
Mechanisms for interdomain
Traffic Engineering with LISP

Damien Saucez

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

September 7, 2011

ICTEAM
Louvain School of Engineering

Université catholique de Louvain
Louvain-la-Neuve

Belgium

Thesis Committee:
Prof. Olivier Bonaventure (Advisor) UCL/ICTEAM, Belgium
Prof. Pierre Dupont (President) UCL/ICTEAM, Belgium
Prof. Marc Lobelle UCL/ICTEAM, Belgium
Prof. Laurent Mathy Lancaster University, United Kingdom
Dr Philippe Owezarski LAAS-CNRS, France
Prof. Jean-Louis Rougier TELECOM ParisTech, France
Prof. Peter Van Roy UCL/ICTEAM, Belgium

Mechanisms for Interdomain Traffic Engineering with LISP
by Damien Saucez

c© Damien Saucez, 2011
ICTEAM
Université catholique de Louvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

This work was partially supported by the European-funded 027609 AGAVE
and 223936 ECODE projects and a Cisco URP grant.

To my grand father

Preamble

Internet is composed of the inter-connection of tens of thousands of
independent networks. These networks are called Autonomous Systems
(AS) or domains. Some of these ASes are only providing connectivity
to the other ASes and are then called Internet Service Providers (ISP).
The vast majority of ASes in the Internet are multi-homed and multi-
connected [ACK03]. On the one hand, the ASes are connected to the
Internet with several ISPs (i.e., multi-homed) in order to preserve their
connectivity in case of the failure of one ISP and to reduce their cost
by playing the concurrence game. On the other hand, the ASes are con-
nected to the ISPs with several links (i.e., multi-connected) in order to in-
crease their total bandwidth capacity with the Internet. Being multi-homed
and multi-connected increases the path diversity with the Internet. How-
ever, measurements show that these different paths offer disparate perfor-
mance [APS04, AAS03, GDZ06, AMS+08, DD06]. Therefore, multi-homing
and multi-connectivity enable Autonomous Systems to chose better quality
paths over the Internet. Unfortunately, the current Internet design makes
difficult to optimize routing to follow the paths that offer the best perfor-
mance. Indeed, the Border Gateway Protocol (BGP) is the de-facto inter-
domain routing protocol in the Internet [RLH06]. BGP is a path vector
policy based routing protocol. In BGP, the routes are propagated gradually
from AS to AS. If an AS has several routes for a given destination, it can
only advertise and use the best one. The choice of the best route follows the
BGP Decision Process [RLH06]. The decision process is use to implement
the AS policies. Therefore, the originating AS of a route only has a lim-
ited control on the way its own routes are propagated in the Internet and
path diversity is lost [dLQB06]. In addition, the path-vector nature of BGP
and the fact that the Internet is composed of hundreds of thousands routes
make BGP suffers from scalability issues. As a result, it is recommended
to avoid changing the advertised routes too frequently (not more frequently
than once every few days or weeks) [KKK07]. For that reasons, ASes lack
of control on the traffic entering them and it is hard to control traffic such
that it is optimized for performance.

Despite the inherent weakness of the Internet, we propose techniques to
enable performance based inter-domain incoming traffic engineering in this

i

ii Preamble

thesis. In this thesis, we define the inter-domain incoming traffic of an AS
A as any traffic originated by another AS B for which the destination be-
longs to AS A. Performing inter-domain incoming traffic engineering thus
corresponds to being able to control how and where such traffic enters the
AS. That being the case, an AS performs performance based inter-domain
traffic engineering if it manages to make its inter-domain traffic entering
via the paths that optimize its efficiency. Optimizing the efficiency corre-
sponds to ensuring that the traffic performs at its best (e.g., minimize the
delay or maximize the bandwidth). However, as BGP does not offer such
a capability, we need to introduce new concepts to achieve our goal. For
that, we first introduce a system that allows an AS to control its incoming
traffic in a scalable way. This system relies on the Locator/ID Separation
Protocol (LISP) [FFML10a, Mey08]. However, the current LISP control-
plane does not scale well. This is why we propose LISP-Tree, a new scalable
and efficient control-plane for LISP. Afterward, we present a system that
is able to rank the paths in order to determine which is the best according
to any arbitrary performance criterion. We call this system IDIPS for ISP-
Driven Informed Path Selection. Finally, we show how to combine LISP,
LISP-Tree and IDIPS to achieve performance based inter-domain incoming
traffic engineering. At that stage, it is important to notice that our the-
sis mostly ignores intra-domain traffic engineering or inter-domain outgoing
traffic engineering. Indeed, on the one hand, intra-domain traffic engineer-
ing is a well known problem with many solutions [FRT02, FT02, FT00].
On the other hand, inter-domain outgoing traffic engineering is already un-
derstood, is well supported by BGP and depends on intra-domain traffic
engineering [OBFR09, QUP+03, Quo06, UBQ03, CL05, GCLC04].

Road map

To develop our performance based inter-domain incoming traffic engi-
neering techniques, we structure this thesis as follow. We first provide in
Chapter 1 some background on how Internet works today and its limitations
in term of traffic control.

In Chapter 2 we detail the LISP protocol and its design choices. LISP is
a core/edge separation protocol proposed by the industry that separates the
IP space in two distinct spaces. On the one hand, the Endpoint IDentifiers
(EID) are assigned to the end-hosts and the routers at the edge. The EIDs
are not globally routable but hosts within the same edge network belong to
the same EID prefix. On the other hand, the Routing LOcators (RLOC)
are attached to the core router network interfaces. The interfaces between
the core and the edge are also in the RLOC space. The RLOCs are globally
routable in the Internet core but not in the edge networks. Because the
addressing space is split in two independent parts, a glue must be provided

Preamble iii

to allow end-hosts that belong to separated networks to communicate. To
do so, the routers at the border between the edge and the core run the
LISP protocol. LISP is a map-and-encap mechanism. On the one hand,
the control plane maps a list of RLOCs to each EID prefix. The list of
RLOCs for an EID prefix is the list of IP addresses of the LISP enabled
border routers for that prefix. This association is called a mapping and the
control-plane is called the mapping system. In Chapter. 3 we show that
by manipulating its mappings an AS can easily control its incoming traffic.
Indeed, a priority and a weight are associated to each RLOC in the mapping
and we show how LISP can provide per-requester mappings. Unfortunately,
the current LISP control-plane does not scale well. We propose LISP-Tree
in Chapter 4, a new scalable mapping system that is tolerant to faults and
configuration errors. LISP-Tree can be troubleshooted and secured easily.

LISP provides path diversity and allows one to control its incoming traf-
fic in an elegant and scalable way when combined with LISP-Tree. With
LISP and LISP-Tree it is thus possible to do inter-domain incoming traf-
fic engineering. In the reminder of the thesis we provide a platform called
IDIPS that can be used to determine the path performance in a scalable way.
Chapter 5, presents IDIPS (ISP-Driven Informed Path Selection). IDIPS as-
sumes that the relative path performance (i.e., path P1 is faster than path
P2) are more important than the “absolute” performance of the paths. As
a result, IDIPS is a request/response service that ranks the paths to high-
light the most efficient ones. To do so, operator’s high-level policies are
translated into IDIPS cost functions. These cost functions determine the
cost of each path based on routing information and path performance (like
delay or monetary cost). The lower the cost, the better the path. To hide
the topology and computation details, IDIPS translates the costs computed
from the cost functions into ranks. In Chapter 6 we show that by clustering
the destinations that are topologically close and by only measuring one des-
tination in each group, it is possible to reduce the number of measurements
without loosing too much accuracy. We propose a new clustering technique
that provides a good trade-off between the number of measurements and
the measurement accuracy. In addition, we show that if IDIPS performs the
measurements on behalf of the clients the number of measurements can be
reduced significantly. Finally, in Chapter. 7, we show how to combine LISP,
LISP-Tree and IDIPS to obtain performance based inter-domain incoming
traffic engineering.

Implementation and standardization efforts

All along this thesis, we made efforts to propose systems that are simple
in their concept and their implementation. In addition, we ensured that all
the proposed solutions can be implemented and operated in today’s Internet.

iv Preamble

To understand the network operators needs, we participated actively in
the Internet Engineering Task Force (IETF). We were involved in the cre-
ation of the LISP working group1 as an experimental working group at the
IETF since the early discussion at the Routing Research Group (RRG) of
the IRTF in 2008. To understand LISP and its limits, we have partici-
pated to the implementation effort. We were first involved in the OpenLISP
project2 that proposes an open source implementation of LISP. OpenLISP
implements the LISP data-plane in the FreeBSD kernel [ISB11, SDIB08,
SIB09a, SIB09b]. OpenLISP is used by researchers to validate new LISP
related ideas.

We have also implemented a basic LISP data plane in the Click Modular
Router [SN09]. This implementation is interoperable with the OpenLISP
implementation and the Cisco NX-OS ones. The implementation is briefly
described in Appendix A. It has been deployed in the BOWL infrastructure
at the Technical University Berlin.

In addition we have developed a LISP mapping server and a LISP map-
ping resolver. This implementation and the notes related to its design are
available on https://scm.info.ucl.ac.be/trac/lisp-click/. We are
frequently using this implementation in our testbeds and this implementa-
tion is being adapted to become the control plane of the OpenLISP project.

Some of our work at the IETF has been adopted as working group doc-
uments and are on the way to become RFCs [DSA:[?]]. In addition, LISP-
Tree is finally considered by Cisco as a valuable alternative to the LISP+ALT
mapping system. We are now in the process of implementing LISP-Tree and
standardizing it in order to offer an open source LISP control-plane for the
community.

Our work at the IETF is not limited to LISP. Indeed, we have par-
ticipated at the creation and the early days of the ALTO Working Group
(Application Layer Traffic Optimization)3. Our main contribution in this
working group is the introduction in the protocol recommendation to be
able to consider any kind of address in the protocol as well as the support of
source addresses [AFP+09]. Indeed, at its early stage ALTO was only con-
sidering destination addresses. We argued in favor of accepting IP prefixes
or any other form of address aggregation.

To understand the potential technical limitations of IDIPS, we carefully
worked on its architecture and implementation. We have shown that IDIPS
is scalable. Our implementation is freely available and is part of the final
deliverable material for the European Project ECODE. Moreover, IDIPS
can be used to implement the ALTO Endpoint Cost Service specified in the
ALTO specifications [APY11, SDIB08, SB11].

1http://tools.ietf.org/wg/lisp/
2http://www.openlisp.org
3http://tools.ietf.org/wg/alto/

Preamble v

Bibliographic Notes

Most of the work presented in this thesis has already appeared in con-
ference proceedings, journals and IETF contributions. The list of related
publications is shown hereafter:

Journals

• LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System
with L. Jakab, A. Cabellos-Aparicio, F. Coras and O. Bonaventure,
IEEE Journal on Selected Areas in Communications, 28(8):1332 –
1343, October 2010

• Implementing the Locator/ID Separation Protocol: Design and Ex-
perience, with L. Iannone and O. Bonaventure Computer Networks,
55(4):948 – 958, March 2011

Conferences and Workshops

• LISP-Click: A Click implementation of the Locator/ID Separation
Protocol, with V. Nguyen 1st Symposium on Click Modular Router,
November 2009

• How to mitigate the effect of scans on mapping systems, with L. Ian-
none Trilogy Future Internet Summer School Poster Session, August
2009

• On the Impact of Clustering on Measurement Reduction, with B. Don-
net and O. Bonaventure Proc. IFIP Networking 2009, May 2009

• Interdomain Traffic Engineering in a Locator/Identifier Separation
Context, with B. Donnet, L. Iannone and O. Bonaventure, Proc. In-
ternet Network Management Workshop 2008 (INM), October 2008

• Implementation and Preliminary Evaluation of an ISP-Driven Informed
Path Selection, with B. Donnet and O. Bonaventure Proc. ACM
CoNEXT Student workshop, December 2007

All along the thesis period, we have also actively contributed to the
standardization efforts within the LISP working group at the IETF. Some
of our contributions are now part of the LISP protocol and are on the way
to become RFCs.

IETF working group documents and individual drafts

• LISP Map-Versioning, with L. Iannone and O. Bonaventure IETF
draft, work in progress, draft-ietf-lisp-map-versioning-02, July 2011

vi Preamble

• LISP-Security (LISP-SEC), with F. Maino, V. Ermagan, A. Cabellos
and O. Bonaventure IETF draft, work in progress, draft-ietf-lisp-sec-
00, July 2011

• LISP Threats Analysis, with L. Iannone and O. Bonaventure IETF
draft, work in progress, draft-ietf-lisp-threats-00, July 2011

• Preserving the reachability of LISP ETRs in case of failures, with O.
Bonaventure and P. Franc̀I§ois IETF draft, work in progress, draft-
bonaventure-lisp-preserve-00, July 2009

• The PROXIDOR Service, with O. Akonjang, A. Feldmann, S. Prev-
idi and B. Davie IETF draft, work in progress, draft-akonjang-alto-
proxidor-00, March 2009

• OpenLISP Implementation Report, with L. Iannone and O. Bonaven-
ture IETF draft, work in progress, draft-iannone-openlisp-implementation-
01, July 2008

• Why should the Traffic Optimization not be restricted to the Application-
Layer?, with D. Papadimitriou IETF draft, work in progress, draft-
saucez-alto-generalized-alto-00, July 2008

• IDIPS: ISP-Driven Informed Path Selection, with B. Donnet and O.
Bonaventure IETF draft, work in progress, draft-saucez-idips-00, Febru-
ary 2008

• The case for an informed path selection service, with O. Bonaven-
ture and B. Donnet IETF draft, work in progress, draft-bonaventure-
informed-path-selection-00, February 2008

vii

viii Preamble

Acronyms

ADS Anomaly Detection System
ALTO Application-Layer Traffic Optimization
API Application Programming Interface
AS Autonomous System
ALT Alternative Topology
BGP Border Gateway Protocol
CDN Content Delivery Network
CESCA Catalan Research Network
CF Cost Function
CGA Cryptographically Generated Addresses
CIDR Classless Inter-domain Routing
CPU Central Processing Unit
DDoS Distributed Denial of Service
DFZ Default-Free Zone
DHCP Dynamic Host Configuration Protocol
DHT Distributed Hash Table
DNS Domain Name System
DNSSEC Domain Name System Security Extensions
DoS Denial of Service
ECMP Equal Cost Multi-Path
EID Endpoint IDentifier
ETR Egress Tunnel Router
FIB Forwarding Information Base
FQDN Fully Qualified Domain Names
FIRMS Future InteRnet Mapping System
FTP File Transfer Protocol
GRE Generic Routing Encapsulation
HBA Hash-Based Addresses
HIP Host Identity Protocol
HIT Host Identity Tag
HTTP HyperText Transfer Protocol
IAB Internet Architecture Board
ICMP Internet Control Message Protocol
IDIPS ISP-Driven Informed Path Selection
IETF Internet Engineering Task Force
IGP Interior Gateway Protocol
ILNP Identifier-Locator Network Protocol

Preamble ix

IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IRTF Internet Research Task Force
IS-IS Intermediate System to Intermediate System
ISP Internet Service Providers
ITR Ingress Tunnel Router
L3 Layer 3
L4 Layer 4
LAN Local Area Network
LCAF LISP Canonical Address Format
LER Local EID Registries
LIR Local Internet Registries
LISP Locator/Identifier Separation Protocol
LSB Locator Status Bits
LTS LISP-Tree Server
MAC Message Authentication Code
MED Multi-Exit Discriminator
MPTCP Multi-Path TCP
MPLS Multi-Protocol Label Switching
MR Map-Resolver
MS Map-Server
NAROS Name, Address and ROute System
NAT Network Address Translation
NERD Not-so-novel EID to RLOC Database
OPEX OPerational EXpenses
OSPF Open Shortest Path First
P2P Peer-to-Peer
PA Provider Aggregatable
PI Provider Independent
PETR Proxy ETR
PITR Proxy ITR
PoP Point of Presence
QoS Quality of Service
RER Regional EID Registries
RFC Request For Comment
RIB Routing Information Base
RIR Regional Internet Registries
RLOC Routing LOCator
RPSL Routing Policy Specification Language
RRG Routing Research Group
RTT Round Trip Time
SCTP Stream Control Transmission Protocol
SMR Solicit Map-Request
SNMP Simple Network Management Protocol
TCP Transmission Control Protocol
TE Traffic Engineering

x Preamble

TLD Top-Level Domain
TQ Traffic Qualification
TTL Time To Live
UDP User Datagram Protocol
VLAN Virtual LAN
VPN Virtual Private Network
XORP eXtensible Open Router Platform
XRL XORP Resource Locator

Contents

Preamble i

Table of Content xi

List of Figures xv

List of Tables xix

1 Background 1

1.1 Intradomain Routing . 5

1.2 Interdomain Routing Protocols 7

2 Locator/Identifier Separation 11

2.1 Introduction . 11

2.2 Locator/Identifier Separation at the host level 14

2.3 The Locator/Identifier Separation Protocol (LISP) 17

2.3.1 LISP Data Plane . 18

2.3.2 LISP Control Plane 19

2.3.3 On the EID-to-RLOC Cache size 24

2.4 LISP as an evolutionary approach 27

2.4.1 Core Internet Traversal 27

2.4.2 Incremental Deployment 28

2.5 Reachability Problem . 28

2.6 Virtualization with LISP . 31

2.7 Deployment lessons . 32

2.8 Conclusion . 33

3 Interdomain traffic engineering with LISP 35

3.1 Introduction . 35

3.2 Traffic engineering with LISP 35

3.2.1 Outgoing traffic engineering 36

3.2.2 Incoming traffic engineering 37

3.2.3 Mapping differentiation 39

3.3 Conclusion . 41

xi

xii Contents

4 LISP-Tree 43

4.1 Introduction . 43
4.2 LISP-TREE . 44

4.2.1 Why a DNS like mapping system? 44

4.2.2 LISP-TREE Overview 46

4.2.3 LISP-TREE Model . 46

4.2.4 LISP-TREE Modes . 48

4.2.5 LISP-TREE Deployment Scenario 50

4.3 Simulation Model . 51

4.3.1 Topology Model . 51

4.3.2 ITR Model . 52

4.3.3 Mapping System Models 52

4.4 Mapping System Comparison 54

4.4.1 Experimental Datasets 54

4.4.2 Cache Miss Rate . 55

4.4.3 Mapping Lookup Latency 56

4.4.4 Node Load . 58

4.4.5 Operational considerations 62

4.5 Implementing LISP-Tree with LISP Iterable Mappings 63

4.5.1 Map-Request Extension for LISP-Tree 64

4.5.2 Functional Specifications 66

4.6 Related Work . 69
4.7 Conclusion . 70

5 IDIPS 73

5.1 Introduction . 73

5.2 An Informed Path Selection Service 75

5.2.1 Overview . 75

5.2.2 Use Cases . 77

5.3 Service Construction . 79

5.3.1 Architecture . 79

5.3.2 XORP Implementation 87

5.3.3 High Level Cost Functions Implementation 99

5.4 Evaluation . 103

5.4.1 Methodology . 103
5.4.2 Results . 104

5.5 Related Work . 107

5.6 Conclusion . 110

6 Measurement Reduction with Clustering 113

6.1 Introduction . 113

6.2 Theoretical Background . 114

6.2.1 Measurement reduction 114

6.2.2 Clustering Accuracy 116

Contents xiii

6.3 Clustering Techniques . 117
6.4 Evaluation . 119

6.4.1 Methodology . 119
6.4.2 Measurement Accuracy 119
6.4.3 Measurement Reduction 121

6.5 Conclusion . 126

7 Incoming traffic engineering with LISP and IDIPS 127
7.1 Introduction . 127
7.2 LISP and IDIPS combination 129

7.2.1 Proof of Concept . 131
7.3 Conclusion . 133

8 Conclusion 135

Conclusion 135
8.1 Further Work . 137

A LISP-Click: A Click implementation of LISP 139
A.1 Introduction . 139
A.2 LISP-Click architecture . 139

A.2.1 LISPCache Element 140
A.2.2 LISPDecap Element 142
A.2.3 LISPEncap Element 143
A.2.4 LISPMissManager Element 144

References 147

List of Figures

1.1 Example of Internet architecture. Arrowed lines with a $ sign:
customer-provider links, doubled lines: shared-cost links, sin-
gle lines: intradomain links, blue clouds: transit ASes, green
clouds: stub ASes, gray clouds: CDNs 3

1.2 IGP Example . 6

2.1 History of the number of active BGP entries (FIB size) (source
potaroo.net) . 12

2.2 Hourly average of per-second updated and withdrawn prefix
rate at the hinge between 2010 and 2011 (source potaroo.net) 12

2.3 LISP general behavior . 18

2.4 LISP Data-Plane header format 19

2.5 EID-to-RLOC mapping Example 19

2.6 EID-to-RLOC association example 25

2.7 RLOC distribution . 26

2.8 LISP reachability problem example 29

2.9 EID vs RLOC unreachability rate 29

2.10 L3 VPN implementation with LISP instance ID. Both red
and purple VPNs use the same EID prefix, the differentiation
is done at the ETR based on the instance ID. 32

3.1 Example of source-based routing with LISP. For 192.0.2.0/25,
the source locator is 1.0.0.1 and for 192.0.2.128/25, the source
locator is 2.0.0.2. Both networks have the 3.0.0.3 RLOC for
backup. 37

4.1 Global overview of LISP-TREE. 1. The requester asks the
discovery part to have the locator of some authoritative ETRs
for an EID e. 2. The discovery part provides this list. 3. The
Map-Resolver sends a Map-Request to one of these ETRs. 4.
The ETR sends a Map-Reply back with a mapping for e. . . 47

4.2 LISP-TREE works with different mode: (a) recursive and (b)
iterative. 49

4.3 LISP+ALT architecture . 53

xv

xvi LIST OF FIGURES

4.4 CDF of map-stretch ratio. Use of caching makes LISP-TREE
have a constant value for the majority of the lookups. 57

4.5 CDF of hop count. For hierarchical mapping systems it is
almost constant, for LISP-DHT we have a wide array of dif-
ferent values. 59

4.6 LISP-DHT load distribution. Fingers of the ITR, represented
with the vertical lines, cluster on the right, having a consid-
erable load. 61

4.7 The cumulative distribution of the amount of state in the
level 2 LISP-TREE and LISP+ALT nodes 62

4.8 Map-Request extension to support the Iterable Mapping ex-
tension . 65

4.9 Iterable reply message format 66

4.10 Example of Iterable mapping in iterative and recursive mode.
N, D, E and F run in iterative mode while B and C are in
recursive mode. 68

5.1 A network service rank paths for the clients 75

5.2 Idips server API for synchronous mode clients 82

5.3 Idips server API for asynchronous mode clients 83

5.4 One-by-one path ranking retrieval algorithm 84

5.5 Measurement module API . 85

5.6 Prediction module API . 86

5.7 Idips within Xorp . 88

5.8 Example of modules interactions in Idips 89

5.9 Xorp Querying module XRL interface 92

5.10 Xorp Measurement module XRL interface 93

5.11 Xorp Prediction module XRL interface 94

5.12 Measurement module loop method pseudo-code 97

5.13 UDP ICMP port unreachable management 97

5.14 Delay precision comparison between standard UDP ping, ICMP
ping and XORP UDP ping 98

5.15 Evaluation testbed . 103

5.16 Idips service time as perceived by the client 105

5.17 Proportion of the service time split - median over the ten runs 106

5.18 Load on Idips without XRL 107

6.1 Illustration of measurements duplication and reduction 114

6.2 Estimation error applied to RTT 120

6.3 Estimation error applied to hop 122

6.4 25th, 50th and 75th percentile of estimation error 123

6.5 Popularity in the NetFlow dataset 124

6.6 Cluster size distribution . 124

6.7 Measurement reduction in the NetFlow dataset 125

LIST OF FIGURES xvii

7.1 Relative distance between the locators and the locator with
the shortest delay in the mappings 128

7.2 Case study testbed . 132
7.3 Evolution of the different flows bandwidth for the different

network events. 133

A.1 LISP-Click Architecture . 140

List of Tables

4.1 Node load in levels 1 and 2 60

xix

Chapter 1

Background

The Internet is a world-wide data network composed of tens of thou-
sands interconnected networks, themselves constituted of a huge number of
smaller networks connecting a plethora of end systems including personal
computers, servers, smart-phones or even sensors. The end systems ex-
change data together by sending packets over the network. All the packets
are built according to the specifications of the Internet Protocol (IP) proto-
col [Pos81, DH98]. The networks are connected together by routers. Routers
are intermediate devices that can relay packets between networks. In gen-
eral, a packet is generated by an end system and is transmitted to a router
that transmits it to another router and so on until the packet reaches the
final destination end system. IP specifies that every device on the Internet
must have an IP address. This address is unique to the device. A packet is
identified by its source address, i.e., the IP address of the source end system,
and its destination address, i.e., the IP address of the destination end sys-
tem. When a packet arrives at a router, the router determines the network
to which belongs the destination address. If the destination end system is
directly connected to the router, the packet is directly transmitted to the
end system. Otherwise, the packet is transmitted to another router and so
on until the packet reaches the destination end system.

The networks composing the Internet are operated by different institu-
tions. A group of routers operated by a single administration is called an
Autonomous System (AS). The routing at the level of an Autonomous Sys-
tem is called intradomain routing. Routing between Autonomous Systems
is called interdomain routing.

The relationship between two interconnected Autonomous Systems can
be of two types: (i) customer-provider or (ii) shared-cost [DD08, Gao01,
DKF+07, DFD10, ZCB96]. This relationship classification usually depends
on the flow of money between the two ASes. With a customer-provider rela-
tionship, the customer AS pays money to the provider to exchange packets
with the provider. In a shared-cost relationship, the traffic is not charged by

1

2 Chapter 1. Background

any of the two ASes in the relationship. However, the cost of operating the
equipments that interconnect the two ASes is identically supported by the
two ASes. Two ASes that are directly connected are said to be neighbors.

The Internet is a graph that can be split into the core and the edge. The
Autonomous Systems are hence classified as transit or stub ASes [ZCB96,
CDN+97]. Transit ASes are forming the core and are used to transmit
packets from one neighbor AS to another. The stub ASes are at the edge
and contain most of the end systems. Example of transit ASes are Inter-
net Service Providers (ISP) like Sprint, Level 3, France Telecom, Deutsche
Telekom or Belnet. Companies or universities are stub ASes in general. In
general, transit are connected with several other transit ASes with customer-
provider or shared-cost relationships and have many customer stub ASes.
On the contrary, stub ASes only have few neighboring ASes, most of them
being their providers and some other maintaining a shared-cost relationship.
In addition to the transit and stubs, some ASes are called Content Delivery
Networks (CDN). CDNs are the source of a large part of the traffic and of-
ten maintain an important number of shared-cost peering relationships with
their neighbors [LIJM+10]. The best examples of CDNs are Google, Face-
book, Akamai and Limelight. Some CDNs are so huge that they virtually
have only shared-cost relationship links with their neighbor ASes.

Fig. 1.1 illustrates a synthetic Internet where each cloud represents an
Autonomous System. The ASes connected by an arrowed line and a $ sign
have a customer-provider relationship where the provider is pointed by the
arrow. Doubled lines between ASes mean that the two ASes have a shared-
cost relationship. The green clouds are for stub ASes, the blue clouds are
for the transit ASes. Finally, the gray cloud is for a CDN. For example,
the hypothetical exchange of packets from the UCL AS to the Google AS
in Fig. 1.1 will follow the path UCL - Belnet - Level 3 - Google. UCL
must pay Belnet for such traffic. Belnet will pay Level 3 for the traffic.
Finally, neither Level 3 nor Google pays for the traffic because they have a
shared-cost relationship [GR00].

Every device on the Internet is allocated one unique IP address per
interface that connects it to another device on the Internet. IP addresses
are grouped in prefixes. The addresses sharing the same high-order bits are
said to belong to the same prefix. Packets are routed in the Internet based on
the prefix of their destination address. An address is then logically divided in
two parts. The network and the host. The prefix of the address determines
the network it belongs to and the following of the address specifies the device
the address belongs to inside the network.

When the Internet has been created, the prefixes were divided into three
main classes. The A-class for large networks where the prefix is encoded
with 8 bits. The B-class for medium size networks, where the prefix is en-
coded with 16 bits. And finally, the C-class for small size networks with a
prefix encoded with 24 bits. The IP addresses, at that time were encoded

3

Figure 1.1: Example of Internet architecture. Arrowed lines with a $ sign:
customer-provider links, doubled lines: shared-cost links, single lines: in-
tradomain links, blue clouds: transit ASes, green clouds: stub ASes, gray
clouds: CDNs

with 32 bits, meaning that most of the networks connected to the Internet
had to be B-classes. However, this definition of prefixes led to an important
waste of addresses. For example, our university has about 20,000 students
and employees and then obtained a B-class prefix providing 65,534 addresses
or 3 addresses per member of our institution. Classful routing is simple and
was adequate in the early days of Internet when routers had very limited re-
sources. However, the waste of IP addresses rapidly became a problem with
the increase of the number of networks connected to the Internet. Classless
Inter-domain Routing (CIDR) [FLYV93, FL06] has then been proposed to
overcome the limitations of classful routing. With CIDR, the size of the
prefix is not defined. Therefore, it is possible to assign the right size for a
prefix according to the number of hosts in the network. For example, our
campus could use a prefix of size 17 instead of size 16. The CIDR notation
is p/n where p is the IP address where the host bits are set to 0 and n is
the size of the prefix. For example, the 192.0.2.0/24 prefix means that the
network can contain up to 256 addresses. The first possible address being
192.0.2.0 and the last possible one is 192.0.2.255. Using classless rout-
ing increases the forwarding complexity at the router. Indeed, the router

4 Chapter 1. Background

has no information about the size of the prefix of the destination address of
a packet. For example, if the destination address is 192.0.2.129, the ad-
dress can belong to 0.0.0.0/0, 192.0.2.0/24 or 192.0.2.128/25 or any
other prefix that covers this address. To determine the outgoing interface
to forward a packet to, a CIDR router must then check all the possible pre-
fixes. If the router has the two prefixes 192.0.2.0/24 and 192.0.2.128/25

in its forwarding table, it will conclude that 192.0.2.129 belongs to the
192.0.2.128/25 prefix because this prefix has the longest prefix matching.
CIDR routing relies on longest prefix matching to determine the outgoing
interface. Longest prefix matching can be achieved with a trie like a radix
tree.

With the growing importance of Internet and data networks, Traffic En-
gineering (TE) became a major preoccupation for network operators [Mor02,
ACE+02, Uhl04, dL05, Quo06, Pel06]. Traffic engineering is used to enhance
the performance of a network. On the one hand, TE aims at improving
the traffic performances. On the other hand, traffic engineering is used to
optimize the resource usage [ACE+02]. However, the most important TE
objective is probably the reliability. Based on [ACE+02] we can say that
TE relies on three fundamentals components:

network robustness: a network must be robust to failure to minimize the
risk of connectivity loss,

network efficiency: the resources inside the network must be use effi-
ciently to eventually reduce the operational expenses (OPEX),

traffic performance: the network must be such that the traffic it trans-
ports fulfills all the performance requirements.

The network robustness consists in maximizing the number of distinct
paths that can be used inside the network to avoid congestion (and thus
packet loss) and to recover from a failure inside the network as quickly as
possible. To increase their robustness, networks tend to be multihomed. A
network is multihomed if it is connected to the Internet via several ISPs.
Multihoming protects the network against the loss of one of its ISPs, either
because of a technical issue or because of the bankruptcy of the provider. In
the context of robustness, TE is the art of minimizing the risk for a packet
to be lost and to reduce the impact of a failure.

The network efficiency is related to the network resource usage. Re-
sources are limited and using them has a cost. Optimizing the use of each
resource to minimize the operational expenses is a must in any company or
ISP. Moreover, the ISPs often charge their clients based on their link usage.
To minimize the cost of using Internet in a company, it is then important for
a network to be able to control the ISP that it uses to send packets to the
Internet but also the ISPs that it uses to receive packets from the Internet.

1.1. Intradomain Routing 5

Finally, traffic performance is probably the ultimate goal of a network
operator. However, optimizing the traffic performance does not especially
mean that the traffic must follow the best possible path (e.g., the one that
minimizes the delay). It rather means that every flow must respect the
conditions that makes it working properly. The Internet has been designed
with the best-effort perspective. Best-effort only guarantees that the traffic
will be forwarded as best as it can, without any other guarantee. However,
Internet is now used for phone communications or to assist medical opera-
tions. Such traffic cannot be satisfied by a simple best-effort approach. For
example, a phone communication does not need a high bandwidth but needs
low delay between the two phone terminals and stable traffic conditions. If
a network is designed to carry such traffic, this traffic will be prioritized over
traffic with less requirements.

1.1 Intradomain Routing

The role of intradomain routing is to compute the routes towards the
prefixes inside a domain. Theses routes are computed with an Interior
Gateway Protocol (IGP) like OSPF [Moy98, CFM99] or IS-IS [Ora90]. Most
deployed IGPs rely on the link-state paradigm. In link-state routing, every
router floods the state of its links. Therefore, every router can build a
full map of the network in the domain. A weight is associated to each
direction of the links. The network then constitutes a weighted directed
graph. The objective of the routing protocol is to find the shortest paths
between the routers. The cost of a path between two routers being the
sum of the cost of the links composing the path between the routers. Each
router computes the shortest paths with all the routers in the domain by
applying the Dijkstra algorithm on the abstracted graph that represents the
network [Dij59]. The Dijkstra algorithm computes a minimum spanning tree
for the graph. The spanning tree is used to determine the link to which a
packet must be forwarded to reach a destination. Because every router has
a full view of the network and applies the same shortest path computation
algorithm, the path followed by a packet to reach a destination is the shortest
one.

Fig. 1.2 shows an example of intradomain network. The links between
the routers are presented by plain lines and the minimum spanning tree is
defined by the dashed-lines. In Fig. 1.2, when a packet arrives at the router
B, it will be sent to the East if the destination is inside the prefix 4.0.0.0/16
and to the North if the packet destination is in the 3.0.0.0/16 prefix. If the
packet is for 5.0.0.0/16, it is forwarded to the South link.

Intradomain traffic engineering is an optimization problem where the
weight of each link must be computed to optimize the way the traffic is
forwarded in the network [FRT02, FT00, FT02]. The input of the opti-

6 Chapter 1. Background

Figure 1.2: IGP Example

mization system is the domain traffic matrix and the output is the weights
of the links such that the links are used accordingly to the domain poli-
cies. In general, link weight allocation is an optimization problem. First,
every link is assigned a unit weight, then the weights are assigned locally
or globally [FRT02]. For local weight allocation, the system only changes
the weight of the congested links in order to reduce their load. On the
contrary, when the optimization problem is seen globally, the weights are
assigned such that a link never have to carry more unit of traffic than it can.
The traffic demand is estimated with the traffic matrices. For example, if
every link can only support one unit of traffic, the weights are computed
such that a link never carries more than one unit of traffic. Linear pro-
gramming can be used to solve this problem [FT00]. The traffic matrix of
a domain is a matrix reflecting the volume of traffic that is exchanged be-
tween all the possible <source,destination> pairs in the network [MTS+02].
Several techniques exist to construct the best possible traffic matrix esti-
mates [MTS+02, FGL+00, UQLB06]. These techniques follow either an op-
timization approach or a statistical approach. The optimization approach
takes the information from the topology and traffic counters in the network
and apply constraints on the obtained system to compute the traffic matrix.
On the other hand, statistical inferences takes information from the topol-
ogy and traffic counters and determine the distributions that fit with the
observations [MTS+02].

Pure IP based TE is limited by the fact that packets are forwarded by the
routers based on the destination address. The Multi-Protocol Label Switch-
ing (MPLS) protocol can be used to circumvent this limitation [RVC01].
With MPLS, the forwarding of a packet is based on its attached label. The
label is attached to the packet when it enters the MPLS part of the net-
work. Traffic engineering with MPLS is more flexible than with pure IP
as any label can be attached to the packets. MPLS traffic engineering

1.2. Interdomain Routing Protocols 7

is an optimization problem where the labels must be distributed between
the routers with a PCE or with LDP such that the link usage is opti-
mized [EJLW01, AmW99, AJ02, AMA+99].

1.2 Interdomain Routing Protocols

The principle of interdomain routing protocols is simple, at the border of
each autonomous system, one or several routers are placed and connected to
one or several border routers of the neighboring AS. A router at the border
of an AS announces to its neighbors the prefixes of its internal network (i.e.,
IGP) and the routes announced by its neighboring ASes.

The Border Gateway Protocol (BGP) [RLH06, GW99] is the de facto
interdomain routing protocol in the Internet. BGP is a path-vector routing
protocol where a BGP router announces to its BGP neighbor routers the
prefixes it can reach. A prefix is always announced with its AS path. The AS
path is the list of ASes that the prefix crosses to reach the prefix originator
AS. The AS path is provided to avoid forwarding loops.

However, BGP is more than just a path-vector routing protocol. Indeed,
BGP is designed to allow ASes to enforce their routing policies. That is, if a
router receives an announcement for a prefix from several neighboring ASes,
it only transmits to its neighboring ASes the best announcement it receives.
The choice of the best announcement is preformed by a decision process that
allows policies to be taken into account for the selection of the best path.
For instance, in the example of Fig. 1.1 the Belnet AS will receive a route for
a network in ParisTech from its three providers1. However, Belnet will only
announce the route via Géant to the UCL AS because Géant is the provider
that will charge Belnet the less for the traffic. Again from the example of
Fig. 1.1, Level 3 will not announce the routes for networks in Google to
Deutsche Telekom because it has a shared cost peering relationship with
both ASes and thus would not earn money by announcing these routes to
Deutsche Telekom. On the contrary, the routes to Google will be announced
to Belnet because doing so will attract traffic from its Belnet customer that
will pay for sending traffic to Google while Level 3 does not have to pay
anything for this traffic: Level 3 then maximizes its profit.

As opposed to link-state routing protocols where all the routers know
the whole topology, the path-vector nature of BGP limits the selection of
interdomain routes. Indeed, for any prefix P/p, a BGP router only redis-
tributes to its neighbors the single best route for P/p. Even though the
router knows several routes for P/p. This behavior reduces the path diver-
sity but increases the scalability of the protocol. Although, BGP supports
traffic engineering, but the traffic management is local per AS and no so-
lution exists to fulfill a global TE objective. The policy based nature of

1The names and relationships provided in the example are pure fiction.

8 Chapter 1. Background

BGP helps an AS to control its incoming and outgoing interdomain traffic.
The BGP policies applied to the BGP path selection process constraint the
selection of the best route for a prefix. The first solution for preferring a
route over another is to use the Local-Pref attribute. The Local-Pref gives
an ordering to the routes for a prefix. The best route for a P/p is always
a route that is among the routes with the highest Local-Pref value for the
prefix. For example, to prefer the routes learned from a customer over a
route learned from a peer over a route learned from a provider, a Local-Pref
of 1000 can be assigned to all the routes learned for a customer, a value
of 100 for the routes learned from a peer and a value of 10 for the routes
learned from a provider. The best route will then be the route with the
highest Local-Pref and the shortest AS path.

The Local-Pref is only used locally inside an AS to control the selection
of its best routes. To control its incoming traffic, an AS can use different
techniques. AS path prepending uses the path-vector nature of BGP to
control the incoming traffic [GDZ05, QUP+03]. The technique consists of
artificially increasing the AS path of the route that should not be used. For
example, the Belnet AS from Fig. 1.1 can use AS Path prepending when it
announces a prefix for the UCL AS. Assuming that Belnet prefers to receive
traffic from Géant, then from Level 3 and only if no other solution exists
from Deutsche Telekom, Belnet can announce the prefix for UCL normally
to Géant. When the prefix is announced to Level 3, the AS path is increased
by 4 hops, simply by repeating the AS number of Belnet 4 times in a row
in the exported route. Finally, when the route is announced to Deutsche
Telekom, the AS path can be increased by 6 hops by repeating 6 times in a
row the Belnet AS number. By doing so, if a distant AS receives the three
routes and if these three routes have the same Local-Pref then the route via
Géant will be used.

If an AS is connected with several routers to its neighboring AS, it can
use the Multi-Exit Discriminator (MED) to attract the traffic to a particular
router [GSW99]. If two routes for a prefix P/p are received from the same
AS and if the Local-Pref and the AS path length are identical, the route with
the smallest MED attribute value will be selected. The MED allows an AS
to signal the peering link it prefers to be used. The MED attribute is non
transitive, meaning that the value is not propagated by the AS that received
the route. In is worth noticing that the MED is in general accepted only
under financial compensations or at least prior specific agreements between
the two neighboring ASes.

