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Preamble

The 20th century has seen the digital revolution, introducing the change from
analog to digital technology. It is continuing right into the 21st century, inter-
connecting billions of digital devices over the Internet. Different types of devices
and ways of communication have been designed. From smartphones to personal
computers; from small servers connected to the Internet to huge content delivery
networks serving millions of users simultaneously. The scale of the Internet and
the mass of traffic it is transporting is continuously increasing [LIJM+11].

In order to cope with this increasing amount of traffic, redundancy and load-
balancing is the rule on the Internet. Indeed, there often exist many different paths
between any two pair of hosts connected to the Internet. Internet Service Providers
(ISPs) extensively use redundant paths to be resilient against link-failures. The
load along these redundant paths is often balanced by using techniques like Equal
Cost Multipath which distribute the traffic across multiple paths. Data centers
have a similar incentive like ISPs to balance the load and be resilient against link
failures. Finally, end-user devices also employ such kind of redundancy. Smart-
phones are typically equipped with a WiFi and a 3G/4G interface. This allows to
remain connected to the Internet, even if the next WiFi access point is far away.

It becomes obvious that the Internet architecture offers a large number of paths
between the end hosts. There remains however one problem. The protocols in
use today are not able to efficiently use these paths. The most used protocol is
the Transmission Control Protocol (TCP). It allows to send a byte stream in a
reliable and in-order manner between two devices. It uses the IP addresses and
port numbers to identify to which connection the payload belongs to. In order to
steer a packet along a specific path, the IP address (or port numbers) must change.
This would effectively break TCP’s way of demultiplexing, making it unable to
reconstruct the byte stream.

There is a gap between the single-path transport protocols
and the multi-path network.

Multipath TCP, a recently proposed TCP extension, attempts to fill this gap.
It extends TCP to allow transmitting a single byte stream across different paths.
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ii Preamble

This kind of multipath transmission has several benefits. First, it increases the
resilience to failures. If a link disappears, Multipath TCP can simply continue
the transmission on another one - without disrupting the byte stream. Second,
it allows to increase the performance by pooling the resources. Indeed, the dif-
ferent paths may be constrained by distinct bottlenecks, each offering a different
capacity to the flow. Multiplexing a byte stream across these different bottlenecks
effectively allows to pool their capacities and thus increase the overall goodput for
the byte stream transmission.

This thesis is a contribution to make multipath communication not an exception,
but the rule by improving Multipath TCP and its Linux Kernel implementation.
More specifically, the main contributions of this thesis are:

• Developing an experimental design approach to evaluate Multipath TCP.

A large number of factors influence the performance of a Multipath TCP
connection. Factors like delay, loss rate and capacity have a big impact on
the performance of a connection. For traffic going over the Internet, each
of these factors can be within a large range. Validating that Multipath TCP
works well across the Internet is very difficult, considering the sheer infinite
number of possible environments.
In Chapter 3, this thesis applies an “Experimental Design” to the evaluation
of Multipath TCP. This approach allows to have a statistical confidence on
the results of the evaluation. It provides these results by equally spreading
the parameter sets for the evaluation across the considered factor-space. In
this thesis, an evaluation of Multipath TCP, using this approach is presented.
The evaluation measures the resource pooling as well as the load-balancing
capabilities of Multipath TCP. Finally, it measures how different congestion
control algorithms influence the delay perceived by the application.

• Improving Multipath TCP in heterogeneous environments.

The paths used by Multipath TCP may have significantly different charac-
teristics. As shown in Chapter 4, such a heterogeneity impacts Multipath
TCP in several ways. Particularly, receive-window limitations and head-
of-line blocking are accentuated by such heterogeneous environments. We
propose heuristics to allow Multipath TCP to achieve high performance –
even in heterogeneous environments.
First, a reactive approach is proposed. This approach has shown very
promising results and has been fine-tuned by using the experimental design
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approach. Another, proactive, approach would be to schedule traffic across
the paths by taking into account the characteristics of each of the paths so
that all of them can be used in the most efficient way. We suggest a mod-
ular scheduler infrastructure to enable researchers to design such heuristics
inside the scheduler.

• A scalable Linux Kernel implementation of Multipath TCP.

The Linux Kernel implementation has been developed over the last years,
constantly changing and improving. Chapter 5 explains how the imple-
mentation has been designed while keeping the following three goals in
mind: minimize performance impact on regular TCP; achieve reasonable
complexity inside the TCP stack; and achieve high performance for Multi-
path TCP.
These goals have a major influence on certain design decisions, where
sometimes the performance of Multipath TCP needs to be reduced for the
benefit of regular TCP’s performance. The chapter shows that even con-
sidering these design decisions, the implementation is able to achieve high
performance in a scalable manner.

• Retrospecting the design decisions of Multipath TCP.

During the specification of Multipath TCP in RFC 6824 [FRHB13], certain
decisions were made with respect to the handshake, security, data trans-
mission and the exchange of control information. Now, after several years
of experience in implementing, testing and deploying Multipath TCP we
can take a step back and revisit some of these design decisions. In Chap-
ter 6, we revisit the computational overhead of the current handshake and
suggest a low-overhead flavor for use-cases where security attacks are not
of a concern. Next, we show how it is possible to leverage the application-
layer security into Multipath TCP to overcome some of the residual security
threats we identified. Finally, we envision a more disruptive change to Mul-
tipath TCP. A control-stream could open the door for future extensions and
overcome some of the limitations of the initial design-choice of transmitting
Multipath TCP’s control information inside the TCP option space.



iv Preamble

Bibliographic notes
Most of the work presented in this thesis appeared in conference proceedings,

journals and IETF contributions. The list of related publications is shown here-
after:

Conference and workshop publications
1. Multipath TCP: From Theory to Practice

S. Barre, C. Paasch and O. Bonaventure. In IFIP Networking. 2011.

2. How Hard Can It Be? Designing and Implementing a Deployable Multi-
path TCP
C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaven-
ture and M. Handley. USENIX NSDI. 2012.

3. Exploring Mobile/WiFi Handover with Multipath TCP
C. Paasch, G. Detal, F. Duchene, C. Raiciu and O. Bonaventure. ACM
SIGCOMM workshop Cellnet. 2012

4. On the Benefits of Applying Experimental Design to Improve Multipath TCP
C. Paasch, R. Khalili and O. Bonaventure. ACM CoNEXT. 2013.

5. Evolving the Internet with Connection Acrobatics
C. Nicutar, C. Paasch, M. Bagnulo and C. Raiciu. ACM CoNEXT workshop
HotMiddlebox. 2013.

6. Multipath in the Middle(Box)
G. Detal, C. Paasch and O. Bonaventure. ACM CoNEXT workshop Hot-
Middlebox. 2013.

7. Are TCP Extensions Middlebox-Proof?
B. Hesmans, F. Duchene, C. Paasch, G. Detal, O. Bonaventure. ACM
CoNEXT workshop HotMiddlebox. 2013.

8. Experimental Evaluation of Multipath TCP Schedulers
C. Paasch, S. Ferlin, O. Alay and O. Bonaventure. ACM SIGCOMM Ca-
pacity Sharing workshop (CSWS). 2013.

Journal publications
1. Revisiting Flow-Based Load Balancing: Stateless Path Selection in Data

Center Networks



Preamble v

G. Detal, C. Paasch, S. van der Linden, P. Merindol, G. Avoine and O.
Bonaventure. Computer Networks, 57(5):1204-1216. 2013.

2. Multipath TCP
C. Paasch and O. Bonaventure. Communications of the ACM. 57(4):51-57.
2014

IETF contributions
1. Multipath TCP - Guidelines for implementers

S. Barre, C. Paasch and O. Bonaventure. IETF Internet-Draft draft-barre-
mptcp-impl-00. 2011.

2. Securing the Multipath TCP handshake with external keys
C. Paasch and O. Bonaventure. IETF Internet-Draft draft-paasch-mptcp-
ssl-00. 2012.

3. Multipath TCP Low Overhead
C. Paasch and O. Bonaventure. IETF Internet-Draft draft-paasch-mptcp-
lowoverhead-00. 2012.

4. Analysis of MPTCP Residual Threats and Possible Fixes
M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure and C. Raiciu. IETF In-
ternet Draft draft-ietf-mptcp-attacks-02. 2014.

5. A Generic Control Stream for Multipath TCP
C. Paasch and O. Bonaventure. IETF Internet Draft draft-paasch-mptcp-
control-stream-00. 2014.

6. Experience with Multipath TCP
O. Bonaventure and C. Paasch. IETF Internet Draft draft-bonaventure-
mptcp-experience-00. 2014.

7. Processing of RST segments by Multipath TCP
O. Bonaventure, C. Paasch and G. Detal. IETF Internet Draft draft-
bonaventure-mptcp-rst-00. 2014.





Acknowledgments

This thesis as well as my future career would never have been possible
without the support of my advisor, Olivier Bonaventure. Thanks to him I had
the opportunity to work with him (and many other researchers) on this very
interesting research topic. He gave me the guidance I needed so that my thesis
went into the right direction, while also giving me the freedom to spend time on
the implementation. His enthusiasm for networking research is infectious and
pushed me (and many other PhD students) to accomplish a PhD thesis.

The members of my thesis committee Marco Canini, Ramin Khalili, Charles
Pecheur, Costin Raiciu and Laurent Schumacher gave me valuable feedback
during my private defense on how to improve the thesis. I would like to thank
them for being part of my thesis committee and having invested the time to read
and review my thesis.

I am also thankful to all my co-authors, Ozgu Alay, Gildas Avoine, Marcelo
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Donnet, Pierre Francois, Nicolas Laurent, David Lebrun, Damien Leroy, Damien
Saucez, Olivier Tilmans, Hoang Tran Viet, Simon van der Linden, Virginie Van

vii



viii Acknowledgments

den Schrieck, Laurent Vanbever and Stefano Vissicchio) from whom I learned a
lot and had lots of fun during our long coffee breaks in the afternoon. I also wish
to thank the whole INGI department, academic and administrative, for all their
help during those years at the UCL.

I also would like to thank all my other collaborators during this journey
with which I had interesting discussions about issues in Multipath TCP, who
contributed to the implementation, helped me setting up test environments or
reported bugs. It is also thanks to them that I was able to accomplish my thesis.
I am also grateful to Lars Eggert for giving me the opportunity of doing an
internship at Nokia in Helsinki. Thanks also to Ramin Khalili and his former
colleagues for welcoming me during my short visit at T-Labs in Berlin.

Finally, I would like to thank my family for the support they gave me during
these last years. Many thanks go as well to the whole team of the Roller Bulls,
who forced me to exercise twice a week, even if the day after I had sore muscles at
work. Lastly, I would like thank Perrine, whose support helped me to eventually
finish the thesis and take the necessary time off to recover.

Christoph Paasch
October 30, 2014



Contents

Preamble i

Acknowledgments vii

Table of Content ix

1 Introduction 1
1.1 Multipath/Multihoming solutions . . . . . . . . . . . . . . . . . . . 3

1.1.1 Link Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Transport layer . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Transmission Control Protocol (TCP) . . . . . . . . . . . . . . . . . 7
1.2.1 Control plane . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Data plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Multipath TCP 13
2.1 Control plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Initial handshake . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Handshake of additional subflows . . . . . . . . . . . . . . . 17
2.1.3 Address agility . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Further protocol details . . . . . . . . . . . . . . . . . . . . . 20

2.2 Data plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 A second sequence-number space . . . . . . . . . . . . . . . 21
2.2.2 Data-plane signaling . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Congestion control . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Middleboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Middlebox behavior . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Protecting the control plane . . . . . . . . . . . . . . . . . . 30
2.3.3 Protecting the data plane . . . . . . . . . . . . . . . . . . . . 33

ix



x Contents

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Evaluating Transport Protocols 37
3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Design of the experiment . . . . . . . . . . . . . . . . . . . . 39

3.2 Evaluating transport-layer protocols . . . . . . . . . . . . . . . . . . 40
3.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Design of the experiment . . . . . . . . . . . . . . . . . . . . 42

3.3 Multipath TCP evaluation . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Aggregation Benefit . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Load balancing . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Application delay . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Multipath TCP in heterogeneous environments 57
4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 The importance of the round-trip-times . . . . . . . . . . . 58
4.1.2 Receive/send-window limitations . . . . . . . . . . . . . . . 59
4.1.3 Head-of-Line blocking . . . . . . . . . . . . . . . . . . . . . 61

4.2 A reactive approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Minimizing memory usage . . . . . . . . . . . . . . . . . . 63
4.2.2 Problems with Penalization . . . . . . . . . . . . . . . . . . 67

4.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Multipath TCP at scale 83
5.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Connection setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Client side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Server side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Subflow handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Client side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.2 Server side . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



Contents xi

5.4 Data exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Data transmission . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.2 Data reception . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.3 HTTP performance . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Connection closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5.1 Avoiding time-wait state . . . . . . . . . . . . . . . . . . . . 106
5.5.2 Resource freeing . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Squeezing the performance . . . . . . . . . . . . . . . . . . . . . . . 109
5.6.1 Hardware offloading . . . . . . . . . . . . . . . . . . . . . . 109
5.6.2 Flow-to-core affinity . . . . . . . . . . . . . . . . . . . . . . 110
5.6.3 Zero-copy support . . . . . . . . . . . . . . . . . . . . . . . 111
5.6.4 Pushing Multipath TCP to the limits . . . . . . . . . . . . . 112

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Retrospecting on Multipath TCP 115
6.1 Establishing connections . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Initial Handshake . . . . . . . . . . . . . . . . . . . . . . . . 116
6.1.2 Additional subflows . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.3 Token generation . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.4 Stateless server . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.1.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Securing Multipath TCP . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.1 Residual threats in Multipath TCP . . . . . . . . . . . . . . 124
6.2.2 Leveraging user-space security . . . . . . . . . . . . . . . . 125

6.3 Long-term extensibility . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 135





Chapter 1

Introduction

The Internet is a network of nodes that allow end hosts to communicate with
each other. Communication is achieved through the use of a layered protocol
stack. Starting at the physical layer, the subsequent link-layer interconnects local
area networks over switches as well as wireless networks. The network layer is
then responsible for the interconnection of these heterogeneous networks via IP
version 4 [Pos81a] or version 6 [DH98]. This interconnection is achieved through
the use of globally unique IP addresses for each end host. Packets emitted by one
end host are forwarded by the routers based on the destination address specified
inside the packet. Then, the transport layer handles the communication of a data
stream between the applications running on the end hosts. This layer can offer
different services like reliable or unreliable transmission, as well as in-order de-
livery. The most prominent transport layer protocol is the Transmission Control
Protocol (TCP) [Pos81b].

In the past, end hosts were typically connected via a single interface to the
Internet. An IP address is assigned to this interface and all communications of the

Figure 1.1: Today’s smartphones can access the Internet via 3G or WiFi.

1
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Figure 1.2: Data centers have a huge redundant infrastructure to allow for network
load-balancing and resilience to failures.

host go via this specific interface. However, nowadays the end hosts often have
multiple interfaces. Every notebook has a wired and a wireless interface, allowing
to connect via Ethernet and WiFi. Smartphones are also equipped with multiple
interfaces, allowing to access the Internet either via the mobile operator’s 3G/4G
network or via a WiFi access-point (as shown in Figure 1.1). The model of single
interface, single IP-address per end host is effectively over in the Internet of the
21st century.

Another, very specific environment are data centers, shown in Figure 1.2. They
contain a very large number of servers (several thousands and more). The servers
often communicate with each other via the data center’s network to replicate data,
achieve a distributed computation or to request data from another host [KSG+09].
The performance of the network in these data centers is critical for a whole range
of cloud-based services. To allow for this high performance network, data centers
employ a huge redundant infrastructure [AFLV08, GHJ+09]. The redundancy al-
lows to balance the load on different paths and improves resilience against link/n-
ode failures.

Additionally, the ISPs also offer multiple paths. Equal Cost Multipath
(ECMP) allows routers to send traffic with the same destination across different
paths, if the routing metric of these paths is of equal cost. Tools like Paris Tracer-
oute have allowed to detect these load-balanced paths inside ISPs, and shown
which fields in the packet header make a packet follow a certain load-balanced
path [ACO+06]. Pelsser et al. show in [PCVB13] that across these load-balanced
paths the delays are quite disperse, effectively offering multiple diverse paths be-
tween two end hosts.

However, the protocols widely deployed today are not designed to be used
across such redundant, multipath networks. They have all been designed with
single-path communication in mind. The identifiers used in the protocols (e.g.,
the IP-address in IP routing, or the 4-tuple in transport layer protocols) are also
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Figure 1.3: Link aggregation requires a specific configuration on the end host and
the next-hop switch. Further, multi-chassis link aggregation requires a synchro-
nization protocol between the switches.

identifiers for a specific path, limiting these protocols to being single-path proto-
cols.

There is this gap between the single-path transport and the multipath network.
Filling this gap would allow to pool the resources of the different available paths,
known as the “Resource pooling principle” [WHB08]. Indeed, the bottleneck of
each of the paths may be different, allowing us to actually increase the bandwidth
for the end host. It also allows to be resilient against link failures. If one of
the paths experiences an issue, the traffic can be moved away from this one and
continue on the other, still operational paths [RNBH11].

1.1 Multipath/Multihoming solutions
This gap between the single-path transport protocols and the multipath net-

work is far from new. Over time, different solutions have been proposed to bridge
this gap at different layers with respect to their specific use case.

