCP does not support renumbering: it indeed shares the
exact same limitation as shim6, given an address can be used at the application
layer while being topologically assigned to another host, if no subflow is using the
address.

By extension, we can conclude that MPTCP and shim6 do not support mobil-
ity, at least if they are usedalone. Mobility indeed involves regularly losing the
ownership of an address, and get another one from another network. Mobility is
however possible if the application-layer address (the ULID as per the shim6 ter-
minology) is a stable address belonging to the home network,as is the case for
MipShim6.

Recently a paper has been published about the use of MPTCP as the main
building block of a mobility [RNBH11] architecture. Unfortunately it does not
take into account the address ownership problem just mentioned. This problem
could however be solved probably by combining MPTCP with Mobile IP, as we
did for shim6. Mobile IP would provide a stable, owned address for the application
layer, and MPTCP could make use of care-of addresses while moving (or even use
several of them simultaneously). An initial architecture that combines MPTCP
with Mobile IP has been proposed by Bagnulo et al. in [BEF+10]. In the extreme
case, we can imagine that the home network itself could be renumbered, and the
home address reassigned. Supporting that case would involve going further into
the locator/identifier separation and use non-routeable identifiers in the application
layer.

Finally a related problem is the handling of referrals. BothShim6 and MPTCP
present a stable address to the application, while using another one for the routing.
A consequence is that the application may advertise that stable address to a third-
party, thinking that it works while the corresponding path is actually broken. In
both cases the third-party won’t be able to reach the referred address, unless it is
able to retrieve the corresponding alternate locators thanks to a global mapping
system.
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Stop fighting and become good friends ?

We have described in Section 4.4.2 our work on combining shim6 with MPTCP.
They indeed share some functions regarding path management, that we can avoid
duplicating by combining the two protocols:

• Address exchange:MPTCP uses TCP options to advertise the local set of
addresses to the peer. Shim6 uses the dedicated shim6 protocol. MPTCP
and shim6 share the new kinds of attacks that are made possible by host
multihoming, and both define their own mechanisms. Multipath TCP is lim-
ited however in what it can do, partly by the limited length ofTCP options,
partly by the time required to perform cryptographic operations. Shim6 on
the other hand takes benefit from the long IPv6 addresses and offers a bet-
ter protection thanks to HBA or CGA addresses. An example of attack that
is possible only with MPTCP is when an attacker can listen to the first few
packets of a communication. With MPTCP, the attacker will see all the keys
and be able to impersonate one or both of the involved hosts. With shim6
this is not possible because a public/private key pair is used to verify the
exchanged addresses. One way to enhance MPTCP with shim6-like secu-
rity would be to integrate the HBA/CGA mechanisms into MPTCP, but such
mechanisms would be available only when the initial subflow uses IPv6 ad-
dresses (additional subflows can use IPv4 or IPv6, given theyare authenti-
cated with the key stored in the initial address).

• Context identification: MPTCP uses a token to find the connection corre-
sponding to a new join request (MP JOIN). There is one token per MPTCP
connection. With shim6, the equivalent mechanism is a context tag that iden-
tifies an association between two hosts. The MPTCP token needs to be used
only in the SYN exchange, as further packets are attached to the correct con-
nection thanks to the 5-tuple. Shim6 cannot use the 5-tuple as it is located
in the network layer. The context tag is thus included in all packets unless
the locators in use are the ULIDs. When shim6 is used as path manager for
MPTCP, the MPTCP address exchange options and the token can simply be
ignored.

Shim6 seems to be a good candidate for MPTCP path management.However
it is not currently designed to support IPv4, which is probably a showstopper, at
least until IPv6 becomes largely dominant8.

Still, shim6 does offer multihoming support for any transport layer protocol,
and it can be used for protocols other than TCP. MPTCP could then access both
IPv4 and IPv6 networks, and other transport protocols couldbenefit from multi-

8A possible extension to shim6 would be allow IPv4 addresses as alternate locators. The Upper
Layer IDentifier must be an IPv6 address, however, as its 128 bits are required by the HBA/CGA
security mechanisms. It would also be necessary to define an IPv4 encoding for the shim6 extension
header, used to attach a packet to the correct shim6 context.



134 Conclusion

homing support over the IPv6 topology (IPv4 multihoming support being usually
handled by the routing system anyway).

Open perspectives

Our work has opened interesting research opportunities. All of our implemen-
tations (LinShim6, MipShim6, MPTCP over shim6, Linux MPTCP) are publicly
available and can certainly be further improved. In particular they can be used to
further understand how to improve the shim6 and MPTCP protocols.

In this thesis we have presented a lot of lab measurements. Both shim6 and
MPTCP would benefit from experiments across the Internet, inparticular to study
their deployability, as middleboxes of all kinds are being deployed on the Internet
and may filter or transform unknown protocols.

We have mentioned in the previous section the problem of renumbering, faced
by both MPTCP and shim6. Currently the most obvious way to solve this prob-
lem is to go further into the locator/identifier separation principle: wheras shim6
and MPTCP use a particular locator as identifier, other solutions such as HIP are
based on a non-routeable identifier and can thus naturally survive a rehoming event.
These approaches are however a greater architectural change compared to the cur-
rent Internet and their advantages come at the cost of more difficult deployments.

It is interesting to consider how shim6 and MPTCP can be adapted to handle
mobility as well. We have proposed a solution for shim6,MipShim6, but it has only
be shortly evaluated, and the implementation is still a prototype. Likewise, efforts
from other researchers lead to an interesting proposal for mobile MPTCP, although
we do not support the idea of using an arbitrary address in theapplication layer.
Hence, a modification of MPTCP that integrates Mobile IP would be an interesting
research topic.

From an implementation viewpoint, MPTCP still has several important chal-
lenges, as mentioned in Section 4.6. In particular it shouldbe optimised for SMP
systems and NICs with flow-to-core affinity. The TCP fast-path should be adapted
in an equivalent “MPTCP fast path”. An efficient algorithm should be devised for
handling reordering at the connection level, as the queue sizes involved are much
larger compared to regular TCP.

Finally, we have used our MPTCP implementation to evaluate the protocol for
the use case of data-centre deployments. MPTCP is a very promising solution, and
many other use cases can be evaluated. An example is the case of mobile devices
with multiple interfaces, where mobile operators could offer improved service with
MPTCP.
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