The announcement of the single best route per prefix and the path-
vector nature of BGP limit the traffic control for the ASes. For example,
there exist situations where the AS Path prepending has no effect [Pel06].
For example, in Fig. 1.1, the traffic from an end system in the ACME AS
to a UCL end system will always enter the Belnet AS via Deutsche Telekom
because ACME and Belnet are both customers of Deutsche Telekom. Sim-

1.2. Interdomain Routing Protocols 9

ilarly, the traffic from Sprint to UCL will not depend on the AS path but
on the preference of Sprint for Level 3 or Deutsche Telekom. To over-
come this limitation, an AS can do prefix deaggregation. The principle
of prefix deaggregation is to announce more specific prefixes to the pre-
ferred neighbors and less specific prefixes to the least preferred neighbors.
Because routing in the Internet is made on a longest prefix matching ba-
sis, a more specific prefix is always preferred to a less specific one. If
we take the same example as previously with the announcement of the
UCL routes by Belnet in Fig. 1.1 and if we assume that the prefix that
UCL announces to Belnet is 130.104.0.0/16, the prefix deaggregation can
be done as follows to fulfill the incoming traffic engineering requirements.
Instead of announcing the 130.104.0.0/16 prefix to Géant, Belnet an-
nounces the 130.104.0.0/18, 130.104.64.0/18, 130.104.128.0/18 and
130.104.192.0/18 prefixes. Similarly, the 130.104.0.0/17 and 130.104.128.0/17

prefixes are announced to Level 3 instead of 130.104.0.0/16. Finally, Bel-
net only announces the 130.104.0.0/16 prefix to Deutsche Telekom. There-
fore, any traffic generated by Deutsche Telekom to UCL will go through
Level 3 because more specific prefixes are announced to Level 3 than to
Deutsche Telekom by Belnet and because Deutsche Telekom receives routes
from Level 3. Prefix deaggregation overcomes some BGP limitations but is
limited by the maximum deaggregation authorized in BGP (i.e., /24). In
addition, prefix deaggregation increases the amount of prefixes announced
to the Internet and potentially increases the BGP churn [BNC02, QIdLB07].

Finally, communities can be used to add information to the routes an-
nounced by a BGP router [DB08, QUP+03]. BGP communities are optional
attributes that can be added to any route. The communities are used by the
BGP routers to filter the routes and to apply special policies. For example,
the NO EXPORT community indicates that the BGP router that receives a
route with this community can use it for its local forwarding but cannot re-
distribute the route to its BGP neighbors. Some communities are transitive
and others are not. Transitive communities are transmitted from neighbors
to neighbors while non transitive communities are only used by the first
BGP router that receives the route.

Notwithstanding that BGP offers AS path prepending, MED or the com-
munities, it does not allow a precise control on the incoming traffic: the more
distant the traffic destination AS is from the traffic source AS, the least it
controls the path followed by the incoming traffic. In this thesis, we present
new mechanisms that enable any network to have control over its incoming
traffic and to optimize it for performance.

10 Chapter 1. Background

Chapter 2

Locator/Identifier Separation

2.1 Introduction

During the last twenty years, the Internet grew at a rapid pace [MXZ+05].
Thirty years ago, the ARPANet interconnected only about 200 hosts. As
of this writing, there are more than 700,000,000 hosts connected to the
Internet and we will probably quickly reach more than one billion hosts.
These hosts are grouped in networks that are themselves grouped in Au-
tonomous Systems (AS). An AS is usually an Internet Service Provider or
a campus/enterprise network. There are today about 35,000 different ASes.
Sustaining the Internet growth causes some scalability problem on routers.
In addition to having to sustain higher link bandwidth, router must also be
able to support a growing number of active destination prefixes. In 2001,
there were about 100,000 prefixes in the routing tables of the core Internet
routers [MXZ+05]. In 2006, this number had already doubled and the Inter-
net Architecture Board (IAB) sponsored a workshop to discuss the scalabil-
ity of the Internet routing and addressing systems. Fig. 2.1 obtained from
the BGP monitoring site potaroo.net shows the evolution of the number of
active BGP entries since the late eighties. The active entries are installed in
the Forwarding Information Base, FIB which needs fast memory to support
forwarding at line rate. This memory is expensive and consumes a lot of
energy. It is worth to notice that the number of BGP prefixes in the Routing
Information Base (RIB) can exceed one million entries, but these prefixes
are only used to compute the routes and can be stored in a cheap and slow
memory. However, Fig. 2.2 also coming from the potaroo.net site illustrates
a more sever problem, the BGP churn. When a prefix becomes unreachable
or has attributes that are changing, the router announces to its neighbors
that the route has been withdrawn or changed and this information is propa-
gated to all the Internet. Fig. 2.2 shows the hourly averaged per-second rate
of update and withdraw received on a typical BGP router. Fig. 2.2 shows
that the router are facing peaks of more than 1,000 updates/withdraws per

11

12 Chapter 2. Locator/Identifier Separation

Figure 2.1: History of the number of active BGP entries (FIB size) (source
potaroo.net)

Figure 2.2: Hourly average of per-second updated and withdrawn prefix rate
at the hinge between 2010 and 2011 (source potaroo.net)

second which impact the CPU utilization on the core routers.

To deal with this scalability problem, the Internet Research Task Force
(IRTF) chartered a Routing Research Group (RRG) to provide recom-
mendations on the evolution of the Internet routing and addressing sys-
tems [Li10]. The RRG discussed a large number of proposals. The Loca-
tor/Identifier Separation Protocol (LISP) was a proposal that attracted a
lot of interest. A working group was created within the Internet Engineering
Task Force to develop the experimental specifications for the LISP protocol.
LISP, contrary to the other solutions like ILNP [ABH10], Shim6 [NB09] or

2.1. Introduction 13

HIP [MN06], does not require the hosts to be modified.

LISP solves the scalability problems of the current Internet routing and
addressing systems by changing the semantics of IP addresses [QIdLB07].
In the current Internet, an IP address has two roles. First, it is used by the
applications running on a host to identify (this is the identifier role of an
IP address) the endpoint of the transport layer flows. Second, it is used to
identify the datalink layer interface used to attach the host to the Internet.
This is the locator role of an IP address. LISP decouples these two roles.

With LISP, identifiers are attached to endhosts. These identifiers are
called Endpoint Identifiers (EIDs). Usually, an EID prefix is assigned to each
site that assigns one identifier to each host within the site. In contrast with
the current Internet, EID prefixes are not advertised in the global routing
system and thus core routers do not need to maintain routes towards all EID
prefixes. With LISP, locators are assigned only to the routers that are either
part of the core of the network or at the border of sites, these locators are
called Routing Locators (RLOCs). This principle explains why LISP limits
the scalability issues of the Internet [QIdLB07].

Among the 335,000 IP prefixes that are advertised in today’s Internet,
41% of them come from stub ASes like campus or enterprise networks.
These number are computed from the University of Oregon Route Views
Project [Uni]. If LISP was in use today on all campus and enterprise net-
works, those prefixes would not have to be advertised in the global routing
system. Hence, the routing table would be reduced accordingly [QIdLB07].
Quoitin et al. show in [QIdLB07] that if the locators are carefully allocated,
the number of FIB entries can be one order of magnitude smalled than the
number of ASes. Remember that in the current Internet, the number of
entries in the FIB is one order of magnitude larger than the number of
ASes.

This chapter is organized as follows. First, Sec. 2.2 briefly discusses
the principle of the locator/identifier separation at the host level. Then, we
present in details how the locator/identifier separation works at the network
level. To do so, Sec. 2.3 describes the Locator/Identifier Separation Protocol
with its data plane in Sec. 2.3.1 and control plane in Sec. 2.3.2. LISP
is positioned as an evolutionary approach in Sec. 2.4 with the need to be
compatible with the current Internet (Sec. 2.4.1) and to be incrementally
deployable (Sec. 2.4.2). Afterward, we analyze the reachability problem that
is inherent to the tunnel-based solutions in Sec. 2.5. Thereafter, Sec. 2.6
presents how network virtualization and segmentation is performed with
LISP and discuss experiences from LISP deployments in Sec. 2.7. Finally,
Sec. 2.8 concludes this chapter.

The original contribution of this chapter is to provide a tutorial descrip-
tion of LISP and historical feedback about the LISP protocol.

14 Chapter 2. Locator/Identifier Separation

2.2 Locator/Identifier Separation at the host level

In this thesis, we consider how networks can handle path diversity and
control their incoming traffic. However, in this section, we take time to
study how path diversity can be handled at the host level. Indeed, separat-
ing the locator and the identifier role of IP at the network level offers two
major advantages. First, the end-hosts do not need to be changed. Second,
the network operator have more cost-effective multihoming and a better
control over its traffic engineering. However, it is likely that if an end-host
can access two different networks simultaneously, e.g., 3G and WiFi, the
networks are belonging to different operators. With a network based loca-
tor/identifier separation, the end-host cannot have benefits in this situation.
To let the hosts dynamically control the paths they are using when they are
multihomed, separating the two roles of IP at the host level is an advantage.
Host based loc/id split follows a principle of not exhibiting to the upper
network stack levels the IP address effectively used to transfer or receive
packets. To do so, a shim layer is added between the layer i in the stack
where the locators are managed and the layer i + 1 in the stack where only
identifiers are of interest. The role of the shim layer is to associate identifiers
and locators and to send the packets by using the appropriate locators.

The host can separate the identifier and locator roles at the layer 3 or
the layer 4 of the network stack.

Layer 3 protocols ensure that whatever the locator used, the IP address
appearing at the layer 4 will remain the same for the life of a given flow.
Three classes of solution exist, illustrated by the three following protocols.

Host Identity Protocol (HIP) defined in [MN06] generates an identifier
for the hosts based on cryptographic methods. The identifier can be
a key. However, because the key can be generated from different tech-
niques and that the key can be of any length, a Host Identity Tag
(HIT) must be deduced from the key to generate an number that is
the length of an IP address. The HIT is used as the IP address pre-
sented at the layer 4 in the stack. When an HIP packet is sent over
the network, its source and destination addresses are locators (e.g., IP
addresses assigned to the network interfaces). The packets are tagged
with the HIT to allow the hosts to map the packets to layer 4 flows.

Identifier-Locator Network Protocol (ILNP) proposed in [ABH10] sep-
arates the IP address in two. The 64 high order bits have the locator
role while the 64 low order bits have the identifier role. The 64-bit
prefix is considered for routing. On the contrary, only the 64-bit post-
fix is considered by the layer 4. When a segment must be send with
ILNP, ILNP determines which locator to use. The locator is the prefix
of the network interface. It then replaces the 64-bit prefix of the IP
as specified by the layer 4 by the prefix of the interface used to send

2.2. Locator/Identifier Separation at the host level 15

the packet. The destination address is replaced by using the same sys-
tem, where the destination corresponds to a locator associated with
the destination identifier. When a packet arrives at an ILNP host,
the 64-bit prefix of both the source and destination is replaced by
the 0x0000000000000000 value. Then whatever the locator used, the
layer 4 always sees the same addresses for the flow. The identifier is
constructed such that it is unique within the network. The same iden-
tifier part of the IP address is assigned to all the addresses of all the
interfaces of the host.1

Shim6 defined in [NB09] use IP addresses at the same time as locators and
identifiers. When a flow starts, it selects an IP address for the source
and for the destination. For the life of the flow, these two addresses
will be the identifiers for the flow. When a segment must be sent via
shim6, it determines the most appropriate IP addresses to use for the
sending of the packet. The selected locators can be the addresses used
by as identifiers. To determine the shim6 context used to determine
the identifier from the locator, the packet also carries a Shim6 context
identifier.

Shim6 and HIP have been designed with IPv6 and security in mind.
From a security point of view, the 128-bit of IPv6 address allow more flexi-
bility. The addresses are long enough to embed information that authenti-
cate the origin of a packet. In addition, IPv6 allows the hosts to generate
as many addresses as they need. For example, in Shim6, the addresses are
generated with HBA [Bag09] or CGA [BA06]. With CGA and HBA, the
addresses are generated such that they prove that the host that generated
the address is the owner of a given certificate. In HIP, the locator addresses
are normally generated addresses, but the identifier is a key generated from
a certificate owned by the hosts. The identifier address is derived from the
key to generate the HIT. In both Shim6 and HIP, the packets are tagged
with an information that allows the receiver to associate a packet with a
flow and to check its authenticity. Both HIP and Shim6 need a sort of con-
trol protocol to determine the certificate and the identifier of the hosts to
exchange packets with. ILNP simply relies on IPv6 routing and does not
embed such advanced security features. In all the protocols, a mechanism is
defined to let the two end-hosts learning the possible locators for the iden-
tifier. This information can be retrieve directly at the protocol level (e.g.,
Shim6) or can rely on DNS (e.g., ILNP).

The locator/identifier separation can also be done at the transport layer
(layer 4) of the stack. In this case, the transport protocol is aware of the
different addresses it can use and ensures the segments of a flow to be carried
over theses addresses. We consider two layer-4 protocol that perform a

1ILNP also exists for IPv4.

16 Chapter 2. Locator/Identifier Separation

loc/id split, the Stream Control Transmission Protocol (SCTP) [Ste07] and
the MultiPath Transport Control Protocol (MPTCP) [FRH+11]. The major
difference between these two protocols is that MPTCP is transparent for
the applications (seen as TCP) while they have to be changed to use SCTP.

SCTP works with the notion of streams and a stream is always between
two hosts. An SCTP segment contains information about the stream it
belongs to. When an SCTP segment is received it is transmitted as is from
the lower layer to the layer 4. At the layer 4, the SCTP instances maintains
the association between the stream and the application that uses it and can
transmit the service data unit to the correct service that uses SCTP. SCTP
segments are normally directly transported over IP but in some situation
(e.g., firewall or NAT) they can be carried over UDP.

MPTCP is designed to be compatible with TCP. Therefore, an MPTCP
host is able to exchange segments with a TCP host. In this situation, the
traffic is the vanilla TCP. In addition, to ensure the protocol to be trans-
ported transparently over the Internet, it is seen as TCP with specific TCP
options. When two MPTCP hosts establish a MPTCP flow, several TCP
sub-flows are open. MPTCP is then in charge of determining to which flow
belongs a segment received from a sub-flow. MPTCP must also ensure the
scheduling of the data unit among the sub-flows. Indeed, the sub-flows can
follow different paths with different performances. MPTCP must minimize
the re-ordering by sending the data via the most appropriate sub-flow. Fi-
nally, MPTCP must manage the congestion over the different sub-flows.
MPTCP segments are TCP segments with particular TCP options.

In both MPTCP and SCTP, data can be sent over different paths, in-
dependently of the identifier of the flow used at the upper layer. In both
protocol a signaling mechanism is used between the two communication end-
points. Each end-point signals the other end the addresses that can be used
for the communication. In MPTCP, two solution exists. Either on option is
added to the segments to signal the other possible addresses to use. Or the
end-point spontaneously sends a new SYN from its to the other end-point to
open a new sub-flow. MPTCP can determine that the SYN is related with
a flow because a special TCP option is added to indicate to which MPTCP
flow the SYN is related.

In general, MPTCP and SCTP are considered as multipath technologies
more than loc/id split mechanisms. Indeed, the very purpose of MPTCP
and SCTP is to provide high performance for large data transfers. To reach
this objective, the two protocols have been designed to ensure loc/id split.

With IPv6, it is possible to benefit from the separation at the host level
even if the host is connected only with one interface to the network. Indeed,
if the network is in PA mode and is multihomed, it receives one IPv6 prefix
per provider, the prefixes are propagated to the hosts and the hosts have
thus one address per provider. The hosts are then free to chose the IP
addresses they want to use and thus control themselves the path to send

2.3. The Locator/Identifier Separation Protocol (LISP) 17

and receive traffic. Unfortunately, IPv6 does not provide any mechanism to
deal with multiple addresses hence the existence of ILNP and shim6.

2.3 The Locator/Identifier Separation Protocol (LISP)

The Locator/Identifier Separation Protocol (LISP) [FFML10a, Mey08]
relies on three simple principles: address role separation, encapsulation and
mapping.

Address are separated in two roles: the Routing Locators (RLOCs) and
the Endpoint Identifiers (EIDs). The RLOCs are assigned from the RLOC
Space to the Internet Service Providers. The EIDs are attributed by block
extracted from the EID Space to the stubs. A stub is a network that only
carries traffic from and to itself, e.g. an enterprise or campus network. To
limit the scalability problem of today’s Internet, only the routes towards
the RLOCs are announced on the Internet while EIDs are also propagated
today.

LISP-enabled routers are used at the boundary between the EID and the
RLOC spaces. Routers used to exit the EID space are called Ingress Tunnel
Router (ITRs) and those used to enter the EID space the Egress Tunnel
Routers (ETRs). When an host sends a packet to a remote destination, it
sends it as in today Internet. The packet eventually arrives at the border
of its site at an ITR. Because EIDs are not routable on the Internet, the
packet is encapsulated with the source address set to the ITR RLOC and
the destination address set to the ETR RLOC. The encapsulated packet is
then forwarded in the RLOC space until it reaches the ETR. The ETR then
decapsulates the packet and forwards it to the destination. The acronym
xTR for Ingress/Egress Tunnel Router is used a router playing these two
roles.

The correspondence between EIDs and RLOCs is given by the mappings.
When an ITR needs to find the ETR RLOCs that serve an EID it queries
the mapping system.

The encapsulation part of LISP is commonly called the data plane and
the mapping part is called the control plane.

Fig. 2.3 shows an example of LISP deployment. In this example, the
host with EID 153.16.35.6 sends packets to the host on the right. The
source host generates an IP packet with source address 153.16.35.6 and
destination address 153.16.36.9 and sends it on its local network. Because
the destination address is not within the local network, the packet eventually
reaches a network’s border router. The border router identifies that the
destination is an EID. It then runs into the ITR mode. It first queries
the mapping system to retrieve the locators associated with this EID. The
possible locators are 192.0.2.5, 192.0.2.254 and 2001:bd8:beef::7. The ITR
chooses the 2001:db8:beef::7 locator. It then encapsulates the native IP

18 Chapter 2. Locator/Identifier Separation

Figure 2.3: LISP general behavior

packet it received from the source host, into a LISP packet whose destination
IP address is the chosen locator, i.e., 2001:db8:beef::7. The source address
of the LISP packet is set to the ITR’s locator, i.e., 2001:bb8:cafe::4. The
LISP packet is then sent over the Internet and eventually arrives the ETR
with locator 2001:db8::beef:7. When this ETR receives the LISP packet,
it decaspulates it and forwards the inner packet to the destination host
153.16.36.9 as it belongs to the EID prefix 153.16.36.0/24 it is responsible
for. At the opposite, the host with EID 153.16.35.6 uses only native IP
forwarding to send packets to host with EID 153.16.35.1 as the two hosts
are within the same LISP site.

Sec. 2.3.1 describes the LISP data plane and Sec. 2.3.2 explains the LISP
control plane.

2.3.1 LISP Data Plane

LISP xTRs exchange encapsulated packets. A LISP-encapsulated packet
is an IP packet whose source and destination addresses are EIDs and that
is placed inside an IP packet whose source and destination addresses are
RLOCs. The outer header (containing the RLOCs) is added by the source
ITR and is used by the core routers to forward the packet. This header is
finally removed by the destination ETR. The inner header (containing the
EIDs) is processed by the ETR and is forwarded inside the site.

The LISP working group concluded that the best solution was to carry
the LISP header over UDP. This designed choice is explained in Sec. 2.4.1

Fig. 2.4 shows the LISP data plane header. This header is followed
by the inner header and its associated payload. The N, L, V and I bits

2.3. The Locator/Identifier Separation Protocol (LISP) 19

Figure 2.4: LISP Data-Plane header format

Figure 2.5: EID-to-RLOC mapping Example

determine the LISP header interpretation. They respectively indicates the
presence of the Nonce, Locator Status Bits, Map-Version and Instance ID
fields. Finally, The E bit is used in the Echo Nonce Algorithm. The N, L
and E bits as much as Nonce and Locator Status Bits fields are described in
Sec. 2.5. The N and V bits are mutually exclusive while both L and I bits
can be set simultaneously.

The Map-Version field is used by the ITR to inform the ETR about
EID-to-RLOC mapping version it used for the encapsulation. More details
are given in Sec. 2.3.2.

The Instance ID is used for virtualization and segmentation, a detailed
description of its usage is given in Sec. 2.6.

2.3.2 LISP Control Plane

The main component of the LISP control plane is the EID-to-RLOC
Database that contains the EID prefix to RLOC mappings. Fig. 2.5 shows
how this mapping is constructed with an example from Fig. 2.3 right-hand
network.

An EID-to-RLOC mapping associates an EID prefix, i.e. a block of EID
addresses, to a list of RLOCs. Each RLOC being associated with a priority,
a weight and a reachability.

A priority is used to determine which RLOC must be preferred to reach
the EID prefix. The RLOC with the lowest priority value is preferred. If

20 Chapter 2. Locator/Identifier Separation

several RLOCs have the same lowest priority value, a weight value deter-
mines how ITRs should balance the load among them. ITRs must use a load
balancing algorithm that ensures that packets from the same EID-to-EID
flow are sent towards the same ETR. Furthermore, the reachability bit (R
bit) indicates whether the RLOC is reachable. However, this information is
a hint an the effective reachability should be tested (see Sec. 2.5 for more
details). Unreachable RLOCs are removed from the set of RLOCs to use
for the encapsulation. Priority and weight are used for performing incoming
traffic engineering.

LISP defines multicast mappings (M Priority and M Weight), but they
are still at their early development stage and are not discussed here.

The LISP control plane allows the ITRs to obtain the EID-to-RLOC
mappings needed to encapsulate packets towards the appropriate destina-
tion ETR. ITRs interact with the control plane with the Map-Request and
Map-Reply messages. ITRs send Map-Requests to the mapping system to
get the mappings. The control plane answers with a Map-Reply containing
the EID-to-RLOC mapping. The Map-Request mostly contains a unique
identifier (the nonce) and the requested EID. The Map-Reply contains the
EID-to-RLOC mapping for the requested EID and echoed the nonce from
the Map-Request. In general, mappings are related to prefixes, not to ad-
dresses. It is then common to Map-Reply a Map-Request for an EID address
with a mapping for the EID prefix that covers the requested address. The
Map-Reply can carry several EID-to-RLOC mappings in one message. For
example, if the Map-Request is for the EID 153.16.36.1 and that the desti-
nation site has the mappings for both 153.16.36.0/24 and 153.16.36.128/28,
the two EID-to-RLOC mappings have to be sent. Indeed, if the reply only
returns 153.16.36.0/24 as it is the only prefix that covers 153.16.36.1, this
entry would also be used by the ITR for the EID prefixes that belong to
the 153.16.36.128/28 EID prefix which would lead to inconsistencies. This
problem is very similar to what is faced with FIB compression [FFM+07]. It
is possible to avoid this by sending prefixes that are not overlapping others.
In the example, the Map-Reply could be for the 153.16.36.0/25.

Mapping are time limited with a TTL expressed in minutes, in contrast
with DNS TTL in seconds. This TTL helps ITRs to cache the mappings
in their EID-to-RLOC cache. This cache avoids the ITR to send a Map-
Request for each packet to encapsulate. A TTL of zero minute means that
the mapping cannot be cached. On the contrary, a mapping with an infinite
TTL (i.e., 0xffffffff) can be store forever.

However, an EID-to-RLOC mapping owner may change it before the
provisioned expiration (e.g., after a network failure). To this aim, mappings
are labeled with a version number, the Map-Version. Upon a change, the
mapping’s Map-Version is incremented by one. When an ITR sends an en-
capsulated packet, it can label the data plane packet with Map-Version of
the mapping used for the encapsulation. If the ETR detects an outdated

2.3. The Locator/Identifier Separation Protocol (LISP) 21

version, it can inform the ITR of the change by sending it a Map-Request
with the Solicit Map-Request (SMR) bit set. The SMR Map-Request con-
tains the EID prefix that has a new Map-Version. Upon SMR Map-Request
reception, the ITR sends a Map-Request for the SMRed EID prefix. The
Map-Request can be sent directly to the SMRing ETR or via the Mapping-
System.

Mapping System

The mapping system is a major component of the Locator/Identifier
Separation Protocol as it provides the association between an identifier and
its locators.

From an architectural standpoint there are two possible ways in which
a mapping system could supply mapping information. It can either pro-
vide individual answers to specific requests (pull), or distribute (push) all
the mappings onto listeners. In pull-based mapping systems, the ITR sends
queries to the mapping system every time it needs to contact a remote
EID and has no mapping for it. The mapping system then returns a map-
ping for a prefix that contains this EID. Pull-based mapping systems have
thus similarities with today’s DNS. Proposed pull-based mapping systems
include LISP+ALT [D. 09], LISP-Tree [JCAC+10], LISP-CONS [BCF+08],
FIRMS [MHH10] and LISP-DHT [MI08]. Pull-based mapping systems suf-
fer from mapping lookup latency. The ITR needs to have the mapping for
the destination EID stored in its EID-to-RLOC cache to LISP-encapsulate a
packet to an ETR. If the mapping is not in the EID-to-RLOC cache, the ITR
queries the mapping system to get the mapping. As long as the mapping
is not retrieved, the encapsulation cannot be done. To limit the impact of
mapping lookup latency, Data-Probe has been proposed. Data-probing as-
sumes that EIDs are routable on the mapping system. With Data-Probe, the
packet is LISP-encapsulated but the outer destination address is the destina-
tion EID. The encapsulated packet is sent over the mapping system. When
such a packet arrives at and authoritative ETR, it is decapsulated and trans-
mitted to the destination endpoint and, at the same time, the ETR sends a
Map-Reply the the ITR that encapsulated the packet. Once the mapping is
known by the ITR, encapsulation is done normally and data-probing is not
used anymore. This technique avoids the ITR to have to wait for a mapping
but it mixes the control plane and the data plane and could cause the con-
trol plane to collapse if not used with care. In push-based mapping systems,
the ITR receives and stores all the mappings for all EID prefixes even if it
does not contact them. Push-based mapping systems have thus similarities
with today’s BGP. To the best of our knowledge, NERD [Lea08] is the only
proposed push-based mapping system. Push-based mapping systems do not
suffer from mapping lookup latency, but suffer from churn: the ITR does
not control the amount of received mappings neither the rate at which these

22 Chapter 2. Locator/Identifier Separation

mappings are received. To limit the churn, push-based mapping system can
use a publish/subscribe mechanism. To receive the mappings for an EID
prefix, the ITR has first to subscribe for it. However, this solution combines
the drawbacks from both push-based and pull-based solutions.

Two special devices can be used to simplify the operation of some map-
ping systems:

Map-Resolver (MR) is contacted by the ITRs to get the EID-to-RLOC
mappings [FFML10a, FF09]. In this case, the MR does the resolution
on the mapping system on behalf of the ITR. The ITR sends Map-
Requests to its MR and receives Map-Replies either from the MR or
directly from an authoritative ETR.

Map-Server (MS) announces the EID prefixes on behalf of the ETRs that
are registered to them meaning that these ETRs are not part of the
mapping system [FFML10a, FF09].

When a Map-Resolver is used, the Map-Requests are LISP-Encapsulated
to the Map-Resolver. The encapsulation is done with the special Encapsu-
lated Control Message LISP control plane message [FFML10a, FF09]. When
such a message arrives the MR, it is first decapsulated and then transferred
to the mapping system by the Map-Resolver.

The Map-Server functionality introduces the Map-Register control plane
message [FFML10a, FF09]. A Map-Register message is composed of the EID
prefix to register to the mapping system and is authenticated with a Message
Authentication Code (MAC) based on a secret key shared between the ETR
and the Map-Server.

The following of this section presents the major proposed LISP mapping
systems: LISP+ALT, LISP-Tree, LISP-DHT, LISP-CONS and NERD.

LISP+ALT As of today, the LISP community is focused on the LISP+ALT
mapping system [FFML10b]. LISP+ALT relies on a BGP overlay. In
LISP+ALT, the ETR stores the mappings for which they are authoritative
for. The overlay is constructed by connecting ETRs together via tunnels, for
example GRE tunnels. This ETRs overlay is called the Alternative Logical
Topology (ALT) where routers are called ALT routers. ALT routers main-
tain a BGP session with their neighbors and announce the EID prefixes they
are authoritative for, making the EIDs routable in the ALT. At this point it
is worth to notice that BGP is used to build the ALT, not to announce the
EID-to-RLOC mappings. To get a mapping, an ITR sends a Map-Request
for the EID on the ALT topology. The source address for the Map-Request
is the ITR RLOC and the destination the EID. The Map-Request eventually
reaches an originator ETR for the EID prefix that matches the destination
EID. This ETR resolves the EID and sends a Map-Reply directly to the ITR
RLOC. Map-Replies are not sent on the ALT.

2.3. The Locator/Identifier Separation Protocol (LISP) 23

LISP-Tree LISP-Tree is a pull-based hierarchical mapping system that
we are proposing. A detailed LISP-Tree description and study is presented
in Chapter 4. LISP-Tree is a DNS-like system with a hierarchy of LISP-Tree
Servers, LTS, and Mappings Servers. The hierarchy is maintained as a tree
where each node is responsible of a part of the EID space. The child of
a node is responsible of a part of the EID space its parent is responsible
for, recursively. Mapping information are only stored at the leaves of the
tree. Intermediate nodes only maintaining pointers to their children. When
a mapping has to be retrieved for an EID prefix. A root server is queried
first. By definition, a root server is responsible for the all EID space and
has a children responsible for the EID to resolve. The root replies with a
pointer to one of its children that is responsible for the EID prefix to resolve.
The process is repeated with the returned child considered as the root of
the sub-tree where a mapping can be retrieved for the EID prefix. This
process is repeated until a leaf is reached. In LISP-Tree, leaves are Mapping
Servers (MS). MS maintain the list of ETR authoritative for the EID prefix
registered to them. The tree browsing stops and the mapping is retrieved by
sending a Map-Request to one of the ETR authoritative for the EID prefix.
To speed up the process, the mapping resolution is not performed directly
by the ITRs but by a Map-Resolver. MR does the mapping resolution for
the ITRs and can cache intermediate steps in the resolutions. Like in DNS,
the resolution can be performed either recursively or iteratively.

LISP-DHT LISP-DHT [MI08] is a mapping system based on a Distributed
Hash Table (DHT). The LISP-DHT mapping system uses an overlay net-
work derived from Chord [SMLN+03]. Choosing this particular structured
DHT over others (e.g., CAN, Pastry, Tapestry or Kademlia) was motivated
by the algorithm used to map search keys to nodes containing the stored
values. In a traditional Chord DHT, nodes choose their identifier randomly.
In LISP-DHT, a node is associated to an EID prefix and its Chord identifier
is chosen at bootstrap as the highest EID in that associated EID prefix. This
enforces mapping locality that ensures that a mapping is always stored on
a node chosen by the owner of the EID prefix, see [MI08] for details. When
an ITR needs a mapping, it sends a Map-Request through the LISP-DHT
overlay with its RLOC as source address. Each node routes the request
according to its finger table (a table that associates a next hop to a portion
of the space covered by the Chord ring). The Map-Reply is sent directly to
the ITR via its RLOC.

LISP-CONS The Content distribution Overlay Network Service for LISP,
LISP-CONS [BCF+08], is a hierarchical content distribution system for EID-
to-RLOC mappings. It is a generalization of LISP+ALT, which does not use
the BGP routing protocol. On the other hand, it adds support for caching

24 Chapter 2. Locator/Identifier Separation

in intermediary nodes. In this thesis we do not consider LISP-CONS as it
does not seem to evolve anymore.

NERD The Not-so-novel EID to RLOC Database, NERD [Lea08] is a flat
centralized mapping database, using the push-model. The NERD database
is distributed to a group of well known servers with their public certificates
known by all the ITRs. The certificates are used to validate the database
stored on the servers. When an ITR starts, it downloads the NERD database
from the NERD servers, it then periodically polls the servers to obtain the
changes since the last query. To keep track of the changes, the servers
increment the database version number at every change. Because any change
requires a new version of the database to be downloaded by all ITRs, this
approach is unlikely to scale to the needs of a future global LISP mapping
system, it could however be used in controlled environments. The main
advantage of NERD and its push-based like model is the absence of cache
misses that could degrade traffic performance.

2.3.3 On the EID-to-RLOC Cache size

Quoitin et al. show in [QIdLB07] that the locator/identifier separation
improves the routing scalability by reducing the FIB size and increases the
path diversity and thus the traffic engineering capabilities. In addition, Ian-
none and Bonaventure show in [IB07] that the number of mapping entries
that must be supported at an ITR of a campus network is limited and does
not represent more that 3 to 4 Megabytes of memory. Similarly, Juhoon et
al. show that the EID-to-RLOC Cache size should not exceed 14 MB for
an ITR responsible of more than 20,000 residential ADSL users at a large
ISP [KIF11]. [IB07, KIF11] rely on BGP and traffic traces to determine the
number of entries to install on the cache. In both papers, the size of the
cache is inferred from the number of entries by considering that every EID
is associated with two or three locators. In this section, we confirm these
results by showing the distribution of the number of locators per EID if
LISP were deployed in today’s Internet. To do so, we rely on three assump-
tions to determine the EIDs and their associated RLOCs: (i) as contiguous
addresses tend to be used similarly [CH10], EID prefixes follow the current
BGP prefixes decomposition; (ii) EIDs are used only at the stub ASes, not
in the transit ASes; (iii) the RLOCs of an EID are deployed at the edge
between the stubs owning the EID and the providers and locator addresses
are allocated in a Provider Aggregetable (PA) mode. Assumptions (i) and
(ii) are the same as those in [IB07, KIF11, QIdLB07]. Assumption (iii) is
similar to [QIdLB07].

Fig. 2.6 illustrates the methodology for our EID-to-RLOC association.
In Fig. 2.6, the blue clouds represent transit ASes with locators. The green
clouds are used for stub ASes that use LISP and contain EIDs. The routers

2.3. The Locator/Identifier Separation Protocol (LISP) 25

Figure 2.6: EID-to-RLOC association example

at the border between the EID space and the RLOC space are circled in red.
The stub AS 192.0.2.0/24 is multiconnected to the AS ISP1. The stub
AS 198.51.100.0/24 is multihomed to ISP2 and ISP3. Both 192.0.2.0/24

and 198.51.100.0/24 appear to have two active locators.

We base our evaluation on two datasets. First, the BGP prefixes and
the AS classification (stub versus transit) is extracted from the Route Views
Project dataset [Uni] (labeled as Route Views in the remainder of this chap-
ter). We use a BGP dump from Oregon-IX collected on August, 12th 2010.
Second, the mapping between BGP prefixes and locators is done with the
Archipelago dataset [cHKF09] (labeled as Ark in the following) collected
on July, 24th 2010. For the analysis, only the completed traceroutes are
considered in the Ark dataset.

Following the first two assumptions (see above), we filter the prefixes
from Route Views to extract the stub prefixes using the AS ranking provided
by Caida [CAI10]. We further take only into account the most specific
prefixes. Less specific prefixes, typically used for resiliency, are thus filtered.
By doing so, we have an upper bound on the number of EID prefixes. Indeed,
filtering the less specific prefixes does not filter the prefixes deaggregated for
load balancing reasons. After filtering out the Route Views dataset, 41.21%
of the prefixes (i.e., 138,123 prefixes) are considered as EID prefixes.

To determine the active locators for each EID prefix, we rely on the Ark
dataset and the third assumption. In this chapter, we consider the edge from
an IP routing point of view: a router at the edge of a stub is the first router
whose address is not inside the EID prefix. For each destination address
in the Ark dataset, we determine its most specific BGP prefix, i.e., its EID
prefix, and backtrack the traceroute until we reach an address that does not

26 Chapter 2. Locator/Identifier Separation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

c
d
f

locators

traceroute
(BGP)

Figure 2.7: RLOC distribution

belong to this BGP prefix. This address is considered as one of the RLOCs
of the EID prefix. Computing this on all the completed traceroutes from
the Ark dataset gives the list of RLOCs associated to a given EID prefix.
As EID prefixes determined with Route Views are not always traceroutable,
we were only able to extract 15,337 EIDs.

Fig. 2.7 shows the degree of multihoming and multiconnectivity of the
EIDs. An EID is multihomed if it has several neighboring ASes. Multi-
homing is important for the robustness of the site but from a performance
viewpoint, the locators diversity, i.e., the multiconnectivity, is more im-
portant than the diversity of neighboring ASes, as long as it increases the
number of locators and thus the path diversity [QIdLB07].

The curve labeled traceroute on Fig. 2.7 provides the distribution, as
a cumulative mass, of the number of locators (horizontal axis, in log-scale)
associated to each EID prefix. Among the whole set of 15,337 EIDs, 3,880
(i.e., 25%) have at least two RLOCs and 1,886 (i.e., 12%) have more than
two RLOCs. The distribution of the EID multihoming degree is presented
with the curve labeled BGP on Fig. 2.7. In the BGP case, the number of
locators corresponds to the number of neighboring ASes. The comparison
between the two curves shows that the multihoming degree is lower than
the multiconnectivity degree for the EIDs. For example, 22.8% of the EIDs
have at least three locators, while only 8.4% of the EIDs are multihomed
to more than two different autonomous systems. The limited number of

2.4. LISP as an evolutionary approach 27

traceroutable EIDs does not allow us to determine the size of the cache with
the exact number of locators for each EID prefix. However, the distribu-
tion of the number of locators in Fig. 2.7 shows that the assumptions made
in [IB07] and [KIF11] for the number of locators is acceptable. The study
of the number of locators with traceroutes does not show the inactive loca-
tors. It is then possible that the number of locators is higher than what we
observed. However, the inactive locators do not have to be installed in the
EID-to-RLOC Cache used for the data plane encapsulation. Indeed, these
locators are not used for the forwarding except if none of the active locators
is reachable. The inactive locators can then remain stored in the slow but
inexpensive control plane memory of the router.

2.4 LISP as an evolutionary approach

Some people advocate that the Internet has several flaws and a clean-
slate approach must be followed to design a new Internet. At the opposite,
others are defending an evolution approach [RD10]. In the clean-slate ap-
proach, the future Internet is designed from a blank sheet. At the opposite,
the evolutionary approach uses the Internet as it is today and modifies it to
make it better.

LISP is an evolutionary approach for scaling the Internet. Because of
this, it has been designed to be able to be progressively deployed. To do
so, LISP does not requires any change neither at the core nor in the stub
sites. Only the border between the stubs and the core has to be changed.
It thus mean that LISP packet have to be able to cross the core Internet
(Sec. 2.4.1) but also to be incrementally deployed (2.4.2).

2.4.1 Core Internet Traversal

LISP uses encapsulation to transport EID-to-EID packets over the In-
ternet where EIDs are not routable. However, even if LISP has always been
designed with encapsulation, the method chosen to do the encapsulation has
evolved during the standardization process and it is worth discussing this
evolution. The first LISP specifications used IP-in-IP encapsulation, i.e.,
the outer IP header is directly placed in front of the inner IP header by the
ITR. Although IP-in-IP encapsultation minimizes the overhead, it causes
several problems. First, many deployed middle-boxes (e.g., firewalls, Net-
work Address Translators (NAT)) block IP packets not transporting UDP
or TCP traffic. Second, thanks to the utilization of Equal Cost MultiPath
(ECMP) [Hop00], core routers often load balance the flows over several paths
by hashing the source and destination addresses as well as the UDP/TCP
port numbers [AFT07]. Using IP-in-IP thus limits the effectiveness of ECMP
based load balancing. Finally, IP-in-IP does not have room for carrying LISP
specific information.

28 Chapter 2. Locator/Identifier Separation

For these three reasons, LISP encapsulates EID-to-EID packets over a
specific LISP header that is carried over UDP. UDP is transported by RLOC-
to-RLOC IP packets. Using the UDP header helps to pass through the
middle-boxes. When a protocol uses UDP, it can either use random port
numbers or apply for a reserved port number. LISP uses two reserved UDP
port numbers: 4341 and 4342. 4341 (resp. 4342) is used as the destination
port number for data (resp. control) plane packets sent by a LISP node.
However, the UDP header also contains a source port number. The first
LISP specifications used random source port number in each encapsulated
packet. However, it was not appropriate for LISP as packets belonging to
the same EID flow could have different source ports and thus be forwarded
over different paths because of ECMP and potentially be reordered before
reaching their final destination. To ensure that all the packets from the
same EID-to-EID flow follow the same path, the source port is computed as
a hash of the EID-to-EID packet source and destination EIDs and ports.