1.1.1 Link Layer
At the link layer, link aggregation techniques are used to aggregate the ca-

pacities of different interfaces to the same switch. These aggregation techniques
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only allow to pool the bandwidth of a single hop and require a specific configura-
tion on the host and the switch (an example can be seen at the top of Figure 1.3).
Both host interfaces have the same IP address and typically also the same MAC
address. Traffic can be sent on either of the interfaces. As the interfaces are as-
signed the same IP address, upper layer protocols are not aware of the link aggre-
gation. The link aggregation mechanism has been defined in the standard IEEE
802.3ad [IEE00]. An automatic configuration protocol has been specified and
is known as the Link Aggregation Control Protocol (LACP). To avoid having a
single-point-of-failure, multi-chassis link aggregation allows to aggregate the ca-
pacity of multiple switches. This kind of aggregation requires a synchronization
mechanism between the switches.

There are different modes to achieve the resource pooling through link aggre-
gation. The node may distribute the frames in a round-robin fashion across the
links. This kind of approach may introduce reordering across a flow. TCP suffers
from this kind of reordering as out-of-order data reception is an indication for a
packet-loss, forcing TCP to retransmit data [BA02]. Another approach is to pin
each flow to a specific interface. With respect to this, it is crucial what defines a
flow. A flow may be a pair of source/destination MAC addresses, source/destina-
tion IP addresses or even the 4-tuple. The definition of a flow influences the gran-
ularity with which the link aggregation distributes the segments across the links.
This distribution may happen in a round-robin fashion or be more “intelligent” by
using an adaptive mechanism. The adaptive mechanism would take into account
the loads of the link to balance the traffic in the most efficient way [Fou09].

Link layer aggregation is widely used in today’s networks. Either in the ISP’s
to increase the bandwidth between two switches or in data centers to provide a
higher network-access to the servers. However, one of its downsides is that it
only allows to aggregate the capacity of the next hop. If the bottleneck of the
communication is not in the next hop, link aggregation does not bring any benefit.
It also requires specific configuration of the next-hop switch. Thus, end users are
often unable to use link aggregation to benefit from multiple paths.

1.1.2 Network Layer
Multiple solutions have been proposed to benefit from multiple paths by us-

ing a network-layer approach. At first sight, this approach seems to be the most
straight-forward and promising. Disjoint paths can often be pinned to a different
pair of source/destination IP addresses. E.g., a smartphone communicating over
WiFi and 3G has been attributed a different IP address for each of its interfaces.
Two major solutions have been proposed to achieve multihoming at the network
layer.

Mobile IP [Per97] (and Mobile IPv6 [PJA11]) allows an end host to change its
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Figure 1.4: The home agent has to relay the traffic to the foreign agent so that it
can deliver the data to the mobile node.

own IP address, without the need to reestablish all its TCP connections. It relies
on the fact that a so-called Home agent (shown in Figure 1.4) is not moving and
can be seen as a stable point of communication. As the mobile node is moving
from one access gateway to another one (called Foreign agent), the home agent
will relay traffic to the foreign agent which then in turn will send the data to the
mobile node. This allows for undisrupted TCP connections. However, it does not
allow to pool the resources, and thus increase the bandwidth. Further, it requires
extensive support of the network equipment to relay the data from the home agent
to the foreign agent.

A pure end-host based solution has been specified by the shim6 exten-
sion [NB09]. Shim6 - short for Site Multihoming by IPv6 Intermediation - is
an IPv6-only solution that allows to handover traffic from one IPv6 address to
another upon failure detection. The signaling is done via IPv6 extension head-
ers and splits IP addresses in upper-layer identifiers and locators. It achieves the
same goal as Mobile IP, by performing hot-handover from one interface to another
without disrupting upper-layer transport level protocols. A Linux kernel imple-
mentation has been done and it has been showed that shim6 is indeed a realizable
solution [Bar11].

Network-based solutions that hide address changes to the transport layer pro-
tocols seem like a straight-forward solution. However, another dimension is not
taken into account in such approaches. Each path is subject to different character-
istics in terms of bandwidth, delay, jitter,. . . A stateful transport layer protocol like
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TCP uses an estimation of these characteristics by tracking the bandwidth-delay-
product of the path. If multiple paths are used in a transparent manner to the
TCP protocol, the stack has an incoherent view of the bandwidth-delay-product,
resulting in performance issues and thus a bad user experience.

1.1.3 Transport layer
A multipath solution that sits at (or on top) of the transport layer has the ad-

vantage of being aware of the path characteristics, measured by the transport layer
(e.g., by TCP). It allows for the multipath mechanism to take this information into
account when scheduling the traffic across the different paths. The most promi-
nent transport layer multipath solution is the Stream Control Transmission Proto-
col (SCTP) [SX01].

SCTP is an alternative transport protocol capable of supporting several IP ad-
dresses per connection. The first versions of SCTP used multiple addresses in
failover scenarios. SCTP uses a message-based multi-streaming approach to the
transmission of the data. Instead of transmitting a continuous byte stream (as is
done by TCP), it splits the byte stream in chunks. Further, it allows to trans-
mit multiple streams, separating itself from the single-stream TCP. Each stream
can be sent across a different source/destination IP address pair. Finally, SCTP
allows failover to different IP addresses. To achieve resource-pooling, recent ex-
tensions have enabled it to support the simultaneous use of several paths (SCTP-
CMT) [IAS06]. Unfortunately, except in niche applications such as signaling in
telephony networks, SCTP has not been widely deployed. One reason is that
many firewalls and NAT (Network Address Translation) boxes are unable to pro-
cess SCTP packets and thus simply discard them. Another reason is that SCTP
exposes a different socket API to the applications. These two factors lead to the
classic chicken-and-egg problem. Network manufacturers do not support SCTP in
their firewalls because no application is using this protocol; and application devel-
opers do not use SCTP because firewalls discard SCTP packets. There have been
attempts to break this vicious circle by encapsulating SCTP on top of UDP (User
Datagram Protocol) [TS13] and exposing a socket interface to the application, but
widespread usage of SCTP is still elusive.

Today’s Internet is invaded by middleboxes which interfere with our traffic.
TCP and UDP are the only protocols from which a reasonable acceptance by the
middleboxes can be expected. Thus, the Internet’s hour-glass enforced a multipath
solution on top of either of these protocols. As the Transmission Control Protocol
accounts for the largest proportion of the Internet’s traffic, the choice felt on this
one to extend it for multipath support. The following section gives an overview
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Figure 1.5: Header of the Transmission Control Protocol (TCP)

of the functioning of the reliable and in-order streaming service provided by the
Transmission Control Protocol (TCP).

1.2 Transmission Control Protocol (TCP)
The service provided by TCP ensures that a byte sent on a socket of one end

host will eventually reach the peer. Additionally, it is ensured that the bytes sent
on the socket reach the receiver in the same order. Many applications rely on this
service provided by TCP, as it abstracts the network to a pipe, where everything
that enters will come out at the other side. TCP achieves this by sending segments
over IP, using a specific transport header that allows to ensure the above goals.
The following describes the control and the data plane of TCP.

1.2.1 Control plane
TCP splits the byte stream sent by the application in smaller segments, and

transmits them over the underlying IP protocol (IPv4 or IPv6). In order to identify
which service is being contacted, source and destination port numbers are added
in the transport header of TCP. This 4-tuple (source/destination IP addresses and
source/destination port numbers) identifies the data stream that is transmitted be-
tween the applications.

In order to start a TCP connection, the hosts go through the 3-way handshake
phase, illustrated in Figure 1.6. The handshake allows the hosts to mark the be-
ginning of a data stream. First, it allows the active opener of the connection to
specify the 4-tuple in use for this stream by sending a SYN to the server. The
SYN also includes the initial sequence number for the data that will be sent from
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Figure 1.6: During the 3-way handshake, TCP exchanges the initial sequence
numbers and negotiates optional extensions to TCP within the TCP option space

the client to the server (details about the sequence numbers are provided in the
next section). If the server is willing to accept this connection, it replies with a
SYN/ACK packet, indicating its own initial sequence number and acknowledging
the reception of the client’s SYN. Finally, the client acknowledges this packet with
a final ACK.

TCP has been designed to be extensible by allowing up to 40 bytes of op-
tional arguments inside the TCP header. These so-called TCP options are in a
TLV-format to allow to easily specify new extensions. Support for new extensions
is typically negotiated as part of the 3-way handshake. During the 3-way hand-
shake the client signals in the TCP options field which extensions it would like
to use during this connection. The server then replies inside the SYN/ACK with
the chosen set of extensions that are indeed in use during this connection. Some
examples of this kind of extensions are the TCP timestamp option as well as the
window-scaling option that allow TCP to achieve high performance [JBB92]. An
improved loss-recovery is provided thanks to the selective acknowledgements op-
tion (SACK) [MMFR96].

While the 3-way handshake allows to mark the beginning of the data stream,
the end of the stream is signaled through a 4-way handshake that allows half-
closed connections as shown in Figure 1.7. An end host that wants to stop sending
data signals this through the FIN segment. The FIN segment represents one byte
in the sequence number space and thus ensures that all prior data is correctly
received. The peer must acknowledge the FIN to signal correct reception up to
the sequence number of the FIN. A connection is only half-closed after such an
exchange. A server is still allowed to send data to the client. As soon as it has also
done the FIN-exchange, the connection is considered to be closed and the state on
both sides can be freed.
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Figure 1.7: Even after the client has signaled a FIN, the server can still transmit
data as the connection is only half-closed.

Figure 1.8: After three duplicate acknowledgments, the sender assumes that the
corresponding segment has been lost and retransmits it.

1.2.2 Data plane
To ensure the reliable in-order delivery of the byte stream, TCP assigns a se-

quence number to each byte of the data stream. Starting from the initial sequence
number (exchanged during the 3-way handshake), the sequence number increases
for each byte pushed by the application on the socket. The sequence number is
included inside the TCP header and maps to the first byte of the segment. This
allows the receiver to actually bring the incoming segments back in order. To al-
low reliable transmission, the receiver sends acknowledgments back to the sender.
The acknowledgment specifies the sequence number that is expected to be re-
ceived next. Upon packet-loss, duplicate acknowledgments signal to the sender
which packet is missing.
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To recover from packet-loss, the sender counts the duplicate acknowledg-
ments. Upon 3 duplicate acknowledgments, the sender assumes that the corre-
sponding packet has been lost in the network (e.g., due to congestion) and retrans-
mits it (shown in Figure 1.8). This mechanism is known as a fast-retransmission
as it only takes one round-trip-time to recover from this packet loss. It is not
always possible to receive sufficient duplicate acknowledgments to trigger a fast-
retransmission. For example, if the last segment of a burst is lost, the receiver has
no incentive to send three duplicate acknowledgments as it is not aware that one
segment is still outstanding. For this purpose, the sender launches the retransmis-
sion timer which waits for the acknowledgment of the last byte sent. If after a
retransmission timeout (RTO) period no acknowledgment has been received, the
sender retransmits the missing packet. The RTO is typically significantly larger
than the round-trip-time to avoid spurious retransmissions and is thus a much
slower loss-recovery mechanism than fast-retransmissions.

On the receiver side, the TCP stack has to book a certain amount of memory,
for different purposes. It may be that the application is slow at reading the data
out of the receive-queue. Thus, the stack buffers the data in its receive-queue. It
may also be that a packet loss occurs while more data is in-flight. As TCP ensures
in-order delivery of the data, the receiver’s stack must store this data in the out-
of-order queue (shown in Figure 1.8) until the packet loss has been resolved. This
amount of memory available to store the data in the receive-queue and the out-of-
order queue must be communicated to the sender, so that this one does not attempt
to send more data than memory available at the receiver. This is achieved thanks
to the window-field of the TCP header. It indicates up to how many bytes (starting
from the cumulative acknowledgment) the sender can emit. This process is the so-
called flow-control of the TCP connection as it allows the receiver to throttle down
the sending rate of the peer.

Finally, the TCP congestion control has been introduced in [Jac88] to prevent
the congestion collapse of the Internet. It dynamically adapts the sending rate of
a TCP connection in such a way that the capacity of the network is fully used,
while still reducing the sending rate in case congestion is observed. These con-
gestion events may be of different natures, depending on the congestion control
algorithm. The most prominent ones are loss-based, interpreting a packet-loss as
a sign of congestion [ATRK10]. Delay-based congestion controls have also been
suggested [BP95].

The congestion control achieves this rate control by setting the size of the con-
gestion window of a TCP connection. This window defines how much of in-flight
data is allowed for this TCP connection. At the beginning, the initial conges-
tion window is set to 10 segments [DRC+10]. As long as no congestion event
is detected, the TCP connection goes through the slow-start phase. During this
phase the congestion window is increased by one Maximum Segment Size (MSS)
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for each MSS of data that is being acknowledged by the receiver. As soon as a
congestion event happens, the additive increase multiplicative decrease algorithm
(AIMD) from [Jac88] mandates to enter the congestion-avoidance phase. The
congestion window is divided by two (multiplicative decrease) and from now on
the increase-rate of the window is of an additive nature: when one window worth
of data has been acknowledged, the congestion window is increased by one MSS.
This two-fold mechanism (slow-start and congestion-avoidance) allows to first
probe the network for its congestion-point by aggressively increasing the send-
ing rate at the beginning and then is less aggressive during the additive increase,
trying to avoid congesting the network.

1.3 Conclusion
Multiple paths often exist between two end hosts on the Internet. To exploit

these paths, packets must be steered alongside them. This is only possible by
adapting the IP addresses and/or port numbers in the packets. This, because a
different interface of the end host (e.g., WiFi and 3G on a smartphone) has been
assigned another IP address by the carrier. A host striping segments of a data
stream across different interfaces must use a different IP address for each inter-
face. However, one of the limitations of TCP is that IP addresses are intrinsically
linked to the TCP connection because the 4-tuple is the identifier of the connec-
tion. A host receiving such multiplexed segments is not able to identify to which
data stream they belong. It is not possible to send the data stream of one TCP con-
nection across different interfaces at the same time, effectively preventing TCP
from using the multiple paths available to the end hosts.

We wish to move from a single-path Internet to one where the robustness,
performance and load-balancing benefits of multipath transport are available to
all applications. As has been shown in this chapter, the choice naturally fell on
extending TCP for multipath capabilities. It is the right layer for multipath, as it
is able to measure the characteristics of each path. Further, as most applications
use TCP for their data transmission, a multipath transport should provide the same
service: byte-oriented, reliable and in-order delivery.

The extension being standardized at the IETF is called Multipath TCP
(MPTCP) [FRHB13] and tries to achieve four goals.

First, since Multipath TCP provides a reliable bytestream like TCP, unmod-
ified applications should be able to use it via the standard socket API. If both
endpoints support Multipath TCP, it’s up to the operating system to create addi-
tional subflows, steered along each available path. Data will then be striped across
these different paths.

Second, in order to make the solution deployable, Multipath TCP must work
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in all scenarios where regular TCP currently works. There are various types of
middleboxes on the Internet that may interfere with the new protocol (e.g., block-
ing or modifying segments which look unfamiliar to the middlebox). Multipath
TCP must be usable across all networks where regular TCP works. Therefore, a
fallback mechanism must be included so that Multipath TCP can always revert
back to regular TCP to preserve connectivity.

Third, Multipath TCP must be able to efficiently utilize the network at least
as well as regular TCP, but without starving regular TCP. The congestion control
scheme described in [WRGH11] meets this requirement, but congestion control
is not the only factor that can limit throughput, as shown in this thesis.

Finally Multipath TCP must be implementable in operating systems without
using excessive memory or processing and in such a way that the implementation
does not negatively impact other parts of the TCP stack.

This thesis is all about improving Multipath TCP in such a way that it is
suitable to transition from today’s single-path Internet to one where hosts achieve
better performance and robustness by using multiple paths. In order to achieve
this, we must make sure that Multipath TCP works well in a wide range of envi-
ronments. However, it is very difficult to cover this wide range of environments
with such a complex system like Multipath TCP. Further, heterogeneous envi-
ronments might be troublesome for Multipath TCP as different paths experience
different congestion and round-trip-times. New solutions are necessary to handle
such environments. Finally, deploying Multipath TCP requires a high-performing
operating system implementation, tightly integrated in the existing TCP stack,
without disturbing the well-functioning of TCP. An implementation must make
certain design decisions and compromises to achieve such a goal.

This thesis tackles the above mentioned challenges. It starts by explaining in
detail the key mechanisms used by Multipath TCP in Chapter 2. It continues in
Chapter 3 by explaining how to efficiently and accurately evaluate a multipath
transport protocol like Multipath TCP. How to achieve high performance in het-
erogeneous environments is explained in Chapter 4. A Linux Kernel prototype
implementation of Multipath TCP has been brought to a high-performing, scal-
able and robust reference implementation. The details of this implementation are
presented in Chapter 5. Finally, Chapter 6 discusses how Multipath TCP could
have been designed taking into account the experience acquired during this thesis.
The thesis then concludes in Chapter 7.



Chapter 2

Multipath TCP

Multipath TCP achieves resource pooling [WHB08] and increases the re-
silience to link failures by sending traffic across (possibly) diverse paths. This
idea of using multiple paths for the transmission of data between end hosts is not
new.

The previous chapter has outlined why the current Internet does not easily
allow to achieve multipath transmission with today’s protocols. It has also been
shown that middleboxes are ubiquitous on the Internet [HNR+11, SHS+12] and
must be considered while designing new protocols. Multipath TCP is designed
with all these problems in mind. More specifically, the design goals for Multipath
TCP are [RPB+12]:

• It should be capable of using multiple network paths for a single connection.

• It must be able to use the available network paths at least as well as regular
TCP, but without starving TCP.

• It must be as usable as regular TCP for existing applications (thus, present
the same API as TCP to the applications).

• Enabling Multipath TCP must not prevent connectivity on a path where
regular TCP works (thus, middleboxes/firewalls must be supported).

As Multipath TCP must be as usable as regular TCP for existing applications,
it means that Multipath TCP has to provide a reliable and in-order byte transmis-
sion service. This implies that Multipath TCP must be a stateful protocol, that
includes a connection setup-phase, during which the start of the byte stream is
being signaled. Additionally, Multipath TCP needs reliable transmission by using
an acknowledgement mechanism, as well as a means for the receiver to bring in-
coming data back in-order in case of out-of-order reception. Further, a Multipath

13
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Figure 2.1: Multipath TCP creates one TCP subflow per path, so that the scheduler
can distribute the data among these.