2.4.2 Incremental Deployment

The transition from the current Internet to a LISP enabled Internet will
imply the coexistence of LISP sites and non-LISP sites. On one hand, LISP
sites are expecting encapsulated packets which cannot be created by non-
LISP sites. On the other hand, non-LISP sites are not able to decapsulate
LISP packets, or even to forward traffic to an EID as EIDs are not glob-
ally routable. Fortunately, the encapulation principle enables a transition
mechanism. As a matter of fact, a non-LISP site can exchange packets with
a LISP site as long as the traffic is LISP encapsulated somewhere in the
network and a LISP site can exchange traffic to a non-LISP site as long as
the LISP traffic is decapsulated before arriving at the final destination. All
this transition is transparent for the traffic endpoints. This transition re-
lies on Proxy ITRs (PITR) and Proxy ETRs (PETR). PITR are particular
ITRs that attract non-LISP traffic destined to LISP sites to encapsulate and
forward it to the LISP destination. At the opposite, PETR are particular
ETRs that attract LISP traffic destined to non-LISP sites to decapsulate
and forward it to the non-LISP destination. The PITR/PETR transition
mechanism is deployed in the LISPx.net network presented in Sec.2.7.

2.5 Reachability Problem

The advantage of flexibility and control offered by the loc/ID separation
comes at the cost of increasing the complexity of the reachability detection.
Indeed, identifiers are not directly routable and have to be mapped to lo-
cators. But a locator may be unreachable while others are still reachable.
This is an important problem for any tunnel-based solution. To understand
it, let us analyze the situation shown in Fig. 2.8.

2.5. Reachability Problem 29

Figure 2.8: LISP reachability problem example

Figure 2.9: EID vs RLOC unreachability rate

In Fig. 2.8, host A is attached to the right-hand LAN that exchanges
packets with host B attached to the left-hand LAN. In a normal IP network,
either a campus/enterprise network using an intradomain routing protocol or
the global Internet using BGP and intradomain routing, A sends its packet
to its default router (e.g. I1). This router consults its forwarding table and
forwards the packet along the best path towards the prefix that includes
B’s address. Assume that R1 is along this best path. If link X-R1 fails, the
routing protocols detect the failure and after some time I1 learns that the
only path to reach B is via R2.

Fig. 2.9 illustrates the end-to-end reachability problem. We measured

30 Chapter 2. Locator/Identifier Separation

the RTT with all the locators obtained in Sec. 2.3.3 and a machine in our
campus. The measurement campaign started on September 3rd 2010 and
lasted until September 24th 2010. The measurements have been collected in
cycles, one cycle every 5 minutes, every locator being measured during each
cycle. The delay is the result of the ping command. A locator is considered
as not reachable if its RTT is longer than one second. The unreachability
rate is defined as the ratio of the number of measurements that failed to
the total number of measurements. An EID is unreachable if none of its
locators is reachable. Fig. 2.9 shows that the locators are unreachable more
frequently than the EIDs. It means that all the locators of an EID are seldom
unreachable at the same time. This observation confirms that multihoming
or multiconnectivity increases the robustness of a network. Unfortunately,
in LISP, the packets for a network are sent to a particular border router of
that network (an ETR). This means that the sending ITR must be able to
recover from the failure of an ETR by itself. Fig. 2.9 shows that the choice
of the locator for the encapsulation is of prime importance to ensure the
traffic liveliness. A simple solution to solve the reachability problem is to
let the ITR change its mapping upon the reception of an ICMP destina-
tion unreachable message. However, ICMP messages are often rate limited
or even not sent. In addition, spoofing ICMP is easy. Therefore, several
mechanisms has been defined to allow an ITR to verify the reachability of
a remote ETR:

active probing consists in sending explicit probes to determine whether a
locator is reachable or not. LISP uses the RLOC Probing Algorithm
for this [FFML10a]. The ITR periodically sends a Map-Request with
the probe-bit set to the ETR with the locator to test, and the corre-
sponding EID prefix. The ETR answers with a Map-Reply with the
probe-bit set and the probed locator is flagged. Both Map-Requests
and Map-Replies are exchanged directly via the locators, without us-
ing the mapping system. Active probing presents scalability issues as
it requires the sending of specific packets.

data plane monitoring consists of monitoring the data plane traffic to
determine whether a locator is reachable or not. LISP uses the Echo
Nonce Algorithm for this purpose [FFML10a]. When a source xTR
wants to test the reachability of an RLOC, it flags packets sent to this
RLOC with the Echo-Nonce-Request bit (E) and the Nonce-Present
bit (N) and tags the packet with a nonce. When the destination xTR
receives such a packet, it stores the nonce in a cache and, when it sends
packets back to the source xTR, it flags the packet with the N bit and
copies the nonce received in the echo-nonce request. If the source xTR
receives the packet with the correct nonce (and the E bit reset), the
RLOC is considered reachable.

2.6. Virtualization with LISP 31

control-plane feedback uses information from the control-plane to deter-
mine the locator reachability. The Locator Status Bits (LSB) are used
for that purpose [FFML10a]. The LSB is a 32-bits vector in the data
plane packets where the bit at position i indicates locator i reachabil-
ity. If position i in the LSB is set, the RLOC is reachable, otherwise,
it is not. The ITR builds the LSB from its local routing information.
LSB information may thus be considered as an hint. When the status
changes a reachability test described above can be used to check the
LSB.

It is interesting to notice that LSB can be used in conjunction with the
Instance ID (see Sec. 2.6). However, because they share the same 32-bit
word, the first 8 bits are reserved for the LSB that is truncated to its first
8 bits. The last 24-bits being the instance ID that is always 24-bit long.
Therefore, with instance ID, the LSB is limited to the first eight locators
while up to 32 locators can be monitored otherwise.

The three techniques presented above can be combined to get a better
understanding of the RLOC reachability. For example, the control-plane
feedback can be used to rapidly filter the RLOCs that are not reachable
because of global routing failures. Then, active probing can be used at low
rate to determine if the backup paths are reachable or not and the data
plane monitoring can be used to ensure that active paths are reachable.

2.6 Virtualization with LISP

Network virtualization allows to operate logical networks over one phys-
ical network. Provider-based Virtual Private Networks (VPN) are a way
of virtualizing networks. Operators often use BGP/MPLS VPNs to offer
VPN services to enterprises [RR06]. LISP was recently extended with the
Instance ID [FFML10a] to be able to run several LISP instances on one
xTR. The Instance ID enables LISP to provide virtualized services as well.
The Instance ID is 24-bits long and can be a 802.1Q VLAN tag or VPN
identifier.

Fig. 2.10 shows a simple LISP-based VPN. VPN1 and VPN2 use the
same IP addresses. When ITR1 (resp. ITR2) encapsulates a packet from
VPN1 (resp. VPN2), it labels it with the VPN1 (resp. VPN2) instance ID.
When the ETR receives such a packet, it determines the forwarding table
to use for the decapsulated packet thanks to the instance ID. The packet
is then forwarded to the correct site. Without the instance ID, it would be
impossible to determine the destination site to forward packets to as the
same EID prefix is used by the two VPNs. Farinacci et al. [FMS10] go one
step further and propose a Canonical Address Format (LCAF) to encode
any kind of addresses in LISP control plane [FMS10]. With a canonical
address representation, any address type can be used as EID (the address is

32 Chapter 2. Locator/Identifier Separation

Figure 2.10: L3 VPN implementation with LISP instance ID. Both red and
purple VPNs use the same EID prefix, the differentiation is done at the ETR
based on the instance ID.

the key for the mapping lookup) and LISP can then transport, for example,
Ethernet frames over the Internet.

2.7 Deployment lessons

The LISP effort is not limited to the specifications but also to the de-
ployment of LISPx.net, a world wide experimental network (LISP4.net (resp.
LISP6.net) for IPv4 (resp. IPv6) EIDs).

The LISPx.net is an experimental network composed of more than 80
xTRs spread over 13 countries (Latin-American, Asia/Pacific, European and
US regions), operated by more than 20 company and university and pow-
ered by two different implementations (CISCO IOS and CISCO NX-OS).
LISPx.net uses the LISP+ALT mapping system and most of the nodes rely
on Map-Resolvers and Map-Servers. Hosts attached to LISPx.net can con-
tact regular IP addresses thanks to the deployment of five PxTRs.

Deploying a new protocol in a real environment where any people can
come and connect forces developers to improve it rapidly. The improve-
ment ranges from debugging implementations to adding new features. The
deployment also helps to refine the specifications to remove ambiguities.
For example, the ITR load balancing algorithm was refined on the basis of
LISPx.net experiments.

Deploying a public LISP network enables usages of LISP that were not
expected. For example, Facebook experiments LISP to support IPv6 [LL10].
The Facebook infrastructure is mostly IPv4 but an IPv6 prefix is announced
and plays the role of an EID. IPv6 packets arriving at the PITR are LISP-
encapsulated and forwarded on the IPv4 Facebook backbone. When the
ETR receives these packets it decapsulates and transmits them to a load
balancer doing an HTTP IPv6-to-IPv4 translation. The translated packets
are then injected in the IPv4 infrastructure.

2.8. Conclusion 33

2.8 Conclusion

Separating the locator role of IP addresses from the identifier role can
help in improving the scalability of Internet routing and the traffic engi-
neering capabilities. The Locator/ID Separation Protocol (LISP) separates
these two roles at the router level. In LISP, the Internet is separated in
the identifier and locator spaces. Locator (resp. identifier) addresses are
routable only in the locator (resp. identifier) space. Identifiers are assigned
to the stub networks while locators are used inside the core Internet. LISP
uses a map-and-encap mechanism to allow stub networks to exchange pack-
ets via the core Internet although identifiers are not globally routable. LISP
routers are deployed at the border between the stubs and the core Internet.
When a packet leaves a stub it passes by such router and is encapsulated
in a packet whose source and destination addresses are locators. When the
encapsulated packet arrives the destination stub, it is decapsulated by a
LISP router and forwarded in the stub until it reaches the destination. The
locator to use to reach a destination stub is known thank to the mapping
system that provides the mappings between the identifiers and the locators.
The separation of the two roles of IP addresses can also be performed at
the host level, which give the control over the path used for to packet to the
hosts.

The initial goal of the locator/identifier separation paradigm was to make
the Internet more scalable. However, as we see in the chapter, LISP goes
beyond the scalability of the Internet and provides an elegant way of doing
interdomain traffic engineering or network virtualization. LISP is still at its
early stage. Multicast, mobility and security are open issues that are still
being discussed.

Chapter 3

Interdomain traffic
engineering with LISP

3.1 Introduction

Sec. 2.3 briefly presents the traffic engineering features embedded in
LISP. However, to the best of our knowledge, no related work shows how to
make traffic engineering with LISP. This probably comes from the lack of
incentives for ISPs to comply with inbound recommendations of the distant
networks. For that reason, we present in details how traffic engineering
can be performed with LISP in this chapter. Chapter 1 shows how traffic
engineering is performed in today’s Internet with BGP. In this chapter we
show how LISP can be used to perform traffic engineering. Sec. 3.2.1 shows
how LISP can be used for outgoing traffic engineering and Sec. 3.2.2 shows
that LISP can benefit incoming traffic engineering. Finally, Sec. 3.2.3 goes
one step further and shows that the incoming traffic can be controlled on
a per source basis with LISP. Chapter 7 even shows how traffic engineering
can be automatized and how LISP can be used to make performance based
traffic engineering.

The original contribution of this chapter is two-fold. On the one hand,
we show how to use the mapping priorities, weights and TTL to perform
incoming traffic engineering with LISP. On the other hand, we propose a
solution to differentiate the mappings on a per-requester basis.

3.2 Traffic engineering with LISP

In today’s Internet, stub networks are globally routable and the routing
system distributes the routes to reach these stubs. On the contrary, the
EID prefixes of a LISP site are not routable on the Internet and mappings
are needed to determine the list of LISP routers to contact to send them
packets. The difference is significant for two reasons. First, the packets are

35

36 Chapter 3. Interdomain traffic engineering with LISP

not sent to a site but to a specific ingress router. Second, a site can control
the entry points for its traffic by controlling its mappings.

Mappings present in the EID-to-RLOC Cache are used to determine the
best destination locator to use. In the same way, an ITR that has several
RLOC uses the mappings from its EID-to-RLOC Database to determine the
source locator to use for the encapsulation. From a purely technical point
of view, the selection of the best source RLOC and the best destination
RLOC are two instances of the same problem. Indeed, the RLOC decision
process algorithm is the same for the source and the destination RLOC at an
ITR. An ITR basically chooses the RLOCs with the lowest priority values
as explained in Sec. 2.3.2. However, from an operational point of view,
these problems are very different. On the one hand, the selection of the
source locator only depends on local policies as the mappings in the EID-to-
RLOC Database are built locally. But, on the other hand, the selection of
the destination locator depends on external policies as the mappings in the
EID-to-RLOC Cache are built by the remote site which causes a problem of
incentives as show in the next sections. In this thesis, we focus on incoming
traffic engineering. However, for the shake of completeness Sec. 3.2.1 briefly
provides the general ideas to perform LISP outgoing traffic engineering.

The remaining of this section presents how traffic engineering can be
instantiated with LISP.

3.2.1 Outgoing traffic engineering

Each ITR maintains in its EID-to-RLOC Database the mappings for
the source EID prefixes it can encapsulates. If the source EID is valid, the
ITR chooses one RLOC in the source mapping. The selection of the locator
follows the same principle as the selection of the destination RLOC. The
locator with the lowest priority value is preferred. If several RLOCs have
the same priority the load is shared among them using the same per-flow
hashing mechanism.

Using a mapping for selecting the source locator can be used to control
the outgoing link to use. Priorities and weights can be adapted to fit the
local policies. For example, if a link is overloaded, the weight attached to
its RLOC can be lowered.

By nature, LISP provides source-based routing capabilities. Indeed, the
source mapping associates a source EID prefix to a list of locators. In other
words, the source EID determines the interfaces that are used to transmit
traffic over the Internet. For example, an ITR can be responsible for a best
effort and for a premium network. The two networks can be isolated from
each other by assigning them different EID prefixes. The source mapping
for the best effort prefix always using the cheapest outgoing link while the
premium traffic uses the outgoing link that fits the service level agreements.
Fig. 3.1 shows an example of source-based routing with LISP. In this ex-

3.2. Traffic engineering with LISP 37

Figure 3.1: Example of source-based routing with LISP. For 192.0.2.0/25,
the source locator is 1.0.0.1 and for 192.0.2.128/25, the source locator is
2.0.0.2. Both networks have the 3.0.0.3 RLOC for backup.

ample, the ITR is responsible for the 192.0.2.0/25 and 192.0.2.128/25

networks. The two network have the same backup RLOC (i.e., 3.0.0.3) but
they do not use the same primary RLOC which is 1.0.0.1 for 192.0.2.0/25
and 2.0.0.2 for 192.0.2.128/25.

It is worth to notice that the choice of the source locator is coupled with
the choice of the destination locator because some destination locators might
be not routable on some links or the address families might be incompatible.
Unfortunately, this problem is still open.

3.2.2 Incoming traffic engineering

Sec. 2.3 describes how an ITR selects the destination RLOC. In this
section, we show that the construction of the mappings combined with the
RLOC selection offers interesting perspectives for incoming traffic engineer-
ing. Throughout this section, we present the traffic engineering functionality
with examples. This section considers manual mapping creation. The dy-
namic construction of mappings is presented in Chapter 7.

The simplest incoming traffic engineering requirement happens when a
site has two ETRs including one for backup. In this situation, two priority
values can be used. The lowest value, e.g., 10, being assigned to the preferred
locator and the highest value, e.g., 100, to the backup locator. In this case,

38 Chapter 3. Interdomain traffic engineering with LISP

ITRs always use the primary locator, unless it is unreachable. Thus, the
ITRs automatically use the backup RLOC as long as the primary locator is
not available.

A second traffic engineering case happens when the site has two ETRs
that can be used simultaneously. In such a case, the RLOCs have the same
priority which enables the possibility to share the load among them. To
control the proportion of flows to receive on each locator, the weight is
used. ITRs load balance the flows among the locators, proportionally to
their weight. If a locator has a weight of 75 and the other locator has a
weight of 25, 75% of the flows will be encapsulated and forwarded to the
first locator. The remaining 25% of flows will be forwarded to the other
locator. The LISP specification imposes that the sum of the weights of the
locators of the same priority equals 100. However this constraint makes the
management of the mappings harder. For example, if a mapping has three
locators a, b and c with the weights 5, 10 and 85 respectively. If locator a is
removed, the weights for b and c must be recomputed for their sum to equal
100. Without this constraint, when a is removed, the weights do not need to
be recomputed but the proportion of traffic balanced to the two remaining
locator is respected.

Fig. 2.5 shows an example of mapping that combines the two techniques
presented above. The 2001:db8:beef::7 and 192.0.2.5 locators are primary
locators and 192.0.2.254 is a backup locator. The 2001:db8:beef::7 locator
has to be preferred for 75% of the encapsulated flows.

In the cases presented above, the policies are fixed in time and mapping
changes are planned in advance, e.g., connectivity is evaluated every three
months. However, the priority and weight are not always sufficient to con-
trol the costs. Indeed, to avoid performance degradation, load balancing is
performed on a per flow basis [KKSB07] and independently of the total traf-
fic generated by the flow. Therefore, it is possible to have a flow consuming
a high bandwidth that goes through an ETR with a low weight. A solution
to face this issue would to change the mappings when the load distribution
among the ETRs does not follow the traffic engineering policies. For ex-
ample, if a link is expected to cover 75% of the load but only represents
50% of the load, the mapping can be updated with a weight higher than 75
for the RLOC of this link to increase the probability that this link will be
chosen. To do so, the mappings are time limited with a TTL. When the
mapping expires, the ITR must refresh the mapping. By using the TTL, it
is thus possible to tackle the per-flow load balancing issue and its possible
load sharing violation. However, to avoid degrading the performance of the
existing flows or moving important portions of traffic, care must be taken
while changing the mappings for this reason.

Customer-provider links are often billed on a 95th percentile basis [DHKS09].
With the 95th percentile billing, a month is divided in slots of, for instance,
5 minutes. During each slot, the amount of traffic transferred on the link is

3.2. Traffic engineering with LISP 39

monitored and the bandwidth consumption is computed. At the end of the
month, the 95th percentile value of bandwidth is computed and the link is
charged proportionally to this value as shown in Eq. 3.1

Cm = Cfix + percentile(95,Bm) · Cvar (3.1)

where Cm is the cost charged for the month m, Cfix a fixed cost, in-
dependent of the link usage, Bm the collection of the 5 minute bandwidths
observed during the month m and Cvar the cost charged for each Mbps. The
95th percentile billing model has been proposed to reflect the bursty nature
of IP traffic. Another model that is often used is the flat fee charging where
the price of using a link is independent of its utilization. Flat fee can be
seen as a 95th charging model with Cvar set to zero.

When a site is charged on a 95th percentile basis, it is possible to reduce
the cost of using the links when priority, weight and TTL are combined.
Every few hours, a site can evaluate the expected cost of using each link
and increase the weight of the links with a low expected cost. The principle
is to limit the maximum bandwidth observed on the 5 minute slots such that
the 95th percentile remains as low as possible. If a link carried too much
traffic, it is possible to stop receiving packets on it by setting it as backup
with a low priority. To react to the link usage, the mapping TTL can be
fixed to a value of few hours but care must be taken with low TTL values
to avoid oscillations and traffic performance degradation. A month contains
between 8,064 and 8,928 five minute slots meaning that each link has from
403 to 446 slots that will not be considered in the link fee. In other words,
it is not required to be too reactive as the system can tolerate more than
one day of arbitrary burst without impacting the link usage cost.

We have only considered primary and backup links so far. However, it
is possible to have a hierarchy in RLOCs of the ETRs. For example, one
site could have two links both running IPv4 and IPv6. The first link is
the primary one and the second is for backup use. For internal reasons,
IPv4 is preferred to IPv6 but the primary link is always preferred. In this
situation, four priorities can be used, e.g., 10, 20, 100 and 110. The IPv4
locator on the primary link is attributed priority 10 and the IPv6 locator on
this link priority 20. For the backup link, the IPv4 locator has priority 100
and the IPv6 locator priority 110. With these priorities, the site policies are
respected. In any situation, the primary link is always preferred.

3.2.3 Mapping differentiation

It is generally considered that the same mapping is provided to all the
ITRs. However, there exist situations where differentiated mappings can
improve traffic engineering. A differentiated mapping is a mapping that
is built specifically for a given ITR (or a set of ITRs). The first use of
differentiated mappings is for topological separation. Depending on the

40 Chapter 3. Interdomain traffic engineering with LISP

origin of the Map-Request, the locators, priority and weight can be tuned
(e.g., to be optimized for locality). This approach is very similar to how
CDNs perform traffic engineering. In general, the CDNs control the traf-
fic they have with their clients with DNS. Depending on the geographi-
cal or topological location of the clients, the DNS server provides different
replies [PFA+10, HWLR08, CB08]. For example, a name requested by a
client in Europe is likely to be resolved into addresses in Europe. CDNs can
assume that the traffic is preceded by a DNS request but this assumption
does not hold in general.

Differentiated mappings can also be considered if the site detects that an
ITR does not respect the mapping priorities and weights. The problem with
mappings is that the site explicitly provides different locators it is reachable
from. It is then possible for an ITR to ignore the locator selection process
and use the locator that best fits its local policy requirements. For example,
an ITR can prefer to use a backup locator just because the backup locator
is on a peering link while the primary locator must be forwarded via a high
cost link. This situation perfectly illustrates the lack of incentives to respect
the traffic engineering choices of the remote system. When a site detects
that an ITR cheats, it can update the mapping provided to this ITR and
remove the RLOCs for the links it does not want to be used by the ITR.
The cost reduction has of course to be balanced with the resiliency reduction
caused by the removal of some locators. If a LISP site wants to apply such
strategy it must limit its mapping TTL to ensure that the source of the
traffic will refresh the mappings frequently enough.

Mapping differentiation can be implemented either by the mapping sys-
tem or independently. The cost of implementing the mapping differentiation
directly in the mapping system depends on the mapping system. For ex-
ample, NERD is not adapted for this purpose as one full mapping database
would have to be stored on the server for each ITR. Mapping system with
cache capabilities are also weakly designed to support mapping differentia-
tion except LISP-Tree where caching is used for the intermediate nodes in
the tree, not for storing the mappings. However, it is not possible to im-
plement a pure differentiated mapping directly in LISP+ALT or LISP-Tree
as they do not provide the mappings but the mechanism to find the map-
pings [FFML10b, JCAC+10]. However, LISP+ALT and LISP-Tree select
the authoritative ETRs to send the Map-Requests to and it is possible to
influence this decision to implement topological differentiation.

LISP+ALT relies on BGP to construct its topology meaning that deag-
gregation, AS path prepending or MED can be used to influence the path
followed on the ALT. Similarly to DNS, the path in the tree in LISP-Tree
depends on the server registration. For example, a LISP-Tree server in Eu-
rope can register itself only to parents in Europe while a LISP-Tree server
in Australia will only register to parents in Oceania. When Map-Server are
used in the mapping system, like in LISP-Tree or LISP+ALT, the ETRs

3.3. Conclusion 41

can chose the MS they register their EID prefix on. As a result, a Map-
Request is sent to an ETR or another, depending on the MS that is queried
first. If the ETRs do not store the same mapping, this technique implements
topological mapping differentiation.

In LISP-DHT [MI08], it is possible to implement differentiated mappings
as the mapping system itself provides the mappings. The site servers only
have to return a mapping that is a function of the requester.

It is also possible to implement differentiated mappings without the map-
ping system. A generic mapping is provided by the mapping system as if
differentiated mapping was not used and when differentiation is required,
the SMR bit is used. Using the SMR bit to implement differentiated map-
pings decouples the data plane, the mapping system and the incoming traffic
engineering. With the SMR bit, the mapping system is used to provide the
generic purpose stable mappings that respect general policies.

For complex network management, a system can be implemented to
monitor the network and its traffic and enforce differentiated mappings for
the critical ITRs. An interesting use case is the combination of the SMR bit
with an Anomaly Detection System (ADS). When the ADS detects abnormal
traffic, an the SMR bit can be sent to the detected ITR to force it to change
the mapping. The traffic can then be black-holed or isolated from normal
traffic.

If mapping differentiation cannot be done directly by the mapping system
or if the SMR bit is not applicable, the differentiation must be implemented
on the ETRs. However, for site with complex mapping differentiation poli-
cies, the memory and CPU costs can be important. In such deployments, it
is possible to deploy ETRs only involved in the control plane and ETRs only
involved in the data plane. The ETRs involved in the data plane do never re-
ceive Map-Request because their locators are no registered to a Map-Server.
On the contrary, ETRs involved in the control plane receive Map-Requests
but never receive data plane packet. To do so, only the locators of the con-
trol plane ETRs are registered to the Map-Server. Likewise, the mappings
only contain the locators of the data plane ETRs.

The ability to provide mapping differentiation is a major improvement
in traffic engineering compared to BGP where such granularity is hard to
obtain, if not impossible without extending it [WSR09].

3.3 Conclusion

One of the major drawbacks of BGP is the lack of control a site has on its
incoming traffic. LISP has been proposed to alleviate some of the scalability
issues of BGP. In this chapter, we show that an added value of LISP is its
embedded ability to support incoming and outgoing traffic engineering.

In this chapter, we first show that static incoming and outgoing traffic

42 Chapter 3. Interdomain traffic engineering with LISP

engineering can be easily achieved with LISP. Then, we show that a LISP
site can do incoming traffic engineering by potentially controlling differently
the traffic from each different source.

We have shown in this chapter that the mappings in LISP enable flexi-
ble incoming traffic engineering. However, it is important to notice that the
granularity of the control implemented in the network influences the mon-
itoring and management overhead. Indeed, the more precise the decision,
the more information must be tracked. It is potentially possible to provide
one different mapping to every single ITR sending packets to the network in
LISP. However, this granularity might generate an important management
overhead. Therefore, the choice of the granularity is a tradeoff between the
precision of the control and the management overhead for the network. To
have a better traffic engineering support in LISP, we propose LISP-Tree, a
new scalable mapping system, in Chapter 4.

In Chapter 5, we present Idips, a service that is able to rank the path
between two IP addresses according to performance criteria. And in Chap-
ter 7 we show how LISP and Idips can be combined to perform performance
based incoming traffic engineering on the Internet.

Chapter 4

LISP-Tree

4.1 Introduction

Chapter 3 shows that LISP is designed with strong traffic engineering
capabilities. Traffic engineering in LISP is performed by changing the pri-
orities, weights and TTL of the mappings. Chapter 3 also shows that the
mappings can be distributed in a per-requester basis with the mapping dif-
ferentiation. Unfortunately, the mapping systems proposed so far for LISP
([D. 09, BCF+08, MI08, Lea08]) are not well designed to support frequent
changes in the mappings or an important number of mappings. For this
reason, we propose in this chapter a new mapping system, LISP-TREE that
is more adapted to a high load than the other mapping systems presented in
Sec. 2.3.2. LISP-Tree is inspired by the widely used Domain Name System
(DNS) [Moc87b], with a similar hierarchical organization. Blocks of EIDs
are assigned to the layers of the EID hierarchy by following the current al-
location rules for IP addresses. The root of the EID hierarchy is maintained
by the Regional EID Registries, which allocate EID blocks to local registries.
These in turn maintain delegation information for the owners of the provider
independent EID prefixes. Levels can be dynamically added to the hierar-
chy. LISP-TREE nodes can use existing DNS implementations, and benefit
from the long operational experience, but to avoid interference with the
current domain name system, LISP-TREE should be deployed on a physi-
cally separate infrastructure. LISP-Tree can also be implemented with its
own specific protocol. One of the main advantages of LISP-TREE is DNS’
proven scalability track record: for instance, at the time of this writing, the
.com top-level domain stores roughly 77 million entries [VB.09], while there
are only around 350,000 entries in the default-free zone today [Hus].

In addition to its architectural qualities, the performance of mapping
systems plays a key role in LISP. However, apart from a first trace-driven
analysis of the mapping cache [IB07], no research effort has been devoted to
this goal. The work on LISP-Tree aims to fill this gap as well, presenting

43

44 Chapter 4. LISP-Tree

a trace-driven simulation of the performance of LISP’s main mapping sys-
tems. In particular we consider LISP+ALT, LISP-DHT and LISP-TREE.
Our performance analysis assumes a complete deployment of LISP in today’s
Internet. We use topology and latency data from the iPlane [MAK+06] in-
frastructure and use the open source CoreSim simulator [CJC+09] developed
at UPC on top of that. This setup provides estimations of LISP performance
metrics.

LISP-Tree is the result of a collaboration with Loránd Jakab, Albert
Cabellos-Aparicio and Florin Coras from Universitat Politècnica de Catalunya
(UPC). We proposed the main LISP-Tree design taking into account deploy-
ment considerations. On the other hand the team at UPC took the lead for
the simulations with CoreSim [CJC+09]. Finally, the work presented in
Sec. 4.5 is an original work.

The following of the chapter is structured as follows: Sec. 4.2 describes
LISP-TREE, our proposed mapping system. Next, Sec. 4.3 presents CoreSim,
the simulator used to evaluate the performance of the main LISP mapping
systems. The simulation results are presented and discussed in Sec. 4.4.
Sec. 4.5 proposes to extend the LISP control plane for it to support LISP-
Tree. Finally Sec. 4.6 includes the related work while Sec. 4.7 concludes the
chapter.

This chapter provide two major original contribution. First, we propose
a new scalable mapping system similar to DNS. Second, we provide the
protocol that can be used to implement it.

4.2 LISP-TREE

This section presents the LISP-TREE mapping system. First, we pro-
vide arguments in favor of a DNS like mapping system, followed by a short
overview of our proposal. Then, after the detailed description we propose a
deployment scheme for today’s Internet.

4.2.1 Why a DNS like mapping system?

On today’s Internet, DNS is the system which is closest to a mapping
system. More than twenty years of operational experience in implementing,
testing, deploying, and operating such a system forms a solid foundation for
an identifier-to-locator mapping service.

Scalability

Scalability is a key concern for any mapping system. The scalability of
the current DNS system is due to several factors. First, caching is heavily
used to reduce the number of queries that are sent by resolvers. Second,
the domain names have a hierarchical structure, so the changes to the IP

4.2. LISP-TREE 45

addresses and names of name servers responsible for domains are local to a
few DNS servers and do not need to be propagated throughout the DNS.
In contrast, the BGP-based LISP+ALT would require an intelligent orga-
nization of the topology, coupled with aggregation, to mitigate the risk of
organic growth (i.e., due to non-technical reasons: social, economical) of the
ALT routing table. Last, the combination of the previous two factors leads
to a shortened path for a significant amount of queries, due to the fact that
not only responses, but also intermediate nodes can be cached. Because
queries can go directly from the resolver to servers lower on the hierarchy,
not all cache misses have to traverse the tree.

Fault tolerance and troubleshooting

Network operators need to rapidly detect and fix the problems when
they happen. DNS resolvers operate in iterative and recursive modes. In
iterative mode, the resolver sends the queries to servers on different levels of
the hierarchy, step by step, starting at the root. If one server does not reply,
the resolver automatically tries another server [DOK92]. In recursive mode,
the query is forwarded from one server to another, closer to the authoritative,
which sends the reply back on the same path.

In this case, the location of a failing intermediate server will not be
known to the resolver, which will be unable to circumvent the failing node
if no extra failure discovery protocol is deployed. DNS allows both forms of
operation, but today’s Internet mostly uses iterative DNS [JSBM02].

Moreover, fault tolerance is a key concern in a mapping system. Because
a reply from the mapping system is necessary to allow an ITR to send packets
towards a destination EID, any failure of the mapping system would block
communications. In the current DNS, fault tolerance is provided mainly by
replicating servers. All the important zones of the DNS hierarchy are served
by two or more name servers with distinct IP addresses. Furthermore, some
of these IP addresses are in fact anycast addresses that correspond to several
physical servers. DNS resolvers take advantage of this redundancy by using
load balancing when contacting name servers [DOK92].

Security

None of the proposed LISP mapping systems have specified security fea-
tures, except NERD [Lea08]. While some existing solutions could be used to
secure them (e.g., applying the Secure Inter-Domain Routing architecture
to LISP+ALT [BFMR10]), they have not received enough wide-scale imple-
mentation, testing and operational experience. DNSSEC adds the required
security mechanisms to allow resolvers to authenticate the replies received
from DNS servers. It is readily available in most DNS implementations, with
some top-level domains already deploying it. It does introduce additional

46 Chapter 4. LISP-Tree

complexity to the mapping system, but all add-on security mechanisms do
so.

For completeness sake, security was included in this section, but a de-
tailed security analysis is left for future work.

Impact of configuration errors

DNS configuration errors impact only the domains served by the mis-
configured name server and do not propagate to the whole system. With
LISP+ALT, the main source of misconfiguration would be the advertise-
ment of incorrect EID prefixes via BGP on the overlay network. Experience
with BGP shows that many misconfiguration errors could cause network
operators to advertise an invalid BGP prefix with different impacts on the
network [MWA02]. All these misconfiguration errors could affect the ALT
overlay as well.

4.2.2 LISP-TREE Overview

LISP-TREE is a hierarchical mapping system that has a clear separation
of the mappings storage and their discovery. The mapping storage is under
the responsibility of the ETRs while the discovery mechanism is built on top
of the LISP-Tree protocol. The role of the discovery mechanism is to provide
a list of ETRs that respond authoritatively for the mappings associated to
the queried EID.

Fig. 4.1 presents an overview of LISP-TREE. When a requester needs
to obtain a mapping for an EID, it first sends a request to the discovery
part that answers with a list containing the locators of the authoritative
ETRs for the requested EID. The requester then sends a Map-Request to
one of these ETRs and receives a Map-Reply containing a mapping for the
identifier. The mappings are provided by the ETR to let them control their
traffic by setting the priorities and weights.

4.2.3 LISP-TREE Model

The binding between the EIDs and the locators is kept on the authori-
tative egress tunnel routers of customer domains. These ETRs manage and
distribute these mappings with the aim of sinking all self owned EID-prefix
mapping requests. All the mapping databases are combined to form the
mapping storage. It will not be further detailed here as its functionality has
already been defined in the LISP specification [FFML10a] and explained in
Sec. 2.3. We assume that the mappings are more dynamic than the list of
authoritative ETR providing these mappings.

ETRs respond with Map-Replies only for the EID space they are au-
thoritative for [FFML10a]. Because of this, it is the responsibility of the in-
quiring node, the Map-Request originator, to find the locators of the ETRs

4.2. LISP-TREE 47

Figure 4.1: Global overview of LISP-TREE. 1. The requester asks the dis-
covery part to have the locator of some authoritative ETRs for an EID e.
2. The discovery part provides this list. 3. The Map-Resolver sends a Map-
Request to one of these ETRs. 4. The ETR sends a Map-Reply back with
a mapping for e.

authoritative for the queried identifier. Such functionality is provided by the
discovery part of LISP-TREE. It builds its tree by logically linking LISP-
TREE Servers (LTS).

All the LTSes are responsible for an EID prefix and build a hierarchy
determined by their intrinsic relationship. Therefore, an LTS responsible
for EID prefix p1 is ancestor of an LTS responsible for EID prefix p2 if and
only if p1 � p2

1. Moreover, any LTS of prefix p1 is a parent of an LTS
responsible for prefix p2 if and only if there exists no LTS of prefix p3 such
that p1 ≺ p3 ≺ p2. All these strict ordering relations are stored by parent
LTS as a list of child servers. Exceptions are the lowest level servers, the
leaves, which store a list of ETRs that are responsible for their associated
prefix. Hence, the search for any EID e ends at a leaf of prefix p that respects
p � e.

The authoritative ETRs are registered to their responsible leaf LTSes by
using the Map-Register procedure defined in [FF09]. In LISP terminology,
the leaf LTSes are called Map-Servers (MS) [FF09]. However, the Map-
Server considered in LISP-Tree differ from those proposed in [FF09]. A LISP
Map-Server is supposed to received encapsulated Map-Requests. When it
receives such a Map-Request, it decapsulates it and send the inner Map-

1
p � q if and only if prefix p is shorter (less specific) than q

48 Chapter 4. LISP-Tree

Request to a registered ETR for the EID. In LISP-Tree, a Map-Server does
not forward the Map-Request, instead it returns the list of authoritative
ETRs to the requester.

To make LISP-TREE transparent for the ITRs, Map-Resolvers (MR) [FF09]
are added to the system. When a Map-Resolver receives a Map-Request
from an ITR, it queries the LISP-TREE discovery part to obtain the list of
the authoritative ETRs for the EID in the request. Once the MR has the
corresponding list of authoritative ETRs, it sends a Map-Request to one of
them and subsequently forwards the received Map-Reply to the requesting
ITR. Thanks to this functionality, the ITRs do not need to know anything
about LISP-TREE, they just need to send a Map-Request to an MR.

To avoid circular dependencies in the addresses, every node involved in
the mapping system (i.e., MRs, LTSes, MSes and xTRs) is addressed with
a locator.

4.2.4 LISP-TREE Modes

Like DNS, LISP-TREE can run in two distinct modes: (i) recursive and
(ii) iterative. Fig. 4.2 illustrates the difference between the two and presents
a requester who wants to obtain a mapping for the EID 192.0.2.20. To
simplify the figure, only the last EID octet’s is shown.

Recursive Mode

In the recursive mode (Fig.4.2(a)), the MR requests a mapping for EID
e from a root LTS2. The root LTS sends a request to one of its children
responsible for e and so on until a MS is reached. The MS then generates a
list of e’s authoritative ETRs locators and this list is back-walked until the
answer arrives the root LTS. At that stage, the root LTS sends the reply
back to the MR.

Iterative Mode

In the iterative mode (Fig.4.2(b)), the MR requests a mapping for EID
e from a root LTS. The LTS then sends back the locators of its children
responsible for e to the MR. The MR then sends a request for the mapping
to one of those children. The child does the same and answers with a list
of locators of its children responsible for e, and so on until a MS is reached.
The MS then generates a list of e’s authoritative ETRs locators and sends
it to the MR.

In both modes, when the MR receives the ETR locators list, it sends a
Map-Request to one of them to get a mapping for e and eventually receives a
Map-Reply. It is possible to optimize for latency in the last step, by allowing

2A root LTS is an LTS that serves the root of the tree

4.2. LISP-TREE 49

(a) Recursive mode: queries in the discovery parts are progressively
transmitted to a MS. The MS answer then back-walk the tree up to
the root that sends the answer to the MR.

(b) Iterative mode: queries are moving back and forth from the MR
and the LTSes, starting at a root LTS until a MR is reached. The MS
then provides the answer to the MR.

Figure 4.2: LISP-TREE works with different mode: (a) recursive and (b)
iterative.

the MS to send a Map-Request to a registered authoritative ETR but we
do not consider this scenario in order to keep the architectural separation
and with that the good troubleshooting properties of LISP-TREE. This
separation also optimize the latency for retrieving mobile node mappings.

50 Chapter 4. LISP-Tree

4.2.5 LISP-TREE Deployment Scenario

A key factor for the long-term success of a mapping system is its abil-
ity to scale. However, the effective deployment of a mapping system also
largely depends on its ability to fit with a business model accepted by the
community willing to use it.

We therefore propose a model that relies on the the delegation principle
which is very common in the Internet. A globally approved entity (e.g.,
IANA, IETF. . .) defines the minimum set of rules and delegates the op-
erations to independent service providers that can, at their turn, delegate
to other providers and fix extended rules. People wishing to gain access to
the system are free to contact any provider and sign agreements with them.
The providers are differentiated by the extra services they propose.

The EID prefix delegation follows an approach similar to the current
Internet prefix allocation. The IANA divides the EID space in large blocks
and assigns them to five different Regional EID Registries (RER) that could
be the current RIRs. The RERs are responsible for the allocation of prefixes
to the Local EID Registries (LERs) and large networks. The LERs can then
provide EID prefixes to some customers or LERs below, which, at their turn,
can delegate the prefixes to other LERs or to customers. In this scenario,
we consider that the EID space is independent from the currently assigned
IP space. For example, it could be a subset of the IPv6 address space. This
separation means that the EID space does not have to support all the legacy
decomposition of prefixes observed on the Internet.

In this scenario, the tree has at least three levels. The first level (i.e.,
the root) is composed of LTSes maintained by the RERs. These servers
replicate the same information: the list of all LERs responsible for all the
large blocks of EIDs. The number of such blocks is limited (maximum 255 in
an /8 decomposition perspective) meaning that the total state to maintain
at the root LTSes is limited even if every prefix is maintained by tens of
different servers. Level 2 of the tree is composed of the LTSes maintained
by the LERs and the lowest level encompasses the map servers responsible
for customer ETRs. State at level 2 depends on the deaggregation of the
large block of EIDs and implicitly on the number of subscribed customer
map servers. To avoid having to support a large number of deaggregated
prefixes, an LTS can partially deaggregate its EID block (e.g., divide it by
two) and delegate such sub-blocks. In other words, the state to maintain at
an LTS can be controlled by adapting the depth of the tree.

It is important to note that the EID prefixes are independent of any given
ISP, and that additional levels in the hierarchy can be defined if needed. It
is worth to note that this raises the problem of registrar lock-in: once an
organization gets an allocation, it cannot move the allocated prefix to a
different registrar. It is also important to remark that any LTS (including
the MSes) can be replicated and maintained by independent server operators

4.3. Simulation Model 51

and implementations. Therefore, to limit the impact of the lock-in, we would
recommend the registrars to ensure enough diversity in LTS operators for
their blocks. No significant lock-in is observed in DNS today thanks to this
way of deploying TLDs. The load can also be controlled among the different
replicas by deploying them in anycast. Finally, the use of caches, like in the
DNS, can reduce the number of LTSes involved in every query.

4.3 Simulation Model

LISP is provided on some Cisco platforms and two experimental im-
plementations are provided for the research comunity [ISB11, SN09] (see
Sec. A). However, while these implementations help to validate and gain
operational experience with the proposed protocols, they do not allow to
estimate the behavior of LISP at a very large scale. Coras et al. developped
CoreSim [CJC+09] for this purpose, an open source Internet-scale LISP de-
ployment simulator3. CoreSim combines a packet trace and Internet latency
data to simulate the behavior of an ITR and the mapping system.

CoreSim works on top of a topology built from measurements performed
by the iPlane infrastructure [MIP+06], which provides Internet topology
information and the latency between arbitrary IP addresses. The simula-
tor reports mapping lookup latency, the load imposed on each node of the
mapping system and cache performance statistics.

4.3.1 Topology Model

The first element to model the behavior of mapping systems in a large
scale network is the network itself. For CoreSim, we chose to use the current
Internet as the reference topology. The topology used in the simulator is
composed of 14,340 points of presence (PoPs), one per autonomous system
(AS), about which iPlane [MIP+06] knows inter-domain peering informa-
tion. For the simulations we assume that each AS deploys one and only one
LISP tunnel router (xTR) and that its xTR is located on its most connected
PoP.

Once the xTRs are selected, they are assigned several EID prefixes.
Those prefixes are the IP prefixes currently advertised in the default-free
zone (DFZ) by this AS. Since the causes of prefixes deaggregation in BGP is
not always clear, we removed from the iPlane dataset the more specific pre-
fixes. These prefixes are mostly advertised for traffic engineering purposes
[MZF07] and would not be advertised with LISP as it natively supports
traffic engineering in the mappings. A total number of 112, 233 prefixes are
assigned based on originating AS to their respective xTR4.

3Available from http://lisp.cba.upc.edu/
4Data is from March 2009

52 Chapter 4. LISP-Tree

CoreSim relies on the iPlane Internet latency lookup service that re-
turns the measured latency between arbitrary IP addresses to simulate the
time required to obtain a mapping in the simulated mapping system. Un-
fortunately, iPlane does not provide all possible delay pairs. Because of
this, for 35% of the lookups, we use a latency estimator that correlates the
geographical distance between IP addresses as reported by the MaxMind
database5 with the latencies based on an iPlane training dataset (see details
in [CASBDP09]). This approach was found only slightly less accurate than
other more complex algorithms in [AL09] using measurement data from over
3.5 million globally well distributed nodes.

An important assumption made by CoreSim is that there is no churn in
the topology during a simulation run, meaning that the delay between two
nodes is constant, and that nodes never fail.

4.3.2 ITR Model

CoreSim studies the behavior of only one ITR at a time, therefore, out of
all xTRs, one is selected as the ITR under study. The PoP for the selected
ITR is determined by manual configuration, based on the point of capture
of the traffic trace that is fed to the simulator. The ITR caches mappings
(i.e., resolved Map-Requests) and evicts entries after 3 minutes of inactivity.

4.3.3 Mapping System Models

In CoreSim, a LISP Mapping System is modeled as an IP overlay. The
overlay is mainly composed of nodes of the topology module, but also in-
cludes some mapping system specific ones. As expected the organization of
the overlay depends on the considered mapping system.

The simulator routes Map-Requests from the ITR to the node author-
itative for the mapping (ETR). The path of the query and the latency of
each hop are recorded in order to infer statistics and metrics of interest.

LISP+ALT model

The LISP+ALT draft [D. 09] envisages a hierarchical topology built with
GRE tunnels but does not recommend any organization for the overlay.
Therefore, among all the possible organizations, a hierarchical overlay struc-
ture with strong EID prefix aggregation for advertisements has been chosen.

Based on discussions on the LISP mailing list, a three-level hierarchy was
decided (see Figure 4.3). In this hierarchy, the bottom leaf nodes are ALT
routers belonging to a certain domain. The upper two levels are dedicated
ALT routers, which may be offered as a commercial service by providers or
registries. Each of these nodes is responsible for certain aggregated prefixes,

5Available from http://www.maxmind.com/.

4.3. Simulation Model 53

Figure 4.3: LISP+ALT architecture

and connects to all lower level nodes which advertise sub-prefixes included
in those prefixes. The hierarchy consists of 16 root (first) level ALT routers,
responsible for the eight /3 prefixes, and 256 second level ALT routers, each
responsible for a /8 prefix. For each /3 prefix two ALT routers at different
locations are used and each lower level ALT router connects to the one with
the lowest latency. All these 16 routers are connected to each other with
a fully meshed topology. Please note that LISP+ALT can support other
topologies and for instance include intra-level links.

Map-Requests are routed via the shortest path through the hierarchy
starting from the bottom layer where the ITR is connected to the ALT
topology.

LISP-DHT model

The simulator considers the 112, 233 filtered prefixes from iPlane and
builds a static Chord ring of the same size, using a trace-based approach to
compute the finger table on each node. The last EID of each prefix is used as
the ChordID of the LISP-DHT nodes that is responsible for this EID prefix.
EID lookups proceed according to the standard Chord protocol, which we
implemented in CoreSim.

LISP-TREE model

CoreSim considers only one ITR at a time, and because the MR always
selects the closest root LTS, the one selected by the MR is always the same.
Therefore, the simulator considers only one root LTS for the tree. This
server connects to the 256 level 2 LTSes that are each responsible for one
/8 EID prefix. In turn, these servers know about all the third level LTSes

54 Chapter 4. LISP-Tree

that are responsible for the prefixes included in their /8 prefix. These third
level servers are the map servers the ETRs subscribe to. The simulator
assumes that an ETR registers to a single MS, and that MS is located in
the same PoP as the ETR. Since the simulator assigns them to the same
PoP, the resulting latency between them is 0. This deployment scenario is
an instantiation of the one presented in Sec. 4.2.5 which is congruent with
the current Internet.

Additional implementation details on the simulator can be found in [Cor09].

4.4 Mapping System Comparison

Section 4.2 described in detail the advantages of our proposed mapping
system from an architectural point of view. This section complements that
with a qualitative analysis, comparing several performance metrics of three
mapping systems: lookup latency, hop count, node load and the amount of
state stored in mapping system nodes. Low lookup latency improves user
experience for new flows, while node load and state affect the scalability
of the system. We begin by describing the packet traces that support our
evaluation.

4.4.1 Experimental Datasets

In order to evaluate the performance of the mapping systems presented
above we used traffic traces collected at the border routers of two university
campuses, because border routers are the most likely place to deploy a LISP
tunnel router. The first trace was captured at Université catholique de
Louvain (UCL) in NetFlow format, and the second is a packet trace from
Universitat Politècnica de Catalunya (UPC).

UCL

The UCL campus is connected to the Internet with a 1 Gbps link via
the Belgian national research network (Belnet). This trace consists of a one
day full NetFlow trace collected on March 23, 2009. For this chapter, only
the outgoing traffic is considered, representing 752 GB of traffic and 1,200
million packets for an average bandwidth of 69 Mbps. A total number of
4.3 million different IP addresses in 58,204 different BGP prefixes have been
contacted by 8,769 different UCL hosts during the 24 hours of the trace.
The UCL campus is accessible to more than 26,000 users.

NetFlow generates transport layer flow traces, where each entry is de-
fined as a five-tuple consisting of the source and destination addresses and
ports, and the transport layer protocol. The simulator however requires
packet traces. This is why the NetFlow trace collected at UCL has been

4.4. Mapping System Comparison 55

converted into a packet trace: for each flow, we generated the number of
packets specified in the NetFlow record, distributed evenly across the flow
duration and the size of the flow. Throughout the rest of the chapter, the
term UCL trace corresponds to the packet trace obtained from the NetFlow
trace collected at UCL.

UPC

The second unidirectional trace we used was captured at the 2 Gbps
link connecting several campus networks of UPC to the Catalan Research
Network (CESCA) with the help of the CoMo infrastructure [BRISC+07]. It
consists of the egress traffic on May 26, 2009 between 08:00-11:49 local time,
and contains about 1,200 million packets accounting for 463 GB of traffic
with an average bandwidth of 289 Mbps. 4.3 million distinct destination
IP addresses from 56,387 BGP prefixes were observed in the trace. UPC
Campus has more than 36,000 users.

4.4.2 Cache Miss Rate

The average packet rates at the UCL and UPC border routers are 13
Kpkts/s and 87 Kpkts/s, respectively. However, due to the nature of the
traffic, a mapping is already cached by the ITR for most of the packets, with
only 0.31% and 0.1% of cache misses for the mentioned vantage points. A
cache miss occurs when no mapping is known for an EID to encapsulate.
On cache miss, a Map-Request is sent to obtain a mapping, resulting in
2,350,000 Map-Requests sent for UCL and 560,000 for UPC during the 24h
and 4h periods of the traces, which are shorter than the default TTL value
(1 day) for mappings. As a result, all cache evictions were due to lack
of activity to a particular prefix for 3 minutes, rather than expired TTL.
These values for Map-Requests have to be compared with the total of 1,200
million packets observed for both traces. The difference between UCL and
UPC can be explained by the higher average packet rate of the UPC trace,
which keeps the cache more active, resulting in less timed out entries.

During our simulations the maximum number of mapping cache entries
reached was 22,993 and 15,011 for the two traces. This is an order of mag-
nitude less than routes in the DFZ. For a detailed mapping cache study,
please refer to [IB07].

It is important to note that the results are obtained for a cache initially
empty. Therefore, the miss rate is very important at the beginning of the
experiment and thus influences the number of requests. The number of
Map-Requests would have been dramatically smaller if we had considered
the system at the steady state.

56 Chapter 4. LISP-Tree

4.4.3 Mapping Lookup Latency

The mapping lookup latency is particularly important in mapping sys-
tems as it represents the time required to receive a Map-Reply after sending
a Map-Request. When an ITR waits for a mapping for an EID, no packet
can be sent to this EID. If this delay is too long, the traffic can be severely
affected.

For instance, one of the Internet’s most popular resources, the World
Wide Web is continuously evolving, delivering web pages that are increas-
ingly interactive. Content on these pages is often from different servers,
or even different providers, and presents a multi-level dependency graph
[Wis07]. This is already a challenging environment for some applications,
and the introduction of a new level of indirection has the potential to in-
troduce additional latencies. However the ATLAS study [LIJM+09] shows
that content is more and more comming from datacenters and CDNs.

To compare the considered mapping systems, we define the map-stretch
factor of a lookup as the ratio between the total time required for performing
it and the round-trip delay between the ITR and ETR. A low map-stretch
indicates that the mapping system introduces a low delay overhead.

Fig. 4.4 presents the cumulative distribution function of the map-stretch
factor obtained for both the UCL and UPC traces. In most of the cases
(over 90%) the iterative LISP-TREE presents a stretch factor of 2. After
the initial cache warm up, there is no need to contact the root and level
2 servers, their responses are already cached. Still, the discovery phase
cannot be completely avoided and the level 3 MS have to be contacted for
the RLOCs of the ETRs. These are not cached in the MR, because it would
have a negative impact on the mapping dynamics, limiting the possibilities
for supporting fast end-host mobility.

Recursive LISP-TREE is slower than iterative in over 90% of the cases.
The caching limitation mentioned in the previous paragraph has particu-
larly negative consequences for this operating mode: since the only response
arriving to the MR is the list of RLOCs for the authoritative ETRs, no
caching at all can be done. The 10% of the cases when recursive is better
than iterative can be attributed to the path via the tree being faster than
from the MR to the MS, resulting in map-stretch ratio values below 2.

Concerning LISP+ALT, its latency performance is similar to LISP-TREE
iterative. This is because in LISP+ALT, the queries are routed through to
the overlay topology, which is composed by core routers. According to our
assumptions (see Section 4.3), these nodes are located in well connected
PoPs. However, in iterative LISP-TREE the query flows in almost all the
cases between the ITR and ETR, which may not be so well-connected.
When comparing LISP+ALT and LISP-TREE recursive, we can see that
LISP+ALT performs slightly better. In the recursive mode of LISP-TREE
queries are also forwarded through a topology of well-connected nodes, but

4.4. Mapping System Comparison 57

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Map−stretch factor

C
D

F

LISP−TREE (Iterative)
LISP−TREE (Recursive)
LISP+ALT
LISP−DHT

(a) UCL

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Map−stretch factor

C
D

F

LISP−TREE (Iterative)
LISP−TREE (Recursive)
LISP+ALT
LISP−DHT

(b) UPC

Figure 4.4: CDF of map-stretch ratio. Use of caching makes LISP-TREE
have a constant value for the majority of the lookups.

as we will see, they have to follow a much longer path.

As expected, LISP-DHT has the highest latency because of the longer
path taken by the queries routed through the P2P topology. This is a well
known problem in P2P networks, and research to tackle this issue is ongo-
ing [XYK+08]. However, it is worth to note that LISP-DHT uses a particular

58 Chapter 4. LISP-Tree

Chord ring, where the peers do not choose their identifiers randomly, but
as the highest EID in the EID prefix. This enforces mapping locality that
ensures that a mapping is always stored on a node chosen by the owner
of the EID prefix. As a consequence, it may be difficult for LISP-DHT to
benefit from existing optimization techniques proposed in the literature.

Average lookup latencies were close to half a second for all mapping
systems except LISP-DHT, which had values slightly larger than one second.

Fig. 4.5 helps to better understand the mapping latency difference be-
tween the mapping systems. It presents a CDF of the number of hops passed
by over which a request and reply.

The iterative version of LISP-TREE has the lowest hopcount values,
which can be explained, just like for the latency, by caching in the Map-
Resolver. Recursive LISP-TREE not helped by caching, and queries have
to traverse the full path in each case, for a maximum of 8 hops (Fig. 4.2(a)).

The topology chosen for LISP+ALT in the simulator (Fig. 4.3) limits
the maximum number of hops to 6, but in 95% of the cases, this maximum
number of hops is observed. In order to have a shorter path, the destination
EID would have to be in one of the /8 prefixes that doesn’t have a more
specific part announced separately. As we will see in the next section, this
also increases the load on the nodes composing the LISP+ALT mapping
system. In fact, Fig. 4.3 shows that all queries are forwarded through the
root layer. This may result in scalability problems.

LISP-DHT has a much higher hop count with a maximum of 17 hops.
This not only increases the lookup latency, it means that more nodes are
involved in the resolution of a mapping than in the case of the other mapping
systems, increasing the overall load on the system and the probability of
failure.

Summarizing, these results reveal significant differences among the map-
ping systems under consideration. LISP-TREE and LISP+ALT both use a
hierarchical model, where nodes on the query path tend to be congruent
with the topology. In contrast, the Chord overlay used to route queries
in LISP-DHT does not follow the underlying physical topology. Further,
iterative LISP-TREE allows caching and this reduces its mapping latency.

The latency introduced by the mapping system in case of cache misses
will likely have a negative impact on the higher layer protocols, in particular
on congestion control in the transport or application layer. These issues
deserve a dedicated study, and are left for future work.

4.4.4 Node Load

We define the node load as the total number of Map-Request messages
processed by nodes of the mapping system during the full run of the trace.
For a more thorough analysis, we differentiate between the load caused by
messages forwarded by the node (transit load) and the load due to the

4.4. Mapping System Comparison 59

2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of hops

C
D

F

LISP−TREE (Iterative)
LISP−TREE (Recursive)
LISP+ALT
LISP−DHT

(a) UCL

2 4 6 8 10 12 14 16 18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of hops

C
D

F

LISP−TREE (Iterative)
LISP−TREE (Recursive)
LISP+ALT
LISP−DHT

(b) UPC

Figure 4.5: CDF of hop count. For hierarchical mapping systems it is almost
constant, for LISP-DHT we have a wide array of different values.

messages for which the node is the final destination (mapping load). Map-
ping load mainly depends on the observed traffic (distribution of destination
EIDs) and is mostly the same for all studied mapping systems. On the other
hand, transit load is mapping system specific and depends on how a request
is sent to the holder of the mapping. Table 4.1 summarizes the load statistics

60 Chapter 4. LISP-Tree

Table 4.1: Node load in levels 1 and 2
Level 1 Level 2

Mapping System Avg. Max. Avg. Max.

LISP-TREE (Itr.) 158 158 372 2,354

LISP-TREE (Rec.) 2,351,815 2,351,815 14,941 70,520

LISP+ALT 655,600 2,348,695 29,776 2,356,404

LISP-DHT 147,860 1,257,642 258 2,365,797

of the UCL trace.

The root LTS is only contacted 158 times in the case of iterative LISP-
TREE, that is, the number of times necessary to look up the locators of
the level 2 nodes responsible for the contacted /8 prefixes. Since these
locators are cached by the Map-Resolver, they are only requested once. The
load on the level 2 servers is also very low, compared to the other mapping
systems, where there is no caching on intermediate nodes. In recursive LISP-
TREE all Map-Requests have to pass through the root node, and then get
distributed to the lower level nodes, according to the destination prefix. In
LISP+ALT, level 1 consists of 7 logical nodes for the seven /3 covering
the routable unicast prefixes. The nodes responsible for IP space with high
prefix density sustain a considerably higher load.

For LISP-DHT, level 1 in the table refers to the transit load of the ITR’s
fingers, while level 2 to the transit load of all other nodes. Figure 4.6 shows
the transit load in LISP-DHT. Vertical lines represent fingers of the ITR
at UCL, which was originating the Map-Requests. From the 112, 233 nodes
participating in the DHT, only 74% have routed or received Map-Request
messages and are depicted in the figure. We can observe a sharp surge after
a load value of 1000, that accounts for about 1.8% of the total number of
nodes on the DHT. As expected we find many of the ITR’s fingers among
these hotspots. Of the 2, 365, 797 Map-Requests initiated, more than half
pass via the last finger and one third via the second last finger. Among the
top ten most loaded nodes 7 are not fingers.

Upon further inspection it was discovered that the node with the highest
load was the last finger of the ITR. Due to the way Chord lookups work, this
node is responsible for half of the key space on the Chord ring, which explains
the high load. Further investigation revealed that there is one node which
is last finger for 5.6% of the LISP-DHT participants: the one responsible
for the prefix 4.0.0.0/8. This is the first prefix from the IPv4 space present
in the iPlane dataset. Since Chord is organized as a ring (key space wraps
around), this node becomes responsible for the EID space of classes D and E
as well. Because this EID space is not represented in the overlay, the result
is a disproportional load. The UPC trace produced similar load distribution
results.

4.4. Mapping System Comparison 61

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ordered List of Nodes

T
ra

ns
it

Lo
ad

UCL − DHT − Transit Load

DHT Finger Node

DHT Node

Figure 4.6: LISP-DHT load distribution. Fingers of the ITR, represented
with the vertical lines, cluster on the right, having a considerable load.

LISP-DHT’s transit traffic distribution characteristics may be desirable
for peer-to-peer networks, but are a major disadvantage for a mapping sys-
tem. Since the transit route is defined only by the Chord routing algorithm,
two issues arise: lack of path control may lead to choke points at nodes be-
longing to small sites, and exposure of mapping traffic to unknown third par-
ties (potentially leading eavesdropping and denial-of-service attacks). This
makes LISP-DHT a poor choice as a mapping system.

Due to these architectural differences, the mapping systems under study
exhibit different transit load characteristics. Indeed, in the case of LISP-
DHT all participating nodes are both transit and destination nodes, while
the hierarchical mapping systems have dedicated transit nodes on levels 1
and 2. The iterative version of LISP-TREE has a significantly lower load
in those dedicated transit nodes, because of the caching done in the Map-
Resolver.

LISP+ALT needs to route all packets through the root nodes, produc-
ing a potential hot spot. LISP-TREE on the other hand avoids using the
root nodes most of the time, because it is able to cache intermediate nodes.
Apart from the obvious scalability advantages, this improves reliability as
well, since a total failure of the root infrastructure would still allow par-
tial functioning of LISP-TREE, while no resolutions would be possible in
LISP+ALT.

62 Chapter 4. LISP-Tree

10
0

10
1

10
2

10
3

10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of child nodes in L1 (fanout)

C
D

F

Figure 4.7: The cumulative distribution of the amount of state in the level
2 LISP-TREE and LISP+ALT nodes

4.4.5 Operational considerations

The mapping requests are transmitted through the mapping system to-
wards the queried ETR. To achieve this, every node involved in the topology
has to store some state about its neighbors. The amount of state needed on
each node is directly related to the mapping system technology. For exam-
ple, in an horizontally organized system such as LISP-DHT, all nodes have
the same amount of state (32 entries). On the contrary, the amount of state
needed on a node in a hierarchical mapping system depends on its position
in the hierarchy.

LISP-TREE and LISP+ALT are both hierarchical topologies, and in this
chapter have been deployed according to the same EID prefix distribution,
and thus have the same amount of state. The root nodes refer to all the
disjoint /8 prefixes, which amounts to a maximum of 256 entries when all
are allocated. The number of nodes that are referred to by level 2 nodes
depends on how the prefixes are allocated. Fig. 4.7 shows the distribution
of the state kept at each level 2 node (both LISP-TREE and LISP+ALT).
Finally, the leaves store a small amount of entries, equal to the number of
announced prefixes.

Fig. 4.7 shows that 15% of the nodes have more than 1000 children and
the most connected node has 6072 children. For LISP-TREE this is not an
issue, as the nodes only need to keep a database that relates a prefix with
the list of locators. It is well known that currently deployed DNS servers
scale to much more than thousands of records [VB.09]. However, in the case

4.5. Implementing LISP-Tree with LISP Iterable Mappings 63

of LISP+ALT, a BGP session has to be maintained for each child, as well
as a tunnel between the two nodes. The costs in terms of configuration,
memory, and processing are much higher than for LISP-TREE. A way to
alleviate this would be to increase the depth of the tree and thus reduce the
number of children of any one node. Unfortunately, this solution stretches
the path length within the tree and is likely to increase the mapping lookup
latency. Another solution could be to follow an organic deployment, but
in that case, the mapping system would eventually have scalability issues
because of the lack of aggregability.

4.5 Implementing LISP-Tree with LISP Iterable

Mappings

Different technologies can be used to implement the LISP-Tree protocol.
For instance, LISP-Tree is a DNS like system, so that, the DNS proto-
col could be used directly. However, there is a major difference between
DNS and LISP-Tree: DNS is designed to work with Fully Qualified Do-
main Names (FQDN) while LISP-Tree is designed to work with EID pre-
fixes. While the hierarchy is explicit in FQDN with the dot separator, it
is implicit in EID prefixes. For instance, the FQDN acme.example.com.

shows that acme is a child of the example domain that belongs the com

top level domain. EID prefixes are fundamentally different as they are
following a longest-match prefix pattern. Reverse DNS supports longest
prefix matching but DNS is far from being optimized to work with IP pre-
fixes [EdGV98, Moc89, Moc87a, THKS03]. A major concern with DNS is
the way IP addresses are encoded and configured. We therefore propose not
to use DNS directly to implement LISP-Tree but to extend the LISP con-
trol plane. However, LISP-TREE can be built over DNS [MD95] but then
it must be deployed independently to keep the separation between the DNS
names and the identifier resolutions.

The LISP control plane contains four types of message. The Map-
Request, Map-Reply, Map-Register and the Encapsulated Control Message
that we have discussed in Sec. 2.3. Unfortunately, these messages are not
sufficient to implement LISP-Tree. LISP-Tree requires a message to pro-
vide a list of authoritative ETR that can be Map-Requested to retrieve a
mapping but Map-Replies are used to provide the list of locators to use for
encapsulating packets to an EID prefix. A mapping that contains a list of
authoritative ETRs is called an Iterable mapping.

A first solution could be to use the Map-Reply as-is and interpret them
differently depending on the context. When an LTS receives a Map-Reply,
the list is considered as the list of authoritative ETR. When an ITR receives
a Map-Reply, the Map-Reply corresponds to the requested mapping. This
approach is simple and do no require any change in the protocol but this im-

64 Chapter 4. LISP-Tree

plicit information means that the system must maintain information about
the context to remove any ambiguity. Managing this context may become
complex if a node is at the same time a Map-Resolver, an ITR and an LTS6.
Therefore, we propose to add a new LISP control plane message, the LISP
Iterable-Reply to support Iterable mappings.

LISP Iterable-Reply

The LISP Iterable-Reply can be considered as a lightened Map-Reply
that only contains a list of LTS or ETR RLOCs and the EIDs these entities
are authoritative for. Fig. 4.5.1 shows the LISP Iterable-Reply message
format. An Iterable-Reply message is composed of records. Each record
corresponds to an EID prefix and its list of authoritative LTS/ETR locators.
The records are time-limited by using a TTL. As for a Map-Reply, the nonce
is echoed from the request that generated the Iterable-Reply. The Iterable-
Reply message also contains the T -bit (terminal-bit). This flag is set if the
progression in the hierarchy ends. When the T -bit is set, the locators in
the Iterable-Reply are all referencing authoritative ETRs, not LTS. When a
node operates in recursive mode, the Map-Reply that it receives must have
the T -bit set.

By construction, the Iterable-Reply is a backward compatible extension
to LISP as it is a new message type that only needs to be implemented by
the LISP-Tree nodes.

4.5.1 Map-Request Extension for LISP-Tree

An Iterable-Reply is an answer to a request for an Iterable mapping.
Two solutions are possible. On the one hand, a new control plane message
can be introduced for this purpose. On the other hand, Map-Request can be
used. Proposing a new message type is probably the cleanest solution from
an architectural point of view. However, the semantic of this new message
would not be significantly different than the semantic of a Map-Request.
Nonetheless, the Map-Request message does not contain a field that could
be used to inform the receiver that an Iterable-Reply is expected instead
of a Map-Reply. Consequently, we propose to extend the Map-Request
format with the addition of a flag in the reserved space. The I-bit – for
Iterable-bit – flags indicates whether the requester is expecting an Iterable-
Reply or a Map-Reply. If this bit is set, the requested node must return
an Iterable-Reply. A second flag must be added to the Map-Request to
indicate if the requester operates in recursive mode or not. This flag, the
R-bit, for recursive bit, is added in the reserved space. This bit is set only
if the requester is in the recursive mode. When this bit is set, the returned

6The context ID of a message can be its nonce but the nonce must remain random to
avoid security problems

4.5. Implementing LISP-Tree with LISP Iterable Mappings 65

Iterable-Reply must have the T -bit set. If the T -bit is not set, the requester
must fall back to the iterative mode or consider that the resolution is not
possible. Fig. 4.5.1 and Fig. 4.5.1 show the message format.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Type=1 |A|M|P|S|I| Reserved | IRC | Record Count |

+-+

| Nonce . . . |

+-+

| . . . Nonce |

+-+

| Source-EID-AFI | Source EID Address ... |

+-+

| ITR-RLOC-AFI 1 | ITR-RLOC Address 1 ... |

+-+

| ... |

+-+

| ITR-RLOC-AFI n | ITR-RLOC Address n ... |

+-+

/ | Reserved | EID mask-len | EID-prefix-AFI |

Rec +-+

\ | EID-prefix ... |

+-+

| Map-Reply Record ... |

+-+

| Mapping Protocol Data |

+-+

Figure 4.8: Map-Request extension to support the Iterable Mapping exten-
sion

Inasmuch as these flags are in the current reserved block of bits, the
legacy implementations always set them to 0, the extension is thus backward
compatible.

One could argue that similar flags could be used in the Map-Reply to
implement the iterable mappings. The idea is rational but suffers from
two drawbacks. First, the records in Map-Replies contain many fields that
are not relevant for the iterable mappings causing an unnecessary overhead.
Second, the semantic of a Map-Reply differ from the semantic of an Iterable-
Reply. While a Map-Reply carries mappings and their locators, the Iterable-
Reply carries the authoritative ETR locators for a given EID prefix. We then
conclude that separating these two roles is cleaner from an architectural
standpoint.

66 Chapter 4. LISP-Tree

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Type=5 | Reserved | Record Count |

+-+

| Nonce . . . |

+-+

| . . . Nonce |

+--> +-+

| | Record TTL |

| +-+

R | Locator Count | EID mask-len | EID-AFI |

e +-+

c | EID-prefix |

o +-+

r L--| Unused Flags | Loc-AFI |

d o +-+

| c--| Locator |

+--> +-+

Figure 4.9: Iterable reply message format

4.5.2 Functional Specifications

This section describes the actions performed on the entities involved in
the LISP-Tree hierarchy. We assume that Map-Resolvers and Map-Servers
are connected to the LISP-Tree mapping system. We also assume that ITRs
are configured with a Map-Resolver and that ETRs are registering to Map-
Servers.

When an ITR must retrieve a mapping for an EID, it sends a Map-
Request to its Map-Resolver as specified in the LISP specification [FFML10a,
FF09]. If the Map-Resolver is caching a mapping for the requested EID, it
replies to the ITR with a Map-Reply containing the mapping for the re-
questing EID. If the Map-Resolver has no mapping for the requested EID
in its cache, it sends an extended Map-Request to a root LTS. The Map-
Request is always sent with the I-bit set. Once the Map-Request has been
sent to the LTS, the Map-Resolver waits for an Iterable-Reply. If the re-
ceived Iterable-Reply does not have the T -bit set, the Map-Resolver sends an
extended Map-Request with the I-bit set to a locator found in the Iterable-
Reply and waits for an Iterable-Reply. This procedure is repeated until the
received Iterable-Mapping is flagged with the T -bit. Upon reception of a T -
bit flagged Iterable-Reply, the Map-Resolver sends a Map-Request without
the I-bit set to one of the locators in the Iterable-Reply. A Map-Reply is
eventually received by the MR. Upon reception of the Map-Reply, the MR
sends a Map-Reply to the ITR with the mapping contained in the received

4.5. Implementing LISP-Tree with LISP Iterable Mappings 67

Map-Reply. The Map-Resolver can cache the intermediate locators in the
tree to speed up any further resolution. In this case, the Map-Resolver does
not sends the first Map-Request to a LISP-Tree root but to a locator that
belongs to the most specific EID prefix stored in the cache. This operation
is similar to what is done in DNS. When a resolver receives an NS record,
it caches it for future use. For instance, if a DNS resolver has resolved
example.net., and has to resolve lisp4.net., it does not need to contact
a root DNS server first to determine a net. name server. This speeds-up the
resolution and reduces the overall load on the system. If the Map-Resolver
has already resolved EID prefix 192.0.2.0/25 and if it exists an LTS au-
thoritative for 192.0.2.0/24, when it will have to resolve 192.0.2.128/25, it
can send the Map-Request to the LTS authoritative for 192.0.2.0/24 di-
rectly instead of requesting a LISP-Tree root server, as long as the LTS for
192.0.2.0/24 is in the Map-Resolver cache.

When a Map-Request with the I-bit set arrives at a Map-Server, it
answers the request with the list of authoritative ETRs for the EID. The
answer is provided by an Iterable-Reply whose T -bit is set to 1.

The functional specification given above is for Map-Resolver running in
iterative mode. When a Map-Resolver is running in recursive mode, the
first Map-Request sent by the Map-Resolver must be flagged with the R-
bit. When an LTS receives a Map-Request with both the I and R bits set, it
must generate a new Map-Request it is the originator for. The Map-Request
is also flagged with the I and R bits. This procedure is repeated until the
Map-Request arrives at a Map-Server. The Map-Server then sends back
an Iterable-Reply with the T -bit. The mapping contained in this reply is
then sent back to the LTS that made the request and so on until the Map-
Resolver receives the Iterable-Reply. As long as the mapping backtracks the
hierarchy of LTS, the T -bit is set. The nodes can cache the reply to avoid
traversing the hierarchy. It is important to notice that all the nodes involved
in the recursive resolution must maintain state for the request as explained
in Sec. 4.2.4. If a node receives an extended Map-Request with the R-bit
set but does not accept to run in recursive mode, it must return the same
result as it would have returned in iterative mode. If an LTS receives an
Iterable-Reply without the T -bit while running in recursive mode, the reply
is back-tracked. If a Map-Resolver receives an Iterable-Reply without the
T -bit while running in recursive mode, it has two options. Either it considers
that the resolution is impossible and returns a negative Map-Reply to the
ITR with the ACT field set to 3, i.e., drops all the packets for this mapping.
The MR can also fall back into the iterative mode and sends an extended
Map-Request to a locator present in the Iterable-Reply.

A LISP-Tree server can run in iterative or recursive mode. When running
in iterative mode, the operation at the LTS only consists of a looking the
local children database. As opposed to that, the operation of an LTS in
recursive mode is more complex and involves per-request state. When a

68 Chapter 4. LISP-Tree

Figure 4.10: Example of Iterable mapping in iterative and recursive mode.
N, D, E and F run in iterative mode while B and C are in recursive mode.

Map-Request arrives at the LTS, the EID is extracted from the Map-Request
and a new Map-Request is created by the LTS with a new nonce. This new
Map-Request is sent to a child LTS that is responsible for the requested EID.
The LTS then waits for an Iterable-Reply from its child. When the Iterable-
Reply is received from the children, the LTS replies the original requester
with an Iterable Mapping. To avoid memory leakage, the LTS must then
implement a garbage collector mechanism to purge Map-Requests that have
not been replies within an acceptable time frame.

Fig. 4.10 shows an example that mixes iterative and recursive modes.
Node N runs in the iterative mode. It first sends a Map-Request to the A LTS.
Node A runs in recursive mode. It then sends a Map-Request for the EID to
one of its children, the C LTS, responsible for the EID 192.0.2.1. As C runs
in iterative mode. It replies A with an Iterable-Reply. The mapping is then
returned to N by A. N then sends a Map-Request to a locator, e.g., E, from the
Iterable mapping. E replies with an Iterable-Reply containing ETR locators
authoritative for 192.0.2.0/24, the most specific prefix covering 192.0.2.1.
N then sends a Map-Request to one of the ETRs and finally receives the
mapping for 192.0.2.1.

With the combination of Map-Request, Map-Reply and Iterable-Reply, it
is not necessary to have an overlay deployed to build the mapping system, as

4.6. Related Work 69

long as the LISP-Tree Servers, Map-Servers and Map-Resovlers are reachable
via locators. The deployment of LISP-Tree is thus flexible, simple and cost
effective.

4.6 Related Work

On today’s Internet, the DNS [MD95] is the system which is closest to
a mapping system. Several researchers have proposed to extend it to store
identity-to-location bindings, and provide mobility support in the Internet
(e.g., [SB00, ABH08, Ahm05]). In this chapter we extend the DNS to sup-
port the LISP mapping system. We also propose to follow the same address
allocation policy as in today’s Internet. Further, by means of measurement-
driven simulations, we show its feasibility along with performance and op-
erational benefits.

Concerning the mapping systems, several architectures have been pro-
posed for LISP [D. 09, BCF+08, Lea08, MI08], but to our knowledge none
of these systems have been evaluated in detail. Iannone and Bonaventure
have analyzed in [IB07] the mapping cache used by ITRs. Using trace-driven
simulation, they showed that the number of entries in this cache grows with
the TTL of the cache and that the mapping system should provide map-
pings for EID prefixes and not individual EIDs. CoreSim also models the
mapping cache on the ITR, but furthermore it models the entire mapping
system and provides detailed information about its performance in terms of
delay and load on mapping nodes. Other researchers [KCGR09, BFCW09]
have analyzed the utilization of caches or similar techniques to reduce the
size of FIB tables on routers.

Luo et al. proposed in [LQZ09] another LISP mapping system that relies
on the CAN DHT. This mapping system provides mappings for individual
EIDs instead of EID prefixes as [D. 09, BCF+08, Lea08, MI08]. Using such
flat EIDs is unlikely to scale. A trace-driven evaluation of this mapping
system is provided in [LQZ09]. The evaluation mainly focuses on the size of
the mapping cache and the number of hops through the CAN DHT. CoreSim
models delays and is not dedicated to a single mapping system.

Menth et al. propose the Future InteRnet Mapping System (FIRMS)
in [MHH10]. FIRMS is a mapping system for LISP where EIDs are assigned
by prefixes to the sites. Each site maintains a map-base (MB) storing all
the site’s mappings. Meta information about the MB are put in a map-base
pointer (MBP). A global table of MBP is maintained in a global distribu-
tion network. Every Map-Resolver copies the global MBP locally that it
retrieves from the global MBP distribution network. To resolve a mapping
for an EID, the MR first determines the address of the MB related to the
EID by looking in it local copy of the global MBP. The MR then sends a
Map-Request to that MB. Upon the reception of the Map-Request, the MB

70 Chapter 4. LISP-Tree

sends a Map-Reply to the requester with the mapping for the requested EID.
Menth et al. also define the global MBP distribution network which con-
sists of a hierarchical interconnection of map-base pointer exchange nodes
(MBPXs) [MHH10]. The major difference between FIRMS and LISP-Tree is
that in FIRMS, every Map-Resolver must store the global MBP table. This
means that a MR in FIRMS must scale with the number of MBs and the re-
sulting churn. In LISP-Tree, the MR only maintains information about the
root LTSes. To optimize its operation, a MR can cache information about
the LTSes on the path to the destination EID mappings that it resolves,
however, this optimization is not mandatory and the MR scales with the
traffic pattern of its clients. This difference implies that the Map-Requests
are never forwarded between the MBPXs in FIRMS while they are poten-
tially forwarded between the LTSes with LISP-Tree.

4.7 Conclusion

This thesis presents the LISP protocol and its ability to support traffic
engineering. LISP is so flexible that it makes incoming performance based
traffic engineering possible. However, the LISP traffic engineering capabili-
ties rely on mappings. The mappings are used to distribute the IP addresses
(i.e., the locators) to use to reach a destination. Changing the way the traffic
is entering a LISP site thus simply consists of changing its mapping. With
performance based traffic engineering, the mapping changes can be frequent.
However, the mappings are distributed with the control plane and no map-
ping system has been proposed to scale with frequent mapping changes. In
this chapter, we propose LISP-Tree, a DNS-Like mapping system that is
designed to scale well. Like DNS, LISP-Tree relies on a hierarchy. The hi-
rarchy forms a tree where the leaves store the mappings and the inner nodes
are used to browse the hirarchy. When a xTR device must obtain a map-
ping, it queries the root of the hirarchy. The root determines which of its
children potentially stores the mapping for the requested EID. The request
is then redirected to this particular child. If the child is a leaf, it replies
with the mapping. Otherwise, the node determines which of its children
potentially stores the mapping and the request is redirected to this child.
This operation is repeated until the mapping is found.

LISP-Tree supports two modes of operation. With the recursive mode,
when a node receives a request, it sends the request to its child and the
child to one of its children and so on until a leaf is reached. The reply
then backtracks the tree and is finally returned to the requester by the root.
The iterative mode is different. When a node receives a request, instead
of sending it to its best children, it sends a message back to the requester
that contains the address of the children that potentially know the mapping.
The requester then sends the request to the nodes until the message is sent

4.7. Conclusion 71

to a leaf. The advantage of the recursive more is that the tree traversal is
transparent for the requester. However, all the requests always start from
the root and the intermediate nodes in the hirarchy have to keep state about
the requests they sent to their children. On the contrary, with the iterative
mode, the requester sees the hirarchy. Because the requester knows the
hirarchy, it can cache information about the intermediate nodes and it is
then possible to avoid to start a mapping resolution from the root. This
design has been proved to be scalable with DNS as the request will rapidly
discover most of the hirarchy.

To ensure that a request will eventually reach a leaf that knows the map-
ping and scales, LISP-Tree must be deployed with care. The tree hirarchy
is designed with the idea that each node is responsible for a prefix. The
prefix covered by a node is always a subprefix of the prefix covered by its
parent in the hirarchy. Each node keeps the information about the prefix it
covers and the prefixes covered by all its children. The tree hirarchy is then
a trie. In this chapter, we present a possible deployment of LISP-Tree in the
current Internet and the expected performance of the lookups and the load
distribution on this hirarchy. Based on the simulations performed with the
CoreSIM simulator developed by UPC and real traffic traces, we show that
LISP-Tree outperforms the LISP+ALT and LISP-DHT mapping systems.