TCP connection should also allow the receiver to do flow control on the connec-
tion to prevent a sender from overwhelming the receiver with data and using up
all its buffers. Finally, a proper teardown of the connection is necessary, so that
end hosts can signal the end of the byte stream.

The simplest possible way to implement Multipath TCP would be to take seg-
ments coming out of the regular TCP stack and “stripe” them across the available
paths. For this to work well, the sender would need to know which paths perform
well and which don’t: it would need to measure per path RTTs to quickly and
accurately detect losses. To achieve these goals, the sender must remember which
segments it sent on each path and use TCP Selective Acknowledgements to learn
which segments arrive. Using this information, the sender could drive retransmis-
sions independently on each path and maintain congestion control state.

This simple design has one fatal flaw: on each path, Multipath TCP would
appear as a discontinuous TCP bytestream, which will upset many middleboxes (a
study has shown that a third of paths will break such connections [HNR+11]). To
achieve robust, high performance multipath operation, we need more substantial
changes to TCP.

Figure 2.1 illustrates the architecture of a Multipath TCP implementation. To
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the application a standard stream socket interface is presented. Below, Multipath
TCP is negotiated via new TCP options in the SYN packets of the TCP connec-
tion. To allow transmission across different paths, a TCP subflow is being created
along each of these paths. They resemble regular TCP connections on the wire,
including a 3-way handshake for the setup, a proper sequence number space with
retransmissions and a 4-way handshake for the termination. These subflows are
linked together to form the Multipath TCP connection and are used to carry the
data between the end hosts. The Multipath TCP Scheduler is in charge of dis-
tributing the data across the different subflows - allowing to pool the resources of
each subflow’s path. Each subflow uses its own sequence-number space to detect
losses and drive retransmissions. Multipath TCP adds connection-level sequence
numbers to allow reordering at the receiver. Finally, connection-level acknowl-
edgements are used to implement proper flow control.

In this chapter, the above outlined building blocks of Multipath TCP are ex-
plained in detail. Conceptually, Multipath TCP can be split in two parts: first, the
control plane, responsible of creating and destroying subflows and signaling other
connection-level control information; second, the data plane, which transmits the
data between the end hosts. As a third part, the middlebox traversal of Multipath
TCP is explained, which effectively allows Multipath TCP to be deployable on
the Internet.

2.1 Control plane
The control information between two Multipath TCP-enabled end hosts is sent

within the TCP option space. Multipath TCP uses a single TCP option type, and
differentiates the control information using subtypes. The following is a descrip-
tion of the different Multipath TCP mechanisms that allow to create and destroy
subflows as well as enable mobility and signal subflow-priorities.

2.1.1 Initial handshake
The TCP three-way handshake serves to synchronize state between the client

and server1. In particular, initial sequence numbers are exchanged and acknowl-
edged, and TCP options carried in the SYN and SYN/ACK packets are used to
negotiate optional functionality like the maximum segment size (MSS) or support
for TCP timestamps [JBB92]. During Multipath TCP’s handshake the end hosts
detect whether the peer actually supports Multipath TCP. Additionally, three state
variables of the connection are being exchanged:

1The correct terms should be active opener and passive opener. For conciseness, we use the
terms client and server, but we do not imply any additional limitations on TCP usage.
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Figure 2.2: The handshake of the initial Multipath TCP subflow uses the
MP CAPABLE option to negotiate the necessary information.

1. Regular TCP identifies a connection thanks to the 5-tuple of the packets.
Multipath TCP combines several TCP subflows in a single connection, each
having a different 5-tuple. As new subflows may join a Multipath TCP
connection, the latter must be identified. This identification is achieved
thanks to a locally unique 32-bit identifier, called token [FRHB13].

2. In order to allow the transmission of data, a data sequence number is used.
The data sequence number defines the position of a segment inside the data
stream, explained in detail in the following Section 2.2. In order to start
sending data, both hosts must agree on an Initial Data Sequence Number
(IDSN).

3. Multipath TCP tries to verify that the host opening a new subflow is indeed
the same host as the one of the other TCP subflows. This is achieved thanks
to two exchanged 64-bit keys and a cryptographic mechanism explained
below. These keys serve as a shared secret and thus authenticate the end
hosts.

These three elements (token, IDSN, and key) are exchanged during the hand-
shake of the initial subflow.

Multipath TCP starts the connection by establishing an initial TCP subflow
with a standard TCP 3-way handshake (Figure 2.2). It uses TCP options to add
signaling into the 3-way handshake in order to detect whether the peer supports
Multipath TCP and to negotiate the above described three elements. Detecting
whether the peer supports Multipath TCP is done by adding the MP CAPABLE
option inside the SYN packets. This is a standard way of negotiating the support
of a TCP extension between end hosts [JBB92]. Exchanging the keys is achieved
by sending them in clear inside the MP CAPABLE option. The keys are echoed
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Figure 2.3: The MP CAPABLE option exchanges the keys in clear. Token and
IDSN are derived through a hash-function from these keys.

back in the third ACK of the 3-way handshake to support servers handling the
TCP handshake in a stateless manner [Edd06].

One important limitation has to be considered – the maximum size of the
TCP option field. No more than 40 bytes can be placed inside the TCP option
space [Pos81b]. To minimize the length of the MP CAPABLE options, the to-
ken and the IDSN are derived from the keys. The token is computed as the 32
most significant bits of the hash of the key2. As the token must be locally unique
and since hash-collisions may happen with already existing Multipath TCP con-
nections, its uniqueness must be verified among all established Multipath TCP
connections [FRHB13]. Similarly, the IDSN is computed as the 64 least signifi-
cant bits of the hash of the keys. Thus, only the keys need to be exchanged inside
the MP CAPABLE option, which is using the format shown in Figure 2.3. It can
be seen that the option has a different length when being used within the third
ACK to allow echoing back both keys. Thanks to this echoing, a server handling
the 3-way handshake in a stateless manner can thus learn that the 3-way hand-
shake negotiated Multipath TCP support and derive the keys being used for this
connection.

2.1.2 Handshake of additional subflows
When adding a new subflow to a Multipath TCP connection, two problems

must be solved. First, the new subflow needs to be associated with an existing
Multipath TCP connection. The classical 5-tuple cannot be used as a connection
identifier, as it may change due to NATs. Second, Multipath TCP must be robust
to an attacker that attempts to add his own subflow to an existing connection. Mul-
tipath TCP solves these two problems, first by using the locally unique token, and

2The hashing algorithm is specified by additional bits inside the MP CAPABLE-option, as ex-
plained in [FRHB13].
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Figure 2.4: The token serves as a connection identifier, while the HMAC-exchange
allows to authenticate the end hosts, while creating additional subflows.

second by computing and verifying an HMAC, using the exchanged keys within
the 3-way handshake of the initial subflow.

To open a new subflow, Multipath TCP performs a new SYN exchange using
the addresses and ports it wishes to use. The handshake is illustrated in Figure 2.4.
A TCP option, MP JOIN, is added to the SYN. The token included inside the SYN
allows to identify the Multipath TCP connection this subflow belongs to, while
the 32 random bits (R

A

) will be part of the input for the HMAC computation. The
server computes the HMAC

B

, based on the two random numbers R
A

and R
B

and
the keys exchanged in the initial handshake. Upon reception of the SYN/ACK,
the client can then verify the correctness of the HMAC

B

, which proves that the
server has knowledge of the keys K

A

and K
B

and thus participated in the initial
handshake. Next, the client generates a different HMAC

A

which is included inside
the third ACK. This one enables the server to verify on its own that the client is
the same as the one involved in the initial handshake. Finally, the server sends
a duplicate acknowledgement to the client, signaling the reception of this third
ACK. The client will only start sending data to the server once it has received the
fourth ACK.

The subflow is now linked to the Multipath TCP connection (thanks to the
token) and it has been proven that the hosts behind this subflow have participated
in the key-exchange of the initial subflow (thanks to the HMAC’s). Now, this
subflow can be used to transmit data.
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Figure 2.5: First, the server announces its additional address via an existing sub-
flow. Then, the client can establish an additional subflow to the announced address

2.1.3 Address agility

If a client is multihomed, then it can easily initiate new subflows from any
additional IP addresses it owns. However, if only the server is multihomed, the
wide prevalence of NATs makes it unlikely that a new SYN will be received by a
client. The solution is for the Multipath TCP server to inform the client that the
server has an additional address by sending an ADD ADDR option on a segment
on one of the existing subflows (illustrated in Figure 2.5). The ADD ADDR option
is one of the subtypes of the TCP options reserved for Multipath TCP.

The client may then initiate a new subflow. This asymmetry is not inher-
ent - there is no protocol design limitation that means the client cannot send
ADD ADDR or the server cannot send a SYN for a new subflow.

The announced address may be an IPv4 or an IPv6 address - irregardless of
the IP-version of the initial subflow. This means that Multipath TCP allows a
data stream to be sent via IPv4 and IPv6 simultaneously. This could be seen as a
facilitator for the deployment of IPv6.

It must be noted that each address is assigned to a so-called address-ID. This
is an 8-bit integer, that locally identifies the IP-address. It is being used within the
MP JOIN option so that a host knows which pair of address-IDs is associated to
each subflow. The address-ID is also part of the ADD ADDR option. The use of
the address-ID is mainly for the REMOVE ADDR option, which is used to inform
the peer when one of its addresses has become unavailable (e.g. the mobile node
is not anymore connected to the WiFi access point). It specifies the address-ID
that is associated to the IP-address that should be removed. Upon reception of this
option the destination closes all TCP subflows that are using this address. The
address-ID allows the host to identify which subflows to close, even if these ones
have their public IP-address changed due to a NAT device. The NAT would not
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change the address-ID and so the ID can serve as an end-to-end identifier of the
IP-address.

2.1.4 Further protocol details

When Multipath TCP is being used across different interfaces on an end-host,
it may be that the end user has different priorities on which he/she might want to
send traffic. E.g., on a smartphone, the user might want to avoid sending traffic
over the 3G interface to avoid the monetary cost of using the cellular network.
Multipath TCP incorporates a mechanism that allows to specify priorities on a
subflow. The MP JOIN option includes a backup-bit that allows to signal to the
peer that it should not send any data on this subflow. This requirement can be
violated by the peer, if there is no other subflow available for data transmission.
To signal this kind of subflow priority after the 3-way handshake, the MP PRIO
option is part of Multipath TCP. The backup-bit and MP PRIO effectively allow a
smartphone to reduce the traffic over the 3G interface, while still benefiting from
Multipath TCP’s handover mechanism.

TCP specifies the RST-bit to abruptly close a connection [Pos81b]. Although,
a TCP-reset should only be sent upon reception of a packet whose 5-tuple does not
match to an existing socket, implementations have made use of TCP-reset to force
the closure of a connection (e.g., when the end host experiences memory-pressure
and needs to redeem resources). Within Multipath TCP it is not sufficient to just
send a TCP-reset, because this will only close the individual subflows, but not
the whole Multipath TCP connection. Thus, the specification of Multipath TCP
includes the fast-close option to signal the abrupt closure of the whole stream.
This option includes the key of the peer to protect against attackers injecting fast-
close messages and thus execute denial-of-service attacks. While sending the
fast-close option, the host also sends a TCP-reset on all other subflows. Upon
reception of the option, the host is aware that the connection shall be treated as
if a TCP-reset has been received in regular TCP (e.g., present the ECONNRESET
error-code to the application). Furthermore, all remaining subflows are closed
with a regular TCP-reset.

2.2 Data plane
The data plane is the part of Multipath TCP in charge of the actual transmission

of the byte stream sent and received by the application. The application assumes
a reliable and in-order delivery of the byte stream, a requirement that influenced
the design of Multipath TCP as explained in this section.
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Figure 2.6: The Multipath TCP level has its own sequence number space, while
each subflow also occupies its own sequence space.

2.2.1 A second sequence-number space

The previous section illustrates why there is a need to create one TCP subflow
per path. This implies that each TCP subflow occupies its own sequence-number
space, as shown in Figure 2.6. Multipath TCP being used to transmit a data stream
in a reliable and in-order manner, it is necessary to enable the receiver to reorder
the possibly out-of-order data segments. This can be achieved thanks to the data-
sequence-number space. The data-sequence-number space maps each byte to its
position within the continuous data stream that is being sent by the application.

The data sequence number space starts at the initial data sequence number
(IDSN). It is 64-bit long to prevent any issues with wrapped sequence numbers.
In fact, a packet sent over a high-delay path might take so long to reach the desti-
nation, that a large amount of data might already have been sent over a low-delay,
high-bandwidth path. So much data, that a 32-bit sequence number space might
have wrapped around. If 32-bit sequence numbers were used, the receiver would
not be able to distinguish the packet with the old sequence number, from up-to-
date data on the low-delay path. The 64-bit sequence number space should be
sufficient to protect against wrapped sequence numbers, as 264 bytes must be sent
on the low-delay path in order to have this kind of wrapping.

Further, each subflow has its subflow sequence number. This one is entirely
independent of the data sequence number, and its initial value is being exchanged
during the 3-way handshake of each subflow. The subflow sequence number al-
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Figure 2.7: The DSS-option maps each subflow-level byte to its corresponding
byte at the data-sequence level.

lows to mimic the continuous byte stream to the middleboxes. Each subflow ef-
fectively appears like a regular TCP connection, implementing a full TCP state
machine together with its retransmissions.

2.2.2 Data-plane signaling
Upon receiving data on a TCP subflow, the receiver must know the data-

sequence number to pass the data to the application. A simple approach would be
to include the data-sequence number in a TCP option inside each segment. Un-
fortunately, this clean solution does not work. There are deployed middleboxes
that split segments on the Internet. In particular, all modern NICs (network in-
terface cards) act as segment-splitting middleboxes when performing TSO (TCP
segmentation offloading). These NICs split a single segment into smaller pieces.
In the case of TSO, CPU cycles are offloaded from the operating system to the
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NIC, as the operating system handles fewer, larger segments that are split down
to MTU (maximum transmission unit)-sized segments by the NIC. The TCP op-
tions, including the Multipath TCP data-sequence number of the large segment,
are copied in each smaller segment. As a result, the receiver will collect several
segments with the same data-sequence numbers, and be unable to reconstruct the
data stream correctly. The Multipath TCP designers solved this problem by plac-
ing a mapping in the data-sequence signal option (illustrated in Figure 2.7), which
defines the beginning (with respect to the subflow sequence number) and the end
of the data-sequence number (indicating the length of the mapping). Multipath
TCP can thus correctly work across segment-splitting middleboxes and can be
used with NICs that use TCP segmentation offloading to improve performance.

Using the first Multipath TCP implementation in the Linux kernel to perform
measurements revealed another type of middlebox. Since the implementation
worked well in the lab, it was installed on remote servers. The first experiment was
disappointing. A Multipath TCP connection was established but could not transfer
any data. The same kernel worked perfectly in the lab, but no one could under-
stand why longer delays would prevent data transfer. The culprit turned out to be a
local firewall that was changing the sequence numbers of all TCP segments. This
feature was added to firewalls several years ago to prevent security issues with
hosts that do not use random initial sequence numbers. In some sense, the fire-
wall was fixing a security problem in older TCP stacks, but in trying to solve this
problem, it created another one. The mapping from subflow-sequence number to
data-sequence number was wrong as the firewall modified the former. Since then,
the mapping in the data-sequence option uses relative subflow-sequence numbers
compared with the initial sequence number, instead of using absolute sequence
numbers [FRHB13].

The data-sequence option thus accurately maps each byte from the subflow-
sequence space to the data-sequence space, allowing the receiver to reconstruct
the data stream. Some middleboxes may still disturb this process: the application-
level gateways that modify the payload of segments. The canonical example is
active FTP. FTP uses several TCP connections that are signaled by exchanging
ASCII-encoded IP addresses as command parameters on the control connection.
To support active FTP, NAT boxes have to modify the private IP address that is
being sent in ASCII by the client host. This implies a modification of not only the
content of the payload, but also, sometimes, its length, since the public IP address
of the NAT device may have a different length in ASCII representation. Such
a change in the payload length will make the mapping from subflow-sequence
space to data-sequence space incorrect. Multipath TCP can even handle such
middleboxes thanks to a checksum that protects the payload of each mapping.
If an application-level gateway modifies the payload, then the checksum will be
corrupted; Multipath TCP will be able to detect the payload change and perform a
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype Reserved F m M a A

Data Acknowledgment (4 or 8 bytes, depending on flag a)

Data Sequence (4 or 8 bytes, depending on flag m)

Relative Subflow Sequence Number

Data-Length Checksum

Figure 2.8: The DSS-option allows the receiver to detect the mapping of the data.
The Data Ack allows proper flow control and reliable delivery.

Figure 2.9: If regular TCP congestion control is being used, Multipath TCP would
use much more capacity across shared bottlenecks and be unfair to regular TCP.

seamless fallback to regular TCP to preserve the connectivity between the hosts.
This fallback is explained in detail in Section 2.3.

These different informations, allowing a receiver to detect the data sequence-
number and protecting itself against payload-modifying middleboxes, lead to the
format of the DSS-option as shown in Figure 2.8. The data sequence number may
be 4 or 8 bytes long, depending on the m-flag. Further, the DSS-option also con-
tains a field to announce the cumulative data-level acknowledgment. This allows
to signal to the sender up to which data sequence-number the peer has success-
fully received the data. It also allows the host to do flow control, as the right edge
of the window is calculated based on the cumulative data-acknowledgment.