LISP-Tree is designed such that it could be implemented in the DNS.
However, DNS is not the most efficient protocol to process IP prefixes. We
thus propose a simple extension to the LISP protocol to support LISP-
Tree. Actually, the LISP protocol could be used as-is for LISP-Tree but
overloading the semantic of the current LISP control-plane message is not a
nice design on the long run.

Chapter 5

IDIPS

5.1 Introduction

We are seeing the emergence of technologies severely challenging some
assumptions that have driven the development of many Internet protocols
and mechanisms. A first assumption is that (usually) one address is associ-
ated to each host. Also, the forwarding of packets is often exclusively based
on the destination address. For this reason, there is usually a single path
between one source (or client) and one destination (or server). Finally, the
Internet was designed with the client-server model in mind assuming that
many clients receive information from (a smaller number of) servers. During
the last years, these assumptions have been severely challenged.

The client-server model does not correspond to the current operation of
many applications. First, large servers are usually replicated and different
types of content distribution networks are used to efficiently distribute con-
tent [FFM03, Lim, Aka]. Second, the proliferation of peer-to-peer applica-
tions implies that most clients also act as servers. This is currently creating
several problems in many Internet Service Provider (ISP) networks [KRP05].
Client-server asymmetry does not hold anymore.

Due to the transition from IPv4 to IPv6 many hosts will be dual-stack
for the foreseeable future [CLH03]. Furthermore, measurements show that
IPv4 and IPv6 do not always provide the same performances, even for a
single source-destination pair [ZJUVM07]. This implies that to reach a
destination supporting both IPv4 and IPv6, a source host can achieve bet-
ter performance by selecting the stack that provides the best performance.
However, today, this selection is based on simple heuristics. For instance, as
highlighted by Matsumoto et al. [MFHK08], IPv6 is chosen prior to IPv4 in
most of the dual-stack configurations although IPv4 still remains the best
choice from a performance point of view in many environments [ZJUVM07].

We are thus heading towards an Internet that provides a set of potential
paths between a source and a destination or a content. Obviously, any path

73

74 Chapter 5. IDIPS

in this set differs from the others as each path has its own performances,
i.e., bandwidth, delay, loss, etc. In such a context, it is important for any
application to select their paths in a way meeting their requirements (i.e.,
not in random way). For instance, bulk data transfer peer-to-peer clients
will favor paths with the largest bandwidth so that the targeted file will be
downloaded faster. Such a situation is currently discussed within the IETF
Application-Layer Traffic Optimization (ALTO) Working Group [SB09].

A way to enable efficient path selection for applications would be to allow
the network to cooperate with them. Such a cooperation would also give the
opportunity to operators for managing incoming and outgoing traffic on their
networks. Indeed, according to their traffic engineering needs, operators
could balance traffic from one link to another and ensure that some are only
used as backup.

In this chapter, we propose a generic informed path selection service
called ISP-Driven Informed Path Selection (Idips). Idips is generic as it
can be used in many networking contexts without changing anything to its
behavior (see Sec. 5.2.2 for a description of networking use cases). It further
does not require fundamental changes in the current Internet architecture
and implementation (only the service clients need to implement a library for
contacting the service), making its deployment very easy. Idips is scalable,
lightweight, and designed to be easily deployed in ISP, corporate, or campus
networks.

Idips is designed as a request/response service. The network operators
deploy servers that are configured with policies and that collect routing
information (e.g., OSPF/ISIS, BGP) and measurements towards popular
destinations. The clients that need to select a path send requests to a
server. A request contains a list of sources, a list of destinations and a
traffic qualification that determines the rule for ranking the paths to use.
The technique used by the client to discover the multiple paths it needs
is not related to Idips. In this chapter, we assume that the client already
knows the paths it want to get a rank for. The server replies with an ordered
list of < source, destination, rank > tuples to the client. The reply gives
an indication of the ranking lifetime. This ranking is based on the current
network state and policies. The client will then use the first pairs of the list
and potentially switch to the next one(s) in case of problems or if it wants
to use several paths in parallel.

We implemented Idips within the Xorp [HHK03] open source routing
platform. We describe this implementation in the chapter and discuss cost
functions, i.e., functions returning a cost for a given path allowing later
ranking. We explain how to construct simple cost functions, such as maxi-
mizing the available bandwidth, and demonstrate how to combine them to
reflect more complex ranking strategies.

Our evaluation of Idips focuses on the whole ranking process, from the
request sent by the client to the use of cost function. We demonstrate that

5.2. An Informed Path Selection Service 75

ISP1

ISP2

Informed

Path

Selection

Service

Customer

Network

Internet

Monitoring

Tools

Policies

measurements

BGP feeds

Rank [P1, P2, P3, TQ]?

Rank [1:P2, 2:P1, 3:P3]

Client

Figure 5.1: A network service rank paths for the clients

our implementation is robust as Idips is able to process a large quantity of
requests per second while providing a stable response time to the clients.

This chapter is organized as follows: Sec. 5.2 describes how an informed
path selection service should work; Sec. 5.3 explains how the Idips service
can be implemented; Sec. 5.4 evaluates our Idips implementation; Sec. 5.5
positions our work regarding the state of the art; finally, Sec. 5.6 concludes
by summarizing our main achievements.

The very contributions of this chapter are (i) the proposition a of re-
quest/response service to rank paths in a scalable way. (ii) an architecture
and an implementation for this service. Finally, (iii) an evaluation of the
performance of this service with the implementation.

5.2 An Informed Path Selection Service

In this section, we provide a high level description of our informed path
selection service. We first explain the behavior of this service (Sec. 5.2.1) be-
fore discussing several use cases that could benefit form the service (Sec. 5.2.2).

5.2.1 Overview

As illustrated in Fig. 5.1, an informed path selection service is a re-
quest/response service allowing to rank paths. The service is intended to be
deployed at strategic points of the network by the network operator inside a
domain, a campus, or a corporate network. Clients (see Sec. 5.2.2 for exam-
ple of applications that can benefit from such a service) have to implement

76 Chapter 5. IDIPS

a library to send requests to the server and use the more preferable paths.

Clients see the service as a black-box. First, a client sends a request to
the server (dotted arrow on Fig. 5.1). This request contains a list of sources
and destinations, forming a set of paths to rank, and a traffic qualification
(TQ on Fig. 5.1). The latter argument is a ranking criterion provided by
the client. It might be, for instance, “maximize the bandwidth”, “minimize
the delay”, or “maximize locality”. The server replies to the request with a
ranked list of paths (e.g., source-destination pairs - dashed-dotted arrow on
Fig. 5.1). The way the ranking is computed by the server remains hidden
for the client.

The presence of multiple sources in the request comes from particular
situations, such as multihomed hosts (for instance a smartphone with a 3G
and a standard WiFi connection) or IPv4/v6 dual-stack hosts, where hosts
own several addresses.

The server ranks the paths with the help of information from the net-
work:

• Routing information (i.e., BGP, OSPF/ISIS) allowing the informed
path selection service to compare different paths based on their routing
metrics (e.g., BGP local preference or AS path, IGP cost, etc). This
is illustrated in Fig. 5.1 with the plain arrows.

• Active or passive measurements (i.e., delay, bandwidth, loss, etc) al-
lowing the informed path selection service to compare different paths
based on quantitative performance metrics. Note that the server does
not necessarily perform the measurements itself. It can request a third
party to do the job and retrieve the required performance metrics. This
is illustrated with dashed arrows on Fig. 5.1.

• Policies configured by the network administrator that indicate prefer-
ences for some paths over others.

The information that the server can access depend on its location and
how it is operated. If Idips is deployed directly in the operator network, it
can access routing information and policies. However, if Idips is operated by
a third party, it is unlikely that the network will share all these information
making the decisions less precise.

Upon reception of a request, the informed path selection service builds
a list of all the possible paths between the source(s) and the destination(s).
Then, it removes from consideration the paths that are invalid due to routing
(e.g., one destination is not reachable from a given source) or policies. The
remaining paths are then ranked according to a set of criteria and the reply
sent back to the client contains the following information:

• the best path (source, destination),

5.2. An Informed Path Selection Service 77

• the second best path (source, destination),

• . . .

• the Nth best path (source, destination)

• the lifetime for the ranked paths.

and for each path its associated rank.

The number of paths returned by the service may be lower, as indi-
cated above, than the total number of possible paths. An evaluation of the
overhead of returning the paths is provided in Sec. 5.4.

Ranking is valid for some time and the client is encouraged to cache the
ordered list for the lifetime indicated in the response.

Source and destinations can be IP addresses (either IPv4 or IPv6 or
both), IP prefixes, AS numbers, names or of any other type, as long as the
client and the server agree on a meaning for them. This possibility to use
IP prefixes is motivated by the fact that contiguous IP addresses tend to be
used similarly and present similar performances [CH10, SDB09].

Idips is designed to be as generic as possible and to prevent an operator
to reveal critical information about its topology. This is the reason why
the only information returned to the client is the path rank. The rank is
an abstraction of information known by the server that defines a partial
order among the paths. The order is valid only within one reply and the
ranking relationship among any two paths in the reply holds the reflexivity,
antisymmetry and transitivity properties.

Path rank is the information revealed to the clients and is computed at
the server side with the help of cost functions. A cost function determines
the cost of using a path. The higher the cost, the less interesting the path.
The cost of a path is computed from its attributes. The path attributes
are the information related to the path. Example of path attributes are its
predicted round-trip delay, its reachability or even the AS path from the
RIB.

Sec. 5.2.2 discusses different use cases where Idips can be used.

5.2.2 Use Cases

A client of the informed path selection service refers to any entity that
has the possibility to select a path to reach a destination or get a con-
tent. Idips is thus not limited to the user level applications but can also
be used directly to improve the routing with the control plane requesting
information from Idips to make better choices. In this section, we explore
several networking scenarios in which the service might find a suitable usage,
demonstrating so the general purpose of the service. Additional use cases
described in [SB09] can be applied to our informed path selection service.

78 Chapter 5. IDIPS

Peer-to-Peer

Peer-to-peer applications are clear candidate users for such an informed
path selection service. Each time a peer-to-peer client wants to fetch a given
content, it can use the service to rank the various peers sharing the content
and, then, select the peer based on the service reply instead of randomly
selecting a peer. Ranking, from the client perspective, might be done in
order to maximize the throughput, so that the best path will allow a faster
download of the content.

Furthermore, not only peer-to-peer clients can benefit from the service
but also the ISPs. Indeed, an ISP or a campus network running the informed
path selection service could influence providers used by packets sent/received
by hosts of its networks. One can imagine an ISP giving priority to peer-
to-peer clients in its own network or in those with who it has a shared-cost
peering relationship, avoiding so to pay traffic to its own provider.

The rank is the information abstraction revealed to the client. Internally,
an Idips server relies on path attributes and cost functions.

Solutions allowing ISPs to help peer-to-peer clients have already been
proposed [XYK+08, AFS07, PM08, KPS+11]. See Sec. 5.5 for more discus-
sion about the related work and how our informed path service differs from
those solutions.

IPv4/IPv6 Transition

Due to the transition from IPv4 to IPv6 many hosts will be dual-stack
for the foreseeable future [CLH03]. Furthermore, measurements show that,
in today’s Internet, IPv4 and IPv6 do not provide the same performances,
even for a single source-destination pair [ZJUVM07]. This implies that to
reach a destination supporting both IPv4 and IPv6, a source can use the
informed path service selection to achieve better performance by selecting
the stack that provides the best performance.

Today, this selection is based on simple heuristics. For instance, as
highlighted by Matsumoto et al. [MFHK08], IPv6 is chosen prior to IPv4
in most of the dual-stack configuration although IPv4 still remains the best
choice in most of the environments [ZJUVM07].

Multihoming

An increasing number of ISPs, but also campus and corporate net-
works have chosen to become multihomed by being attached to two or more
ISPs [ACK03]. For these networks, multihoming offers two main benefits:
technical and economical redundancy, i.e., they remain connected to the In-
ternet even if the link that attaches them to one of their ISPs fails or if one
of their ISPs becomes bankrupt. Another important benefit shown by sev-

5.3. Service Construction 79

eral studies [APS04, AAS03, AMS+08, GDZ06, DD06] is that multihoming
allows sites to choose better quality paths over the Internet.

An informed path selection service can find here an usage, for the ISP,
in selecting the best provider to reach a given destination/content.

Local Network Optimization

The use cases presented above are mostly considering interdomain traffic.
Nevertheless, Idips can be used for intradomain application. For example,
a network optimizing its IGP with OSPF-TE [KKY03] could obtain traffic
engineering information regarding its local links via Idips. In this case, the
Idips server would monitor internal path and use information from the IGP
to determine the best paths to use. Although this application is promising,
we have not investigated more.

Traffic Engineering with LISP

LISP, described in Chapter 2, relies on mappings. A mapping associates
a list of locators to an identifier. A priority and a weight are associated
to each locator. Only the locators with the lowest priority value can be
used, the others can be used only for backup. The weight is used to balance
the traffic between the most preferable locators (see Chapter 3). Idips can
be used by the mapping owner to determine the priority and the weight of
the locators in a mapping. The priorities and weights in LISP offer traffic
engineering capabilities to the LISP sites.

Idips is a service that proposes to rank paths in order to use those
that offer the best performance. However, using a path might influence its
performance and result in oscillation [AAS03, GDZ06]. Therefore, the ranks
must be computed with care to avoid this risk. Nevertheless, this thesis does
not aim at solving this well known oscillation problem [AAS03, GDZ06].

5.3 Service Construction

In this section, we describe how we implement an informed path selection
service. Our implementation is called ISP-Driven Informed Path Selection
(Idips) and it architecture is described in Sec. 5.3.1. We further discuss how
our implementation is included in the Xorp framework [HHK03] (Sec. 5.3.2).
Finally, we explain in details how to build simple cost functions and combine
them to reflect more complex ranking strategies (Sec. 5.3.3).

5.3.1 Architecture

Idips is composed of three independent modules: the Querying module,
the Prediction module, and the Measurement module. The Querying mod-

80 Chapter 5. IDIPS

ule is directly in relation with the client as it is in charge of receiving the
requests, computing the path ranking based on traffic qualification provided
by the client and the ISP traffic engineering requirements, and replying with
the ranked paths. For the sake of generality, the remainder of this chapter
will use the term ranking criterion when referring to traffic qualification.
The Measurement module is in charge of measuring path performance met-
rics if required. Finally, the Prediction module is used to predicting paths
performance (i.e., future performance metrics of a given path based on the
past measurements).

The ranking criterion provided by clients in their requests might require
measuring the network to obtain path performance metrics, such as delay
or bandwidth estimation. One of the key advantages of Idips is that it
avoids clients measuring themselves the network, leading to redundant traffic
injected in the network (See Chapter 6). The Measurement module performs
the measurements or asks a third-party to perform the measurements. Those
measurements can be active (i.e., probes are sent in the network) or passive
(i.e., no additional traffic is injected).

It is possible to predict the performance of a given path if it has been pre-
viously measured [YRCR04, DCKM04, PLMS06, Pap07, dLUB05, WSS05,
LPS06, LGS07, LHC03, LGP+05, NZ04, FJP+99, NZ02, PCW+03, ST03,
LHC05, CCRK04, RMK+08, MS04]. This prediction task is achieved by
the Prediction module. Note that a given measurement can be used in sev-
eral different predictions. For instance, the previous delay measurements
can serve for predicting the delay, the jitter, or for determining whether the
path is reachable or not.

To enable flexibility, ease of implementation and performance1, Idips

clearly separates the Querying, Measurement and Prediction modules. Each
instance module communicates with the other modules thanks to a standard-
ized interface. Therefore, the handling of requests from the clients is strictly
separated from the prediction of path performance and path performance
prediction is separated from path measurements.

The Querying module receives the ranking requests from the clients and
computes the rank for these requested paths based on their predicted future
performance. Future paths performance are estimated by the Prediction
module that relies on the measurements performed by the Measurement
modules.

All along this chapter, we are using the terms measurements and pre-
dictions however, they have to be understood in their very generic meaning.
For Idips, a measurement corresponds to any information grabbed from
the network. This definition encompasses active measurements like pings,
passive measurements like Netflow information [Cla04] or even routing in-
formation like BGP feeds. Likewise, a prediction in Idips is an information

1
Idips must potentially handle many ranking requests simultaneously

5.3. Service Construction 81

that is likely to be valid in the coming future. Therefore, a prediction can be
the result of very complex machine learning techniques but also very simple
information like the originating AS of the path destination. In other word,
a measurement is an information discovered in the past or just at present
and a prediction is an information that is likely to be valid in the coming
future.

To support as many requests per second as possible, the Idips modules
are running independently of each others. This independence is ensured
through the use of caches. Each module stores its processing results in its
local cache. If another module requests a given result, a simple get in the
appropriate cache will return it.

There may exist several instances of the Prediction and Measurement
modules. For example, Idips can have a delay measurement module, a
bandwidth measurement module, a delay prediction module, and a band-
width prediction module. Sec. 5.3.2 gives an example of Measurement and
Prediction modules implementation.

Querying module

Common applications are only able to use one path at a time, even
if several exist. In this case, the client only needs to know the very best
path returned by Idips when it has no additional information about the
paths. For this reason, the list of ranked path is sorted by rank before being
transmitted to the client. Then, the client can safely consider the first path
of the list as the very best path (or one best path among all the best paths if
several ones have the same lowest rank value). The other paths are returned
only for resiliency (the best path is not valid for the client) or if the client
uses the ranked list to refine a local decision. Sorting the paths simplify the
operation at the client.

Paths ranking is done with the use of Cost Function. For a given <source,
destination> pair, the cost function returns a cost, i.e., a positive integer
resulting from metrics combination of a given path. The lower the path
cost, the more attractive the path. We chose the cost to be represented by
a positive integer for its simplicity (i.e., no complex representation to be
processed) and because operators are already used to translate their policies
into integers with the BGP local-pref [RLH06]. By definition, the sum of
several costs is also a cost. One can for example combine cost functions
with an exponentially weighted sum in order to reflect complex strategies
or politics as long as the result is rounded into a positive integer. Sec. 5.3.3
explains how to construct cost functions.

To support as many requests per second as possible, the Idips modules
are running independently of each others. This means that the Querying
module never has to wait for a path performance prediction to be computed
by the Prediction module to compute the path ranking. When a prediction

82 Chapter 5. IDIPS

sync_rank_paths

? sources & destinations & criterion

-> ranked_paths_list & ttl

Figure 5.2: Idips server API for synchronous mode clients

has to be retrieved by the Querying module, it calls a get on the Prediction
module for the path attribute it is interested in. The attributes of a path
are the predicted metric values as computed by the Prediction module for
the path. For the sake of generality, any attribute is encoded as an integer.
If an information is too complex to be represented with a single integer, it
can always be represented as a set of integers. For example, an < x, y >
coordinates can be decomposed in the x coordinate and the y coordinate

and a function that needs to use the coordinates just needs to retrieve the
x coordinate and the y coordinate to reconstruct the full coordinates.
Sec. 5.3.1 gives more details about the interface to retrieve path attributes
from the Prediction module.

Depending on its needs, a client can query Idips in a synchronous or
asynchronous way. In synchronous mode, when a request is received by the
Idips server, the server sends the list of ranked paths back to the client
once computed. On the contrary, in asynchronous mode, when a request
is received by the Idips server, the server computes the paths ranking but
does not send the list back to the client. The requester must explicitly send
a special command to retrieve the list of ranked paths. The API that Idips

presents to clients is depicted in Fig. 5.2 for the synchronous mode and in
Fig. 5.3 for the asynchronous mode.

The commands are sent by the client to the server. When the client uses
the asynchronous mode, it receives a transaction identifier (tid) back from
the server. Every request received by a server is abstracted as a transaction.
This tid is the identifier of that transaction on the server. This identifier is
used for retrieving the list of ranked path with the get all path ranks. If
the ranking is not yet computed by the server when the get all path ranks

is received, an empty list of ranked paths and the invalid 0x0 ttl are returned.
The server, in asynchronous mode, always returns immediately a result when
it receives an async rank paths or a get all path ranks. The client must
then poll the server until it has retrieved the list. This behavior is used
to avoid the server to maintain too much state about the clients, it only
maintains ranking state (linked with tid). To avoid the need of client polling,
signaling could be used to let the server inform the client that the transaction
is ready but it thus means that the server must maintain state about the
client, which is what we want to avoid while using asynchronous mode.
Polling is by definition avoided in synchronous mode. It is worth to notice
that a ranking call can be implemented as being blocking or non-blocking at

5.3. Service Construction 83

async_rank_paths

? sources & destinations & criterion

-> tid

get_all_path_ranks

? tid

-> ranked_paths_list & ttl

get_next_path_rank

? tid

-> source & destination & rank & ttl & more

get_next_n_path_ranks

? tid & n

-> ranked_paths_list & ttl & more

terminate_transaction

? tid

Figure 5.3: Idips server API for asynchronous mode clients

the client side, independently of the client to server communication mode.
The typical use of a blocking call is when the path to exchange data cannot
be changed once the flow is started. Then, the best path must be used. The
client must then wait for the path ranking before being able to exchange
data. On the contrary, non-blocking call is used when the client can change
the path it uses while exchanging data. For example, a shim6 [NB09] host
starts exchanging data with a path arbitrarily selected by following the rules
of RFC3484 [Dra03]. If the data transfer is long enough, shim6 could decide
to switch to the best path computed by Idips. In this case, the flow can
start as soon as possible, even if the path used to exchange data might be
sub-optimal at the beginning.

To avoid this waste of resources, Idips also offers the possibility to re-
trieve one path at a time with the get next path rank that returns the
best path that has not yet been retrieved by the client. To use the best
working path, the client can use the algorithm presented in Fig. 5.4 where
handle path is the client function that needs the path and that returns
true when no more path is needed. The more parameter returned by the
get next path rank indicates if there is still a path to retrieve for the trans-
action. Optionally, the client can explicitly ask Idips to terminate the trans-
action. If not, Idips should eventually terminate it automatically. Instead
of considering retrieving the rankings one by one or all at a time, the more
generic get next n path ranks is also proposed where the client specifies

84 Chapter 5. IDIPS

more := true

WHILE more

DO

(src, dst, rank, more) := get_next_path_rank(tid)

IF handle_path(srcs, dst, rank)

THEN

STOP

END

DONE

terminate_transaction(tid)

Figure 5.4: One-by-one path ranking retrieval algorithm

the number of paths that must be returned by Idips. The equivalent of
get all path ranks corresponding to a specified number higher or equal
to the number of sources time the number of destinations while a value
equal to one corresponds to the get next path rank. However, in most of
the cases, a client is interested by either one or all the paths.

We suggest to use UDP to exchange message between the clients and the
servers. Using UDP avoids the burden of establishing and maintaining TCP
connections. However, Idips does not preclude the use of another protocol
or even several protocols at the same time. For example, a server can be
requestable via UDP by lightweight clients and propose a more complex
interface via HTTP/XML over TCP for more powerful clients.

Changing the paths to always use the ones with the best performance
might result in oscillations [AAS03, GDZ06]. Mechanisms to avoid oscilla-
tions [AAS03, GDZ06] can be implemented in the Querying module. How-
ever, dealing with the oscillation problem is out of the scope of our study
that focuses on the architectural part of the performance based traffic engi-
neering problem.

Measurement Module

The Measurement module is in charge of measuring the paths. The
measurements can be active or passive. For example, an active measurement
could be a ping and a passive measurement could be the count of the number
of TCP SYNs entering the network.

The Measurement module API presented in Fig. 5.5 is two fold. The
start measurement, stop measurement and set interval commands de-
termine the targets to measure while the get measurements is used to re-
trieve the last measurements of a path.

5.3. Service Construction 85

start_measurement ? source & destination & interval

stop_measurement ? source & destination

set_interval ? source & destination & interval

get_measurements ? source & destination

-> measurements

Figure 5.5: Measurement module API

Measurements are always defined between a source and a destination
and are performed periodically (with a configurable interval between the
measurements). In case of passive measurements, the sources and destina-
tions as well as the passively obtained information are extracted periodically
from the passively collected traces. The possibility to modify the interval of
a measurement is not mandatory but is more convenient as it allows one to
adapt the measurement rate dynamically without disrupting a measurement
campaign. If such command is not available, it means that the measured
values must be stored outside the measurement module. Indeed, without
the set interval command, the measurement has to be stopped, then re-
started from scratch meaning that all the state in the measurement mod-
ule instance is lost for this measurement. Finally, the get measurements

command returns all the measurements performed so far for the <source,
destination>.

It is important to notice that the decision of measuring a path is done
either by configuration or triggered by the Prediction module, not directly
by the requests. However, the content of the requests can be seen as pas-
sive measurements and can be used to dynamically determine the paths to
measure.

Prediction Module

The prediction module contains all the intelligence of Idips. Indeed,
Idips is a service that aims at determining the best paths to use. However,
determining the best path to use is a prediction exercise as the future be-
havior of a path is seldom know, particularly when considering inter-domain
paths. Determining how to predict a path behavior the best is out of the
scope of this chapter but this section presents how a Prediction module has
to be implemented in Idips.

As already expressed earlier, Idips modules are running independently.
However, the Querying module needs to know the path attributes computed

86 Chapter 5. IDIPS

start_prediction ? path

stop_prediction ? path

get_prediction ? path

-> prediction

Figure 5.6: Prediction module API

by the Prediction module. In addition, the Prediction module has to know
the path it has to predict the performance metric for. To this aim, the
Prediction module provides the API presented in Fig. 5.6.

This API has two components. On the one hand, the start prediction

and stop prediction commands are used to specify the path to predict
performance metric for. On the other hand, the get prediction command
is used to retrieve the predictions.

get prediction always returns a value. If the attribute value is not
defined, an error or a meaningful default value is returned. For example, if
the bandwidth of a path is not known a default value of zero can be returned
making the path less interesting than any other path.

The decision of measuring or predicting a path is highly related to the de-
ployment policies, the topology and the traffic. The decision of predicting a
path is thus not provided by Idips but is considered case by case by the Pre-
diction module or by configuration. There exists three ways of determining
if a prediction has to be started or stopped. First, an operator can man-
ually determine the path to do prediction for and uses start prediction

and stop prediction commands to do so. Second, a prediction module
instance can determine by itself if a path is worth being measured or not.
For example, if a prediction module received enough get prediction for
a path it is not predicting yet, it can decide to start predicting it. In this
second case, the start prediction and stop prediction commands are
not used. Finally, a prediction module instance can predict that a path has
to be predicted and command another prediction module to start predicting
the path. For example, a prediction module instance can be in charge of
predicting if a path is important or not based on the traffic it carries. If the
path is considered as important, it can ask to start the delay prediction for
that particular important path.

To predict the future path behavior, a prediction module often needs in-
formation from the measurement module. Like the Querying module can re-
trieve a prediction with a simple get, the Prediction module can retrieve the
measurements from the Measurement module with the get measurements

(see Sec. 5.3.1). The Prediction module can use the last measurements to
predict the future behavior of a path. Based on the prediction and on its

5.3. Service Construction 87

quality, the prediction module can decide to modify the frequency at which
a measurement has to be performed (with the sec interval command) or
ultimately to start or stop a measurement. In addition, because a predic-
tion module aims at providing the path performance for the near future, the
get prediction only returns one result as opposed to get measurements

that returns a list of measurements. Obviously, this API does not preclude
an extended API that would return more information about the quality of
the prediction (for example a TTL) or several predictions at once.

Path asymmetry is common in the Internet [PPZ+08] and some metrics
like the bandwidth strongly depends on the followed direction. It is then
important that the Idips measurement and prediction modules take this
factor into account to accurately rank the paths.

5.3.2 XORP Implementation

Sec. 5.3.1 presents a potential generic architecture for Idips. In this sec-
tion, we present how we have implemented Idips within the Xorp frame-
work [HHK03]. Xorp is an open source routing platform that facilitates
the implementation of control plane protocols. In Xorp, each control plane
protocol (this including their communication channels) is implemented as
an independent process. The Xorp inter-process communication is ensured
by the use of the Xorp Resource Locators (XRL). An XRL is very similar
to RPC but much simpler to implement and use. XRLs are always asyn-
chronous. It means that once a process has sent an XRL, it does not block
waiting the answer. When the target of the XRL has computed the result,
it will instead trigger the call of a callback function at the process that sent
the XRL. This is possible because a callback function (a C++ method ref-
erence) is always associated to an XRL call. The callback is just a call to
the method on the instance with the parameters set to the values computed
by the target of the XRL. We have chosen to implement Idips within Xorp

for two reasons. First, implementing Idips in Xorp gives direct access to
the routing table, meaning that routing information can be easily injected
into Idips. Xorp provides implementations for the most common control
plane protocols, e.g., BGP, with well defined XRL interfaces to communicate
with. Second, Xorp is designed to be distributed. It means that it is pos-
sible to have processes interacting together but running on different hosts.
We do not use process distribution in our prototype however, one could
imagine running the prediction modules on dedicated servers or distribute
the measurement module.

As in the generic architecture presented in Sec. 5.3.1, our implementation
is decomposed in the Querying, Prediction and Measurement modules. The
querying module is a single Xorp process, while there are as many Xorp

processes as required to implement the Measurement and Prediction mod-
ules. For example, if Idips requires to measure the delay and the bandwidth,

88 Chapter 5. IDIPS

Internet

Front-

end

Transaction

Cost

function

Querying Module Prediction Module

Measurement Module

IDIPS

Client

Client

Client

delay

bandwidth

packet loss

ping UDP

ABW

loss rate

Predicted

values

XORP

Figure 5.7: Idips within Xorp

the Measurement module will contain two Xorp module. One implementing
a delay measurement and the other implementing the bandwidth measure-
ment. Fig. 5.7 shows the Idips architecture in Xorp, while Fig. 5.8 shows
how the different modules interact with each others.

The Querying module is decomposed in three main parts: (i) the Front-
end part, (ii) the Transaction part and (iii) the Cost function part. The
Front-end part receives the requests from clients and returns the ranking re-

5.3. Service Construction 89

Client Querying Prediction Measurement

start measure(a, b, 5)
ping(a, b)

start measure(a, c, 10)
ping(a, c)

ping(a, b)

ping(a, b)

ping(a, c)

ping(a, b)

ping(a, c)

ping(a, c)

ping(a, b)

ping(a, b)

get measure(a, b)

get measure(a, c)
set att(Pa,b, delay, x)

set att(Pa,c, delay, y)

rank(src: a, dst: {b, c},
TQ: min delay)

rank!

Cost function XRL UDP

cf delay(Pa,b)

cf delay(Pa,c)

sort(Pa,b, Pa,c)

Figure 5.8: Example of modules interactions in Idips

sults. The Transaction part processes the requests received by the Front-end
and computes the path rank for these requests. Finally, the Cost function
part implements the cost functions. Our implementation has two different
Front-ends. On the one hand, a client can request Idips to rank paths by
sending UDP messages. On the other hand, any Xorp process can request
paths ranking just by sending an XRL to the Querying module. The typical
use of UDP messages is for clients independent of Idips, e.g., a P2P client
while the XRL interface allows any XORP process to use Idips to improve
its decision. For example, the FIB as computed by Xorp could be optimized
by taking Idips ranks into account.

Idips must potentially handle many ranking requests at the same time.
To support a potentially high load, requests are abstracted into transactions.
Therefore, for each request, a transaction instance is created by a unique
identifier. Each transaction runs independently of the others and maintains

90 Chapter 5. IDIPS

the list of sources, the list of destinations and the path ranking criterion.
If the request uses the synchronous mode, the transaction also maintains
information to send the reply to the requester. When a request is received,
the Front-end instantiates an empty transaction and adds all the paths from
the request. At that stage, the paths are computed blindly: for each source
s, for each destination d in the source and destination lists, the < s, d > path
is added to the transaction. Once all the paths are added to the transaction,
the run method is called on the instance.

The job of the run method is to determine the cost and the rank of each
path, according to the path ranking criterion and to build the sorted list of
ranked paths. A transaction is ready once the ordered list of ranked paths
has been built completely. The cost of each path is determined by calling
the appropriated cost function on the path. Once the cost is determined for
a path, the path, tagged with its cost is added to the priority queue costs.
The costs structure is maintained ordered by the path cost. It means that
at any time, the ith entry in costs has a lower or equal cost than the i+1th
entry. The transaction is set ready once the cost and rank of each path is
known. If the request was in synchronous mode, the transaction triggers the
transmission of the reply to the request once the transaction becomes ready.
If the request was in asynchronous mode, the method stops. As long as the
transaction is not ready, a call to retrieve a path for an asynchronous mode
request returns an error.

We have implemented the call of the cost function in two different ways.
By using XRL or by directly calling the method on the querying module
class instance. We use the XRLs to parallelize the processing. However,
as the processing of XRL is centralized (via the finder) and because the
management of XRLs is sequential and implemented with a list, this im-
plementation does not improve the performance, even worse, it reduces the
number of requests Idips is able to sustain and may cause ranking failures
because XRLs can be lost. Indeed, the XRLs are enqueued in a list limited
in size and number of entries. Therefore, once the list is full, XRLs can be
lost. The performance can also drop because an XRL at position i in the
queue will not be dispatched to the Querying module before the XRLs prior
to position i have been dispatched to their target process. Even if the pro-
cesses are different. With an experiment where the requests ask to rank 50
different paths, we observed a drop of 54% of requests per second supported
by Idips compared to an implementation calling the cost function directly
without XRLs. We also noticed about 12% of failing transactions and a
time to compute the rank 56 times higher with the XRL implementation.
However, for the requests that succeeded, the time perceived by the client
was 13% faster with the XRL implementation. The time perceived by the
client is the time elapsed between the sending of the request and the recep-
tion of the ordered list of ranked paths. Despite the better client perceived
time with the XRL implementation, we recommend not to use the XRL

5.3. Service Construction 91

implementation. Indeed, without the use of XRLs, Idips can handle more
simultaneous requests and does not face loss of requests due to the limited
size of the XRL queue.

Sec. 5.3.1 proposes to keep the modules independent thanks to the use
of getter functions: when a module needs information from another module,
it sends a get to the module to retrieve the values. In our implementation,
every module implements such getters. However, we have also implemented
a paths attributes cache within the Querying module. This cache stores, for
each path, all the known attributes for the paths. The attribute values are
computed by the Prediction module. This cache is based on a push model.
It means that it is not the Querying module that populates it but the Pre-
diction module that pushes the values to that cache. The querying module
thus implements the set attribute and get attribute XRLs. Therefore,
when a prediction is computed, the Prediction module immediately calls
the set attribute XRL on the Querying module to set the attribute value
for the path that as just been computed. This mechanism is implemented
to speed-up the cost computation for the paths. Indeed, as presented in
Sec. 5.3.3, the cost of a path is computed with a cost function that poten-
tially needs the attributes of the path. Thus, without an attribute cache at
the Querying module, an XRL must be called to the appropriate Prediction
module instance for each attribute to retrieve. However, calling XRL implies
some delay as the call must be sent first to the main Xorp process, i.e., the
finder, then it is sent to the appropriate Prediction module instance. This
delay can become non negligible if the Prediction module is not running
on the same host as the Querying module. For this reason, the Querying
module does only rely on this cache. If the cache has no entry for the path
attribute, it is considered that the path is not under measurement/prediction
and the Cost function must determine an appropriate cost. It is important
to remark that our implementation does not allow the prediction module to
determine by itself that a path merits to be predicted. Indeed, the Query-
ing module never calls the get attribute on the prediction module so the
prediction module cannot count the number of failing calls. However, one
could imagine a measurement module instance monitoring the cache misses
at the querying module. The prediction module could then determine the
paths that are worth being predicted.

The notion of module is translated into XRL interfaces in Xorp. Except
for the Querying module, there might be several C++ classes implementing
a module and possibly several instances of a class as illustrated in Fig. 5.7.
Each class must implement the XRL interface corresponding to the module
it is related to. Fig. 5.9 gives the XRLs that must be implemented by the
class implementing the Querying module. It is important to notice that the
interface for the querying module is only composed of the setter and the
getter for the path attributes. It does not include an interface for clients to
query Idips. Indeed, XRL interfaces are only related to the implementation.

92 Chapter 5. IDIPS

interface idips_querying/0.1 {

/**

* Get a path attribute

* @param path to get the attribute from

* @param name of the attribute

* @param value of the path attribute

* @param rpath echo of path

*/

get_attribute?path:txt&name:txt->value:u32&rpath:txt;

/**

* Set a path attribute

* @param path to set the attribute to

* @param name of the attribute

* @param value of the path attribute

*/

set_attribute?path:txt&name:txt&value:u32;

}

Figure 5.9: Xorp Querying module XRL interface

Nevertheless, we have implemented the client-related commands described in
Fig. 5.2 and Fig. 5.3 with XRLs to make Idips usable directly by any Xorp

process. It means that our Idips implementation has two front-ends, one
listening on UDP and the other listening on XRLs. Fig. 5.10 lists the XRLs
that must be implemented by the classes implementing the Measurement
module. Finally, Fig. 5.11 shows the XRLs that the classes implementing
the Prediction module must implement. Each class implementing one and
only one technique. For example, one class can implement a UDP ping for
the measurement module and another can measure the path bandwidth and
one class can implement a delay bandwidth product predictor based on the
delay and bandwidth measurements.

The whole process is presented in Fig. 5.8. The Prediction module asks
an instance of the Measurement module (i.e., the delay measurement in-
stance) to measure a path. A path to measure is defined by a source and a
destination. For the sake of generality, the source and the endpoint of any
path to measure is represented textually, meaning that it can be a name,
an IP address a network interface, or any other suitable information. Each
path installed in a measurement module is periodically measured with a
configurable interval between measurements (e.g., 5 for path (a,b) and 10
for (a,c) in Fig. 5.8). The use of IP prefixes instead of IP addresses is par-
ticularly interesting to aggregate information. For example, if a site has one
IP prefix p/P for its clients and that the performance are considered to be
the same for any of them, then all the paths can be aggregated by using the
p/P source instead of the client IP address.

5.3. Service Construction 93

interface idips_measurement/0.1 {

/**

* Start periodically measuring a destination

* @param destination destination to measure

* @param interval interval in seconds between two measurements

*/

start_measurement?source:txt&destination:txt&interval:u32;

/**

* Stop measuring a destination

* @param destination destination to stop measuring

*/

stop_measurement?source:txt&destination:txt;

/**

* Change measurement interval for a destination

* @param destination destination to change the measurement interval

* @param interval new measurement interval for the destination

*/

set_interval?source:txt&destination:txt&interval:u32;

/**

* @params destination destination to get the past measurements

* @params measurements list of measurements

* @params clean remove elements after retrieving them

*/

get_measurements?source:txt&destination:txt

&clean:bool->measurements:list<u32>;

}

Figure 5.10: Xorp Measurement module XRL interface

94 Chapter 5. IDIPS

interface idips_prediction/0.1 {

/**

* Start a prediction model for a path

* @param path to predict

* @param src source IP for the measurements

* @param dst destination IP for the measurements

*/

start_prediction?path:txt&src:ipv4&dst:ipv4;

/**

* Stop a prediction model for a path

* @param path to stop the prediction for

*/

stop_prediction?path:txt;

/**

* Get the prediction for a path

* @param path to get the prediction for

* @param prediction for the path

*/

get_prediction?path:txt->prediction:u32;

}

Figure 5.11: Xorp Prediction module XRL interface

The start measurement XRL function triggers the measurement of the
path defined by the source and destination parameters. The path is then
measured every interval seconds (e.g., 5 for the path (a,b) in Fig. 5.8).2

The various Measurements module instances keep locally the last mea-
surements they obtained for the paths they are measuring. When a Predic-
tion module needs a measurement, it sends a get measurement XRL to the
adequate instance of the Measurement module and retrieves the measure-
ments for the path. The measurement is then sent to the Querying module,
with the set attribute function, for being stored in the Predicted values
storage.

Examples of module implementation

This section presents two examples of module implementation. We first
present a Measurement module that implements a UDP ping and then de-
scribe a Prediction module that implements an average delay predictor. The
Prediction module uses the measurement module to predict the delay of the
paths.

2To avoid synchronization, the time between two measurements should be set to be
equal to the interval parameter on average.