2.2.3 Congestion control
From a congestion-control viewpoint, using several subflows for one connec-

tion leads to an interesting problem. With regular TCP, congestion occurs on one
path between the sender and the receiver. Multipath TCP uses several paths. Two
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Figure 2.10: The Olia congestion control is fair to regular TCP across shared
bottlenecks.

paths will typically experience different levels of congestion. A naive solution
to the congestion problem in Multipath TCP would be to use the standard TCP
congestion-control scheme on each subflow. This can be easily implemented but
leads to unfairness with regular TCP. In the network depicted in Figure 2.9, two
clients share the same bottleneck link. If the Multipath TCP-enabled client uses
two subflows, then it will obtain two-thirds of the shared bottleneck. This is un-
fair because if this client used regular TCP, it would obtain only half of the shared
bottleneck.

Figure 2.10 shows the effect of using up to eight subflows across a shared
bottleneck with the standard TCP congestion-control scheme (Reno). These ex-
periments use a setup equivalent to that shown in Figure 2.9. Two Multipath TCP
capable hosts are sending data through one up to eight subflows, while two hosts
using regular TCP are transmitting through the same bottleneck. The figure shows
how much of the bottleneck’s capacity is used by Multipath TCP. With a standard
TCP congestion control, Multipath TCP uses up to 85 percent of the bottleneck’s
capacity, effectively starving regular TCP. This, because each subflow increases
its congestion window independently of the other subflows. We call this an un-
coupled congestion control.

Specific Multipath TCP congestion-control schemes have been designed to
solve this problem [KGPLB13, WRGH11]. Briefly, they measure congestion on
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each subflow and try to move traffic away from those with the highest congestion.
To do so, they modify the additive increase during the congestion avoidance phase.
The congestion information of all the subflows belonging to a connection is taken
into account to control the increase rate of a subflow’s congestion window during
the congestion avoidance phase. Thus, they are coupling the increase-phase of
the subflow’s congestion control. Figure 2.10 shows that the OLIA congestion-
control scheme [KGPLB13] preserves fairness with regular TCP across the shared
bottleneck.

2.2.4 Example
The Linux Kernel implementation of Multipath TCP3 implements the de-

scribed specification of Multipath TCP. An example session, captured with
tcpdump, is shown in Figure 2.11. Let’s have a close look at this packet ex-
change:

Packets 1 to 3 show the 3-way handshake of the initial subflow. The
MP CAPABLE option is inside the TCP option space, indicating the chosen key.
The subflows have their own subflow-level TCP sequence number (starting at
2351712563 for the traffic from client to server and starting at 2433953981 in
the reverse direction).

The data exchange can be seen in packet number 4, where 250 bytes are sent
with a data sequence number of 2751382862. As one can see, the subseq in the
DSS-option is set to 1, the same as the relative subflow sequence number in the
TCP header (tcpdump converts the absolute sequence number in the header to
a relative sequence number). The subsequent data acknowledgement in packet 5
signals the correct reception of of these 250 bytes of data. Additionally, packet 5
contains an ADD ADDR option, signaling to the client an IPv6 address.

As the client also owns an IPv6 address, it can now establish an additional
subflow to the server. This example shows that Multipath TCP is indeed able to
use IPv4 and IPv6 simultaneously. Segments 6 to 9 show the handshake used to
establish the additional subflow over IPv6. The MP JOIN option is included in the
SYN, SYN/ACK and the third ACK, while segment number 9 acknowledges the
correct reception of the third ACK.

The data transmission is then continued over IPv6 with segments 10 and 11.
The closure is initiated by the server in segment 12, containing the DATA FIN. The
DATA FIN is inside a segment without payload. Thus, it cannot be mapped to a
byte at the subflow-level and thus has subflow-sequence number 0 inside the DSS-
mapping. At the data-level it consumes the sequence number 3282440237 and is
acknowledged in segment 13, where the data acknowledgment is 3282440238.

3Available at http://multipath-tcp.org.
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Subsequent subflow-FIN properly clear the state of each subflow and terminate
the connection.

2.3 Middleboxes
The original end-to-end principel [SRC84] of the Internet does not hold any-

more in today’s Internet. Middleboxes and firewalls are ubiquitous in all kinds
of networks. The set-top boxes at our homes typically provide a NAT-service,
cellular networks are infiltrated with all kinds of middleboxes [WQX+11] and not
to speak about enterprise networks, where [SHS+12] has shown that there are as
many middleboxes and firewalls as routers.

As Multipath TCP tries to be deployable on the Internet with all its middle-
boxes, it has been designed to work around undesirable middlebox behavior. It
even falls back to regular TCP in case a middlebox does not allow a proper func-
tioning of Multipath TCP. Some of the middlebox behaviors have already been
mentioned in the previous section. The following describes in-detail the middle-
box behavior that has been considered in the design of Multipath TCP and how it
has been designed to live with them.

2.3.1 Middlebox behavior
TCP/IP segments are built upon the IP header, the TCP header and the payload.

Each of these parts is built upon different fields as shown in Figure 2.12. The orig-
inal end-to-end principle assumed that only the TTL and Header checksum
of the IP-header are modified while forwarding. Additionally, if routers perform
IP fragmentation the related fields of the IP-header will be modified. However,
the deployment of middleboxes and firewalls within our networks has made this
obsolete. [HNR+11] executed an extensive study of the Internet, to know which
of these header fields still traverse the Internet unmodified.

The IP-addresses in the IP-header and the port numbers of the TCP-header
may be subject to modification. The depletion of the IPv4 address space has
accelerated the deployment of Network Address Translation devices (NAT).
A NAT device separates the network in a private, client-facing network and the
public, Internet-facing side. The Internet only communicates with the public IP
address of the NAT device. The NAT modifies the destination IP of incoming
packets to match the IP address from the private address space on the client-facing
side of the NAT. The reverse operation is being done for packets originating from
the client-side to the Internet.

It has also been shown by [HNR+11] that middleboxes and firewalls may inter-
fere with the TCP options within the TCP header. The middleboxes may remove
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Figure 2.12: Almost every field of the TCP/IP-header, as well as the payload may
be modified by a middlebox.

unknown TCP options from the SYN segments (and/or from data segments). It
has even been observed that some firewalls drop SYN segments all together if an
unknown TCP option is part of the TCP header.

Another field of the TCP header that was not meant to be modified in the
original specification of RFC 793 is the sequence and acknowledgement number.
However, a middlebox is “fixing” an old bug in a prominent TCP implementa-
tion. This implementation did not sufficiently randomize the initial TCP sequence
number. Thus, the middlebox tries to protect the end hosts by randomizing the
sequence number of each TCP flow [HDP+13]. An end host cannot assume that
the sequence number it selects within its SYN is the one actually seen by the re-
ceiving host.

Network Interface Cards (NICs) are becoming more and more “intelligent”,
allowing the operating system’s stack to offload functions to the NIC, in order to
spare CPU cycles. TCP Segmentation Offloading (TSO) is one of these prominent
techniques. It allows the OS to handle large TCP segments, leaving the splitting
of these segments to the NIC. Thus, from the operating system’s point of view,
the NIC behaves like a segment-splitting middlebox, dividing a single segment
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into multiple smaller ones. There exist also middleboxes that regroup multiple
segments in a single one, if the path’s maximum transmission unit (MTU) pro-
vides enough space for it. Large Receive Offloading (LRO) of the NICs does a
similar function, creating one bigger segment out of multiple smaller ones. For
the Multipath TCP implementation on the receiver side, this looks like a segment-
coalescing middlebox, which modifies the total length of the packets. End-hosts
cannot assume that the boundaries of their emitted segments are maintained stable
end-to-end.

WAN accelerators as well as intrusion detection systems may behave like a
transparent TCP proxy, effectively splitting a TCP connection in two parts. A
WAN accelerator pro-actively acknowledges data from an end-host and handles
the retransmissions to the receiving end on its own. This results in shorter round-
trip-times and thus in an increased TCP performance. Intrusion detection systems
have to rebuild the byte stream in order to analyze the payload of the TCP con-
nection and protect the end hosts from attackers. As these kind of devices have
to buffer packets, they often modify the window field of the TCP header, to re-
duce their memory requirements. Yet another field of the TCP header which is
not traversing the Internet in an unmodified way.

Application-level gateways might modify the content of the payload and in
some cases even modify the length of a segment - thus shifting the whole se-
quence number space of a subflow. This kind of behavior can be observed in NAT
devices that do support active FTP connections. When using active FTP, a client
announces its IP address within the data stream to the server so that the latter can
open a connection to the client for transferring the requested data. If the client is
behind a NAT device, the NAT must modify the IP address inside the FTP stream
as otherwise the server will see the client’s private IP in the FTP stream. As the
IP address is sent in ASCII-format within the payload, this modification by the
FTP-aware NAT device may result in a modification of the length of the segment.

2.3.2 Protecting the control plane
Multipath TCP exchanges control information within TCP options. This is a

standard way to exchange TCP-level information, like the Selective Acknowledg-
ments (SACK) or TCP timestamps. However, as mentioned above, middleboxes
may interfere with unknown TCP options. The key element of Multipath TCP’s
support for middleboxes is the fallback to regular TCP in case a middlebox in-
terferes in such a way that it cannot work properly anymore. This ensures that
Multipath TCP works everywhere, where regular TCP works correctly as well.
The following shows how Multipath TCP protects the control plane against unde-
sired middlebox interference.

If a middlebox removes the MP CAPABLE option from a SYN, the server will
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Figure 2.13: In case of asymmetric paths on the Internet, a middlebox may re-
move the TCP options only from the reverse-path, resulting in unsynchronized
end hosts.

receive a SYN without the mentioned option. Thus, for the server the SYN ap-
pears like regular TCP. It thus replies to the client without the MP CAPABLE
option inside the SYN/ACK. As the client receives this SYN/ACK, the missing
MP CAPABLE option indicates that either the server does not support Multipath
TCP or that a middlebox has removed the MP CAPABLE. The client will thus pre-
tend as if it never added the MP CAPABLE option in the SYN and proceed with
the 3-way handshake by sending the third ACK, falling back to regular TCP.

One particular case may be that a certain middlebox is only present on the
reverse path from the server to the client as shown in Figure 2.13. If this middle-
box removes the MP CAPABLE option, both hosts will be in an unsynchronized
state. The client effectively has received a SYN/ACK without the MP CAPABLE
option, believing that Multipath TCP is not being used. However, the server has
received a SYN with MP CAPABLE and replied with a SYN/ACK including the
MP CAPABLE. When finishing the 3-way handshake, the segments sent by the
client will not include any Multipath TCP option. Data segments will not hold a
DSS-option and acknowledgments do not include a data-acknowledgment. The
server receiving these packets can thus detect that in fact Multipath TCP is not
being used by the client and thus can behave as if regular TCP is being used. For
this mechanism to work, the client must include a DSS-option within each of its
segments at the beginning of the connection. A similar mechanism to fallback to
regular TCP is being used when a middlebox removes the unknown TCP option
only from non-SYN segments. In this case both hosts will trigger a seamless fall-
back to regular TCP, as they both do not see the DSS-option in the data segments
nor in the acknowledgments.

Let’s provide an anecdotal reference that the above described mechanisms
work - even when facing a very unexpected behavior of a popular end host. While
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Figure 2.14: Even when facing an unusual behavior as when contacting
baidu.com, Multipath TCP is able to fallback to regular TCP.

running some tests with our Multipath TCP implementation, we also established
an HTTP connection to baidu.com, the popular Chinese web-search service. We
observed that baidu.com replies in its SYN/ACK including the MP CAPABLE op-
tion as shown in Figure 2.14. Looking closer at the MP CAPABLE inside the
SYN/ACK we realized that the key was exactly the same as the one chosen by our
implementation when emitting the SYN. In fact, the baidu.com server (or load
balancer) replies with a SYN/ACK that seems to be a copy of the SYN, with the
exception that some fields have been modified. Within the TCP option space, all
undesired known TCP options were replaced by the NOP option. However, the
unknown MP CAPABLE option has not been replaced by NOPs. Thus, baidu.com
included inside its SYN/ACK the MP CAPABLE option. Our Multipath TCP im-
plementation thus believes that the server indeed supports Multipath TCP, includ-
ing the DSS option inside its data segments. However, the baidu.com server will
not use DSS options inside its data segments and acknowledgments. As described
above, if a segment at the beginning of a Multipath TCP connection does not con-
tain any Multipath TCP option, the host does a seamless fallback to regular TCP,
behaving as if Multipath TCP has never been negotiated. Thus, after the client
sent its first data segment (still including the DSS-option), the baidu-server will re-
ply with an acknowledgement, not including a cumulative data-acknowledgment.
This will trigger the seamless fallback procedure on the client, which will from
now on behave as if Multipath TCP has not been negotiated. One can see that the
design of Multipath TCP is able to handle even such weird behavior from a public
web-server.
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Figure 2.15: After the middlebox modified the byte-stream, the DSS-mapping is
no more synchronized with the TCP subflow sequence numbers - as can be seen
in the bottom right segment.

2.3.3 Protecting the data plane

The protection of the data plane has already been explained in Section 2.2. No-
tably, the DSS-mapping allows to protect against segment-splitting and segment-
coalescing middleboxes as each subflow-level byte has its unique mapping to the
data-level sequence defined within the DSS option. Further, the use of a rela-
tive subflow-sequence number allows to bypass sequence number randomizing
middleboxes. The DSS-checksum allows to protect from payload-rewriting mid-
dleboxes. We now explain how the fallback to regular TCP is performed in case
the DSS checksum is incorrect.

When a payload-rewriting middlebox has modified the length of a segment, the
subflow-sequence space cannot be mapped accurately to the data-sequence space.
This case is illustrated in Figure 2.15. The middlebox modified the payload, and
while doing so added 2 bytes to the segment with TCP-sequence number 110. If
no checksum would be used inside the DSS-option, transmission would continue
as normal. The following segment emitted by the sender (TCP-sequence 120) will
then be modified again by the middlebox. This time, the middlebox only modifies
the sequence number. It previously added 2 bytes to a segment, thus it increments
the sequence number to 122. The issue is that the middlebox will not modify the
relative subflow-sequence number in the DSS-option. This one is still pointing
to 120. The receiver is thus unable to accurately map this last segment to the
correct sequence-number space and data corruption will happen. Multipath TCP
tries to detect this kind of middlebox behavior by using the checksum over the
payload of each mapping to the DSS-option. As soon as a checksum failure has
been detected, Multipath TCP will fallback to regular TCP.

The fallback is initiated through the MP FAIL option inside an acknowledg-
ment sent by the host who detected the checksum failure (an example of the



34 Chapter 2. Multipath TCP

Figure 2.16: The infinite mapping announces to the receiver that from the speci-
fied subflow-sequence number on, the mapping will be implicit as all data will be
sent in-order on the single subflow.

fallback is shown in Figure 2.16). The MP FAIL option indicates which data-
sequence number has caused the failure. When receiving such an MP FAIL op-
tion, the host is aware that a middlebox has disrupted a subflow. If other subflows
are operational, it can destroy the affected subflow with a TCP-reset and continue
the transmission on the other subflows. However, if it is the last remaining sub-
flow, it should fallback to the so-called infinite mapping. The infinite mapping
is signaled within the DSS-option by setting the data length to 0. The subflow
sequence number within the DSS-option specifies the start of the infinite map-
ping, while the data sequence number specifies where this byte must be mapped
to. From this moment on, subsequent data will no more contain the DSS-option,
as the mapping from subflow sequence to data sequence is implicit thanks to the
infinite mapping. Multipath TCP effectively behaves now as regular TCP. It must
be noted, that the hosts are no more allowed to use multiple subflows for the trans-
mission of data.
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2.4 Conclusion
This chapter provided a detailed overview of the inner workings of Multipath

TCP. The control plane is achieved through an extensive use of TCP options. The
data plane requires the creation of a secondary sequence number space, which
allows hosts to recreate the byte stream. A mapping from subflow sequence to
data sequence allows to traverse different kinds of middleboxes. It is exactly
these middleboxes that have had a major impact on the design of the protocol.
But, finally, this design allows Multipath TCP to be deployed on today’s Internet.





Chapter 3

Evaluating Transport Protocols

A Multipath TCP implementation is a complex system, with many heuristics
and algorithms influencing its performance [BPB11, RPB+12]. The congestion-
control algorithm [WRGH11, KGP+12, CXF12] influences the sending rate of
the individual subflows, the scheduler decides how to multiplex data among
the subflows and flow control provides yet another limitation to the sending
rate. Many external factors further influence the performance of Multipath
TCP [RBP+11, BPB11, PDD+12, CLG+13]. Especially the network’s charac-
teristics in terms of capacity, propagation delay, etc. It is very difficult to have
a clear understanding of how Multipath TCP behaves in different heterogeneous
environments.

Experimental evaluation is often done in research papers to validate that a
proposal works well in different environments. However, it is easy to fall into the
trap of taking premature conclusions about the performance of the protocol. It is
important for complex systems like Multipath TCP that the experiments are run
within a wide range of environments. Also, conclusions cannot be extrapolated to
other environments, due to the inherent complexity of the system.

The “Experimental Design” [F+49] approach defines steps to run experiments
in order to answer scientific questions. This approach allows to draw solid con-
clusions about the performance of real-world systems. In this chapter we apply
an experimental design approach to evaluate the Linux Kernel implementation of
Multipath TCP in a wide range of heterogeneous environments.

3.1 Experimental Design
Experimental Design refers to the process of executing controlled experiments

in order to collect information about a specific process or system [F+49]. The sys-
tem under experimentation is influenced by controllable or uncontrollable factors

37
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System

Laws of Nature

Uncontrollable Factors
Output

Controllable Factors

Figure 3.1: The system’s output is influenced by a number of factors and obeys to
the laws of nature [And12].