5.3. Service Construction 95

Measurement module example For the sake of the example, we pro-
pose a UDP ping Measurement module. This module does not aim at
being used in a real environment where more robust measurements tech-
niques should be used. To estimate the round-trip delay between a <source,
destination> IP pair, we send a UDP segment to the destination on a port
number that is very unlikely to be open. If the port is not opened and if
no filtering applies, an ICMP port unreachable is expected to be returned
to the Measurement module. The sending of the UDP segments is done by
using the Xorp socket API. Xorp sockets are similar to the Posix sock-
ets except that they are asynchronous and that they are implemented with
XRLs. In the reminder of this section we will use the term socket to re-
fer to the Xorp socket abstraction. A Xorp process that wants to use a
socket has to implement the socket4 user3 XRL interface. This interface
defines several XRL like error event or recv event that respectively in-
dicate if an error occurred with the socket or if bytes are ready to be read
on a socket. The socket4 user is used to signal the Xorp process about
events on the sockets it is in charge of. To open, bind, connect, listen, send
data on or close a socket, the Idips must use an XRL Socket Client. XRL
Sockets Clients are classes that implement the socket4 XRL interface and
are directly provided in the Xorp framework.

To implement the UDP ping, we create one connected UDP socket per
<source, destination> IP pair and periodically send a UDP segment with
it. The time at which the packet is sent is stored for later use. Because the
destination does not listen on the port, it sends an ICMP port unreachable
that eventually triggers the call of the error event XRL in our process.
The error indicates on which socket the error arrives and the nature of the
error. The delay is thus simply computed by doing now −measure where
now is the time at which the XRL is called and measure is the time at
which the probe was sent.

The module needs to keep some state about the <source,destination> IP
pairs it measures. To do so, different datastructure are required. First, the
destinations map maintains measurement information for each <source,

destination> IP pair. This information contains the interval at which the
pair must be measured and the list of the measured delays for the pair (the
closer to the end of the list, the more recent the measurement). Once a
delay has been measured for a pair, it is appended to its measured delay
list. When the get measurements command is called on the measurement
module, this is the measured delay list for the requested pair that is returned.
Two other datastructures are used to map a socket identifier to a pair and
vice versa. The socket info maps gives information about the socket
indexed by the socket identifier. The related information is the source and
destination addresses and the time at which the last segment has been sent

3socket6 user for IPv6

96 Chapter 5. IDIPS

on this socket (the measure variable). The sockets map is the opposite
of the socket info. sockets gives the socket identifier for any pair. The
socket info is unfortunately required as there exists no way in Xorp to

retrieve meta information on a socket like those we need.

The IP pairs are measured periodically. To implement these periodic
probings, we use a Xorp periodic timer. Every second, this timer calls the
loop method of our process. When this method is called, a UDP segment is
sent to each <source, destination> IP pair that should have been measured
at the latest when the loop method is called. To efficiently determine the
pairs to measure at the loop call, the to measure priority queue is main-
tained for each source covered by the measurement module. The key in the
priority queue is the time at which the measurement has to be done and the
value is the destination address. When a measurement is sent by the loop,
the entry is removed from the priority queue and the next measurement
time is computed for that entry. The new measurement time is then added
to the priority queue. Fig. 5.12 shows the pseudo-code of the loop method.

Lines 17 – 21 ensure the measurement periodicity of <source, destination>
pair that has not been stopped. The salt is used to avoid synchronization of
measurements and is a small random value [AKZ99].4 With Fig. 5.12, we can
see that stopping a measurement by calling the stop measurement does not
apply immediately and an ultimate probe is sent after such a call. We can
also see that there is never more that one entry par <source, destination>
pair in the queue which is optimal from a memory point of view.

Fig. 5.13 shows how the ICMP port unreachable is processed by our
module.

It is not possible, without changing Xorp to associate a time to an
event on a socket. This explains why line 0 is required in the algorithm of
Fig. 5.13. The retrieval of the time has to be carried out as soon as possible
to limit the inaccuracy of the delay estimation.

Fig. 5.14 compares the accuracy of the UDP ping we have implemented
in a Measurement module with the standard traceroute UDP ping and the
ICMP ping command. Fig. 5.14 plots the average of delay measured by the
technique and the 95% confidence interval. For the comparison, we made
1,500 pings for each technique. The interval between two probes is one
second. The setup uses two machines directly on the same VLAN. One run-
ning Idips on Linux, and the other receiving the UDP probes and running
on Linux. The UDP ping is performed with the traceroute command and
the ICMP ping with the ping command.

From Fig. 5.14 UDP ping and XORP labels, we can see that using XORP
introduces a bias in the measurement. This bias is mostly due to the pro-
cess context switching introduced by the XRL based implementation of the
XORP sockets. Indeed, when an segment arrives at the host, it is not

4In our implementation, the salt is zero.

5.3. Service Construction 97

00 FOREACH src IN _to_measure

01 DO

02 WHILE _to_measure[src] IS NOT EMTPY

03 DO

04 entry := _to_measure[src].pop

05

06 IF entry.key > NOW

07 THEN

08 MOVE TO NEXT SOURCE

09 END

10

11 dst := entry.address

12 socketid := _sockets[src][dst]

13 _socket_info[socketid].last_call := NOW

14

15 send_UDP_probe(socketid, src, dst)

16

17 IF (src, dst) NOT STOPPED

18 THEN

19 entry.key := NOW

+ _dsts[src][dst].interval

+ salt

20 _to_measure[src].push(entry)

21 END

22 DONE

23 DONE

Figure 5.12: Measurement module loop method pseudo-code

SOCKET4_USER_0_1_ERROR_EVENT(socketid, error)

00 now := NOW

01 IF error = ICMP_PORT_UNREACHABLE

02 THEN

03 si := _socket_info[socketid]

04 measure := si.last_call

05 delay := now - measure

06 _destinations[si.source][si.destination].measurements.append(delay)

07 END

Figure 5.13: UDP ICMP port unreachable management

98 Chapter 5. IDIPS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

UDP XORP ICMP

de
la

y
[m

s]

Figure 5.14: Delay precision comparison between standard UDP ping, ICMP
ping and XORP UDP ping

delivered immediately to the measurement process. It is first received by
the main Xorp process that then notifies the Measurement module process
that an event occurred on the socket (i.e., the reception of the ICMP port
unreachable). This design thus imply process switching in addition to the
standard kernel/user space switching with POSIX sockets. In addition, this
scheme is also applied when sending the segment meaning that the time
between the probe is sent from the Measurement module process and the
time the probe is effectively received by the kernel depends on how rapidly
the XRL is sent and processed by the main Xorp process. However, the
bias is of less than 0.3ms in our setup which is acceptable for most of the
measurements. More interestingly, the measurement is better with the UDP
ping implemented in Idips than the standard ICMP ping. Unfortunately,
we did not managed to determine the reason why it performs better but
the difference could come from the fact that content of the ICMP must be
copied while it is not required with the UDP ping.

Prediction module example The Measurement module presented above
does delay measurement by the mean of UDP pings. The Prediction module
example in this section uses the round-trip-delays measured by the UDP ping
measurement module to predict the delay expected for the paths in the near
future. The Prediction module simply averages the last round-trip-delays

5.3. Service Construction 99

measured for a <source, destination> IP pairs. The average delay is the
prediction of the delay for the path defined by the pair.

In this module, a path is defined by a source and a destination IP address.
When a start prediction command is received by the prediction module,
it requests the UDP ping measurement module to start a measurement for
the <source, destination> IP pair that defines the path the delay prediction
has to be performed for. The prediction module then periodically retrieves
the list of the last measurements for the path. Because the prediction module
is the single one to use the UDP ping prediction module, it requests the
measurement module to flush its memory. The prediction module then
computes the average of the measured delays in the list. This average is
considered as the future value of the delay until the next retrieval of the
measurements list for the path.

The prediction module maintains two datastructures. On the one hand,
the paths map maps a path to a <source, destination> IP pair. On the
other hand, the delays map stores the predicted delay for each path.

To speed-up the Querying module processing, the prediction module
also pushes the prediction delays to the Querying module path attributes
collection. That is, when the Querying module needs the delay prediction,
it does not need to request the prediction module. Doing so limits the use
of XRLs and thus the number of context switches.

Our example implementation has no other intelligence. Indeed, the list
of measurements is retrieved at the same rate for each path (once every
10 seconds thanks to a Xorp periodic timer) and the prediction module
requests the UDP ping measurement module to send a probe every second.
However, it would not be a hard task to modify the module to enable an
adaptive measurement rate and an adaptive measurements list retrieval.

5.3.3 High Level Cost Functions Implementation

In this section, we show how to construct simple fundamental cost func-
tions and how to combine them to implement an ISP policy. Our example
is based on a situation in which an ISP has three customer families: (i)
premium users always requiring the best available performances, (ii) stan-
dard users requiring a good performance/cost trade off, and (iii) light users
always requiring the lowest cost. The traffic engineering changes between
the night and the day for standard users: during the day, a lower cost is
preferred while during the night, the performance is preferred. The mone-
tary cost of a path depends on the 95th percentile load of the link used to
reach the Internet.

In our example, we assume that the prediction module feeds the querying
module with the following information:

• routing reachability of the paths. A path is reachable if there exists a

100 Chapter 5. IDIPS

Algorithm 1 Example of cost function for the reachability

Ensure: Integer value representing the result of this Cost Function.
1: procedure is reachable cf(src, dst)
2: reachable ← get attribute(<src,dst>, REACHABILITY)
3: return reachable
4: end procedure

Algorithm 2 Example of cost function for the path locality

Ensure: Integer value representing the result of this Cost Function.
1: procedure locality cf(src, dst)
2: origin ← get attribute(<src,dst>, ORIGIN)
3: if origin = LOCAL ASN then
4: return 0
5: end if
6: return 1
7: end procedure

route in the FIB to forward traffic from its source to its destination,
this information is stored in the REACHABILITY attribute

• originating ASN. The originating Autonomous System Number of a
path is the originating AS number of the prefix of the destination as
discovered by BGP. This information is stored in the ORIGIN attribute

• monetary cost of the paths. The monetary cost of a path is the ex-
pected cost it would represent to carrying one additional Mega bit per
second of traffic on it. This cost is computed by applying the 95th

percentile technique [DHKS09] and is stored in the COST attribute

• available bandwidth of the paths. The available bandwidth of each
path is estimated and is expressed in Mbps stored in the ABW attribute

• customer family. A customer can be premium, standard or light user.
The customer family, stored in the FAMILY attribute, of a path is de-
termined simply by considering the source of the path and ignoring its
destination

We first have to define if a destination is reachable or not from a given
source address. A path, defined by a <source, destination> pair, has its
REACHABILITY attribute equal to 1 if it is reachable. Otherwise, the attribute
is set to the maximum integer value. The cost function is reachable cf,
implemented in Algorithm 1, thus makes reachable destinations more prefer-
able than unreachable ones.

The locality of a path is determined by the originating AS number of
the path destination. If the destination prefix is originated by the operator,

5.3. Service Construction 101

Algorithm 3 Example of cost function for the cost minimization

Ensure: Integer value representing the cost of using the path defined by
src, dst.

1: procedure minimize cost cf(src, dst)
2: cost ← get attribute(<src,dst>, COST)
3: return cost
4: end procedure

Algorithm 4 Example of available bandwidth cost function

Ensure: Integer value representing the result of this Cost Function.
1: MAX BW the highest theoretical available bandwidth in the network
2: procedure available bw cf(src, dst)
3: abw ← get attribute(<src,dst>, ABW)
4: return (MAX BW – abw)
5: end procedure

Algorithm 5 Example of customer family cost function

Ensure: Integer value representing the customer family for traffic from src
to dst.

1: procedure customer family cf(src, dst)
2: family ← get attribute(<src,dst>, FAMILY)
3: return family
4: end procedure

the path is considered local. Algorithm 2 shows how to implement the
locality cf cost function that prefers local paths over non-local ones. In
this function, LOCAL ASN is operator AS number.

Algorithm 3 shows the minimize cost cf cost function that returns the
monetary cost of using a path. This function makes path with the lowest
monetary cost more attractive. To avoid oscillations, it is a good idea to use
classes of monetary costs instead of the exact monetary cost. For example,
the COST attribute could be the reminder of the division of the monetary
cost by x instead of being the raw value of the monetary cost.

When considering bandwidth, the best paths are those having the high-
est available bandwidth. The implementation of a cost function preferring
paths with the highest bandwidth is not straightforward. Indeed, Idips, by
definition, always prefers the lowest cost while in terms of bandwidth, the
highest is the best. Thus, to prefer the paths with the highest bandwidth,
the value of the available bandwidth is subtracted to the highest theoreti-
cal available bandwidth for the operator (i.e., the total network capacity).
Algorithm 4 provides the implementation of such a cost function, MAX BW

being the highest theoretical available bandwidth in the network.

As for cost minimization, the customer family cost function only has to

102 Chapter 5. IDIPS

Algorithm 6 Example of a complex cost function

Ensure: Encounters customers requirements
1: PREMIUM USER = 1
2: STANDARD USER = 10
3: LIGHT USER = 20
4: procedure customer management cf(src, dst)
5: if (is reachable cf (src, dst) = MAX INTEGER) then
6: return (UNREACHABLE)
7: end if
8: customer ← CUSTOMER FAMILY CF(src, dst)
9: if (customer = PREMIUM USER) then

10: cost ← AVAILABLE BW CF(src, dst)
11: end if
12: if ((customer = STANDARD USER ∧ DAY) ∨ customer =

LIGHT USER) then
13: cost ← MINIMIZE COST CF(src, dst)
14: end if
15: if (customer = STANDARD USER ∧ NIGHT) then
16: cost ← AVAILABLE BW CF(src, dst)
17: end if
18: return

(
LOCALITY CF(src, dst) · cost

)
+ cost

19: end procedure

return the customer family. Algorithm 5 shows the implementation of this
cost function. In the system, the family 1 corresponds to premium users, 10
is for standard users and 20 for light users.

The previous algorithms can be combined by the network operator to
build more complex policies. Algorithm 6 combines all the blocks in order
to reflect the operator policies proposed earlier in this section. In particular,
Algorithm 6 first checks whether the destination dst is reachable from the
source src. If the path is reachable, it applies the policies previously defined,
based on the FAMILY attribute. For premium clients available bandwidth is
always preferred. For standard clients the applied policy depends on the
time period; the available bandwidth is used as cost function during the
night, while cost minimization is preferred during the day.

The last line gives preference to a local paths. This line is an example
of weighted sum of cost functions. More particularly, the cost result by the
CUSTOMER MANAGEMENT CF is a weighted sum of the costs from other cost
functions, weight by the cost returned by a cost function. The principle in
the example is to double the cost if the path is not local.

5.4. Evaluation 103

Figure 5.15: Evaluation testbed

5.4 Evaluation

In this section, we evaluate the performance of our Idips implementa-
tion. We first present the methodology we follow and the testbed we build
(Sec. 6.4.1). The testbed is based on the Xorp implementation of Idips

we discussed in Sec. 5.3.2. We next discuss the results (Sec. 5.4.2). In
particular, we focus on the heart of Idips, i.e., the ranking process.

5.4.1 Methodology

Fig. 5.15 provides a description of the testbed we build for evaluating
Idips. The server on which Idips is running is a quad-core Xeon E5430 at
2.66GHz. The server has a 6MB processor cache and has 4GB of RAM.
The server runs a Linux 2.6.31-22-server 64 bits distribution. The predicted
values storage is populated with 1,500,000 paths uniformly randomly gener-
ated (both source and destination addresses are randomly generated). Each
path is assigned a uniformly randomly generated delay in [0, 1000ms]. The
cost function implemented is the minimize delay cf(src, dst).

The client is running a dual-core Xeon 3060 at 2.40GHz, with 5GB of
RAM and a Linux 2.6.32-5 32 bits distribution. If there is a single hardware
representing the client, the machine ensures that 100 instances of the client
are running in parallel. Each client instance sends a request to Idips, each
request containing a source address and a list of destination addresses. Those
destinations are randomly generated but we ensure that roughly 10% of
the randomly generated destinations are not present in the paths stored by
Idips. Each instance of the client is in charged of sending 10,000 requests
to Idips, meaning that a total of 1,000,000 requests are sent to Idips. We
consider the following values for the number of destinations in a request: 1,
2, 5, 10, 50 and 100.

104 Chapter 5. IDIPS

The clients and the Idips server are are attached with a 100Mbps switch.

Each experiment in Sec. 5.4.2 is repeated ten times. Each data point
represents the mean value over ten runs of the experiment, the clients and the
server process being rebooted before each run. We determine 95th confidence
intervals for the mean based, since the sample size is relatively small, on the
Student t distribution. These intervals are typically, though not in all cases,
too tight to appear on the plots.

5.4.2 Results

Fig. 5.16 shows the Idips service time from the client perspective. In
particular, Fig. 5.16(a) gives the time (in ms) between each request and the
associated reply for a particular run when the client request contains ten
destinations. Fig. 5.16(a) shows how Idips is stable over transactions, no
drift is observed.

Fig. 5.16(b) shows the Idips time distribution as quantiles. The dotted
line represents the median value, while the box plot gives the minimum and
95th percentile values as well as the 25th and 75th percentiles.

Obviously, the Idips service time increases with the number of paths (i.e.,
the number of destinations in this example) induced by the client requests.
The service time linearly increases with the number of paths. The linear
dependency is the result of the conversion of the list received from the client
in text into a binary format into the querying module implementation, the
construction of the possible paths and the cost computation for each of
such paths. The cost function having a temporal complexity of O(1), the
total complexity is O(s ∗ d) = O(n) where s is the number of sources in
the request, d, the number of destinations and n the number of paths. In
our experiment, s = 1 making n = d. In addition, the bigger the number
of destinations, the less stable the service time as suggested by the service
time distribution amplitude. The higher dispersion observed for the list of
one destination can be explained by the overhead caused by the switching
between the Xorp processes (i.e., the finder and the querying module).

Fig. 5.17 breaks the Idips service time down into three categories: the
network delay (labeled “network” - descending line pattern portion of the
stacked bars), the path ranking (labeled “IDIPS” - ascending dashed line
pattern portion of the stacked bars), and the internal Xorp processing (la-
beled “Xorp” - descending dashed line pattern portion of the stacked bars).
For plotting those results, we consider the median value among the ten runs.
Instead of plotting the median value of the service time, we rather consider
the time proportion of each category.

The time consumed by the network is negligible. This is due to clients
and server, in our testbed, are separated by a single switch. However, as the
Idips server is supposed to be deployed within a campus or an ISP network
(in the fashion of DNS service), one can imagine that the required network

5.4. Evaluation 105

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200000 400000 600000 800000 1e+06

se
rv

ic
e

tim
e

(in
 m

s)

transaction id

(a) service time stability - destinations=10

 0

 10

 20

 30

 40

 50

 60

 70

1 2 5 10 50 100

se
rv

ic
e

tim
e

(in
 m

s)

destinations

(b) service time distribution

Figure 5.16: Idips service time as perceived by the client

time (i.e., time spend in the network between the client and the server and

106 Chapter 5. IDIPS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 5 10 50 100

tim
e

pr
op

or
tio

n

destination

network IDIPS XORP

Figure 5.17: Proportion of the service time split - median over the ten runs

vice-versa) would be very close to what we experienced in our testbed.

In general, the time spent in the whole ranking process in Idips increases
linearly with the number of paths from the requests. With about only 12% to
20% of the time spent building the list to return to the client once the costs
are computed. The rest being spent by the cost computation and attribute
retrieval. The internal Xorp processing represents most of the service time
(around 90%) and is also linearly dependent with the number of paths from
the requests. The time spent directly in the Xorp internals is mostly due
because of the marshaling and unmarshaling of the XRLs and the context
switching between the finder and the querying module (remember that the
XRLs are always processed by the finder.

Fig. 5.18 shows the load on Idips in term of requests/second number.
Obviously, the capacity of Idips to process requests decreases with the re-
quest size. It is a normal behavior as large requests require more processing
time, in terms of Idips (typically more cost function to evaluate and, thus,
more lookup into the predicted values storage) and internal Xorp processing
(as already suggested by Fig. 5.17).

We also notice that, in the worst case (i.e., 100 destinations per request),
Idips can still process more request per second than what could be required
for peer-to-peer applications [GCX+05].

5.5. Related Work 107

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 5 10 50 100

#r
eq

/s
ec

destinations

Figure 5.18: Load on Idips without XRL

5.5 Related Work

In 2007, when we started to design Idips P2P optimization was not an
objective [SDIB08]. However, Idips can help to select the best peers in
P2P systems. Despite the fact that we do not use Idips for P2P traffic
optimization, most of the Idips related work are in that field.

Bindal et al. show by simulation that biasing the peer choice in P2P
can improve the overall performance [BCC+06]. On the one hand, down-
load times can be reduced and on the other hand ISPs can reduce their
operational costs. This simulation based study shows that an informed peer
selection gives better results than an unbiased peer selection when using
Bittorrent [PGES05].

Aggarwal et al. [AFS07] propose an oracle service very similar to Idips

that would be configured by the network operator and queried by P2P appli-
cations [AFS07]. The underlying assumption in oracle is that traffic would
be optimized by letting ISPs and P2P clients collaborate. The oracle is
a server operated by the network operator. When a P2P client needs to
select peers in a swarm, it sends the list of peer’s IP addresses to the ora-
cle. The oracle returns these addresses labeled with a rank. The way the
rank is computed by the oracle is hidden to the clients. The paper shows
that preferring peers within the local AS increases the overall performance
and should reduce the operational costs for the ISP as the traffic tends to

108 Chapter 5. IDIPS

remains local. [AFS07] characterizes performance metrics to evaluate the
benefits of using a biased peer selection like oracle. While the oracle limits
the ranking to destination addresses, Idips proposes to rank paths or even
groups of paths, using prefixes. Another difference between the oracle and
Idips is the ranking scope: the oracle ranking is limited to local or peering
domains while such a limitation does not exists in Idips.

Choffnes and Bustamante [CB08], as opposed to the oracle approach [AFS07],
propose a biased peer selection in P2P without the need of a specific infras-
tructure. Instead, Choffnes and Bustamante propose Ono that uses the
information that are already available within commercial CDNs. In general,
CDNs like Akamai 5 and Limelight 6 control the traffic from the clients by
using the DNS. To be simple, depending on the client location, the DNS
replies for a name are different. By periodically resolving names for CDNs
servers, the peers can build an abstracted representation of the relations
they have with these CDNs, this representation is called the behavior map.
Each Ono-enabled peer resolves the name of the same 6 well chosen CDN
names. The corresponding C-class prefix is considered instead of the ad-
dresses. Indeed CDNs often have several servers in the same data-center
and the servers are grouped in C-class prefixes. The addresses belonging to
the same C-class prefix can be safely considered as belonging to the same
datacenter. The peers do the resolution several times to determine the dy-
namic of the change in the CDN name map. Two peers ”close” to one name
will have the same dynamics in the CDN map. In addition, to the change
ratio of the CDN names in the map, the peers ping the returned addresses.
The measured delay is used to weight the map according to the delay with
the servers. When a peer must select another peer, it will chose a peer
that presents a similar weight ratio map. The RTT weighting relies on the
principle that the closer two peers are, the more likely the name will be
resolved in the same /24 subnet. and the delay to the server for a given
name will be close as well. The deployment of Ono on hundred of thousands
nodes shows that doing so can reduce the average delay and increase the
download rate by about 30%. It also shows that in 33% of the cases, the
chosen peers were within the local ISP. The major difference between Idips

and Ono is that no specific infrastructure must be deployed for the service
to work. However, the reduction of inter-AS cost is only a side effect of the
optimization of the perceived client performance. Ono does not leverage an
ISP P2P collaboration.

Xie et al. propose P4P [XYK+08]. P4P provides topology hints to P2P
clients. In P4P, the topology and policies are abstracted into the p-distance.
The p-distance summarizes the metrics that are relevant for the operator
and is used by ISPs to communicate their preferences and status for the

5http://www.akamai.com
6http://www.limelightnetworks.com

5.5. Related Work 109

traffic. The application uses the p-distance to create an abstracted view of
the network connectivity. The applications can then select their destinations
based on the minimal p-distance in the abstracted network view. ISPs,
or third parties, maintain iTrackers to communicate the p-values. These
iTrackers are contacted by P2P clients to compute the set of the best swarm
peers. The iTrackers are used to retrieve the policy information, the p-values
but also the network capabilities.

During the mid 2000ies, network operator started to complain about
the operational cost of supporting P2P traffic [Lig, She, KTCI04]. Indeed,
the P2P overlays do not take the underlay network topology into account
and neighbors are in general selected at random. Therefore, it is possi-
ble that a packet sent by a peer in an AS A to a peer in the same AS
follows a path that crosses several times the network boundaries, possibly
via provider links. Providers have then started to block P2P traffic or to
limit the bandwidth for P2P flows. However, P2P application now rely on
encryption or simply behave like HTTP to masquerade their traffic. The
problems faced by the ISPs is because ISPs are black boxes and it is hard
for a client application to know the peers that are efficient but not harmful
for its ISP. Industry and academy started to collaborate on a solution for
this problem with an IETF P2P Workshop meeting specially hold in May
2008 in Boston.7 During this workshop researchers and operators were in-
vited to present position papers about the problem and the solutions they
though to be good for this. The conclusion of the workshop is that P2P and
ISPs must collaborate somehow. Some proposed to add caches and install
the trackers inside the ASes, but this would have caused legal issues as it
is known that P2P traffic is mostly used for illegal content. As a result,
the Application-Layer Traffic Optimization (ALTO) [SB09] Working Group
as been set up at the IETF. ALTO aims at designing and specifying ser-
vices helping applications such as peer-to-peer, content delivery networks,
and mirror selection, to select the best peers. Factors of interest in this
selection are, among others, maximum bandwidth, minimum cross-domain
traffic, lowest cost to the user, etc. ALTO is a mix of the best features
of P4P, oracle and Idips with additional contributions. Clearly, Idips is in
line with the ALTO Working Group thematic. However, while we have been
actively working in the ALTO working group at its beginning [AFP+09] to
make sure that the protocol would be able to support IP prefixes, names or
AS numbers, we have chosen not to implement the ALTO protocol in Idips

because many features are P2P related and because ALTO is closer to P4P
than to oracle or Idips. Nevertheless, Idips could be adapted to implement
the ALTO service as it meets most of the ALTO requirements [KPS+11].

As opposed to oracle, Ono, P4P and ALTO in general, Idips is not
designed specifically for P2P. Idips is an extension of the NAROS Name,

7http://www.funchords.com/p2pi/

110 Chapter 5. IDIPS

Address and ROute System (NAROS) server that has been designed for mul-
tihoming IPv6 host-centric traffic engineering in the early 2000 [dLBL03].
NAROS was proposed to select the best source address in multihomed IPv6
sites. A NAROS client sends a request to a NAROS server with the des-
tination address it aims to use and the list of its source addresses. The
server returns the best source address to use for the destination. The pre-
fix of the destination is also returned to avoid a client requesting several
times the server for destinations within the same prefix and that would thus
have the same result. The major difference between Idips and NAROS
is that Idips return all the possible aggregated <source,destination> pairs
and ranks them. This change allows Idips to be used equally for incoming
and outgoing traffic engineering and enables the use of multi-path routing
or transport.

A proposal that shares objectives similar to Idips is Morpheus [WAR07],
which determines the best path to use according to the operator policies and,
then, sends BGP updates to its BGP router target (via multihop eBGP).
Like Idips, Morpheus is very modular but is restricted to BGP as the sig-
naling is performed using BGP messages while Idips has its own messaging
format, allowing a finer-grained interaction between the client and the path
selection service.

Finally, a number of vendors have proposed proprietary path selection
solution ([Int05, Ava05, Rad, Cis]). These solutions all follow the same
principle. Specialized boxes are deployed in the network and monitor it
actively, passively or both. The measurements are combined with policies
to determine the quality of the different routes. Based on the observations
and the configuration, the boxes can inject prefixes into BGP to influence
the incoming traffic but they can also modify link costs in the IGP or inject
partial BGP tables into it to control the outgoing traffic as well. Finally,
NAT can be used to ensure that some flows enter the network via a given
link.

5.6 Conclusion

The Internet is evolving. During this last decade, we have seen the
emergence of applications having more and more requirements in terms of
delay, jitter,or bandwidth. In addition, the single path assumption between
a source and a destination does not hold anymore. As a consequence, the
applications can use several paths to retrieve their content. It might thus be
interesting to provide those applications a service for selecting their paths
better than randomly, i.e., a service for selecting paths that meet applica-
tions requirements.

In this chapter, we proposed an Informed Path Selection Service (Idips),
that is able to rank paths. Idips is a generic, scalable, lightweight and easily

5.6. Conclusion 111

deployable solution allowing ISPs, enterprises, or campus networks to qualify
paths between a source and a set of destinations. Idips makes use of passive
and active measurements to keep track of the network conditions.

In this chapter, we have shown that Idips can be used to enable perfor-
mance based incoming traffic engineering with LISP.

We discussed our Idips implementation inside Xorp and focused on
simple cost function (i.e., the way Idips assigns a cost to a path) construction
and how to combine them to reflect more complex ranking strategies. We
built a testbed and evaluated the performance of Idips. In particular, we
focused on the heart of Idips, the ranking process. We demonstrated that
Idips is robust as it is able to process a large number of requests/second
while providing a stable response time to the client.

Chapter 6

Measurement Reduction
with Clustering

6.1 Introduction

Using measurements collected at network vantage points to infer the In-
ternet conditions is an important component of performance aware services
like Idips. However, constantly probing the network leads to scalability
issues. Indeed, probes injected in the network might burden the traffic.
Further, if those probes come from multiple vantage points, they might be
considered by some as a kind of distributed denial-of-service attack. In ad-
dition, because of memory and processing constraint, it is not possible to
constantly measure all the network. As previously mentioned by Cheswick
et al., any networking measurement system must be engineered very care-
fully [CBB00].

There exist several ways for reducing the amount of required measure-
ments and resource consumption. A first possibility is to allow collaboration
between probing monitors and to cluster probe targets. Clustering means
aggregating a subset of targets into the same hat and considering a mea-
surements towards one of the target as being representative of the whole
cluster [Bro04, SPPVS08, KW00]. Another way is to modify the probing
technique so that it consumes fewer resources.

In this chapter, we investigate the first solution (i.e., collaboration and
clustering). We explain how measurement reduction can be achieved through
collaboration between vantage points and destination clustering. We also
discuss several metrics that can be used to evaluate the performance of a
cluster based measurement campaign. We further explain that a greater
measurement reduction can be achieved if collaboration between measure-
ment sources is added to clustering.

In addition, we discuss five clustering techniques that can be used to
reduce the measurements impact. These clustering techniques are based on

113

114 Chapter 6. Measurement Reduction with Clustering

Sources

Destinations

(a) Duplication

Sources

Destinations

(b) Collaboration

Sources

Destinations

(c) Clustering

Sources

Destinations

(d) Collaboration and clustering

Figure 6.1: Illustration of measurements duplication and reduction

available network information.
Based on real data collected, we evaluate these clustering techniques

using the metrics we propose. We show that they are reasonably accurate
while allowing a strong reduction in the amount of required probes.

The remainder of this chapter is organized as follows: Sec. 6.2 provides
a theoretical background for measurement reduction through collaboration
and clustering; Sec. 6.3 discusses five clustering techniques and positions
them regarding the state of the art; Sec. 6.4 evaluates these clustering tech-
niques and shows how clustering can reduce the measurement overhead;
Finally, Sec. 6.5 concludes this chapter and discusses future directions.

The contribution of this chapter is to provide a technique that is a trade-
off between the number of measurements and the quality of the measured
value. To do so, we propose a new lightweight clustering technique that
respects the topology to group probing sources and measurement destina-
tions.

6.2 Theoretical Background

6.2.1 Measurement reduction

Active Internet measurements reduction is a strategic issue when large-
scale measurements are required. Up to now, several solutions have been pro-

6.2. Theoretical Background 115

posed for delay measurements [NZ02, NZ04, DCKM04], Internet topology
discovery [DRFC05, DFC05], and bandwidth estimation [HS05, RMK+08].
However, these techniques, despite their strong advantages in term of mea-
surement reduction, are complex to deploy and can require to modify the
measurement technique itself.

If keeping the measurement mechanisms intact is a requirement when
trying to reduce the probing impact, two solutions are imaginable: reducing
the number of measurement vantage points (i.e., the sources) and reducing
the number of measurement targets (i.e., the destinations). If both lead to
a measurement reduction, they can also lead to a lower accuracy. A balance
must thus be found between measurement reduction and accuracy.

These two solutions might be implemented through collaboration and
clustering. Collaboration can help to reduce the number of sources involved
in measurements while clustering is useful to reduce the number of destina-
tions to probe.

Any two nodes a and b could collaborate if they are topologically close.
For instance, if they both belong to the same campus network. Indeed, if
they share the same first hops, when measuring a destination d, it is very
likely that probe packets will follow, for both a and b, the same path. Or
at least, they will share large path segments. Consequently, the resulting
measurement will be very close and if both nodes act in isolation from each
other, they unnecessarily duplicate their efforts, as illustrated in Fig. 6.1(a).
On the contrary, if a is aware of the measurements already performed by b to
d, then, a no longer needs to measure d. In other words, collaboration avoids
duplication of measurements and thus reduces the measurement overhead.
Collaboration is illustrated in Fig. 6.1(b). How measurement sources can
collaborate is still an open issue. However, efforts have been made in the
context of Internet topology discovery [DRFC05].

On the other hand, the key idea behind clustering is to aggregate a set
of nodes under the same hat and consider that all nodes within a given hat
share the same properties. A Cluster C is defined as a set of nodes sharing
the same properties. Clustering is illustrated in Fig. 6.1(c).

The basic assumption behind clustering is that all the nodes that belong
to a cluster share the same path performances (i.e., delay, bandwidth, etc).
Consequently, measuring a single point within a cluster would be sufficient.
The node that is measured to estimate the cluster path performances is
called the Reference Point. It is thus worth to notice that clustering allows
to reduce the number of measurements as only the reference point has to be
measured.

In the remainder of this chapter, we only consider one reference point
per cluster. However, it is conceivable to have more than one reference point
in some clusters. Studying the impact of varying the number of reference
point per cluster is let for further investigations.

A cluster is said popular if any destination within this cluster is often

116 Chapter 6. Measurement Reduction with Clustering

measured. We evaluate the popularity πC of a cluster C by counting the
number of sources sending probes towards C.

We can bring together collaboration and clustering by defining SC , the
Source Cluster of C. SC represents the set of sources measuring a cluster
C. Remember that this makes sense only if all nodes in SC are topologically
close. Collaboration and clustering together allow a greater reduction in
probing effort, as depicted in Fig. 6.1(d). It is worth to notice that the set
of collaborating nodes is a cluster itself.

We propose a metric for evaluating the measurement reduction: the
Measurement Reduction Factor. The Measurement Reduction Factor ρ for
clustering technique t on P is:

ρ =

|P| −
∑

Ci∈CP

|RCi |

|P|
(6.1)

where P is the set of < s, d > nodes pairs such that s, the source, has to
measure d, the destination. CP is the set of all the clusters on P assuming
clustering technique t. RC is the set of all the reference points of C.

Positive values for ρ means that the measurement reduction technique
used effectively reduces the number of measurements. On the contrary, a
negative value means that more measurements have to be performed than
without reduction. For instance, if ρ = 0.5, the number of measurements is
reduced by 50%.

Finally, note that measurement reduction is achieved on P if it exists a
cluster C such that |SC | > 1 or |C| > 1 or both.

6.2.2 Clustering Accuracy

In a cluster C, only the reference point is used to estimate the perfor-
mance of all the destinations within C. It would be a matter of concern if
measuring a single point (or a few points) within a cluster would lead to a
strong measurement accuracy loss. This section defines how to estimate the
accuracy of clustering techniques.

Estimation Error For a path performance metric m (delay, bandwidth,
etc), the estimation error between node i and node j is defined as:

eij =
|mij − m̂ij |

mij
(6.2)

where mij is the measured value for m between i and j and m̂ij its estimated
value.

The estimation error gives the error proportion if the performance of
a node is based on the estimated value instead of the directly measured

6.3. Clustering Techniques 117

value. The estimated error is expressed in percentage. The closer to zero
the estimated error, the more accurate the measurement estimation. Thus,
a value of zero means that the estimation is perfect, while, for instance, a
value of 0.5 means that there is a difference of 50% between the estimated
and the actual values.

For any clustering technique t (see Sec. 6.3), the estimated metric m̂ij
from a node i to a node j in a cluster C is the metric associated to all nodes
within the cluster.

The measurement error shows how the estimation fits with the reality
for a given node in a cluster. However, it can be interesting to characterize
the error for the whole cluster and not only a particular node within this
cluster. For such an information, statistical tools like mean, percentiles or
standard deviation can be applied on the set of all cluster estimation errors.

6.3 Clustering Techniques

In this section, we discuss five clustering techniques. These techniques
offer the strong advantage of being very easy to setup as they only require
simple information already, or easily, available in the network. With these
techniques, clusters are a set of IP prefixes such that a simple longest prefix
matching is enough to determine to which cluster a given IP address belongs.

AS Clustering: clusters are defined based on the Autonomous System
(AS) membership of Internet hosts (e.g., all the nodes of AS 2611
are put in the same cluster). This is somewhat equivalent to the no-
tion of super-cluster introduced by Krishnamurthy and Wang [KW01]
for modeling the Internet topology.

Geographic Clustering: clusters are defined based on the geographic lo-
calization of Internet hosts (e.g., all the nodes near Paris are within
the same cluster).

n-agnostic Clustering: clusters are defined as fixed-length IP prefixes.
All the nodes sharing the same n bits prefix are put in the same clus-
ter. The /24 division proposed by Szymaniak et al. [SPPVS08] is a
particular case of such a technique (i.e., 24-agnostic clustering).

BGP Clustering: clusters are built according to BGP. Every advertised
BGP prefix refers to a cluster. Each IP address belongs to the cluster
with the longest matched BGP prefix. The clustering in BGP prefixes
was first proposed by Krishnamurthy and Wang [KW00].

n-hybrid Clustering: clusters are built according to BGP prefixes but
the minimum length of the prefixes is fixed to n. When the BGP
prefix length is lower than n bits, it is divided into as many /n as

118 Chapter 6. Measurement Reduction with Clustering

needed instead of the single prefix length advertised in BGP. n-hybrid
Clustering is thus a mix between BGP and n-agnostic Clustering. To
the best of our knowledge, we are the first to propose this technique.

Except for n-agnostic Clustering, all these clustering techniques rely
on a dataset defining to which cluster an IP address belongs. For Geo-
graphical Clustering, the dataset must contain a correspondence between
IP addresses and a geographical position. We believe that the MaxMind
database [Max02] is accurate enough for most applications, even if it has
been shown that it is less accurate (in term of geolocation) than active
probing [SGU08, PUK+11]. In the case of AS Clustering, the dataset con-
sists of a mapping between an Autonomous System Number (ASN) and an
IP prefix. BGP feed, iPlane [MIP+06] or Cymru [Tea04] provide this infor-
mation. In both BGP and n-hybrid Clustering, IP addresses are mapped to
their longest matched BGP prefix. To know the advertised BGP prefixes,
a BGP feed is required. It can be obtained directly through a BGP session
or a looking glass (e.g., RIPE). It is worth to notice that BGP Clustering is
equivalent to 0-hybrid Clustering and that, in 32-agnostic, clusters have a
cardinality of one for IPv4.

We propose n-hybrid Clustering to avoid very large prefixes announced
by BGP (e.g., some /8). Indeed, some of them may concern hosts spread
all around the world and, thus, lead to a very low measurement accuracy.

Clustering techniques for reducing the amount of required measurements
have already been extensively studied by the research community. Krish-
namurthy and Wang introduce the BGP Clustering in the context of web
caching [KW00]. In addition, they propose an adaptive clustering for ad-
dresses not classified with BGP. Unfortunately, their technique is based on
reverse DNS and traceroute which is not suitable as traceroute is intrusive.
Instead, we map undefined IP addresses to an agnostic /n prefix. Szymaniak
et al. show that latencies are globally equivalent within the same /24 prefix
on the Internet [SPPVS08]. Based on that, Szymaniak et al. suggest to use
a /24 cluster division (equivalent to what we call 24-agnostic Clustering in
this chapter) to reduce the amount of required measurement. Finally, Brown
proposes to use clustering for optimizing traffic from a local network to a
set of IP addresses put into a given cluster [Bro04]. Based on measurements
to a set of scanpoints (equivalent to our Reference Points), an entity might
decide to choose a particular Internet path for traffic towards the cluster.

In addition, others proposed techniques for monitoring networks and,
possibly, reducing the amount of required measurements while keeping ac-
curate the measured metrics [YSB+06, LL08, MZPP08, DCKM04, DFC05].
In particular, Donnet et al. [DFC05] impose a limit on the number of tracer-
oute monitors that can probe a given destination. This is done by dividing
the traceroute monitors into clusters, each cluster focusing on a particular
portion of the traceroute destinations.