(see Figure 3.1). A controllable factor is one that can be influenced by the person
running the experiments (e.g., temperature, pressure,. . . ). Uncontrollable factors
are those which cannot be influenced (e.g., time). It depends on the capabilities
of the experimenter whether a factor is controllable or uncontrollable. The system
responds to these factors according to the laws of nature. The experimenter can
observe these responses by collecting one or more outputs of the system, which
provide the information necessary to understand the system.

Running experiments in computer science (and networking research) is pecu-
liar in the sense that the output is often considered to be deterministic (in absence
of external factors, like temperature, time, etc.) [SWMW89]. Furthermore, de-
pending on the system, experiments may be cheap in terms of time required, thus
allowing a large number of experiments. In this section, we give an overview of
the different steps of experimental design and its particularities with respect to
networking experiments.

3.1.1 Objective
The first step is to define the objective pursued by the experiments. Kleijnen

et al. defines in [KLC05] three different types of questions that may be answered
through experimentation:

• “Develop a Basic Understanding” - This allows to have an overview of the
system’s behavior, uncover problems within the system or confirm expecta-
tions.

• “Finding Robust Decisions or Policies” - The goal is to find the correct
configuration of the system to produce a desired output, while taking into
consideration the influence of uncontrollable factors.
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• “Comparing Decisions or Policies” - This process allows to estimate the
behavior of the system with respect to a specific set of factors.

The objective defines the system that is under test and the outcome we want
to measure. Once the objective is defined, the influencing factors and the way of
measuring the output of the system must also be defined.

3.1.2 Factors
In experimental design, the system under test is often very complex. Many

factors can influence the output of a system (see Figure 3.1). They may be of
different kinds, controllable and uncontrollable. Among the controllable factors,
those which influence the output of the system have to be selected. The uncon-
trollable factors may also influence the output of the system and are the reason for
the variance of the system’s output. To reduce the impact of the uncontrollable
factors, an experiment should be repeated multiple times. This allows to extract
the central tendency of the response by calculating the mean or median.

Optimal real-world experiments would require that the experiments are run si-
multaneously, to reduce the effect of the uncontrollable factors. However, in com-
puter experiments this constraint can often be neglected as the output of the system
is deterministic, allowing a sequential execution of the experiments [KLC05].

3.1.3 Design of the experiment
The design of the experiment influences the input parameters that are selected

to conduct the experiments. In [BD87, MM09], the desirable properties that such
parameter sets should have are discussed.

If the behavior of the system is meant to be modeled by a first-order polyno-
mial model, fractional designs are a good fit [BD87]. These designs distribute the
parameter set along the edges. Further, orthogonality is a desirable criterion of
experiment designs, as it ensures that the sets are uncorrelated and thus allows to
decide if a factor should be part of the model or not [KLC05].

However, sometimes it is not possible to assume a first-order polynomial
model of the response. It may be that there is no prior knowledge of the system’s
response surface, or that the system has a rather stochastic nature. In this case,
space-filling designs are good choices [MM95]. Space-filling designs don’t only
sample at the edges, but distribute the parameter sets equally among the whole
factor space. A space-filling design can be generated with different algorithms.
Santiago et al. propose in [SCBS12] the WSP algorithm which distributes the
sets equally among the space. It is based on a uniform random sampling of the
input parameters and eliminates excess points according to a minimum-distance
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criterion. The WSP algorithm has particularly good space-filling properties, even
in high-dimensional spaces [SCBS12].

3.2 Evaluating transport-layer protocols
In this section we describe how the experimental design approach can be ap-

plied to the experimentation with a transport protocol like Multipath TCP. For this
purpose, we need to define our objective, determine our design factors and design
the experiment.

3.2.1 Objective
We are interested in a performance analysis of Multipath TCP to verify

whether it fulfills its two main design goals [RHW11]:

• Improve throughput: Multipath TCP should perform at least as well as reg-
ular TCP along the best path.

• Balance congestion: Multipath TCP should move traffic away from con-
gested paths.

Further, we evaluate the application delay of Multipath TCP. This is another,
often overlooked, metric which is crucial for interactive or streaming applications.
A low delay and low jitter is important to allow these applications to provide a
good user experience.

We evaluate the performance of Multipath TCP for a wide range of parame-
ters and pinpoint the scenarios where these goals are not met. We can also use
this framework to validate the performance of Multipath TCP as modifications to
certain algorithms within the protocol are being done.

We execute our approach by using Mininet [HHJ+12] which allows us to eas-
ily create a virtual network and run experiments between Mininet hosts using
the v0.88 Linux Kernel implementation of Multipath TCP1. The benefit of using
Mininet is that the results are reproducible and do not require a large number of
physical machines. Compared to simulations, Mininet allows us to use the real
Multipath TCP implementation and not a model of the protocol.

3.2.2 Factors
The performance of a transport protocol like Multipath TCP is influenced by

various factors, such as bandwidth limitations, propagation delay, queuing de-
1Our scripts and the Mininet virtual images are available at http://multipath-tcp.org/conext2013
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lay, loss, etc. [AF99]. Further, memory constraints on either host will limit the
TCP window size, additionally influencing the performance [BPB11, SMM98].
Among these factors, one must distinguish between the quantitative ones (e.g.,
packet loss-ratio between two hosts) and the qualitative ones (e.g., congestion
control algorithm being used). For each of these factors, the domain must be
selected accordingly. We consider the following factors in our study:

Link Capacity Our evaluation of Multipath TCP targets environments of regular
users, whose access speed may range from mobile networks to FTTH. We
fix the range of our link capacities from 0.1 to 100 Mbps.

Propagation delay The propagation delay is the round-trip-time between the
sender and the receiver over an uncongested path. Measurement studies
have shown that the delay on the Internet may be up to 400 ms [ZNN+10] .
We set the delay to a domain between 0 ms and 400 ms.

Queuing delay The buffers at the bottleneck router influence the queuing de-
lay [GN11]. A perfect Active Queue Management (AQM) algorithm at the
bottleneck router would not add any additional delay, whether a badly sized
buffer may add a huge amount of queuing delay [GN11, All12]. We only
consider tail-drop queues that are configured to add a queuing delay be-
tween 0 ms up to 2000 ms. We leave the evaluation of different queuing
policies like RED or Codel for future work.

Loss Nguyen et al. show in [NR12] that the packet-loss probability over the
Internet is very low (between 0 and 0.1%). In wireless networks, the loss
probability may be considerably higher. We consider environments where
the loss ranges from 0% to 2.5%.

Congestion Control We consider the three Multipath TCP congestion-control
schemes: the Coupled congestion control [RHW11, WRGH11] which is
the default one, Olia [KGP+12] and wVegas [CXF12]. Additionally, we
use also Cubic congestion control [HRX08], to show the effect of using an
uncoupled congestion control algorithm with Multipath TCP.

Application behavior Depending on the objective we want to evaluate we con-
sider two types of applications. First, we use a bulk-transfer which tries to
completely fill the pipe. Second, we use an application that transmits data
at a specific rate to “simulate” a streaming application.

These factors and their ranges allow to cover the main environments that Mul-
tipath TCP might face when being used over the Internet. Additional factors
and/or broader ranges are left for future work.
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3.2.3 Design of the experiment
We cannot be sure of the nature of the response surface of Multipath TCP.

Hence, we choose a space-filling design to cover a wide range of scenarios and
correlations among the factors. It allows us to avoid making any assumptions on
the behavior of Multipath TCP (cfr. Section 3.1.3). The drawback is that we need
to run a large number of experiments in order to fully cover the factor space, but
thanks to Mininet we are able to quickly perform these experiments. We use the
WSP algorithm to generate the parameter sets in the space-filling design.

3.3 Multipath TCP evaluation
This section evaluates Multipath TCP with respect to 3 criteria. First, we look

at the goodput achievable by Multipath TCP, meaning how well does it aggregates
the capacity of the different interfaces. Second, we evaluate its load-balancing
performance - one of the goals of the Multipath TCP congestion controls. Finally,
we evaluate the burstiness of Multipath TCP and how it affects the delay as seen
by the application.

3.3.1 Aggregation Benefit
We want to measure the benefit that Multipath TCP provides by pooling the

resources of multiple paths. D. Kaspar provides in his thesis an expression for the
aggregation benefit of a multipath protocol in terms of the capacities of the indi-
vidual paths [Kas11]. This expression normalizes the aggregation benefit, allow-
ing comparison of different environments, and takes into account the performance
of Multipath TCP compared to regular TCP across the best path. If Multipath TCP
performs as good as the path with the highest goodput, the aggregation benefit is
equal to 0. If Multipath TCP perfectly aggregates the capacities of all paths, the
aggregation benefit is equal to 1. An aggregation benefit of −1 means that Multi-
path TCP achieves zero goodput. Formally, the aggregation benefit is defined by
the following:

Let S be a multipath aggregation scenario, with n paths. C
i

is the capacity of
the path i and C

max

the highest capacity among all paths. If we measure a goodput
of g with Multipath TCP, the aggregation benefit, Ben(S), is given by [Kas11]:

Ben(S) =
�������������

g −C
max∑n

i=1Ci

−C
max

, if g ≥ C
max

g −C
max

C
max

, if g < C
max
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Figure 3.2: Our topology to evaluate aggregation benefit: Multipath TCP creates
one subflow across each bottleneck. This allows to evaluate multipath-scenarios
like a mobile phone connecting to WiFi/3G at the same time.

To provide an intuition of what this formula allows to express, let’s have a
look at Multipath TCP’s performance in the following two scenarios where it is
being used between two end hosts that have two paths between each other and
they transmit data in a bulk transfer. We measure the goodput using Multipath
TCP. In a first setup, both paths have a capacity of 5 Mbps and Multipath TCP has
an aggregated goodput of 7 Mbps, the aggregation benefit is 0.4. If however the
paths have a capacity of 7 Mbps and 3 Mbps, while Multipath TCP still achieves
7 Mbps, the aggregation benefit is 0. This shows that the above function for the
aggregation benefit is able to identify the additional bandwidth Multipath TCP
achieves compared to regular TCP over the path with the highest capacity.

Our setup evaluates Multipath TCP in a scenario (Figure 3.2) where the hosts
establish two subflows between each other. We consider this as the common sce-
nario (e.g., a client having two access networks like WiFi/3G). In order to measure
the aggregation benefit, the Mininet-hosts create an iperf-session using the v0.88-
release of Multipath TCP, which creates one subflow per bottleneck-link. The
iperf-session runs for 60 seconds to allow the flows to reach equilibrium.

Initial evaluation

We study two types of environments: low Bandwidth-Delay-Products (BDP)
and high-BDP. Low-BDP environments have relatively small propagation and
queuing delays. In a high-BDP environment, the maximum values for the prop-
agation and the queuing delays are very large. In a first run we only consider 3
factors per bottleneck, namely the capacity, propagation delay and queuing delay.
For this first run we do not add the loss-factor as the Multipath TCP-specific con-
gestion controls have a very specific behavior in lossy environments (as can be
seen at the end of this section). The exact specifications of each environment can
be found in Table 3.1.
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Low-BDP High-BDP
Factor Min. Max. Min. Max.

Capacity [Mbps] 0.1 100 0.1 100
Propagation delay [ms] 0 50 0 400

Queuing [ms] 0 100 0 2000

Table 3.1: Domains of the influencing factors for the measurement of aggregation
benefit.

As we consider 2 paths, each being influenced by 3 factors, we have a 6-
dimensional parameter space. We generate the parameter sets by using the WSP
space-filling design, resulting in about 200 individual experiments. We have lim-
ited ourself to 200 experiments as our Mininet environment is able to run these
within 4 hours. This allows us to quickly obtain the results of the experiments. In
order to cope with possible variations, we repeat each parameter set 5 times and
use the median to extract the central tendency of the aggregation benefit.

Effect of receive-buffer sizes The performance of Multipath TCP is influenced
by the receive-buffer sizes of the end hosts [RPB+12]. We evaluate the impact of a
fixed receive buffer on the aggregation benefit in the low-BDP and the high-BDP
environments. In Figure 3.3(a) we show the aggregation benefit’s mean (with its
standard deviation) and the median, 25% and 75% percentiles as well as the degree
of dispersion. We see that the larger the receive buffer, the larger the aggregation
benefit. If the receive buffer is small, the Multipath TCP connection is receive-
window limited and thus cannot use the full capacity of the links, which reduces
the aggregation benefit. It can be seen that in this environments, the performance
is equal, irregardless whether one uses Coupled (Figure 3.3(a)), Olia (no Figure
shown because it is equivalent to Coupled and Cubic) or the uncoupled Cubic
(Figure 3.3(b)) congestion control. However, using the Multipath TCP congestion
control based on Vegas, called wVegas [CXF12], one can see that the aggregation
benefit is very low - even below zero (Figure 3.3(c)). This is unexpected and
shows that wVegas is not yet mature enough for a widespread deployment.

Small transfers

The previous measurements evaluated Multipath TCP’s aggregation benefit in
case of a bulk transfer by using the iperf traffic generator. Such a bulk transfer al-
lows all subflows to probe for their path’s capacity and thus enables the Multipath
TCP scheduler to use the subflows in an efficient way. So, an important question
is how the performance of Multipath TCP looks like when the subflows cannot
fully probe the characteristics of the path. Such kind of behavior happens when
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(c) wVegas

Figure 3.3: The aggregation benefit is close to perfect in the low-BDP environ-
ment. wVegas still needs some improvements before opting for widespread de-
ployment.
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the transfer is rather short. The Internet sees many of such short data transfers as
many websites are built upon small HTML objects.

We thus measure the aggregation benefit of Multipath TCP with short data
transfers by using netperf’s request/response test. Using a request/response test
allows to measure the time it has taken to do one such connection as the client
can measure the time between it started the request and the time it received the
response. We do this measurement for transfers of 64KB, 512KB, 4096KB and
32MB. In order to compute the aggregation benefit, we use Multipath TCP’s flow-
completion-time to compute the achieved goodput. This goodput is then compared
with the goodput achieved by regular TCP with such a small transfer by using the
aggregation benefit formula from above.

Figure 3.4 shows the aggregation benefit for these small transfers in the low-
BDP environment with two different setups. In the first setup (shown in Fig-
ure 3.4(a)), the initial subflow of Multipath TCP is randomly chosen among the
two available paths, while Figure 3.4(b) shows the results where the initial subflow
is always the one where regular TCP achieved the best performance for the small
transfer. If the initial subflow is chosen randomly, Multipath TCP’s aggregation
benefit is between 0 and −0.5 for very small transfers (64KB and 512KB). This,
because most of the transfer is sent over the initial subflow, as it takes several
RTTs until the second subflow is up and running. During this time, the perfor-
mance of Multipath TCP is suboptimal if the path of the initial subflow is not as
good as the best available path. However, as soon as the transfer becomes longer,
Multipath TCP is able to pool the resources and increases the aggregation benefit
above 0.

If Multipath TCP is instructed in such a way that it always uses the best avail-
able path for the initial subflow, its aggregation benefit becomes close to 0 - even
for small transfers (as can be seen in Figure 3.4(b)). We observe that the initial
path is of critical importance for the performance of Multipath TCP. However, it
must be noted that even regular TCP has no information on which path it should
start its small transfer. The path-selection problem is the same for regular TCP as
well as for Multipath TCP.

Adding random packet-loss

In this part, we study the effect of packet losses on the performance of Mul-
tipath TCP. This could represent wireless environments where losses occur due
to fading. We model lossy links by adding a loss factor to each bottleneck, ef-
fectively increasing the parameter space to a total of 8 factors. These loss-factors
range from 0 to 2.5% and are set individually on each bottleneck. The two Multi-
path TCP congestion controls (Coupled and Olia [WRGH11, KGP+12]) both try
to move traffic away from congested paths. As these loss-based congestion con-
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Figure 3.4: For very small transfers, Multipath TCP does not bring a benefit com-
pared to the best available path. Also, the choice of the initial path is important.
Indeed, if Multipath TCP starts on the bad path then it suffers from the bad path’s
characteristics until the subflow on the better path has been established.
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Figure 3.5: The Multipath TCP congestion controls Coupled and Olia move traf-
fic away from congested (aka lossy) paths. wVegas does not react upon loss as
an indicator for congestion but still has issues filling the pipe, while Cubic is not
moving traffic away from the lossy path and thus achieves perfect bandwidth ag-
gregation.
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trols interpret a loss as congestion, they move traffic away from lossy subflows.
To compute the aggregation benefit, we consider the goodput of TCP by taking
the loss into account. Thus, even if the capacity of the link is 20 Mbps, but the
loss rate reduces regular TCP’s goodput down to 5 Mbps, it is the 5 Mbps that are
taken into account when computing the aggregation benefit.

Figure 3.5 shows that Coupled and Olia have mostly an aggregation benefit
of 0. This confirms that Coupled and Olia only push traffic on the less lossy of
the two subflows, thus moving almost all traffic to the best path. An uncoupled
congestion control like Cubic does not take the loss-probability into account dur-
ing its congestion avoidance phase. It rather aggressively increases the congestion
window after a loss event. Thus, using Cubic in an environment where losses are
not due to congestion but rather of a random nature brings benefits to Multipath
TCP. However, as has been shown in Section 2.2.3 uncoupled congestion controls
like Cubic, Reno,. . . have serious problems with respect to the fairness to regular
TCP across shared bottlenecks.

The wVegas congestion control is purely driven by the evolution of the delay.
It should not reduce its congestion window upon a random packet loss. Neverthe-
less, it does not seems to be able to aggregate the bandwidth of the two subflows.
At this state it is yet unclear why wVegas does not aggregate the bandwidth better.
It may be that RTT estimation during loss-phases is less accurate and thus might
negatively influence the wVegas delay-based congestion control. Recent work in
the Linux Kernel may have improved the RTT estimation upon loss events 2 but is
not yet included in the 0.88 release of Multipath TCP.

3.3.2 Load balancing
In this section, we analyze whether Multipath TCP satisfies its congestion-

balancing design goal. For this purpose, we study the performance of Multipath
TCP in the scenario of Figure 3.6. The network contains three bottlenecks, and the
end-hosts create a total of three Multipath TCP connections passing by this net-
work. Each connection creates two subflows, one crossing a single bottleneck and
the other passing through two bottlenecks. As discussed in [WRGH11], to balance
the congestion and hence maximize the throughput for all Multipath TCP connec-
tions, no traffic should be transmitted over the two-hop subflows. The bottlenecks
are influenced by the capacity, propagation delay and queuing delay, effectively
emulating the low-BDP and high-BDP environments form Table 3.1. With three
bottlenecks and three factors per bottleneck, we have effectively a 9-dimensional
parameter space. We generate about 400 parameter sets with the WSP space-
filling algorithm and start iperf-sessions for each Multipath TCP connection.

2http://www.spinics.net/lists/netdev/msg243665.html
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Clients Servers

Figure 3.6: Three bottlenecks are used to evaluate Multipath TCP’s load-
balancing performance. Each Multipath TCP connection has a one-hop and a
two-hop subflow.

We evaluate this scenario and show the relation between the aggregated good-
put of all Multipath TCP connections, compared to the theoretical upper bound
in Figure 3.7. We compare the performance of Coupled congestion control, Olia
and wVegas with uncoupled Cubic congestion control3. We observe that Olia is
able to move traffic away from the two-hop subflows in low-BDP environments
and hence efficiently uses the capacity available in the network. There is a small
difference between Coupled and Olia in terms of load-balancing, which confirms
the findings of [KGP+12]. It also becomes apparent that using an uncoupled con-
gestion control, like Cubic, does not allow Multipath TCP to efficiently pool the
resources. In high-BDP environments, even Olia fails to provide a good conges-
tion balancing. This is because the large BDP makes one of the three Multipath
TCP connections become receive-window limited when the three bottlenecks have
different characteristics. This flow cannot benefit from Olia’s load-balancing al-
gorithms and leads to suboptimal network utilization. wVegas again suffers from
its weak bandwidth aggregation capabilities.

3.3.3 Application delay
Bandwidth is not the only important metric to measure user experience. Appli-

cation delay defines how long it takes for a single byte to reach the peer and, more
importantly, what is the variance of this delay. Streaming applications often do
not fill the pipe of the network at 100%, but rather send at a steady rate. Still, they

3Uncoupled Cubic [HRX08] represents the case where regular TCP congestion control is used
on the subflows. It increases the congestion windows of each subflow irregardless of the conges-
tion state of the other subflows that are part of the Multipath TCP connection.
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Figure 3.7: In the low-BDP environments, Olia is able to efficiently move the
traffic away from the congested paths. However, the difference to Cubic is only
minor. In high-BDP environments, the delay is too long to efficiently act upon
congestion within a reasonable time-frame.
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depend on a continuous stream of data reaching the host. A low application delay
and little jitter is crucial for the well functioning of such streaming applications.

We developed a tool that allows to measure the application delay of a byte
stream. The application sends blocks of 8 KB of data. This transmission can be at
unlimited speed, or at a predefined goodput. The application can thus “emulate”
a streaming application transmitting the stream at a constant bitrate. The blocks
of data include a timestamp, taken with the nano-second resolution timer. At the
reception of this block, the receiver records its own timestamp (ownts) as well
as the one in the 8 KB block (rcvts). and constructs a list of < rcvts, ownts >
pairs. The difference between ownts and rcvts allows to compute the one-way
delay if the clocks are perfectly synchronized on the two hosts4. This is the case
in our Mininet environment, as the nodes run all on the same operating system,
separated only by Linux networking containers.

To express the delay variation, we calculate the delay increase compared to
the lowest possible delay. This value is expressed in % and estimates how much
the delay is higher for a particular block compared to the lowest one-way delay
measured. E.g., if the minimum one-way delay is 20 ms, but a block of 8 KB has
been received rather after 40 ms, the relative delay increase has a value of 100%.

Within Mininet we ran this application in the low- and high-BDP environment,
for a total of 200 experiments. We provide the CDF of the 99th percentile of the
relative delay increase. We show this 99th percentile because the tail of the latency
variation is important for a well-functioning streaming application.

Figure 3.8 shows the results of our analysis. Our application sends at a fixed
configured rate. As in our considered space-filling design a large range of capac-
ities is considered, we have to express this rate as a percentage of the aggregate
capacity among the two paths. For the low-BDP environment we show the results
for a sending rate of 20% of the aggregate capacity, while in the high-BDP en-
vironment we consider a sending rate of 80%. The results are similar with other
sending rates, with the high-BDP environment introducing a more significant rel-
ative delay increase. It can be seen that at a low bitrate, there is no difference
between wVegas and Coupled congestion control (Olia behaves similar to Cou-
pled). For 70% of the environments in Figure 3.8(a) the capacity available on the
subflow with the lowest RTT is sufficient to transmit at 20% of the aggregated
capacity. For these the environments the delay variation remains very low (less
than 1%). However, for the remaining 30% of the environments (among the 200
generated through space-filling design), the delay variation increases up to 100%
because traffic must be sent on the secondary subflow.

When our measurement software transmits data at a higher bitrate, closer to the

4If the clocks are not synchronized, the clock difference can be eliminated by taking
min(ownts − rcvts) as the base-delay.
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Figure 3.8: Sending at a low bitrate shows almost no difference between the con-
gestion controls. At higher bitrates, wVegas is unable to use the capacity and starts
queuing data in stack’s send buffer.
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aggregate capacity, a difference between wVegas and Coupled becomes apparent
(Figure 3.8(b)). A first observation is that generally, when transmitting at 80%
of the capacity, the relative delay increase is higher than when sending at a low
bitrate. This is because the secondary subflow must be used to reach 80% of
the capacity. As our Multipath TCP implementation schedules traffic first on the
subflow with the lowest RTT, as soon as this subflow’s capacity is fully used,
Multipath TCP needs to schedule on the subflow with a higher RTT, increasing
the perceived application delay. It must be noted that it is difficult to compare this
scenario to regular TCP. TCP would not even be able to transmit at the specified
rate (it can only use the capacity of a single subflow). Finally, it can be seen that
wVegas introduces a higher delay increase. This is because wVegas is not able
to utilize the capacity offered by the two paths and thus is buffering data in the
stack’s send-queue. Thus, the delay is artificially increased up to 10000%.

3.4 Sensitivity Analysis

The number of experiments executed within the parameter space influences the
accuracy of the results. The more sets explored, the better the accuracy will be.
However, CPU-time constraints limit the number of experiments that can be exe-
cuted. The sensitivity analysis allows to confirm that the number of experiments
conducted per parameter space is sufficient to have an accurate view of Multipath
TCP’s performance. This can be achieved by generating different space-filling de-
signs, and comparing the 5th, 25th, 75th and 95th percentiles and median among
each of these designs.

To evaluate the aggregation-benefit we used three influencing factors per bot-
tleneck link, effectively creating a 6-dimensional parameter space. 200 sets were
generated, using the WSP space-filling algorithm. We generate 5 different space-
filling designs of comparable size for the sensitivity analysis. Each design ex-
plores different sets among the parameter space. Comparing the percentiles and
the median of the aggregation benefit for each of the designs has shown that the
standard deviation is very low. Relative to the range of the aggregation benefit(−1,1), it ranges between 0.1% and 2.62%. We can conclude that running 200
experiments is sufficient to have a good overview of the aggregation benefit of
Multipath TCP in our 6-dimensional parameter space. In the load-balancing en-
vironment we observe a similarly low standard deviation ranging from 0.008% to
1.4%.
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3.5 Conclusion
Multipath transport protocols like Multipath TCP, are complex systems,

whose performance is influenced by numerous factors. To explore the impact
of these factors we use a space-filling design. Our first attempt at applying ”Ex-
perimental Design” techniques to the evaluation of Multipath TCP allowed us to
discover previously unknown performance issues within the Linux Kernel imple-
mentation of Multipath TCP. These issues are explained in the following chapter.

We have also shown that wVegas is far from being applicable to a widespread
deployment. It is not able to fully utilize the capacity of the network, which results
in a very bad aggregation benefit performance.

One benefit of Multipath TCP is its load-balancing capabilities by coupling
the congestion controls. We validated that the load balancing works well in low-
BDP environments. However, in high-BDP environments the load balancing does
not work well as some subflows are limited by the receive buffer. This effectively
prevents Olia to balance the load among the subflows.





Chapter 4

Multipath TCP in heterogeneous
environments

Multipath TCP pools the resources of multiple paths, trying to aggregate the
bandwidth and using them in the most efficient way. These paths may be sub-
ject to very different characteristics. For example, when using a smartphone and
pooling the resources of the WiFi and the 3G interfaces, the subflows experience
different round-trip-times and loss rates. As regular TCP sends traffic only over
one of these paths, it optimizes its transmission behavior according to the quality.
However, Multipath TCP must schedule its data across these different paths, while
still achieving high performance.

In this chapter, we take a close look at the behavior of Multipath TCP in het-
erogeneous environments. We analyze how Multipath TCP reacts to large delay
differences across the subflows and suggest heuristics to handle these cases in the
most efficient way.

4.1 Problem statement
In a (hypothetical) ideal resource-pooling scenario, all the paths would expe-

rience the same congestion and delay. In such kind of environment, the paths
would effectively appear as a pool of resources that behave in exactly the same
way as if a single link would be present. All packets would experience the same
round-trip-time and losses would occur at the same time on all subflows. Packets
multiplexed in-order across the subflows would reach the peer in the exact same
order.

However, in reality the paths almost never have exactly the same character-
istics. The difference of these characteristics results in out-of-order delivery at
the receiver, causing receive-window limitations and head-of-line blocking which

57
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Figure 4.1: Segment number 1, sent over the high-delay path will reach the host
after the ones sent over the low-delay path, resulting in out-of-order reception at
the receiver.

will be discussed in detail in this section.

4.1.1 The importance of the round-trip-times
It is important to first understand what will cause out-of-order delivery at the

receiver. The Multipath TCP scheduler multiplexes the data from the application
to the different subflows. If it does this in an ordered way, a delay difference
among the subflows will result in out-of-order delivery at the receiver, as shown
in Figure 4.1. The scheduler did sent packet with sequence 1 over the high-delay
path, continuing by scheduling packets 2 to 4 over the low-delay path. These
latter ones will reach the server before segment 1, thus filling the out-of-order
queue at the receiver as Multipath TCP ensures in-order delivery of the data to the
application.

This kind of out-of-order delivery is caused principally by a delay difference
among the subflows. The delay difference may be due to different factors. Some
access mediums present a different base delay. For example, 3G (UMTS) has a
theoretical minimum RTT of 40 down to 20 ms1, while WiFi networks may have a
much lower delay. Further, deep queues in the bottleneck router may be the reason
for bufferbloat [GN11], increasing the propagation delay of data sent across the
subflow. A packet loss may also temporarily affect the propagation delay of the
segments over a subflow. Indeed, loss-recovery with fast retransmissions needs
one round-trip-time and thus artificially increases the perceived propagation delay
during the recovery period. Finally, the delay may be subject to significant jitter,
for example in WiFi networks where a bad link-quality may require multiple frame
retransmissions to allow a successful delivery of the data from the access point to
the end host.

1HSPA+,Rel-7: http://www.3gpp.org/specifications
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Figure 4.2: The capacity of the low-delay path is not being used because the
receive window does not allow the sender to schedule segment 5. This reduces
Multipath TCP’s throughput significantly.

4.1.2 Receive/send-window limitations
With regular TCP, in absence of in-network reordering and packet loss, the

data reaches the receiver in-order. Thus, it can immediately be delivered to the
application, without using any space in the receive-buffer. However, in case of
a packet-loss, out-of-order data will be delivered to the receiver. Then, the TCP
stack needs to store the data until the missing packet has been received and the data
can be pushed to the application. Thus, a TCP stack reserves a certain amount of
memory for this out-of-order data. Typically, this is scaled to twice the bandwidth-
delay-product (BDP), as it allows the sender to transmit at full speed - even in
case of a loss-event. As explained above, Multipath TCP experiences reordering
across the TCP subflows due to the delay differences, hence the receive buffer has
to accommodate out-of-order data also at the Multipath TCP level. The size of the
receive buffer is thus critical to allow high goodput.

In order to fully utilize the capacity of all paths, a receiver must provide
enough buffer space so that the sender can keep all subflows fully utilized - even in
the event of reordering. The recommendation for Multipath TCP’s receive buffer
size is defined in [BPB11]:

Buffer = n�
i

bwi ×RTTmax × 2
such a buffer allows each subflow to send at full speed (∑n

i

bwi) during the time-
interval of the highest round-trip-time among all subflows (RTTmax), even if a loss
event occurs (multiply by 2).

We first observe that, fundamentally, memory requirements for Multipath TCP
are much higher than those for TCP, mostly because of the RTTmax term. A 3G
path with a bandwidth of 2 Mbps and 150 ms RTT needs just 75 KB of receive-
buffer, while a WiFi path running at 8 Mbps with 20 ms RTT needs around 40
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Figure 4.3: We emulate a WiFi/3G aggregation scenario in our lab to test the effect
of receive-window limitations.

KB. Multipath TCP running on these two paths will need 375 KB — nearly four
times the sum of the path BDPs.

However, if an end host is not able to provide the necessary amount of mem-
ory for the receive buffer, the so-called receive-window limitations will occur.
Figure 4.2 shows this kind of behavior. The receiver announced a receive win-
dow of 4. The sender scheduled segment 1 on the high-delay path, while sending
segments 2 to 4 over the low-delay path. As these ones will be delivered first,
the receiver has to store these in its out-of-order queue (ofo-queue). The sender
is unable to continue its transmission over the low-delay path because the receive
window does not provide the space to send segment 5. As soon as segment 1
reaches the server, data is pushed to the application and the out-of-order queue is
emptied. This provides again space in the receive window and the sender can con-
tinue its transmission. Nevertheless, prior to the arrival of segment 1 the sender
was unable to use the capacity of the low-delay subflow.

We used our Linux implementation to test this first behavior in our lab-setup
shown in Figure 4.3. Figure 4.4 shows the goodput achieved as a function of
receive window for TCP and Multipath TCP running over an emulated 8 Mbps
WiFi-like path (base RTT 20 ms, 80 ms buffer) and an emulated 2 Mbps 3G path
(base RTT 150 ms, 2 seconds buffer).

Multipath TCP will send a new packet on the lowest delay link that has space
in its congestion window. When there is very little receive buffer, Multipath TCP
sends all packets over WiFi, matching regular TCP. With a larger buffer, additional
packets are put on 3G and overall goodput drops. Somewhat surprisingly, even
370 KB are insufficient to fill both pipes. This is because unnecessarily many
packets are sent over 3G. This pushes the effective RTT

max

towards 2 seconds,
and so the receive-buffer requirements are exceeding the available 370 KB.

We see that a megabyte of receive-buffer (and send-buffer) is needed for a sin-
gle connection over 3G and WiFi. This is a problem, and may prevent Multipath
TCP from being used on busy servers and memory-scarce mobile phones. TCP
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Figure 4.4: A memory-constrained end host is not able to fully utilize the capacity
of the WiFi network because a large delay difference introduces receive-window
limitations.

over WiFi even outperforms Multipath TCP over both WiFi and 3G when the re-
ceive buffer is smaller than 400 KB, removing any incentive to deploy Multipath
TCP.

4.1.3 Head-of-Line blocking
As Multipath TCP ensures in-order delivery, the packets that are scheduled

on the low-delay subflow have to “wait” for the high-delay subflow’s packets to
arrive in the out-of-order queue of the receiver.

Head-of-line blocking causes burstiness in the data stream by delaying the
data delivery to the application, which is undesirable especially for interactive or
streaming traffic. Interactive applications will become less reactive, resulting in
a poor user-experience. Streaming applications will need to add a high amount
of application-level buffering to cope with burstiness and provide a continuous
streaming experience to the end user.

As an example, let’s consider Figure 4.2. A scheduler might (for one reason
or another) have decided to send packet with sequence number 1 on the bottom,
high-delay subflow. Packets 2 to 4 might have been scheduled on the low-delay
subflow. They will reach the destination faster than the packet with sequence
number 1. As Multipath TCP ensures in-order delivery of the data, the packets 2
to 4 must “wait” in the out-of-order queue of the receiver. This phenomenon is
known as head-of-line blocking [SK06].
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Figure 4.5: The delay perceived by the application is spread along a wide range
up to 2.5 seconds. This is an indicator for head-of-line blocking issues within
Multipath TCP.

Figure 4.5 shows the fraction of 8KB blocks (normalized to a probability den-
sity function) that have been received within a certain application-level delay, by
using Multipath TCP in a heterogeneous environment. In this environment, the
hosts were connected through two different paths. One path is similar to a 3G
environment, with a high round-trip-time, up to 2 second of buffering at the bot-
tleneck router and a relatively low capacity of 1.7 Mbps. The other one is more
like a residential broadband path with a very low round-trip-time (9 ms) but still
an over-buffered bottleneck router of around 500 ms buffering with a capacity of
9 Mbps. We use the application-delay application from Chapter 3, transmitting at
4 Mbps blocks of 8000 bytes. We measure the variation of the application-delay
compared to the lowest observed delay. It can be seen that the delay variation is
spread largely up to 2.5 seconds of variation. The round-robin scheduler has in-
troduced head-of-line blocking issues as packets need to wait in the out-of-order
queue before being pushed to the application. A packet-loss over the 3G-like
path is very expensive in terms of delay, because the retransmission takes up to 2
seconds (one maximum round-trip-time on the bufferbloated 3G path).