6.4. Evaluation 119

6.4 Evaluation

6.4.1 Methodology

Our evaluation relies on two datasets. The first dataset is taken from
the Caida’s Archipelago measurement infrastructure [HHA+]. Archipelago
collects traceroute and RTT information towards all routed /24. For our
study, we consider data collected in August 2008 by two Archipelago moni-
tors: bcn-es (Barcelona, Spain) and san-us (San Diego, USA). From these
dataset, we extract only complete traceroutes, i.e., traceroutes terminating
at the destination. For the rest of this chapter, this dataset is named Archi-
pelago. For the second dataset, we collected full NetFlow traffic traces on
our campus network. The traces were collected at the single 1Gbps Internet
connection of the campus. A total of 45.4 TB of outgoing traffic has been
monitored. However, in this chapter, we do not consider 0 bytes or 0 packets
flows and ignore the traffic the traffic exchanged with the intensive calculus
data-center of our network. Thus, after filtering, the outgoing traffic repre-
sents 7.45 TB (i.e., 22.27 Mbps on average). The filtered dataset contains
10,084 different source IP addresses and 36,263,710 destination IP addresses
for a total of 60,638,413 different layer-3 flows (i.e., the number of different
<src, dst> IP address pairs). In the following of the chapter this dataset is
named NetFlow.

The NetFlow dataset is used to estimate the measurements reduction
and the popularity while the Archipelago dataset permits to estimate the
impact of clustering on performance estimation accuracy. Unfortunately, we
have not found significant datasets that allowed us to estimate measurement
accuracy and reduction at the same time. However, measurements from the
bcn-es monitor is representative of the RTT we see on our campus net-
work. We can thus consider the two dataset as not completely independent
(bcn-es monitor is connected through the European research network like
our campus).

The mapping between IP addresses and announced prefixes was done
using the first BGP table dump of August 2008 retrieved from the University
of Oregon RouteViews project [Uni]. ASN and IP addresses mapping was
done using the iPlane dataset [MIP+06]. Finally, the geographic mapping
was achieved using the MaxMind database [Max02].

In the following, we limit the n value to {16, 20, 22} for n-agnostic and
n-hybrid.

6.4.2 Measurement Accuracy

In this section, we evaluate the measurement accuracy of clustering tech-
niques. We focus on two networking metrics: the round-trip time (RTT)
and the number of hops. We leave jitter and bandwidth for further work.

120 Chapter 6. Measurement Reduction with Clustering

(a) bcn-es

(b) san-us

Figure 6.2: Estimation error applied to RTT

Fig. 6.2 shows the estimation error (see Def. 6.2.2) applied to the RTT
for the five clustering techniques introduced in Sec. 6.3. Fig. 6.2(a) focuses
on the bcn-es monitor and Fig. 6.2(b) on san-us. For each figure, there are
three plots, the upper one comparing BGP, Geographic, AS, and 24-agnostic
Clustering, the middle one n-agnostic, and, finally, the below one n-hybrid.
The horizontal axis gives the RTT Error (in %) and the vertical axis the
cumulative distribution form (CDF).

A first observation is that n-hybrid and n-agnostic Clustering perform

6.4. Evaluation 121

better (n-hybrid being the best) than other clustering techniques, most of
the measurements having an error smaller than 50%. More precisely, in
80% of the cases, the RTT Error is less or equal to roughly 25%. The AS
Clustering offers the worst performance. This is somewhat expected as some
ASes are too large to asses the assumption that any measurement towards
the cluster reference point is representative of the entire cluster. Indeed, an
AS can be very large and may contain smaller entities that are separately
administrated. From Fig. 6.2, we notice that the RTT Error might be very
large, i.e., up to 1,000% for AS Clustering (not shown on Fig. 6.2). This
is due to inherent limitations of our dataset. Some traceroute might take
a long time to reach the destination and the RTT measured at this time
might not be really representative of the actual “distance” separating the
traceroute monitor and the destination.

Fig. 6.3 shows the estimation error applied to hops. Again, AS and Geo-
graphic Clustering provides the largest error. This is expected as they span
larger areas. Further, for n-hybrid and n-agnostic, larger the cluster (i.e.,
smaller the n), larger the hop error. As for RTT error, n-hybrid provides
the best performance.

Fig. 6.4 shows the estimation variation (the percentiles of all the esti-
mation errors for a given cluster) applied to RTT (Fig. 6.4(a)) and to the
number of hops (Fig. 6.4(b)). The horizontal axis gives the various cluster-
ing techniques while the horizontal axis, in log-scale, gives the estimation
variation. Fig. 6.4 plots stacked bars. The lowest bar (i.e., the darkest)
refers to the 25th percentile of the estimation variation. The middle bar
shows the 50th percentile (i.e., the median), while the highest bar (i.e., the
lighter) gives the 75th percentile.

The main lesson learned from Fig. 6.4(a) is that, whatever the clustering
technique, the RTT variation is low: the median has a maximum of 1.5% for
16-agnostic (for san-us). However, the situation is a little bit different for
hop variation (Fig. 6.4(b)). The 75th percentile provides large hop errors,
in particular for the largest clusters, i.e., 16-agnostic, 16-hybrid, BGP, AS,
and Geographic Clustering.

To summarize, except in a few extreme cases, clustering provides thus
pretty good measurement accuracy. In particular, this section suggests that
n-hybrid Clustering is the most reasonable choice for a clustering technique
deployment.

6.4.3 Measurement Reduction

In this section, we evaluate the measurement reduction observed on the
NetFlow dataset for the clustering techniques introduced in Sec. 6.3.

We first determine if measurement reduction can be achieved, on the
NetFlow dataset thanks to the collaboration. On Fig. 6.5, the horizontal
axis, in log-scale, shows the popularity while the vertical axis gives the

122 Chapter 6. Measurement Reduction with Clustering

(a) bcn-es

(b) san-us

Figure 6.3: Estimation error applied to hop

CDF.

Fig. 6.5 shows that 26.1% of the destinations are reached by, at least,
2 different sources. Collaboration will thus reduce measurements for this
dataset. In addition, the top 250 destinations are reached by more than
2,000 different sources. Theses destinations are the major CDNs and web
search engines.

Fig. 6.6 shows the CDF of the cluster sizes. The plot first shows that, on
our dataset, clusters cover several nodes. Measurement reduction will thus

6.4. Evaluation 123

(a) RTT

(b) hop

Figure 6.4: 25th, 50th and 75th percentile of estimation error

be observed on our dataset.

Fig. 6.6 also suggests that the clustering technique influences the cluster
size. For instance, 50% of the clusters cover more than 200 addresses in
AS Clustering while it is the case for less than 10% in BGP or Geographic
Clustering. Moreover, the cluster size is also influenced by the n parameter
when applicable. With small n, prefixes are large and have the possibility
to absorb many destinations, the cluster size being therefore important. As
expected, n-hybrid behaves partially like BGP for small n and like n-agnostic

124 Chapter 6. Measurement Reduction with Clustering

Figure 6.5: Popularity in the NetFlow dataset

Figure 6.6: Cluster size distribution

for large n.

Fig. 6.7 shows the effective reduction factor with respect to the different
clustering techniques, with or without collaboration. The vertical axis is the
reduction factor while the horizontal axis indicates the clustering techniques.
On Fig. 6.7, light gray bars show the reduction factor when the nodes are
not collaborating. On the other hand, dark gray bars show the reduction
factor when nodes are collaborating.

6.4. Evaluation 125

Figure 6.7: Measurement reduction in the NetFlow dataset

32-agnostic and 32-hybrid Clustering (one cluster per destination) from
Fig. 6.7 confirm that collaboration can reduce measurements (by 40% in our
dataset). Light gray bars confirm that clustering can reduce measurements.

Moreover, Fig. 6.7 shows that, for the same clustering technique, coop-
eration always offers better reduction factor than no cooperation or collab-
oration without clustering. Confirming so that combining collaboration and
clustering gives even better measurements reduction than collaboration or
clustering alone.

We also see on Fig. 6.7 that BGP, AS, and Geographic Clustering offer
an important reduction factor because the number of BGP prefixes, ASes,
or locations is very small compared to the number of different addresses in
the NetFlow dataset.

When considering n-hybrid and n-agnostic Clustering, the reduction fac-
tor is more sensitive to n than the technique itself which is particularly true
without collaboration.

Regarding to what we discussed above, we would suggest to use 20-hybrid
clustering as this technique remains accurate and presents an interesting
measurement reduction, even without collaboration. We would suggest not
to use n-agnostic for small values of n as it will not reflect the topology. AS
and geo clustering should be avoided.

In this section, we demonstrated that they effectively reduce the number
of measurements while remaining quite accurate.

126 Chapter 6. Measurement Reduction with Clustering

6.5 Conclusion

Measuring the quality of a set of paths, in terms of delay or bandwidth,
is becoming more and more important for applications and services. In-
deed, the resulting measurements could allow the application to select the
best location for the required service or for getting a particular content.
However, constantly monitoring the network through active measurements
is not desirable due to scalability issues.

A solution for making measurements more scalable is to consider clus-
tering and collaboration between measurement sources. Clustering aims at
aggregating a subset of destinations into the same hat and consider that a
single (or a few) measurement towards the cluster is representative of the
whole cluster.

In this chapter, we first discussed how collaboration and clustering might
lead to a reduction in probing effort. We defined metrics for evaluating the
performance of any clustering technique. Those metrics evaluates the accu-
racy of an estimation based on clustering and the measurement reduction.

Secondly, we explained five different clustering techniques. Those tech-
niques have the advantage of being very easy to setup, i.e., they do not
required strong calculations. Based on real data collected, we evaluated
those techniques with metrics we introduced. We demonstrated that clus-
tering techniques offer quite accurate measurement estimations as well as
measurements scalability.

In this chapter, we only took into account two networking metrics: de-
lay and the number of hops. Future work should reveal how other network
metrics, such as bandwidth and jitter, are impacted by cluster based mea-
surements.

Chapter 7

Incoming traffic engineering
with LISP and IDIPS

7.1 Introduction

On the one hand, LISP and LISP-Tree provide a way to do scalable
incoming traffic engineering (see Chapter 3). Indeed, the mappings in LISP
allow a site to use its multiple entry points and to give them any arbitrary
preference. This implies that multiple paths can be followed to enter a LISP
site and these paths potentially have different performance. On the other
hand, in Chapter 5 we propose Idips that provides a way to rank paths in
order to determine which paths offer the best performance. In this chapter,
we propose to combine LISP and Idips to achieve performance based inter-
domain incoming traffic engineering in a scalable way.

Sec. 3.2 shows how the priority, weight and TTL can be used to en-
sure traffic engineering with LISP. In LISP, the best locator is the locator
presenting the lowest priority value. To some extent, we can thus consider
the RLOC priority as its relative rank in the mapping. As a consequence,
Idips ranks can be used to infer the RLOC priorities dynamically. Using
Idips to attribute the LISP priorities enables automated performance based
incoming traffic engineering. Sec. 2.3.3 shows that EID prefixes are likely
to be attached to several locators. If an EID has several locators, which
are not aliases, it means that it exists several paths to exchange packets
with it. However, it is well known that the paths on the Internet are not
equal [AAS03, AMS+08, GDZ06, Int05, Cis, SAA+99, Ava05, XYK+08,
DD06]. Some paths have lower delay than others, more bandwidth or are
more stable. Fig. 7.1 shows that this observation holds with LISP.

Fig. 7.1, is obtained from the ping dataset we built in Sec. 2.5. Fig. 7.1
shows the relative difference of delay between all the locators of a mapping
and the locator with the shortest delay in the mapping. The relative distance
of the locator i with the fastest locator f of the mapping is computed by

127

128 Chapter 7. Incoming traffic engineering with LISP and IDIPS

 0.1

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600

d
i
s
t
a
n
c
e

f
r
o
m

f
a
s
t
e
s
t

l
o
c
a
t
o
r

[
i
n

%
]

mapping

high 95th confidence interval
average

low 95th confidence interval

Figure 7.1: Relative distance between the locators and the locator with the
shortest delay in the mappings

rtti−rttf
rttf

. A 10% distance thus means that the locator has a delay higher by

10% than the locator with the shortest delay in the mapping. In Fig. 7.1,
there is one mapping per measured stub BGP prefix. A mapping associates a
BGP prefix and the IP address of its border router as determined in Sec. 2.5.
In these mappings, the BGP prefix is the identifier and the border router IP
addresses are the locators. The delay to the locators is the measured RTT
between our vantage point and the locators (i.e., the border router). Fig. 7.1
shows the average distance to the shortest delay locator in the mapping and
the 95th % confidence interval. Fig. 7.1 shows that for 4% of the mappings,
the locators had a delay more than 50% bigger than the shortest delay
observed in the mappings with 1% of the mappings with locators presenting
a delay more than twice longer than the shortest one. For few mappings,
the average distance was even worst by more than 500% on average and up
to 6309% higher on average for one case. Fig. 7.1 shows that a bad choice
of locator can have a significant impact on the performance showing the
necessity of assigning the priorities with care. However, Fig. 7.1 also shows
that for 77% of the mappings, the average distance to the locator with the
shortest delay in the mapping is lower than 10%. It thus means that for most
of the mappings, traffic can be load balanced between at least two locators
by playing with the weight without degrading the performances [KKSB07].
It thus imply that in general, it is not necessary to make measurements and

7.2. LISP and IDIPS combination 129

simply use all the locators (or a random subset) is good enough. However, an
operator that want to perform performance based traffic engineering must
keep in mind that in some cases, some locators might be very bad, even
if it is unlikely. Obviously, if an operator decides to measure the locators,
these locators can be grouped into clusters with the techniques presented
in Chapter 6. Hence, it is possible to share measurements to determine the
performance of the locators of several mappings.

Fig. 7.1 shows that the traffic could benefit from a traffic engineering
approach that considers performances as much as costs. Idips can help
in the choice of the priorities an the weights in LISP. Idips is however
designed to rank paths while LISP mappings are related to IP addresses.
The locator R of a LISP mapping that is distributed on the mapping system
can however bee seen as the destination of a path. Therefore, if differentiated
mappings are not used, the source of the path can be any ITR RLOC. We
can then define such a path as <*,R> where * corresponds to any source in
the Internet. If differentiated mappings are used and the differentiation is
done for the site S, then, the path is <S,R>. As we have seen in Chapter. 5,
Idips supports paths defined by prefixes. Therefore, if PS is the prefix for
the site S, then the path can be defined as <PS,R/32>. PS being 0.0.0.0/0
for *.

As a result, Idips can be used to set the RLOC priorities but a transla-
tion work is required. Two options are possible to determine the priorities
in a mapping. Either Idips is queried manually and an operator configures
LISP with the appropriate priorities, or a tool automatically adapts the pri-
orities. It is worth to notice that all along this chapter, we consider that
LISP-Tree is used for the LISP mapping system in order to keep the system
scalable. However, our proposition does not preclude the use of another
mapping system.

The very contribution of this chapter is the presentation of a technique
to perform performance based incoming traffic engineering. To do so, we
combine the work presented all along this thesis. On the one hand, LISP
is used as a way to perform incoming traffic engineering efficiently. On the
other hand, Idips is a service that can determine the paths that provide
the best performance. Thus, combining both provide a performance based
incoming traffic engineering technique.

7.2 LISP and IDIPS combination

Operations related to interdomain traffic engineering are often performed
manually by the network operators [CGG+04]. The operators configure
their network such that it corresponds to the business objective and react
to alarm triggered by monitoring tools. Manual operation can be continued
with Idips used as a hint by the operator. Before setting the priorities, the

130 Chapter 7. Incoming traffic engineering with LISP and IDIPS

operator requests Idips to rank the paths corresponding to the locators in
the mapping. The operator then sets the priorities to reflect his interpreta-
tion of the Idips ranks. For instance, he can request Idips twice. Once with
delay optimization and once with cost minimization. The best result(s) of
each query being set with a priority of one, all the others with a priority of
10. Manual Idips-aided operation is interesting to support subjective crite-
ria but is subject to configuration error and is time consuming in complex
networks [WSR09, CGG+04].

If a translation tool is used between LISP and Idips, it is possible to
fully automate the Idips-based priority computation. The tool listens the
insert and update events in the EID-to-RLOC Database. The locators in the
mapping that triggered the event are then extracted to build the destination
list. The source list depends on whether the differentiated mapping is used
or not. Once the source and destination lists are built, the tool requests
Idips to rank these paths according to a pre-configured ranking criterion.
Upon Idips reply, the tool translates the Idips rank to LISP priority by
applying a t translation function on each rank such that:

t : R× I → P

where R = [0; 232[⊂ R0 is the Idips ranking space, I is the space of all
the possible Idips replies and P = [0; 255] ⊂ R0 is the LISP priority space.

t can be any function and is defined according to the network policies.
For example, if only the best locator can be used, t can be defined as follow:

t(x,m) =

{
1 if x = min(m)

255 otherwise

where min(m) : I → R gives the minimum rank observed in the Idips

reply m.

Once the ranks have been converted into priorities, the mapping can be
built. To do so, the rank of each locator r in the mapping is extracted from
the Idips reply and converted into the associated priority. If the locator is
not present in the Idips reply, it must be considered as non-reachable and
should not be present in the mapping or with a priority set to 255.

In addition to the priority, a weight is associated to each locator in a
mapping. We suggest to assign the same weight to all the locators sharing
the same priority are to use statically configured weights. Indeed, if the cost
functions used to determine the priority are built correctly, the priorities
will react if a RLOC does not comply with the policies and the priority will
be adapted accordingly.

The mapping TTL should be lower or equal to the Idips replied TTL.
Therefore, when the mapping expires in the EID-to-RLOC database, Idips
must be queried to re-build the mapping with up-to-date information ob-
tained from Idips.

7.2. LISP and IDIPS combination 131

7.2.1 Proof of Concept

In this section, we show by a simple but complete proof of concept the
benefits of the interaction between Lisp and Idips. To do so, we build
the testbed depicted in Fig. 7.2. The left hand network, labeled Con-
tent Producer, is a content producer and the right hand network is the
consumer. Interdomain connectivity is ensured by Lisp. For the test,
we used the two types of customers light and premium and apply the
customer management cf cost function presented in Sec. 5.3.3. As discussed
in Sec. 5.3.3, the objective for light users is cost reduction. On the contrary,
QoS has to be ensured for premium users. In the sake of clarity, in our ex-
periments two clients with one flow per client are involved. The light client
downloads a large file using FTP (TCP) while the premium client watches a
video over UDP. The video must have at least a 1.4Mbps bandwidth and the
jitter must be limited. The two networks are connected with two links: L1
and L2. L1 represents a peering link and L2 a customer/provider link (from
the producer point of view). L2 is protected by a 128Kbps backup link.
Penalties are due when QoS is not ensured for premium users. This proof of
concept aims at simulating a VPN where bandwidth can be measured easily.

In the testbed, we use OpenLisp [ISB11]. OpenLISP implements the
Lisp protocol in the FreeBSD kernel. A particularity of OpenLISP is the
mapping socket that allows user space applications to interact with the EID-
to-RLOC mappings maintained in the kernel.

The content producer (resp. consumer) part of the testbed is operated
with a dedicated Pentium 4 computer running FreeBSD and OpenLISP. The
machine is used at the same time as xTR and as content producer (resp.
consumer). The two machines are connected via a third machine that runs
FreeBSD and dummynet to emulate the links [Riz97].

An Idips server instance runs in each network. At that point, neither
OpenLISP nor Idips are aware of each other. A wrapper runs on each
OpenLISP router to allow LISP to query Idips. The wrapper monitors
the mapping socket and the Idips control plane. When there is an event
concerning an EID of the local OpenLISP’s map table, the wrapper re-
trieves all the RLOCs for that EID and asks the Idips server to rank them.
The resulted ranks are translated into priorities and the EID’s mapping is
updated according to the information given by Idips.

The experiment is divided in four periods (P1 to P4). The RLOCs used
for each period depends on the Idips rankings. During P1, both L1 and
L2 are working properly and Idips optimizes the performance for premium
traffic and minimizes the cost for the light traffic. The beginning of P2

corresponds to the L2 link failure: L2 traffic is diverted to the backup link.
During L2, Idips is not involved and the RLOCs are not modified, premium
traffic is degraded. In P3, Idips is informed of the failure and modifies the
mapping to minimize the cost and avoid backup links. It is worth to notice

132 Chapter 7. Incoming traffic engineering with LISP and IDIPS

Client

FTP

L2 Backup
(128Kbps)

L2 (10Mbps)

L1 (2Mbps)

xTR

xTR

Content Producer Content Consumer

Content

Server

Idips

$ $

= =

Client

video

Idips

Figure 7.2: Case study testbed

that the gap between P1 and P3 is for illustration only, in practice, Idips

can be informed of the topology change at the same time as the backup link
activation (e.g., via SNMP). During P3, the backup link is not used anymore.
Finally, P4 shows what happens if Idips policies are set to the original
premium and light traffic requirements (as during P1). In P4, Idips decides
to divert the light traffic (i.e., FTP) to the backup link and keep premium
traffic on L1 to ensure its QoS requirements while minimizing costs. For
the experiment, IPFW is instantiated on each machine to monitor the link
usage thank to the IPFW statistics [LLB02, Riz97]. The volume monitored
by IPFW correspond to the amount of traffic that crossed the links.

Fig. 7.3 shows the flows’ dynamic during the different periods. The
horizontal axis is the normalized time and the vertical axis the bandwidth
(in Kbps). The best effort traffic consist of a big file transfer using FTP
(TCP). The video is simulated with Iperf. Iperf continuously sends 700
bytes long UDP segments with a constant rate of 1.7 Mbps.

During P1, both flows are working as expected: the video (premium
customer) encounters a limited jitter and has enough bandwidth (1.7Mbps)
and the cost for FTP (light customer) is minimized. After the failure, dur-
ing P2, the video stream is redirected to the backup link. The video flow
bandwidth falls down to around 100Kbps, which is not sufficient to ensure
QoS (1.4 Mbps is required to ensure QoS requirements). FTP traffic is not
affected by the failure as it is carried by L1. P3 presents the flow bandwidth
when all the traffic is diverted on L1. For that period, the policies in Idips

are to avoid backup links. However, this choice does not ensure QoS for the

7.3. Conclusion 133

Figure 7.3: Evolution of the different flows bandwidth for the different net-
work events.

video as the jitter is important and video bandwidth falls to 1.3Mbps. With
this configuration, video traffic is influenced by the TCP behavior of the
FTP flow. Period P4 shows what happens if Idips is configured to ensure
QoS and minimize costs, thus video is diverted on link L1 as this is the only
one allowing QoS for video. The best effort flow is diverted to L2 backup
link because the costs of using it is lower than the cost of losing QoS for
video.

This experiment shows that Idips path selection algorithm can take
administrative and technical questions into account (e.g., minimize costs but
maximize bandwidth). Furthermore, it also shows that combining Idips and
LISP enables performance based traffic control.

7.3 Conclusion

In this chapter, we have seen that combining LISP and Idips enables
performance based incoming traffic engineering. On the one hand, LISP al-
lows a site that is connected to the Internet with several providers to control
the way its traffic is entering thanks to the mappings. In the mappings, a
priority and a weight are attached to the entry points of the network (the

134 Chapter 7. Incoming traffic engineering with LISP and IDIPS

locators). These priorities and the weights are used to enforce the way the
traffic is entering the network. The priorities are such that they can be
changed to prefer the most efficient locators and thus influence the paths
followed by the packets to enter a network. To ensure that the mappings
are built to optimize the performance, LISP can be combined with Idips.
Indeed, Idips is a system which aim at ranking paths according to their per-
formance and operator policies. Therefore, the priorities and weights that
appear in the LISP mappings can be adapted automatically by requesting
Idips to prefer the locators that are likely to offer the best performance. To
do so, we first presented in this chapter how to build Idips requests from
LISP mappings and how to translate the ranks provided by Idips to assign
the appropriate priority and weight to the locators inside the mappings. We
finally show with a proof of concept that doing performance based incoming
traffic engineering is practically doable by combining LISP and Idips.

Chapter 8

Conclusion

Since its creation, the Internet has changed a lot and the first few dozens
of nodes composing the Internet in the early days have been replaced by
hundred of thousands nodes and billion of users. The Internet is now mostly
driven by economical objectives and having a good Internet connectivity is
of prime importance for many enterprises, and more generally to networks.
It is then common for a network to be multihomed, i.e., connected to the
Internet via several other networks. Increasing the interconnection degree in
the Internet increases the number of paths between the sites. Unfortunately,
all the paths from A to B are not equal. For instance, a path might be
cheaper than another or a path can provide more bandwidth or lower delay.
In such context, good traffic engineering is a requirement. An important
topic in traffic engineering is the ability for a site to control the way its
traffic is leaving or entering it. However, while it is relatively easy for a site
to control its outgoing traffic, it is hard if not impossible to totally control
its incoming traffic.

In Chapter 2, we describe the Locator/Identifier Separation Protocol
(LISP) which is currently being standardized within the IETF. LISP sep-
arates the locator and the identifier roles of IP addresses. In LISP the IP
address used to identify an end-system (i.e., the identifier) is not the IP
address used for routing the packets to this end-system (i.e., the locator).
This separation is done with the help of encapsulation: a packet destined
to an identifier address is encapsulated in a packet with locator addresses.
LISP allows to control the way the packets are routed by changing the lo-
cator. This control is transparent for the end-systems. The association
between the identifiers and the locators is called a mapping. The mappings
are controlled and distributed via a mapping system. LISP offers new traffic
engineering perspectives. In Chapter 3, we show how to perform traffic en-
gineering with LISP. With simple use cases, we show how the inter-domain
incoming traffic can be controlled with LISP and its mappings. To this aim,
every locator is assigned a priority and the locators with the lowest priority

135

136 Conclusion

value are always preferred. In addition, we propose in Chapter 3 the map-
ping differentiation technique that allows a destination LISP site to inject
source specific mappings. Mapping differentiation enables isolation of the
TE decisions.

Playing with the mappings to perform traffic engineering in LISP has
an impact on the control plane load. This is why Chapter 4 proposes LISP-
Tree a new scalable mapping system for LISP. LISP-Tree scales and supports
aggressive traffic engineering thanks to a DNS-like approach. In LISP-Tree,
the nodes involved in the control plane are interconnected in a hierarchical
way. The position of a node in the hierarchy being defined by the prefix
assigned to the node. In LISP-Tree, the prefix of a node is always a sub-
prefix of its parent node. The leaves of the hierarchy maintain pointers to the
authoritative ETR of the prefix they own. On the contrary, the nodes inside
the hierarchy are pointing to nodes deeper in the hierarchy until a leaf is
pointed. The LISP-Tree can thus be seen as an ETR discovery mechanism
with a loop-free property. LISP-Tree is designed to isolate configuration
errors, to be secure and to be troubleshootable easily. LISP-Tree can be
operated in two modes. In recursive mode, the Map-Request is forwarded
on the control plane topology until it arrives a leaf. In iterative mode, the
requester iteratively queries nodes in the hierarchy until it reaches a leaf,
starting from the root. The iterative mode can be coupled with caching to
enable fast retrieval of mappings. When caching is activated, the nodes do
not need to start from the root if the EID to resolve shares a part of the
path of a previously resolved EID. In Chapter 4 we provide a LISP-Tree
deployment model and show by simulation that the tree is seldom traversed
hence efficient.

LISP and its traffic engineering capabilities enable performance based
traffic engineering. In Chapter 5, we describe our generic path ranking ser-
vice called ISP-Driven Informed Path Selection (Idips). Idips relies on a
request/response service. An Idips client can be any network application
that has to choose among several paths but that must select the best ones,
for any definition of best. In general, such an application selects the best
paths without considering the constraints of its underlay network. This sit-
uation leads to a sub-optimal use of network resources. The most typical
example is the peers selection in P2P networks. When a P2P node must
select a few tens of peers among a list of hundreds of peers, it generally
picks them randomly or selects them based on high level criterion. With
P2P overlays, it is common to see a packet crossing the network boundaries
several times. Idips allows the applications and the network to cooperate.
When an Idips client must select a path among several, it queries the Idips

server. The client sends its list of source addresses, its list of destination
addresses and a ranking criterion. The server then builds the list of possible
paths from the source and destination lists. The Idips server then ranks
the paths according to the ranking criterion requested by the client. The

8.1. Further Work 137

particularity of Idips is that path rank is computed with cost functions and
cost functions can be combined. Combining cost functions allows to rank
the paths such that the best rank is provided to the paths that is the best
for both the client and the network. The Idips server returns the sorted
list of ranked paths to the clients. Idips supports any kind of ranking cri-
terion but we emphasized our work on measurement based ranking. An
Idips server runs measurement modules that monitor the paths on behalf of
applications. Pooling the measurements avoid to duplicate measurements.
Chapter 5 presents our Idips server implementation. Our Idips implementa-
tion evaluation shows that Idips can sustain a high request rate. Moreover,
Idips is generic enough to be used by LISP to perform LISP performance
traffic engineering. We describe in Chapter 7 how to combine LISP and
Idips to perform performance based interdomain incoming traffic engineer-
ing. The solution consist in translating Idips ranks in LISP priorities in the
mappings.

Nevertheless, measuring all the Internet is not scalable but Chapter 6
shows that the number of measurements can be reduced by clustering the
nodes that present the same performance behavior. The behavior of one
device in the cluster being representative for all the devices in this cluster.
In Chapter 6, we rely on static clustering techniques. Static clusters are
defined once for all and can be pre-computed. We can cluster the nodes
to measure by autonomous system, BGP prefix, geographical position or
by statically dividing the IP space into /n prefixes. Our evaluation shows
that an hybrid between BGP clustering and static decomposition gives the
better accuracy. On the hand one, the nodes tend to be grouped by topology
(thanks to BGP) but the clusters remains of acceptable size (thanks to the
agnostic decomposition).

8.1 Further Work

Performance based traffic engineering is composed of two distinct parts.
On the one hand, the path performance must be evaluated and predicted.
On the other hand, the traffic engineering decisions must be enforced.

In this thesis, we propose Idips, a service to simplify the operation of
measuring and predicting path performance. However, Idips is only the be-
ginning of the story and many work still have to be done for determining the
path performance. First, we must find a solution to efficiently measure the
path performances. The first step for measuring the paths is to determine
the paths that are worth measuring. An algorithm that is able to build
the list of the most important paths has to be designed. This algorithm
must be designed such that it accepts almost any definition of “important
path”, it must support technical constraints such as a limit in the memory
allocated for running such algorithm and finally it must be accurate and

138 Conclusion

dynamic enough to respond to traffic pattern changes. Once the important
paths are detected, the measurements have to be performed carefully. The
measurements are used to predict the path performance. The number and
the frequency of measurements is driven by the expected accuracy of the
prediction. Two solutions are possible to determine the number and fre-
quency of measurements either reactive of proactive. For both approaches,
machine learning techniques can be used. A particular care must be taken
to avoid oscillations and instabilities in the network.

In this thesis, we use path performance prediction to control the traffic
such that it always uses the best paths. Hereabove, we mention that the
first challenge of performance based traffic engineering is the performance
prediction. However, the prediction is not the only challenge. Another im-
portant challenge is the path enforcement. One it is decided that a path is
worth using, the traffic must be constraint to use the path. For the path en-
forcement, we use the LISP protocol. LISP is a locator/identifier separation
protocol that separates the two roles of the IP addresses. The separation
simplifies the traffic engineering operations. Unfortunately, separating the
locators from the identifiers makes the reachability detection harder. Indeed,
in today’s Internet routing failures are recovered locally and a packet can
be delivered to any router able to reach the packet destination. With LISP,
the packets are directly targeted to a particular router. If the router is not
reachable, the packet cannot be delivered even if other routers are reachable
for the destination. Reachability recovery for the locator/identifier sepa-
ration is of prime importance and research must focus on solutions that
minimize the packet losses. Another fundamental research topic related to
path enforcement is the security of the enforcement. When a packet is forced
to travel via a path, it must be ensured that the enforcement is legitimate.
Any path enforcement system must be designed to embed security. More
precisely, the system must be able to determine if an enforcement is valid or
the result of an attack or a misconfiguration. LISP allows path enforcement
thanks to a mapping system. However, the mapping system is virtually un-
secured. In [SIB11, MEC+11] we show the limitations of the LISP security
and give the first milestones for securing LISP but the problem is vast an is
still open to efficient and deployable solutions. Finally, the locator/identifier
separation paradigm is a new way of thinking the routing and it would be
interesting to model such paradigm to understand the connection between
the fundamentals components of the map-and-encap mechanisms defined in
LISP. Modeling LISP would help to have a better understanding of the In-
ternet and would, for example, provide good insights about how to deploy
LISP-Tree to be efficient for both economical and technical perspectives.

Appendix A

LISP-Click: A Click
implementation of LISP

A.1 Introduction

From a standardization viewpoint, implementations are used to detect
weaknesses in the protocol specifications and determine if performance re-
quirements are achieved. From a research viewpoint, implementations au-
thorize tests in the wild to validate simulations and theoretical analysis. To
the best of our knowledge, OpenLISP, a dataplane implementation in the
FreeBSD kernel, is the only open source implementation [ISB11] of LISP.
OpenLISP is focused on performance while our approach is more focused
on extensibility and simplicity for the researchers by implementing LISP in
Click [KMC+00].

A.2 LISP-Click architecture

LISP-Click is a Click 1.7.0 rc1 [KMC+00] LISP data-plane implemen-
tation. Fig. A.1 shows the LISP-Click architecture. When an IP packet
arrives at the router, it is inspected by an the IPClassifier that deter-
mines whether the packet is related to the LISP dataplane or the LISP con-
trolplane. All the control plane packets are transmitted to the LISPCache

element that is in charge of the EID-to-RLOC Cache and the EID-to-RLOC
database. If the packet is for the LISP dataplane, the IPClassifier determines
if the packet has to be LISP-encapsulated or LISP-decapsulated. Packets
to decapsulate are transmitted to the LISPDecap element and packets to
encapsulate are transmitted to the LISPEncap element.

The LISPCache element is the core of the router as it maintains the
EID-to-RLOC Cache and the EID-to-RLOC Database. This element can
be queried by the LISPEncap and LISPDecap elements at any time.

139

140 Appendix A. LISP-Click: A Click implementation of LISP

Figure A.1: LISP-Click Architecture

Annotation is used to mark packets that caused a miss while encapsulat-
ing them. Encapsulated packets are transmitted to the LISPMissManager

element by the LISPEncap element. If the packet is annotated with the
miss value, the LISPMissManager requests a mapping for the destination
EID. Otherwise, the packet is simply transferred to the appropriate outgoing
interface.

struct lisphdr {

#if CLICK_BYTE_ORDER == CLICK_LITTLE_ENDIAN

unsigned rflags:5;

unsigned e_bit:1;

unsigned l_bit:1;

unsigned n_bit:1;

#elif CLICK_BYTE_ORDER == CLICK_BIG_ENDIAN

unsigned n_bit:1;

unsigned l_bit:1;

unsigned e_bit:1;

unsigned rflags:5;

#else

error "unknown byte order"

#endif

unsigned lisp_data_nonce:24;

uint32_t lisp_loc_status_bits;

} __attribute__ ((__packed__));

A.2.1 LISPCache Element

The LISPCache element is a special element that stores the mapping
to be used for the encapsulation and the decapsulation. To do so, the
LISPCache element has the match db and match cache methods. Both
methods return the list (in a vector) of valid locators associated to the

A.2. LISP-Click architecture 141

EID address requested. The match db determines this list by querying the
EID-to-RLOC Database, i.e., the source locators and the match cache gives
the list from the EID-to-RLOC Cache, i.e., the destination locators.

The datastructure used for storing the mappings in EID-to-RLOC cache
and the EID-to-RLOC is a radix tree1. Contrary to OpenLISP, the cache
and the database are stored in two separated tree instances. In OpenLISP,
an EID prefix is either in the cache or in the database. In LISP-Click, an
EID prefix can be at the same time in the cache and in the database. This
design slightly increases the memory consumption but offers more flexibility.
Indeed, in our implementation, it is possible to have an EID prefix that is at
the same time local and distance. This feature has been thought for mobility
where it could be interesting to encapsulate destination that belongs the
source prefix. This feature is however to be considered with care to avoid
infinite encapsulation and loops. Radix tree keys are the EID prefixes and
the values are list of locators, the priority and weight is not implemented.

The LISPCache element also maintains meta information about the loca-
tors that appear in the mappings. The datastructure named locator status

maintains information about the locators in a hashtable. The stored infor-
mation are the locator reachability, the status of the echo-nonce algorithm
and the nonce associated to the locator:

struct rloc_info {

bool R; /* reachable */

bool E_in; /* echo nonce, decided remotely */

bool E_out; /* echo nonce, decided localy */

bool N; /* nonce present */

uint32_t nonce:24;

};

A C structure has been used for maintaining the locator information
instead of a class to limit the cost of processing the information during the
encapsulation or the decapsulation.

Handlers are access points through which users can interact with the
internal state of a running click element. Handlers are used to implement
user interfaces on Click routers.

The LISPCache implements three write handlers that allow a user to
modify the element state:

insert: insert a new EID prefix in the EID-to-RLOC Cache or Database.
insert <local: bool> <prefix: prefix> where local determines
whether the database has to be modified or the cache. The inserted
EID prefix has no RLOC associated.

1The radix tree has been extracted from the Quagga source code.

142 Appendix A. LISP-Click: A Click implementation of LISP

update: add or modify an RLOC in an EID-to-RLOC Cache or Database
mapping. update <local: bool> <prefix: prefix> <rloc: ip>

<priority: short> <weight: short> <R: bool>

rloc: modify the state corresponding to an RLOC maintained in the locator status

hashtable. rloc <rloc: ip> <R: bool> <N: bool> <E: bool> <nonce:

int>. The R parameter sets the locator reachability. If N is set, the
encapsulation must set the N bit and use the nonce given in param-
eter. If E is set, the encapsulation must request the ETR to run the
echo-nonce algorithm with the nonce given in parameter.

A.2.2 LISPDecap Element

The LISPDecap element is the element that decapsulate LISP packets. It
is a 1 input/1 output agnostic element. Click offers simple tools to perform
decapsulation, as presented in the code below.

Packet * LISPDecap::simple_action(Packet *p_in){

01. click_ip * ip = (click_ip *)(p_in->data());

02. click_udp * udp = (click_udp *)(ip + 1);

03. struct lisphdr * lisp = (struct lisphdr *)(udp + 1);

04. click_ip * payload = (click_ip *)(lisp + 1);

05. ... // LISP stuff

06. int hsize = sizeof(click_ip) + sizeof(click_udp) \

+ sizeof(struct lisphdr);

07. p_in->pull(hsize);

08. IPAddress deid = IPAddress(payload->ip_dst);

09. p_in->set_dst_ip_anno(deid);

10. return p_in;}

The block from line 1 to line 4 provides pointers to the different header
in the packet to decapsulate. The block in line 5, not represented here,
is where the the LISP header is processed to extract information like the
nonce. 2 Finally, lines 6 – 7 are for the decapsulation itself. To decapsulate
a packet in Cick, it is only required to call the pull method on the packet
instance and specify the number of bytes (hsize) to strip from it. Lines 8
and 9 are required to define the new destination of the packet. Indeed, the
initial destination address is the destination RLOC but once decapsulated,
the destination is the destination EID contained in the inner header. Finally,

2not implemented

A.2. LISP-Click architecture 143

the decapsulated packet can be returned to be processed by the next element
in the click module.

The LISPDecap element maintains a pointer to the LISPCache instance
to perform sanity checks and LISP-related processing. For example, if the
LISP header has the E bit set, the echo-nonce bit has to be started for the
source locator.3. This is done simply by accessing the locator status vari-
able available at the cache instance. The LISPCache instance is passed to
the LISPDecap element via the configure method. In the Click configura-
tion file, it is thus as simple as writing the two following lines to link the
LISPCache and the LISPDecap elements.

cache :: LISPCache;

encap :: LISPEncap(CACHE cache);

A.2.3 LISPEncap Element

The LISPEncap element is the element that encapsulates packets whose
destination are EID addresses. It is a 1 input/1 output push element. The
encapsulation of a packet can be decomposed in three parts. First, the
source and destination locators have to be determined. Second, the packet
has to be“stretch at the front” to accept the new headers (the outer header,
the UDP header and the LISP header). Finally, the newly added headers
have to be filled with the appropriate values. The code below shows the
important lines of code corresponding to these different steps.

void LISPEncap::push(int, Packet *p_in){

01. cache->match_database(p_in->ip_header()->ip_src, sources);

02. IPAddress srloc = get_rloc(sources);

03. if(cache->match_cache(p_in->ip_header()->ip_dst, destinations) < 0)

04. SET_MISS_ANNO(p_in);

05. IPAddress drloc = get_rloc(destinations);

06. int hsize = sizeof(click_ip) + sizeof(click_udp) \

+ sizeof(struct lisphdr);

07. WritablePacket *packet = p_in->push(hsize);

08. click_ip *ip = reinterpret_cast<click_ip *>(packet->data());

09. click_udp *udp = reinterpret_cast<click_udp *>(ip + 1);

10. struct lisphdr *lisp = reinterpret_cast<struct lisphdr *>(udp + 1);

11. ... // header preparation

... ip->ip_ttl = p_in->ip_header()->ip_ttl;

3not implemented

144 Appendix A. LISP-Click: A Click implementation of LISP

12. ((Packet *)packet)->set_dst_ip_anno(drloc);

13. output(0).push(packet);}

Lines 1 – 5 determines the source and destination RLOCs from from
the LISPCache element (cache). The line 4 annotates the packet with a
MISS annotation if the packet caused an EID-to-RLOC cache miss. This
annotation is used by the LISPMissManager element.

Lines 6 and 7 are used to increase the size of the packet, calling the
push method on a packet add space before the packet. This empty space
corresponds to the outer header, the UDP header and the LISP header (size
equivalent tohsize). Lines 8 to 10 generates pointer to these headers.

The block in line 11 has the code that fed these headers. The content
depends on the locator status state from the LISPCache element instance.
In this block, it is very important to fix the TTL of the outer header correctly,
we set it to the same value as the inner header TTL. This way of assigning
the TTL ensures that the packet will not last for ever in case of routing or
mapping loop 4.

Similarly to what is done in LISPDecap element, line 12 annotates the
new packet with its destination address, i.e., the destination RLOC. This
operation is required as the original packet had and EID as destination.

Finally, the packet can be pushed to the next element in the module at
line 13.

A.2.4 LISPMissManager Element

The LISPMissManager element is the last LISP specific element in the
LISP-Click implementation. It is a 1 input/1 output port push element.

The LISPMissManager element can be seen as an annotation based filter.
When a packet is passed to the element, its MISS annotation is read. If the
miss annotation is not set, the packet is passed as-is to the next element in
the module. On the contrary, if the miss annotation is set, a Map-Request
is sent for EID that caused the miss5 and the packet is dropped.

We study in Sec. 4.4 the effects of cache misses on packets. Three op-
tions are possible when a cache miss occurs: (i) drop the packet, (ii) send
a data-probe and (iii) queue the packet until a mapping is known. These
options have to be implemented in the LISPMissManager element. We have
implemented the first solution only. From our point of view, data-probing is
not a good solution as it can overload the mapping system by giving it data-
plane functionality. The queuing strategy would be interesting to evaluate

4As long as the TTL of a packet is decreased as soon as it arrives a the router.
5code in comments as not compatible with the specifications

A.2. LISP-Click architecture 145

empirically to determine the impact it has on real traffic. To implement-
ing the queuing strategy, the LISP-Cache must implement a solution that
advertises the LISPMissManager element that the cache has been updated.

Bibliography

[AAS03] A. Akella, Shaikh A., and R. Sitaraman. A measurement-
based analysis of multihoming. In Proc. ACM SIGCOMM,
August 2003.

[ABH08] R. Atkinson, S. Bhatti, and S. Hailes. Mobility through nam-
ing: Impact on DNS. In MobiArch, August 2008.

[ABH10] Randall Atkinson, Saleem Bhatti, and Stephen Hailes. Evolv-
ing the Internet Architecture Through Naming. IEEE Journal
on Selected Areas in Communications, 28(8):1319–1325, Oc-
tober 2010.

[ACE+02] D. O. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao.
Overview and Principles of Internet Traffic Engineering. In-
ternet Engineering Task Force, RFC3272, May 2002.

[ACK03] S. Agarwal, C-N. Chuah, and R. H. Katz. OPCA: Robust
interdomain policy routing and traffic control. In Proc. IEEE
Conference on Open Architecture and Network Programming
(OPENARCH), April 2003.

[AFP+09] O. Akonjang, A. Feldmann, S. Previdi, B. Davie, and
D. Saucez. The PROXIDOR Service. Internet draft, draft-
akonjang-alto-proxidor-00, work in progress, March 2009.

[AFS07] V. Aggarwal, A. Feldmann, and C. Scheideler. Can ISPs and
P2P users cooperate for improved performance. ACM SIG-
COMM CCR, 37(3):29–40, July 2007.

[AFT07] Brice Augustin, Timur Friedman, and Renata Teixeira. Mea-
suring load-balanced paths in the internet. In Proceedings
of the 7th ACM SIGCOMM conference on Internet measure-
ment, IMC ’07, pages 149–160, New York, NY, USA, 2007.
ACM.

[Ahm05] A. Reaz S. Atiquzzaman M. Fu S. Ahmed. Performance of
DNS as location manager. In IEEE International Conference
on Electro Information Technology. IEEE, 2005.

147

148 BIBLIOGRAPHY

[AJ02] Daniel O. Awduche and Bijan Jabbari. Internet traffic engi-
neering using multi-protocol label switching (mpls). Comput.
Netw., 40:111–129, September 2002.

[Aka] Akamai. Web application acceleration and performance man-
agement, streaming media services, and content delivery. See
http://www.akamai.com.

[AKZ99] G. Almes, S. Kalidindi, and M. Zekauskas. A Round-trip
Delay Metric for IPPM. RFC 2681 (Proposed Standard),
September 1999.

[AL09] Sharad Agarwal and Jacob R. Lorch. Matchmaking for on-
line games and other latency-sensitive P2P systems. In SIG-
COMM, pages 315–326, August 2009.

[AMA+99] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. Mc-
Manus. Requirements for Traffic Engineering Over MPLS.
RFC 2702 (Informational), September 1999.

[AMS+08] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman.
On the performance benefits of multihoming route control.
IEEE Transactions on Networking, 16(1):96–104, February
2008.

[AmW99] Daniel O. Awduche and Uunet (mci Worldcom). Mpls and
traffic engineering in ip networks. IEEE Communications
Magazine, 37:42–47, 1999.

[APS04] A. Akella, J. Pang, and A. Shaikh. A Comparison of Overlay
Routing and Multihoming Route Control. In Proceedings of
ACM SIGCOMM, Portland, Oregon, August 2004.

[APY11] R. Alimi, R. Penno, and Y. Yang. ALTO Protocol. Internet
Draft (Work in Progress) draft-ietf-alto-protocol-09, Internet
Engineering Task Force, June 2011.

[Ava05] Avaya. Adaptative networking software (ANS), 2005.

[BA06] M. Bagnulo and J. Arkko. Cryptographically Generated Ad-
dresses (CGA) Extension Field Format. RFC 4581 (Proposed
Standard), October 2006.

[Bag09] M. Bagnulo. Hash-Based Addresses (HBA). RFC 5535 (Pro-
posed Standard), June 2009.

BIBLIOGRAPHY 149

[BCC+06] Ruchir Bindal, Pei Cao, William Chan, Jan Medved, George
Suwala, Tony Bates, and Amy Zhang. Improving traffic lo-
cality in bittorrent via biased neighbor selection. In Proceed-
ings of the 26th IEEE International Conference on Distributed
Computing Systems, ICDCS ’06, pages 66–, Washington, DC,
USA, 2006. IEEE Computer Society.

[BCF+08] Scott Brim, Noel Chiappa, Dino Farinacci, Vince Fuller, Dar-
rel Lewis, and David Meyer. LISP-CONS: A Content distri-
bution Overlay Network Service for LISP. draft-meyer-lisp-
cons-04, April 2008. Work in progress.

[BFCW09] Hitesh Ballani, Paul Francis, Tuan Cao, and Jia Wang. Mak-
ing routers last longer with viaggre. In USENIX NSDI, April
2009.

[BFMR10] Kevin Butler, Toni Farley, Patrick Mcdaniel, and Jennifer
Rexford. A Survey of BGP Security Issues and Solutions.
IEEE/ACM Transactions on Networking, 98(1):100–122, Jan-
uary 2010.

[BNC02] A. Broido, E. Nemeth, and K. Claffy. Internet expansion,
refinement and churn. European Transactions on Telecom-
munications, January 2002.

[BRISC+07] Pere Barlet-Ros, Gianluca Iannaccone, Josep Sanjuàs-Cuxart,
Diego Amores-López, and Josep Solé-Pareta. Load shedding
in network monitoring applications. In USENIX Annual Tech-
nical Conference, 2007.

[Bro04] G. Brown. Internet address space clustering for intelligent
route control. see http://www.cs.indiana.edu/~geobrown/
journal-new.pdf, 2004.

[CAI10] CAIDA. AS-Rank, 2010. See http://as-rank.caida.org/.

[CASBDP09] Albert Cabellos-Aparicio, Damien Saucez, Olivier Bonaven-
ture, and Jordi Domingo-Pascual. Validation of a LISP sim-
ulator. Technical Report UPC-DAC-RR-CBA-2009-8, UPC,
2009.

[CB08] David R. Choffnes and Fabián E. Bustamante. Taming the
torrent: a practical approach to reducing cross-isp traffic in
peer-to-peer systems. In Proceedings of the ACM SIGCOMM
2008 conference on Data communication, SIGCOMM ’08,
pages 363–374, New York, NY, USA, 2008. ACM.

150 BIBLIOGRAPHY

[CBB00] B Cheswick, H. Burch, and S. Branigan. Mapping and vi-
sualizing the internet. In Proc. USENIX Annual Technical
Conference, June 2000.

[CCRK04] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC: Practical
Internet coordinates for distance estimation. In Proc. 24th
International Conference on Distributed Computing Systems,
March 2004.

[CDN+97] Kenneth Calvert, Matthew B. Doar, Ascom Nexion, Ellen W.
Zegura, Georgia Tech, and Georgia Tech. Modeling inter-
net topology. IEEE Communications Magazine, 35:160–163,
1997.

[CFM99] R. Coltun, D. Ferguson, and J. Moy. OSPF for IPv6. RFC
2740 (Proposed Standard), December 1999. Obsoleted by
RFC 5340.

[CGG+04] Don Caldwell, Anna Gilbert, Joel Gottlieb, Albert Greenberg,
Gisli Hjalmtysson, and Jennifer Rexford. The cutting edge of
ip router configuration. SIGCOMM Comput. Commun. Rev.,
34:21–26, January 2004.

[CH10] X. Cai and J. Heidemann. Understanding block-level address
usage in the visible Internet. In Proc. ACM SIGCOMM, Au-
gust 2010.

[cHKF09] kc claffy, Y. Hyun, K. Keys, and M. Fomenkov. Internet map-
ping: from art to science. In Proc. IEEE Cybersecurity Appli-
cations and Technologies Conference for Homeland Security
(CATCH), March 2009.

[Cis] Cisco Systems. Optimized edge routing (EOR).

[CJC+09] Florin Coras, Lorand Jakab, Albert Cabellos, Jordi Domingo-
Pascual, and Virgil Dobrota. Coresim: A simulator for eval-
uationg locator/id separation protocol mapping systems. In
Trilogy Future Internet Summer School poster session, 2009.

[CL05] R.K.C. Chang and M. Lo. Inbound Traffic Engineering for
Multihomed ASs Using AS-Path Prepending. IEEE Network
Magazine, pages 18–25, March/April 2005.

[Cla04] B. Claise. Cisco Systems NetFlow Services Export Version 9.
RFC 3954 (Informational), October 2004.

[CLH03] K. Cho, M. Luckie, and B. Huffaker. Identifying IPv6 network
problems in the dual-stack world. In Proc. ACM SIGCOMM
Workshop on Network Troubleshooting, September 2003.

BIBLIOGRAPHY 151

[Cor09] Florin Coras. CoreSim: A simulator for evaluating LISP map-
ping systems. Master’s thesis, Technical University of Cluj-
Napoca, June 2009.

[D. 09] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. LISP Al-
ternative Topology (LISP+ALT). draft-ietf-lisp-alt-01, May
2009. Work in progress.

[DB08] Benoit Donnet and Olivier Bonaventure. On bgp communi-
ties. SIGCOMM Comput. Commun. Rev., 38:55–59, March
2008.

[DCKM04] F. Dabek, R. Cox, K? Kaashoek, and R. Morris. Vivaldi,
a decentralized network coordinated system. In Proc. ACM
SIGCOMM, August 2004.

[DD06] Amogh Dhamdhere and Constantinos Dovrolis. Isp and egress
path selection for multihomed networks. In IEEE INFOCOM,
2006.

[DD08] Amogh Dhamdhere and Constantine Dovrolis. Ten years in
the evolution of the internet ecosystem. In Proceedings of the
8th ACM SIGCOMM conference on Internet measurement,
IMC ’08, pages 183–196, New York, NY, USA, 2008. ACM.

[DFC05] B. Donnet, T. Friedman, and M. Crovella. Improved algo-
rithms for network topology discovery. In Proc. Passive and
Active Measurement Workshop (PAM), March 2005.

[DFD10] Amogh Dhamdhere, Pierre Francois, and Constantine Dovro-
lis. A value-based framework for internet peering agreements.
pages 1–8, 2010.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460 (Draft Standard), December 1998.
Updated by RFC 5095.

[DHKS09] Xenofontas Dimitropoulos, Paul Hurley, Andreas Kind, and
Marc Stoecklin. On the 95-percentile billing method. In Pas-
sive and Active Measurements Conference (PAM), April 2009.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.

[DKF+07] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina
Fomenkov, Bradley Huffaker, Young Hyun, kc claffy, and
George Riley. As relationships: inference and validation.
SIGCOMM Comput. Commun. Rev., 37:29–40, January
2007.

152 BIBLIOGRAPHY

[dL05] Cédric de Launois. Unleashing traffic engineering for IPv6
multihomed sites. PhD thesis, Université catholique de Lou-
vain, October 2005.

[dLBL03] C. de Launois, O. Bonaventure, and M. Lobelle. The NAROS
Approach for IPv6 Multi-homing with Traffic Engineering.
In Proceedings of QoFIS, LNCS 2811, Springer-Verlag, pages
112–121, October 2003.

[dLQB06] C. de Launois, B. Quoitin, and O. Bonaventure. Leveraging
networking performance with IPv6 multihoming and multi-
ple provider-dependent aggregatable prefixes. Computer Net-
works, 50(8):1145–1157, June 2006.

[dLUB05] C. de Launois, S. Uhlig, and O. Bonaventure. Scalable route
selection for IPv6 multihomed sites. In Proc. IFIP Network-
ing, May 2005.

[DOK92] Peter B. Danzig, Katia Obraczka, and Anant Kumar. An
analysis of wide-area name server traffic: a study of the inter-
net Domain Name System. SIGCOMM Comput. Commun.
Rev., 22(4):281–292, 1992.

[Dra03] R. Draves. Default address selection for Internet protocol
version 6 (IPv6). RFC 3484, Internet Engineering Task Force,
February 2003.

[DRFC05] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient
algorithms for large-scale topology discovery. In Proc. ACM
SIGMETRICS, June 2005.

[EdGV98] H. Eidnes, G. de Groot, and P. Vixie. Classless IN-
ADDR.ARPA delegation. RFC 2317 (Best Current Practice),
March 1998.

[EJLW01] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja.
Mate: Mpls adaptive traffic engineering. pages 1300–1309,
2001.

[FF09] Dino Farinacci and Vince Fuller. LISP Map Server. draft-
fuller-lisp-ms-00, March 2009. Work in progress.

[FFM03] M. J. Freedman, E. Freudenthal, and D. Maziéres. Democra-
tizing content pulication with coral. In Proc. USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), May 2003.

BIBLIOGRAPHY 153

[FFM+07] Angelo Fanelli, Michele Flammini, Domenico Mango, Gio-
vanna Melideo, and Luca Moscardelli. Experimental evalua-
tions of algorithms for ip table minimization. In Proceedings of
the 6th international conference on Experimental algorithms,
WEA’07, pages 324–337, Berlin, Heidelberg, 2007. Springer-
Verlag.

[FFML10a] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID
separation protocol (LISP). Internet Draft (Work in Progress)
draft-ietf-lisp-08, Internet Engineering Task Force, August
2010.

[FFML10b] V. Fuller, D. Farinacci, D. Meyer, and D. Lewis. LISP
Alternative Topology (LISP+ALT). Internet Draft (Work
in Progress) draft-ietf-lisp-alt-05, Internet Engineering Task
Force, October 2010.

[FGL+00] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Rein-
gold, Jennifer Rexford, and Fred True. Deriving traffic de-
mands for operational ip networks: Methodology and expe-
rience. IEEE/ACM Transactions on Networking, 9:265–279,
2000.

[FJP+99] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gruniewicz,
and Y. Jin. An architecture for a global Internet host distance
estimator service. In Proc. IEEE INFOCOM, March 1999.

[FL06] V. Fuller and T. Li. Classless Inter-domain Routing (CIDR):
The Internet Address Assignment and Aggregation Plan.
RFC 4632 (Best Current Practice), August 2006.

[FLYV93] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggre-
gation Strategy. RFC 1519 (Proposed Standard), September
1993. Obsoleted by RFC 4632.

[FMS10] D. Farinacci, D. Meyer, and J. Snijders. LISP Canonical Ad-
dress Format (LCAF). Internet draft, draft-farinacci-lisp-lcaf-
04, work in progress, October 2010.

[FRH+11] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Ar-
chitectural Guidelines for Multipath TCP Development. RFC
6182 (Informational), March 2011.

[FRT02] Bernard Fortz, Jennifer Rexford, and Mikkel Thorup. Traf-
fic engineering with traditional ip routing protocols. IEEE
Communications Magazine, 40:118–124, 2002.

154 BIBLIOGRAPHY

[FT00] B. Fortz and M. Thorup. Internet traffic engineering by opti-
mizing OSPF weights. In Proc. 19th IEEE Conf. on Computer
Communications (INFOCOM), pages 519–528, 2000.

[FT02] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in
a changing world. IEEE Journal on Selected Areas in Com-
munications, 20(4):756–767, 2002.

[Gao01] Lixin Gao. On inferring autonomous system relationships in
the internet. IEEE/ACM Trans. Netw., 9:733–745, December
2001.

[GCLC04] F. Guo, J. Chen, W. Li, and T. Chiueh. Experiences in Build-
ing a Multihoming Load Balancing System. In Proceedings of
IEEE INFOCOM, March 2004.

[GCX+05] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan, Xiaoning
Ding, and Xiaodong Zhang. Measurements, analysis, and
modeling of bittorrent-like systems. In Proceedings of the 5th
ACM SIGCOMM conference on Internet Measurement, IMC
’05, pages 4–4, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[GDZ05] Ruomei Gao, Constantinos Dovrolis, and Ellen W. Zegura.
Interdomain ingress traffic engineering through optimized as-
path prepending. In In Proceedings of IFIP Networking, pages
647–658, 2005.

[GDZ06] R. Gao, C. Dovrolis, and E. Zegura. Avoiding oscillations
due to intelligent route control systems. In Proc. IEEE IN-
FOCOM, April 2006.

[GR00] Lixin Gao and Jennifer Rexford. Stable internet routing with-
out global coordination. SIGMETRICS Perform. Eval. Rev.,
28:307–317, June 2000.

[GSW99] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong.
Policy disputes in path-vector protocols. In Proceedings of the
Seventh Annual International Conference on Network Proto-
cols, ICNP ’99, pages 21–, Washington, DC, USA, 1999. IEEE
Computer Society.

[GW99] Timothy G. Griffin and Gordon Wilfong. An analysis of
bgp convergence properties. In Proceedings of the confer-
ence on Applications, technologies, architectures, and proto-
cols for computer communication, SIGCOMM ’99, pages 277–
288, New York, NY, USA, 1999. ACM.

BIBLIOGRAPHY 155

[HHA+] Y. Hyun, B. Huffaker, D. Andersen, E. Aben, C. Shannon,
M. Luckie, and k. claffy. The CAIDA IPv4 Routed /24 Topol-
ogy Dataset - August 2008. http://www.caida.org/data/

active/ipv4_routed_24_topology_dataset.xml.

[HHK03] Mark Handley, Orion Hodson, and Eddie Kohler. Xorp: an
open platform for network research. SIGCOMM Comput.
Commun. Rev., 33:53–57, January 2003.

[Hop00] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm.
RFC 2992 (Informational), November 2000.

[HS05] N. Hu and P. Steenkiste. Exploiting Internet route shar-
ing for large-scale available bandwidth estimation. In Proc.
ACM/Usenix Internet Measurement Conference (IMC), Oc-
tober 2005.

[Hus] Geoff Huston. Growth of the BGP table - 1994 to present.

[HWLR08] Cheng Huang, Angela Wang, Jin Li, and Keith W. Ross. Mea-
suring and evaluating large-scale cdns paper withdrawn at
mirosoft’s request. In Proceedings of the 8th ACM SIGCOMM
conference on Internet measurement, IMC ’08, pages 15–29,
New York, NY, USA, 2008. ACM.

[IB07] L. Iannone and O. Bonaventure. On the cost of caching loca-
tor/id mappings. In Proc. ACM CoNEXT, December 2007.

[Int05] Internap. Premise-base route optimisation, 2005.

[ISB11] Luigi Iannone, Damien Saucez, and Olivier Bonaventure.
Implementing the locator/id separation protocol: Design
and experience. Computer Networks, 2011. To appear,
http://dx.doi.org/10.1016/j.comnet.2010.12.017.

[JCAC+10] Loránd Jakab, Albert Cabellos-Aparicio, Florin Coras,
Damien Saucez, and Olivier Bonaventure. LISP-TREE: A
DNS Hierarchy to Support the LISP Mapping System. IEEE
Journal on Selected Areas in Communications, 28(8):1332–
1343, 2010.

[JSBM02] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert
Morris. DNS performance and the effectiveness of caching.
IEEE/ACM Transactions on Networking, 10(5):589–603, Oc-
tober 2002.

[KCGR09] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and
Jennifer Rexford. Revisiting route caching: The world should
be flat. In PAM, April 2009.

156 BIBLIOGRAPHY

[KIF11] Juhoon Kim, Luigi Iannone, and Anja Feldmann. Deep dive
into the lisp cache and what isps should know about it. In
IFIP International Conference on Networking, volume 6640 of
Lecture Notes in Computer Science (LNCS), pages 267–278,
Berlin / Heidelberg, Germany, May 2011. Springer.

[KKK07] Nate Kushman, Srikanth Kandula, and Dina Katabi. Can
you hear me now?!: it must be bgp. SIGCOMM Comput.
Commun. Rev., 37:75–84, March 2007.

[KKSB07] Srikanth Kandula, Dina Katabi, Shantanu Sinha, and Arthur
Berger. Dynamic load balancing without packet reordering.
SIGCOMM Comput. Commun. Rev., 37:51–62, March 2007.

[KKY03] R. Katz, K. Kompella, and D. Yeung. Traffic Engineering
(TE) Extensions to OSPF Version 2. Internet Engineering
Task Force, RFC3630, September 2003.

[KMC+00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The click modular router. ACM
Trans. Comput. Syst., 18:263–297, August 2000.

[KPS+11] S. Kiesel, S. Previdi, M. Stiemerling, R. Woundy, and Y r.
Yang. Application-Layer Traffic Optimization (ALTO) Re-
quirements. Internet Draft (Work in Progress) draft-ietf-alto-
reqs-08, Internet Engineering Task Force, March 2011.

[KRP05] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should
Internet service providers fear peer-assisted content distribu-
tion. In Proc. Internet Measurement Conference (IMC), Oc-
tober 2005.

[KTCI04] R Keralapura, N Taft, C N Chuah, and G Iannaconne. Can
isps take the heat from overlay networks? In Proceedings of
the 3rd Workshop on Hot Topics in Networks (HotNets-III),
San Diego,, 2004.

[KW00] B. Krishnamurthy and J. Wang. On network-aware clustering
of web clients. In Proc. ACM SIGCOMM, August 2000.

[KW01] B. Krishnamurthy and J. Wang. Topology modeling via clus-
ter graphs. In Proc. ACM SIGCOMM Workshop on Internet
Measurement (IMW), November 2001.

[Lea08] Eliot Lear. NERD: A Not-so-novel EID to RLOC Database.
draft-lear-lisp-nerd-04, April 2008. Work in progress.

BIBLIOGRAPHY 157

[LGP+05] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft. On
the accuracy of embeddings for Internet coordinate systems.
In Proc. USENIX Internet Measurement Conference (IMC),
October 2005.

[LGS07] J. Ledlie, P. Gardner, and M. I. Seltzer. Network coordinates
in the wild. In Proc. USENIX Symposium on Networked Sys-
tem Design and Implementation (NSDI), April 2007.

[LHC03] H. Lim, J. C. Hou, and C.-H. Choi. Constructing internet co-
ordinate system based on delay measurement. In Proc. ACM
SIGCOMM Internet Measurement Conference (IMC), Octo-
ber 2003.

[LHC05] H. Lim, J. C. Hou, and C-H. Choi. Constructing Internet
coordinate system based on delay measurement. IEEE/ACM
Transactions on Networking, 13(3):513–525, June 2005.

[Li10] T. Li. Recommendation for a routing architecture. Inter-
net draft, draft-irtf-rrg-recommendation-14, work in progress,
September 2010.

[Lig] Light Reading. Controlling P2P Traffic. http:

//www.lightreading.com/document.asp?site=

lightreading&doc_id=44435&page_number=3.

[LIJM+09] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide,
F. Jahanian, and M. Karir. Atlas internet observatory 2009
annual report. Technical report, Arbor Networks, the Univer-
sity of Michigan and Merit Network, 2009.

[LIJM+10] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon
Oberheide, and Farnam Jahanian. Internet inter-domain traf-
fic. In Proceedings of the ACM SIGCOMM 2010 conference
on SIGCOMM, SIGCOMM ’10, pages 75–86, New York, NY,
USA, 2010. ACM.

[Lim] Limelight Networks. High performances content de-
livery network for digital media. See http://www.

limelightnetworks.com/.

[LL08] D. Leonard and D. Loguinov. Turbo King: Framework for
large-scale Internet delay measurements. In Proc. IEEE IN-
FOCOM, April 2008.

[LL10] D. Lee and W. Lawton. IPv6 at Facebook. Google IPv6
Implementors Conference, June 2010.

158 BIBLIOGRAPHY

[LLB02] Kurt J. Lidl, Deborah G. Lidl, and Paul R. Borman. Flexible
packet filtering: providing a rich toolbox. In Proceedings of the
BSD Conference 2002 on BSD Conference, BSDC’02, pages
11–11, Berkeley, CA, USA, 2002. USENIX Association.

[LPS06] J. Ledlie, P. Pietzuch, and M. I. Seltzer. Stable and accurate
network coordinates. In Proc. International Conference on
Distributed Computing Systems, July 2006.

[LQZ09] Hongbin Luo, Yajuan Qin, and Hongke Zhang. A DHT-based
identifier-to-locator mapping approach for a scalable Inter-
net. IEEE Transactions on Parallel and Distributed Systems,
February 2009.

[MAK+06] Harsha V. Madhyastha, Thomas Anderson, Arvind Krishna-
murthy, Neil Spring, and Arun Venkataramani. A structural
approach to latency prediction. In IMC, October 2006.

[Max02] MaxMind. Geolocation and online fraud prevention from
maxmind, 2002. See http://www.maxmind.com/.

[MD95] Paul V. Mockapetris and Kevin J. Dunlap. Development of
the domain name system. SIGCOMM Comput. Commun.
Rev., 25(1):112–122, 1995.

[MEC+11] F. Maino, V. Ermagan, A. Cabellos, D. Saucez, and
O. Bonaventure. LISP-Security (LISP-SEC). Internet draft,
draft-ietf-lisp-sec-00.txt, work in progress, July 2011.

[Mey08] D. Meyer. The locator identifier separation protocol (LISP).
Internet Protocol Journal, 11(1):23–36, March 2008.

[MFHK08] A. Matsumoto, T. Fujisaki, R. Hiromi, and K. Kanayama.
Problem Statement of Default Address Selection in Multi-
prefix Environment: Operational Issues of RFC3484 Default
Rules. Internet Draft (Work in Progress) draft-ietf-v6ops-
addr-select-ps-05, Internet Engineering Task Force, April
2008.

[MHH10] Michael Menth, Matthias Hartmann, and Michael Hofling.
Firms: a mapping system for future internet routing. IEEE
J.Sel. A. Commun., 28:1326–1331, October 2010.

[MI08] Laurent Mathy and Luigi Iannone. LISP-DHT: Towards a
DHT to map identifiers onto locators. In ReArch, December
2008.

BIBLIOGRAPHY 159

[MIP+06] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. An-
derson, A. Krishnamurthy, and A. Venkataramani. iPlane:
An information plane for distributed services. In Proc.
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), November 2006. See http://iplane.

cs.washington.edu.

[MN06] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP)
Architecture. RFC 4423 (Informational), May 2006.

[Moc87a] P.V. Mockapetris. Domain names - concepts and facilities.
RFC 1034 (Standard), November 1987. Updated by RFCs
1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033,
4034, 4035, 4343, 4035, 4592.

[Moc87b] P.V. Mockapetris. Domain names - implementation and spec-
ification. RFC 1035 (Standard), November 1987. Updated by
RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136,
2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035,
4343.

[Moc89] P.V. Mockapetris. DNS encoding of network names and other
types. RFC 1101, April 1989.

[Mor02] Richard M. Mortier. Internet traffic engineering. Technical
report, in IEEE Communication Magazine, 2002.

[Moy98] J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998.

[MS04] Y. Mao and L. Saul. Modeling distances in large-scale net-
works by matrix factorization. In Proc. ACM SIGCOMM
Internet Measurement Conference (IMC), October 2004.

[MTS+02] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and
C. Diot. Traffic matrix estimation: existing techniques and
new directions. SIGCOMM Comput. Commun. Rev., 32:161–
174, August 2002.

[MWA02] Ratul Mahajan, David Wetherall, and Tom Anderson. Under-
standing bgp misconfiguration. In SIGCOMM, pages 3–16,
August 2002.

[MXZ+05] Xiaoqiao Meng, Zhiguo Xu, Beichuan Zhang, Geoff Huston,
Songwu Lu, and Lixia Zhang. Ipv4 address allocation and the
bgp routing table evolution. SIGCOMM Comput. Commun.
Rev., 35(1):71–80, 2005.

160 BIBLIOGRAPHY

[MZF07] D. Meyer, L. Zhang, and K. Fall. Report from the IAB work-
shop on routing and addressing. RFC 4984, Internet Engi-
neering Task Force, September 2007.

[MZPP08] R. Mahajan, M. Zhang, L. Poole, and V. Pai. Uncovering
performance differences among backbone ISPs with NetDiff.
In Proc. Symposium on Network Systems Design and Imple-
mentation (NSDI), April 2008.

[NB09] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming
Shim Protocol for IPv6. RFC 5533 (Proposed Standard), June
2009.

[NZ02] T. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. In Proc. IEEE INFO-
COM, June 2002.

[NZ04] T. S. E. Ng and H. Zhang. A network positioning system for
the Internet. In Proc. USENIX Annual Technical Conference,
June 2004.

[OBFR09] H. Ould-Brahim, D. Fedyk, and Y. Rekhter. BGP Traffic
Engineering Attribute. RFC 5543 (Proposed Standard), May
2009.

[Ora90] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC
1142 (Informational), February 1990.

[Pap07] V. Pappas. Coordinate-based routing for overlay networks.
In Proc. International Conference on Computer Communica-
tions and Networks (ICCCN), August 2007.

[PCW+03] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for scalable distributed location. In Proc. 2nd
International Workshop on Peer-to-Peer Systems (IPTPS),
February 2003.

[Pel06] Cristel Pelsser. Interdomain traffic engineering with MPLS.
PhD thesis, Université catholique de Louvain, November
2006.

[PFA+10] Ingmar Poese, Benjamin Frank, Bernhard Ager, Georgios
Smaragdakis, and Anja Feldmann. Improving content deliv-
ery using provider-aided distance information. In Proceedings
of the 10th annual conference on Internet measurement, IMC
’10, pages 22–34, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 161

[PGES05] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk
Sips. The Bittorrent P2P File-Sharing System: Measurements
and Analysis. In Miguel Castro and Robbert van Renesse, ed-
itors, Peer-to-Peer Systems IV, volume 3640 of Lecture Notes
in Computer Science, chapter 19, pages 205–216. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2005.

[PLMS06] P. Pietzuch, J. Ledlie, M. Mitzenmacher, and M. Seltzer.
Network-aware overlays with network coordinates. In Proc.
IEEE International Conference on Distributed Computed Sys-
tems Workshops (ICDCSW), July 2006.

[PM08] D. Pezaros and L. Mathy. Explicit application-network cross-
layer optimisation. In The 4th International Telecommunica-
tion Networking WorkShop (IT-NEWS) on QoS in Multiser-
vice IP Networks (QoS-IP 2008), February 2008.

[Pos81] J. Postel. Internet Protocol. RFC 791 (Standard), September
1981. Updated by RFC 1349.

[PPZ+08] Abhinav Pathak, Himabindu Pucha, Ying Zhang, Y. Charlie
Hu, and Z. Morley Mao. A measurement study of internet
delay asymmetry. In Proceedings of the 9th international con-
ference on Passive and active network measurement, PAM’08,
pages 182–191, Berlin, Heidelberg, 2008. Springer-Verlag.

[PUK+11] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Don-
net, and Bamba Gueye. Ip geolocation databases: Unreliable?
ACM SIGCOMM Computer Communication Review, 41(2),
April 2011.

[QIdLB07] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure.
Evaluating the benefits of the locator/identifier separation. In
Proc. ACM SIGCOMM MobiArch Workshop, August 2007.

[Quo06] Bruno Quoitin. BGP-based interdomain traffic engineering.
PhD thesis, Université catholique de Louvain, August 2006.

[QUP+03] Bruno Quoitin, Steve Uhlig, Cristel Pelsser, C. Pelsser, Louis
Swinnen, and Olivier Bonaventure. Interdomain traffic engi-
neering with bgp. IEEE Communications Magazine, 41, 2003.

[Rad] Radware. http://www.radware.com.

[RD10] J. Rexford and C. Dovrolis. Future Internet Architecture:
Clean-Slate Versus Evolutionary Research. Communications
of the ACM, 53(9):36–40, September 2010.

162 BIBLIOGRAPHY

[Riz97] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM SIGCOMM Computer Communica-
tion Review, 27(1):37–41, January 1997.

[RLH06] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol
4 (BGP-4). RFC 4271 (Draft Standard), January 2006.

[RMK+08] V. Ramasubramanian, D. Malhki, F. Kuhn, I. Abraham,
M. Balakrishnan, A. Gupta, and A. Akella. A unified network
coordinate system for bandwidth and latency. Technical Re-
port MSR-TR-2008-124, Microsoft Research, September 2008.

[RR06] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private
Networks (VPNs). RFC 4364 (Proposed Standard), February
2006. Updated by RFCs 4577, 4684, 5462.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol La-
bel Switching Architecture. RFC 3031 (Proposed Standard),
January 2001.

[SAA+99] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zhorjan. Detour: Informed internet routing and transport.
IEEE Micro, 19(1):50–59, January/February 1999.

[SB00] Alex C. Snoeren and Hari Balakrishnan. An end-to-end ap-
proach to host mobility. In MobiCom ’00: Proceedings of the
6th annual international conference on Mobile computing and
networking, August 2000.

[SB09] J. Seedorf and E. Burger. Application-Layer Traffic Optimiza-
tion (ALTO) Problem Statement. RFC 5693 (Informational),
October 2009.

[SB11] D. Saucez and O. Bonaventure. Performance based traffic
engineering with idips. In Proceedings of ACM SIGCOMM
2011 Demo Session, August 2011.

[SDB09] Damien Saucez, Benoit Donnet, and Olivier Bonaventure. On
the impact of clustering on measurement reduction. In Net-
working, pages 835–846, 2009.

[SDIB08] D. Saucez, B. Donnet, L. Iannone, and O. Bonaventure. In-
terdomain traffic engineering in a locator/identifier separation
context. In Proc. IEEE Internet Network Management Work-
shop (INM), October 2008.

BIBLIOGRAPHY 163

[SGU08] S. Siwpersad, B. Gueye, and S. Uhlig. Assessing the geo-
graphic resolution of exhaustive tabulation for geolocating In-
ternet hosts. In Proc. Passive and Activement Measurement
Conference (PAM), April 2008.

[She] Shen. HPTP: Relieving the Tension between ISPs and P2P.
IPTPS’07.

[SIB09a] D. Saucez, L. Iannone, and O. Bonaventure. Openlisp: An
open source implementation of the locator/id separation pro-
tocol. In Proceedings of ACM SIGCOMM 2009 Demo Session,
August 2009.

[SIB09b] D. Saucez, L. Iannone, and O. Bonaventure. Openlisp: An
open source implementation of the locator/id separation pro-
tocol. In Proceedings of IEEE INFOCOM 2009 Demo Session,
April 2009.

[SIB11] D. Saucez, L. Iannone, and O. Bonaventure. LISP Threats
Analysis. Internet draft, draft-ietf-lisp-threats-00, work in
progress, July 2011.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R.
Karger, M. Frans Kaashoek, Frank Dabek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Transactions on Network-
ing, 11(1):17–32, February 2003.

[SN09] Damien Saucez and Van Nam Nguyen. Lisp-click: A click im-
plementation of the locator/id separation protocol. 1st Sym-
posium on Click Modular Router, November 2009.

[SPPVS08] M. Szymaniak, D. Presotto, G. Pierre, and M. Van Steen.
Practical large-scale latency estimation. Computer Networks,
52(7):1343–1364, May 2008.

[ST03] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in euclidean space. In Proc. IEEE INFO-
COM, March 2003.

[Ste07] R. Stewart. Stream Control Transmission Protocol. RFC 4960
(Proposed Standard), September 2007.

[Tea04] Team Cymru. Internet security research and insight, 2004.
See http://www.team-cymru.org/.

[THKS03] S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. DNS
Extensions to Support IP Version 6. RFC 3596 (Draft Stan-
dard), October 2003.

164 BIBLIOGRAPHY

[UBQ03] S. Uhlig, O. Bonaventure, and B. Quoitin. Interdomain Traffic
Engineering with minimal BGP Configurations. In Proc. of
the 18th International Teletraffic Congress, Berlin, September
2003.

[Uhl04] Steve Uhlig. Implications of traffic characteristics on inter-
domain traffic engineering. PhD thesis, Université catholique
de Louvain, March 2004.

[Uni] University of Oregon. Route views, University of Oregon
Route Views project. See http://www.routeviews.org/.

[UQLB06] Steve Uhlig, Bruno Quoitin, Jean Lepropre, and Simon Balon.
Providing public intradomain traffic matrices to the research
community. SIGCOMM Comput. Commun. Rev., 36:83–86,
January 2006.

[VB.09] VB.com. Domains Counter - Domain Timeline since 1985 by
VB.com, 2009.

[WAR07] Y. Wang, I. Avramopoulos, and J. Rexford. Morpheus: Mak-
ing routing programmable. In Proc. ACM SIGCOMM Work-
shop on Internet Network Management (INM), August 2007.

[Wis07] Damon Wischik. Short messages. In Royal Society workshop
on networks: modelling and control, September 2007.

[WSR09] Yi Wang, Michael Schapira, and Jennifer Rexford. Neighbor-
specific bgp: more flexible routing policies while improving
global stability. In Proceedings of the eleventh international
joint conference on Measurement and modeling of computer
systems, SIGMETRICS ’09, pages 217–228, New York, NY,
USA, 2009. ACM.

[WSS05] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: a lightweight
network location service without virtual coordinates. In Proc.
ACM SIGCOMM, August 2005.

[XYK+08] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silber-
schatz. P4P: Provider portal for applications. In Proc. ACM
SIGCOMM, Agust 2008.

[YRCR04] Ming Yang, X. Rong, Li Huimin Chen, and Nageswara S. V.
Rao. Predicting internet end-to-end delay: an overview. In
in Proc. of 36th IEEE Southeastern Symposium on Systems
Theory, pages 210–214, 2004.

BIBLIOGRAPHY 165

[YSB+06] P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and
S. Basu. S3: A scalable sensing service for monitoring large
networked systems. In Proc. ACM SIGCOMM Workshop on
Internet Network Measurement (INM), September 2006.

[ZCB96] Ellen Zegura, Kenneth Calvert, and Samrat Bhattacharjee.
How to model an internetwork. In In Proceedings of IEEE
INFOCOM, pages 594–602, 1996.

[ZJUVM07] X. Zhou, M. Jacobsson, H. Uijterwaal, and P. Van Mieghem.
IPv6 delay and loss performance evolution. International
Journal of Communication Systems, 21(6), June 2007.