4.2 A reactive approach
The previous section has shown that Multipath TCP has some performance

issues when being used in heterogeneous environments. Effectively, receive-
window limitations trigger a suboptimal usage of the network’s resources and
head-of-line blocking results in a high application-level delay, affecting the user’s
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Figure 4.6: Opportunistic retransmission helps to overcome receive-window lim-
itations. However, it is also “wasting” bandwidth as much duplicate data is being
sent as can be seen from the throughput graph.

quality of experience.
In the following we show how a reactive approach can reduce the effect of

receive-window limitations and is able to achieve high throughput with Multipath
TCP.

4.2.1 Minimizing memory usage

Mechanism 1: Opportunistic retransmission (R)

When a subflow has a large enough congestion window to send more packets,
but there is no more space in the receive window, what should it do? One option is
to resend the data, previously sent on another subflow, that is holding up the trail-
ing edge of the receive window. In our example, the WiFi subflow may retransmit
some unacknowledged data sent on the slow 3G subflow.

The motivation is that this allows the fast path to send data as fast as it would
with single-path TCP, even when underbuffered. If the connection is not receive-
window limited, opportunistic retransmission never gets triggered.

Our Linux implementation only considers the first unacknowledged segment
to avoid the performance penalty of iterating the potentially long send-queue in
software interrupt context. This works quite well by itself, as shown in Figure 4.6:
Multipath TCP goodput is almost always as good as TCP over WiFi, and mostly
it is better.
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Figure 4.7: Combining opportunistic retransmission (R) with penalization (P) al-
lows for the best possible use of the resources.

Unfortunately opportunistic retransmission is rather wasteful of capacity when
underbuffered, as it unnecessarily pushes 2 Mbps traffic over 3G; this accounts for
the difference between goodput and throughput in Figure 4.6.

Mechanism 2: Penalizing slow subflows (P)

Reacting to receive window stalls by retransmitting is costly; we’d prefer a
way to avoid persistently doing so. If a connection has just filled the receive
window, to avoid doing so again next RTT we need to reduce the throughput on the
subflow that is holding up the advancement of the window. To do this, Multipath
TCP can reduce that subflow’s congestion window; in our tests we halved the
congestion window and set the slow-start threshold to the reduced window size.
To avoid repeatedly penalizing the same flow, only one reduction is applied per
subflow round-trip time and only if the subflow’s throughput is lower than the
other one.

Penalizing and opportunistic retransmission work well together, as seen in
Figure 4.7: Multipath TCP always outperforms or a least matches TCP over WiFi.

Further evaluation

To illustrate more clearly the impact of the retransmission and penalization
(RP), it is worth examining a few more varied scenarios.

The first scenario we analyze is where one of the paths has extremely poor per-
formance such as when mobile devices have very weak signal. Figure 4.8 shows
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but our mechanisms allow to overcome this limitation.
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Figure 4.10: Three 1 Gbps links

the goodput achieved using our Linux implementation on an emulated WiFi path
(8 Mbps, 20 ms RTT, 80 ms buffer) and an emulated very slow 3G link (50 Kbps,
150 ms RTT, 2 seconds buffer). As the link is so slow, the loss rate will be high
on the 3G path, and the large network buffer means that each retransmission over
3G takes a long time. With receive buffer sizes smaller than 400 KB, whenever
a loss happens on 3G, regular MPTCP ends up flow-controlled, unable to send
on the fast WiFi path. MPTCP plus retransmission and penalization prevents this
from becoming a persistent problem. Opportunistic retransmission allows the lost
3G packet to be re-sent on WiFi without waiting for a timeout and penalization
reduces the data buffered on the 3G link, avoiding the situation repeating too fre-
quently. With receive buffer sizes around 200 KB, these mechanisms increase
Multipath TCP throughput tenfold. It is slightly below regular TCP over WiFi,
because it still takes one round-trip-time for the opportunistic retransmission to
reach the destination quicker over the WiFi link than over the 3G one. During this
time the WiFi subflow is underutilized.

Next, we use two hosts connected by one gigabit and one 100 Mbps link to
emulate inter-datacenter transfers with asymmetric links. Figure 4.9 shows that
MPTCP+RP is able to utilize both links using only 250 KB of memory, while
regular MPTCP under-performs TCP over the 1 Gbps interface until the receive
buffer is at least 2 MB.

When the hosts are connected via symmetric links—we used three such links
in Figure 4.10—both regular MPTCP and MPTCP+RP perform equally well, re-
gardless of the receive buffer size. This is because in this scenario, when under-
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Figure 4.11: Application level latency for 3G/WiFi case

buffered, using the fastest path is the optimal strategy.

Application level latency

Goodput is not the only metric that is important for applications. For interac-
tive applications, latency between the sending application and the receiving appli-
cation can matter.

As Multipath TCP uses several subflows with different RTTs, we expect it to
increase the end-to-end latency seen by the application compared to TCP on the
fastest path. To test this, we use the application from Chapter 3 to measure the
variation of the end-to-end delay as seen by the application.

Figure 4.11 shows the probability density function of the application-delay
with a buffer-size of 200 KB running over 3G and WiFi. Retransmission and pe-
nalization do a good job of avoiding the larger latencies seen with regular Multi-
path TCP. Somewhat counter intuitively, the latency of TCP over WiFi is actually
greater than MPTCP+RP. The reason for this is that 200 KB is more buffering than
TCP needs over this path, so the data spends much of the time waiting in the send
buffer. Multipath TCP’s send buffer is effectively smaller because the large 3G
RTT means it takes longer before DATA ACKs are returned to free space. If we
manually reduce TCP’s send buffer on the WiFi link, the latency can be reduced
below that of Multipath TCP.

4.2.2 Problems with Penalization
The above described mechanism to reduce the memory usage includes the

penalization algorithm. Penalization reduces the congestion window without ac-
tually observing a congestion event. The following analyzes this behavior in detail
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Figure 4.12: With auto-tuning, 50% of the experiments are able to consume less
than 4 MB of receive buffer in the low-BDP environment.

and actually detects a particular problem with this algorithm.
To perform this analysis we use the experimental design approach, described

in Chapter 3. The same low- and high-BDP environments are being used as in
Chapter 3 with the influencing factors being the link’s capacity, propagation delay
and queue-size of the bottleneck router.

Effect of enabling auto-tuning

The Linux TCP stack does not use a fixed receive buffer. Instead, it includes
an auto-tuning algorithm [SMM98] that adapts dynamically the size of the re-
ceive buffer to achieve high goodput at the lowest possible memory cost. As
explained in Section 4.1.2, the current Multipath TCP implementation sets this
buffer to 2 ∗ ∑n

i

bw
i

∗ RTT
max

, to allow aggregating the throughput of all the
subflows [BPB11].

Enabling auto-tuning should reduce the memory requirements of each Multi-
path TCP connection. Figure 4.12 reports the maximum receive buffer used in the
low-BDP environment for each parameter set. Indeed, we observe that on 50% of
the experiments the receive buffer remains below 4 MB, effectively reducing the
memory used by the connection.

However, enabling auto-tuning can also lead to a huge performance degrada-
tion with Multipath TCP. Figure 4.13 depicts the aggregate benefit of Multipath
TCP v0.86 when auto-tuning is enabled, capping the buffer to Linux’s default of
4 MB. We observe that in high-BDP environments the aggregation benefit is very
low. Effectively, 80% of the experiments have an aggregation benefit below 0. We
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Figure 4.13: MPTCP v0.86 has a weak performance with auto-tuning. Our modi-
fication to the penalization algorithm significantly improves the aggregation ben-
efit.

observe this performance degradation in low-BDP environments too: 25% of the
experiments have an aggregation benefit below 0.2.

The auto-tuning at the receiver will make the receive buffer start at a small
value at the beginning of the connection, increasing it as the sender’s sub-
flows evolve during their slow-start phase. Multipath TCP evaluates the receive-
buffer size every RTT

max

in order to estimate the sending rate of the peer.∑n

i

bw
i

∗ RTT
max

represents the amount of data the peer sends during one
RTT

max

-interval. Multiplying this by 2 to achieve the recommended receive
buffer of [BPB11] should allow the sender to increase its sending rate during the
slow-start phase. However, subflows whose RTT is smaller than RTT

max

will
more than double their sending rate during an RTT

max

-interval, effectively mak-
ing the sender limited by the receive window. As the subflows evolve through their
slow-start phase, the announced window will continue increasing and eventually
be large enough. Hence, these receive-window limitations are only transient and
should not prevent users from achieving a high transmission rate.

Unfortunately, Multipath TCP’s reaction to transient receive-window limita-
tions is overly aggressive because of the ”penalization” mechanism explained in
Section 4.2.1. This mechanism handles receive-window limitations due to round-
trip-time differences among the subflows (e.g., in WiFi/3G environments). When
the flow is limited by the receive window, it halves the congestion window of the
subflow which causes this receive-window limitation and sets its slow-start thresh-
old to the current congestion window. If a Multipath TCP-connection experiences
the transient receive-window limitations while one of its subflows is in slow-start,
the penalization algorithm will give this subflow a false view of the path capacity
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sub: A subflow belonging to MPTCP, ready to send data.
now: The current time.
blocksub: The subflow who sent the segment that is causing the head-of-line

blocking.
// Only penalize every RTT

1: if now - sub.last penal < sub.rtt then
2: return ;

// Penalize if our RTT is smaller than the one of the blocking subflow
3: if sub.rtt < blocksub.rtt then
4: blocksub.cwnd /= 2;

// Do not kill slow-start
5: if blocksub.cc state != SLOW-START then
6: blocksub.ssthresh /= 2;
7: sub.last penal = now;

Figure 4.14: The improved penalization algorithm in pseudo-code format. It does
not interrupt the slow-start phase of the subflow being penalized.

by adjusting its slow-start threshold to a smaller value.
We propose to solve this problem by modifying the penalization algorithm,

outlined in pseudo-code format in Figure 4.14. It should not adjust the slow-
start threshold when a subflow is in its slow-start phase. Figure 4.13 shows how
this small modification to the penalization algorithm improves the performance of
Multipath TCP. In the low-BDP environments, more than 75% of the experiments
achieve an aggregation benefit of 0.85 or higher. And even the experiments in the
high-BDP environments have their median increased up to an aggregation benefit
of around 0.5. Long data transfers with Multipath TCP are now less vulnerable to
transient receive-window limitations and achieve a high aggregation benefit.

Effect of transient receive-window limitations

Our modification to the penalization algorithm mitigates the effect of the tran-
sient receive-window limitations for long flows. However, the fundamental prob-
lem is still there. Transient receive-window limitations slow down the increase
rate of the congestion window during slow-start. We chose a specific set of param-
eters where these transient receive-window limitations are particularly apparent.
The first bottleneck has a capacity of 1 Mbps, while the second has a capacity of
50 Mbps. Both bottlenecks have a high propagation delay and queuing delay. A
plot of the congestion-window’s evolution of the fastest path during the slow-start
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Figure 4.16: With auto-tuning enabled, Multipath TCP is slower to increase the
congestion window during slow-start compared to a fixed receive buffer at 4 MB.
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phase is shown in Figure 4.152. When auto-tuning is enabled, the congestion win-
dow increases much slower, reaching its maximum at time T

A

(indicated in the
Figure), about four seconds later compared to a fixed receive buffer at 4 MB (T

F

).
We measure the difference between T

A

and T
F

in our high-BDP environment
among the 200 parameter sets generated with the space-filling design. Figure 4.16
illustrates the PDF of these differences. Ideally, the difference between T

A

and T
F

should be zero. However, this is only true for 6% of the experiments. For a large
portion of the experiments the congestion window reaches its maximum between
500ms and 2000ms faster if auto-tuning is disabled.

This could have a negative impact on flow-completion time of short flows, as
the connection is receive-window limited during its slow-start phase. An ideal
auto-tuning algorithm should not prevent the sender from increasing the sending
rate - even during slow-start. However, the solution to this is far from trivial. It
would need to accurately estimate the round-trip-time at the receiver side in order
to estimate how fast the sender will go through the slow-start phase. However, it
must make sure that it is not too agressive. So, a good compromise must be found
between memory utilization, responsiveness and throughput.

4.3 Scheduling
The previous section has shown how one might solve the problem of receive-

window limitations in a reactive manner, meaning after the limitation happened.
However, it all depends on accurately scheduling the traffic on the subflows in
order to avoid these limitations. Further, the problem of head-of-line blocking has
not been addressed by the retransmission and penalization algorithm. This section
looks at heterogeneous environments by considering the behavior of the scheduler
and how its decisions might have an impact.

The scheduler is responsible for the distribution of data over multiple paths
and a wrong scheduling decision might cause head-of-line blocking or receive-
window limitation, especially when the paths are heterogeneous. In such a sce-
nario, the user will observe high delays as well as goodput degradation for its
application, resulting in poor user experience. Therefore, the scheduler can have
a significant impact on the performance of Multipath TCP.

In this section we propose a modular scheduler framework that allows to eas-
ily change the way data is distributed over the available subflows. Further, we

2The Figure shows that even the flow whose receive buffer is fixed at 4 MB experi-
ences a stall in the congestion-window’s increase rate (between 2.5 and 5.5 seconds). This
is due to a very specific issue of the Linux TCP window handling and has been fixed by
http://patchwork.ozlabs.org/patch/273311/. Unfortunately the Linux Multipath TCP-stack v0.86
does not include this recent fix.
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evaluate different schedulers for Multipath TCP and provide an in-depth perfor-
mance analysis considering both bulk data transfers and application-limited flows.
We consider goodput and application delay as metrics. Our experiments include
a broad evaluation within an emulated environment using the Experimental De-
sign-approach of Chapter 3 [PKB13] and an evaluation using real WiFi and 3G
networks within the NorNet testbed [KBE+14]. We identify the impact of the
scheduling decisions on the performance of Multipath TCP and illustrate the un-
derlying root cause for the observed behavior. We provide guidelines on the prop-
erties of a good scheduler to achieve a good performance under different scenarios
(the design of such a scheduler is out of the scope and left for future work).

4.3.1 Schedulers
A wrong scheduling decision might result in head-of-line blocking or receive-

window limitation, affecting the performance of Multipath TCP–as discussed in
the previous section. Accurately scheduling data across multiple paths while
trying to avoid head-of-line blocking or receive-window limitation is a difficult
problem, in particular when using heterogeneous paths. How to schedule differ-
ent SCTP streams across the different SCTP associations has been analyzed in
[STR10]. However, SCTP’s design is different from Multipath TCP. SCTP does
not support the transmission of a single stream across different paths. [SBL+13]
tries to achieve ordered delivery at the receiver by taking the delay of each path
into account. While in theory this is a promising approach, it is unclear how fea-
sible it is in a real-world kernel implementation where only a rough estimate of
the path’s delay is available to the scheduler.

We implemented a modular Multipath TCP scheduler framework3. Whenever
the stack is ready to send data (e.g., an acknowledgement has freed up space in the
congestion window, or the application pushed data on the send-queue), the sched-
uler is invoked to execute two tasks: first, choose a subflow among the set of TCP
subflows and; second, decide which segment to send considering the properties
of this subflow. We added callbacks from the Multipath TCP stack that invoke
the functions specific to each scheduler. This allowed us to design the scheduler
in a modular infrastructure, as it is done with the TCP congestion control algo-
rithms [SH07]. A pseudo-code implementation of this behavior can be seen in
Figure 4.17. A sysctl allows to choose the default scheduler for all Multipath
TCP connections, and further socket-options allow the user-space application to
explicitly set the scheduler for a particular connection.

Within our modular framework, we implement different schedulers. First, we
discuss a simple round-robin scheduler. Then, considering the heterogeneous net-

3The code is publicly available at http://multipath-tcp.org
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MPTCP: A Multipath TCP connection, ready to send data. MPTCP.sched
represents a structure containing the specific callbacks.
// Get a subflow, ready to send data

1: subflow = MPTCP.sched.get subflow();
2: while subflow != NULL do
3: data = MPTCP.sched.get data(subflow);

// Send data over this subflow
4: while data != NULL do
5: send data(subflow, data);
6: data = MPTCP.sched.get data(subflow);
7: subflow = MPTCP.sched.get subflow();

Figure 4.17: Pseudo code of the modular scheduler framework, using callbacks to
invoke the scheduling functions.

works where significant delay differences are observed between the subflows, we
discuss delay-based schedulers. A first evaluation of schedulers has been done
in [SGTG+12]. But only a limited environment has been used in the evaluation
and improvements to the schedulers [RPB+12] were not yet part of the Multipath
TCP implementation.

Round-Robin (RR)

The round-robin scheduler selects one subflow after the other in round-robin
fashion. Such an approach might guarantee that the capacity of each path is fully
utilized as the distribution across all subflows is equal. However, in case of bulk
data transmission, the scheduling is not really in a round-robin fashion, since the
application is able to fill the congestion window of all subflows and then packets
are scheduled as soon as space is available in each subflow’s congestion window.
This effect is commonly known as ack-clock [Jac88].

Such a scheduler has already been discussed for concurrent multipath transfer
SCTP [IAS06]. [DSTR10] evaluates how such a round-robin scheduler behaves in
CMT-SCTP for multi-streaming compared to a scheduler that assigns each stream
to a specific path.

Lowest-RTT-First (LowRTT)

In heterogeneous networks, scheduling data to the subflow based on the lowest
round-trip-time (RTT) is beneficial, since it improves the user-experience. It re-
duces the application delay, which is critical for interactive applications. In other
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words, the RTT-based scheduler first sends data on the subflow with the lowest
RTT estimation, until it has filled the congestion window (as it has been first de-
scribed in [RPB+12]). Then, data is sent on the subflow with the next higher
round-trip time.

The same way as the round-robin scheduler, as soon as all congestion win-
dows are filled, the scheduling becomes ack-clocked. The acknowledgements on
the individual subflows open space in the congestion window, and thus allow the
scheduler to transmit data on this subflow.

As explained in Section 4.1, a delay difference triggers head-of-line blocking
and/or receive-window limitation. Next, we discuss two extensions to the RTT
based scheduler. The first solution reacts upon receive-window limitation, and the
second solution minimizes the delay difference in the presence of bufferbloat on
the individual subflows.

Retransmission and Penalization (RP)

The opportunistic retransmission and penalization algorithm, as already ex-
plained in Section 4.2.1 allows to compensate for delay differences. Opportunis-
tic retransmission re-injects the segment causing head-of-line blocking on the sub-
flow that has space available in its congestion window (similar to chunk reschedul-
ing for CMT-SCTP [DBRT10]). This allows to quickly overcome head-of-line
blocking situations and compensate for the RTT differences. Further, the penal-
ization algorithm reduces the congestion window of the subflow with the high
RTT, hence, reducing the sending rate and the effect of bufferbloat on the subflow.

Bufferbloat Mitigation (BM)

Another source for high RTTs are large buffers on routers and switches along
the subflow’s path. TCP will try to fill these buffers creating bufferbloat, resulting
in very high RTTs.

The bufferbloat-mitigation algorithm caps the RTTs by limiting the amount
of data to be sent on each subflow, hence, controlling the bufferbloat [STA14].
The goal here is not to significantly improve goodput, but instead, to improve the
application delay-jitter and reduce buffer size requirements.

The main idea behind the bufferbloat-mitigation algorithm is to capture
bufferbloat by monitoring the difference between the minimum smoothed RTT
(sRTTmin), and smoothed RTT (sRTT). Whenever sRTT drifts apart from sRTTmin

on the same subflow, as a result of sending data, we take it as an indication of
bufferbloat. Therefore, we cap the congestion window for each subflow by setting
an upper bound cwndlimit.

cwndlimit = � × (sRTTmin�sRTT) × cwnd
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where � determines the tolerance between sRTTmin and sRTT. Within the re-
mainder of this chapter, we fix � to 3, which has proven to bring the best re-
sults [STA14].

4.3.2 Evaluation
Traffic characteristics and the environment, where the TCP subflows pass, in-

fluence the schedulers’ performance. This section evaluates two Multipath TCP
metrics, namely goodput and application delay-jitter in emulated and real-world
experiments.

Experiment and Emulation Setup

Within Mininet [HHJ+12] the Experimental Design approach [PKB13] is
used, where we set both low- and high-BDP environments to evaluate the sched-
ulers. These environments are the same as in Chapter 3 with the capacity, prop-
agation delay and bufferbloat as influencing factors. The Multipath TCP imple-
mentation used in all our evaluations is based on release 0.88.

The real-world environment uses the NorNet testbed [KBE+14]. We consider
the smartphone use case where we utilize both WLAN and 3G (UMTS) interfaces
to evaluate the Multipath TCP performance with heterogeneous links. The WiFi
connection uses a public WLAN, connecting ca. 100 people during work hours in
a large office complex with several other interfering WLAN networks. On the sys-
tem level, we continuously flush all cached TCP metrics to avoid any dependency
between experiments. Finally, the Olia congestion control [KGP+12] is used in all
experiments. Similar results were obtained with the coupled congestion control
scheme [WRGH11].

Bulk-Transfer

One of the goals of Multipath TCP is to increase the application good-
put [RHW11], which can be measured by transferring bulk data between two
Multipath TCP capable end hosts.

Mininet Within Mininet we generate a bulk-transfer using iperf, where each
transfer lasts for 60 seconds. Our measurements cover the same 200 different set-
tings, classified as low-BDP and high-BDP environments, as in Chapter 3. For
detailed information about the test environments as well as the system-level set-
tings, we refer to [PKB13] and Chapter 3. Here, we measure the aggregation
benefit which has been explained in Chapter 3.
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Figure 4.18: Mininet: In high-BDP the connection becomes receive-window
limited and BM and RP show their benefits.

Figure 4.18 shows the Mininet results. We skip the RR scheduler since it
performs similar to LowRTT. This is because in bulk-transfers the TCP subflows
are saturated and are thus controlled by the ack-clock. Therefore, available space
in the congestion window controls the way packets are multiplexed across the
subflows rather than the scheduler.

In the low-BDP environment there is no significant difference between sched-
ulers. Each of them achieves close to perfect bandwidth aggregation. Only the RP
algorithm improves the worst-case result among the 200 experiments to achieve an
aggregation benefit equal to the best available path. In the high-BDP environment
receive-window limitations may occur. In this case the RP and BM techniques
described in Section 4.2.1 improves the aggregation benefit. The RP technique
has a higher benefit in the lower 25th percentile and the median. This is thanks
to the retransmission of the blocking segment as the receive-window limitation in
these cases is not due to bufferbloat but rather due to a difference in the baseline
RTT.

NorNet Within NorNet Edge we tested bulk-transfers of 16 MB files in
downlink with both unbounded (16 MB) and bounded (2 MB) buffers. The
bounded buffers will make the connection more likely to be limited by the re-
ceive window. We repeat each measurement around 30 times for each scheduler.
All measurements are performed in the same networks and at the same locations
over a period of 3 weeks.

Figure 4.19 shows the Multipath TCP goodput, for all schedulers. For a bulk-
transfer with unbounded buffer sizes (16 MB), the aggregation benefit of Mul-
tipath TCP across all schedulers is similar. Each scheduler is able to efficiently
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Figure 4.19: NorNet: With unbounded buffers (16 MB), each scheduler achieves
the goodput.

aggregate the bandwidth of WLAN and 3G together within the NorNet testbed.
The unbounded buffers allow for sufficiently large memory, so that no receive-
window limitation occurs.

However, if the receive buffer is bounded (as it is often the case on a smart-
phone), the Multipath TCP connection may become receive-window limited. Fig-
ure 4.20 shows the Multipath TCP goodput in this case. Here, one can see
that LowRTT+BM slightly outperforms the other schedulers. In case of the
LowRTT+RP scheduler, the effect of bufferbloat is not optimally reduced by the
penalization algorithm, as it does not manage to bring the congestion window
sufficiently down so that the delay-difference is reduced. This happens, because
the RP algorithm is reactive and does the penalization only after a limitation hap-
pened. The BM algorithm is proactive and prevents a high delay-difference be-
forehand and thus achieves a higher goodput.

Application-Limited Flows

This section evaluates the impact of the schedulers on delay-jitter with rate-
limited traffic, i.e., when the application is not saturating the connection. In this
case, the scheduler has available space in all subflows and should select the one
that guarantees the lowest delay for each segment. We evaluate the delay-jitter by
using the application described in Chapter 3.

Mininet Within Mininet we ran this application in the high-BDP environment
of the Experimental Design approach, for a total of 200 experiments. Figure 4.21
shows the CDF of the worst-case relative delay increase. The delay increase is
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Figure 4.20: NorNet: With bounded buffers (2 MB), LowRTT+BM and
LowRTT+RP achieve the best performance.

expressed in % compared to the lowest one-way delay. E.g., if the minimum one-
way delay is 20 ms, but a block of 8 KB has been received rather after 40 ms the
relative delay increase has a value of 100%. We show the worst delay-increase
among all 8 KB blocks of each experiment as this will affect the user-experience
most.

In Figure 4.21 it is visible that the RR scheduler is particularly bad in terms
of application delay. 70% of the experiments using the LowRTT scheduler have
a range between 10 and 100% of delay-increase. Using a RR scheduler, roughly
40% of the experiments have a delay-increase between 100 and 1500%. Such
delay increases has significant impact on delay-sensitive applications since they
would need to maintain large buffers to react upon these delay-spikes.

NorNet Within NorNet we evaluate the delay-jitter using rate-limited appli-
cations transmitting at 500 Kbps and 1875 Kbps in downlink, using unbounded
buffers. The values for the application-limited rates are at approximately 5 and
18% of the mean goodput of the bulk-transfer. We repeat each measurement
around 30 times for each configuration.

Figure 4.22 shows the variation of the application delay for all schedulers.
One can see that in all application-limited scenarios, RR performs mostly worse
compared to all other schedulers. More prominent, in Figure 4.22(a), RR’s delay-
variance shows to be up to 10 times worse compared to LowRTT. This can be
explained as RR simply schedules data based on congestion-window space, which
is not a limiting factor in this particular scenario. Looking into our dataset, one can
see that both subflows carry a similar amount of data, thus increase head-of-line
blocking.
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Figure 4.21: Mininet: Using the lowest-RTT-first scheduler greatly reduces the
application-delay variance in Mininet.

For all other schedulers we observe that for very low application rates, see
Figure 4.22(a), LowRTT utilizes mainly one subflow, the subflow with lowest
RTTs. This is because the congestion window space is not a limiting factor, and it
has mostly enough space to carry all data available.

By increasing the application rate, see Figure 4.22(b), LowRTT performs in
at least 60% of the cases up to 10 times better compared to RR. The remaining
40% can be explained as we see that the subflow with the higher RTT (3G net-
work) contributes more compared to the scenario in Figure 4.22(a). This happens,
because at a higher sending rate, occasional congestion on the WiFi network will
make the LowRTT scheduler send traffic on the 3G subflow. This will introduce
head-of-line blocking due to the higher delay over the 3G network and thus in-
creases the delay-variation.

We also evaluate the delay-jitter when sending at unlimited rate within the
NorNet testbed. In this case, both WiFi and 3G are fully utilized and bufferbloat
might happen on the 3G path. We observe that the LowRTT+BM scheduler effec-
tively reduces the bufferbloat and keep the application delay lower compared to
other schedulers.

4.4 Conclusion
In this chapter, we have analyzed the issues that Multipath TCP encounters

when being used in heterogeneous environments. We proposed heuristics that
might help to overcome these issues. Our first approach is reactive, handling
receive-window limitations after they occur by opportunistically retransmitting
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Figure 4.22: NorNet: 3G and WLAN with unbounded (16 MB) buffers

and trying to mitigate future limitations by penalizing subflows. An analysis by
using the experimental design approach allowed to fine-tune the algorithm.

The second approach looks at heterogeneous environments from the sched-
uler’s point-of-view. We proposed and implemented a modular scheduler selec-
tion framework that allows Multipath TCP to change the way data is multiplexed
across the different TCP subflows. We used this framework to experimentally
evaluate schedulers in a wide variety of environments in both emulated and real-
world experiments. In these environments, we could quantify the performance of
different schedulers, and scheduler extensions, with respect to goodput as well as
application delay-jitter.

A bad scheduling decision triggers two effects: First, head-of-line blocking
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if the scheduler sends data across a high-RTT subflow. Second, receive-window
limitation, which prevents the subflows from being fully utilized. We have shown
that a simple strategy to preferentially schedule data on the subflow with lowest
RTT (LowRTT) helps to reduce the application delay-jitter compared to a simple
round-robin (RR) scheduler.

Multipath scheduling should ideally be done in a way that the data is received
in-order. This minimizes head-of-line blocking and receive-window limitations as
applications are able to continuously read data out of the receive queue. However,
it is not trivial to design such a scheduler with rough estimations on capacity and
RTTs of the paths, maintained by the kernel. Up to today, the reactive approach
with retransmission and penalization seems to provide reasonably good results.
Nevertheless, improvements in the scheduler might be promising to improve the
performance of Multipath TCP.



Chapter 5

Multipath TCP at scale

The Linux Kernel implementation of Multipath TCP, started by Sébastien
Barré during his PhD thesis [Bar11], has been developed over the last years. It
is recognized as the reference implementation of Multipath TCP. Being the most
feature-rich and complete implementation of RFC 6824, it is slowly being used by
more and more commercial deployments. This chapter provides an overview of
the main building blocks that allow Multipath TCP to be used in the Linux Kernel.
This chapter is based on release v0.88 of the Multipath TCP implementation1.

During the design process of the Linux Kernel implementation several goals
influenced its design. These goals were motivated by the fact that Multipath TCP
should be designed in such a way that it could be relatively acceptable for an
upstream submission to the official Linux Kernel. Our design-goals include:

1. Minimize performance impact on regular TCP - a Multipath TCP imple-
mentation that reduces the performance of regular TCP is not suitable for a
general-purpose operating system like the Linux Kernel.

2. Reasonable complexity inside TCP - Multipath TCP is tightly mangled
within the TCP stack. To reduce the maintenance overhead, the complexity
should be kept at a reasonable level.

3. Achieve high performance for Multipath TCP - finally, the implementa-
tion should achieve high performance for Multipath TCP.

This chapter details how our implementation transforms the Linux TCP/IP
stack such that Multipath TCP can be used. We justify the design decisions with
respect to the above presented goals and show that our implementation achieves a
high performance.

1http://multipath-tcp.org/pmwiki.php?n=Main.Release88
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Figure 5.1: The different structures are connected through pointers (arrows in
the figure). Creating additional structures allows to avoid increasing the memory
footprint of regular TCP.

5.1 Data structures
As has already been explained in Chapter 2, the Linux Kernel implementation

of Multipath TCP is split in two layers. The aggregating MPTCP-layer and the
individual subflows at the subflow-layer. Within the implementation we call the
MPTCP-layer the meta-socket which represents the state-machine of each Multi-
path TCP connection. The state of a full Multipath TCP connection is composed
of several structures linked to each other by pointer references (as can be seen in
Figure 5.1). It is roughly divided in two parts. First, the structures that are relative
to the MPTCP-layer (in dark gray) and second, the structure that belong to the
subflows (in light gray).

The Linux Kernel maintains the state of a TCP connection in a structure
called tcp sock. Multipath TCP requires to store additional information for each
TCP subflow. To avoid increasing the memory-footprint of tcp sock (and thus
of all TCP connections - even those that do not use Multipath TCP), the struc-
ture mptcp tcp sock has been added. Each Multipath TCP subflow, as well as the
meta-socket, contains a pointer to the additional allocated mptcp tcp sock. It con-
tains information such as the address-id that belongs to this subflow (useful when
a REMOVE ADDR is received to decide which subflow needs to be removed).

The MPTCP-layer also implements a complete TCP state machine. Thus, the
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same tcp sock, together with the mptcp tcp sock, is used to store this state. Addi-
tionally, general information for the entire connection must be maintained. Again,
to avoid increasing the memory footprint of regular TCP, we created the structure
mptcp cb, representing the Multipath TCP control buffer. It holds information like
pointers to TCP subflows and the list of addresses advertised by the peer.

5.2 Connection setup
During the connection setup phase, the end-hosts detect whether the peer sup-

ports Multipath TCP and exchange the crypto-material to compute the initial data
sequence number as well as the token and keys necessary for the establishment
of the new subflows. From an implementation point-of-view, the goal is to cre-
ate the necessary structures to allow a Multipath TCP connection to exist. An
implementer might take the following approach.

He might allocate all the data structures necessary for Multipath TCP right
at the beginning. The advantage of this approach is that, if the peer supports
Multipath TCP, all the structures are already in place. If however, at the recep-
tion of the SYN/ACK the host realizes that the peer does not support Multipath
TCP, these structures are unnecessary and must be freed again. In a world, where
Multipath TCP is ubiquitously available, this choice would probably be the most
favored. However, today rather the opposite is the case. Most connections will
still be using regular TCP. A general-purpose operating system should not assume
that chances are high that a Multipath TCP connection will be established. In
this case, this first choice would bring an excessive performance penalty for the
common TCP connections.

Thus, in the Linux kernel implementation we chose to optimize for the com-
mon case and sticked to an alternative implementation. Our implementation al-
locates the Multipath TCP specific structures only after we detect that the peer
supports Multipath TCP. This approach is explained in the following.

5.2.1 Client side
On the client side, an application creates a socket with the socket() system-

call and connects to a server with connect(). We chose to only create a reg-
ular TCP socket upon the application’s call to socket(). When the sending of
the initial SYN is being triggered by the call to connect() (the call graph is
shown in Figure 5.2), the client generates a random key and inserts it inside the
MP CAPABLE option (mptcp set key sk()). Up to here, the client’s only
additional work compared to a regular TCP connection is the generation of the
key (and verification of the uniqueness of the token). To ensure that the same key
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Figure 5.2: Upon a connect(), the client generates a random key but does not
allocate additional data structures.

Figure 5.3: During the processing of the SYN/ACK containing an MP CAPABLE
option, the required data structures are allocated and linked together.
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Figure 5.4: Upon a failed memory allocation on the client side, the connection
falls seamlessly back to regular TCP

is not used twice for different connections, a reference to the tcp sock is stored
inside a hashtable, whose keys are the tokens of the Multipath TCP connections
( mptcp insert hash()). This hashtable is used to verify the uniqueness of
the tokens. No other additional allocation is performed by the TCP stack at this
stage.

The server replies with a SYN/ACK, including (or not) an MP CAPABLE op-
tion. Upon receiving this reply, the client knows whether the server supports Mul-
tipath TCP. It can now allocate the data structures that are required for Multipath
TCP. Two important points need to be considered for this procedure whose call-
graph is shown in Figure 5.3.

It is known that under memory-pressure an allocation might fail. As the recep-
tion of the SYN/ACK is done within a soft-interrupt context, this allocation cannot
sleep to wait for the available memory. For example, if the memory allocation
of the mptcp tcp sock fails, Multipath TCP cannot be used for this connection.
It will revert back to a regular TCP connection. Here, the middlebox support of
Multipath TCP comes in handy, as shown in Figure 5.4. Because, the server actu-
ally thinks that Multipath TCP has been successfully negotiated (it replied with an
MP CAPABLE in the SYN/ACK), the seamless fallback to regular TCP described
in Section 2.3.2 will make the server realize that indeed regular TCP is being used.

In case the server replies with a SYN/ACK without MP CAPABLE option,
the client is not affected by much additional work. It only needs to remove
the tcp sock from the above mentioned hashtable so that the key used in the
MP CAPABLE can be used again for subsequent Multipath TCP connection es-
tablishments.
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Figure 5.5: A slightly larger request sock is created to store the random key and
add the request sock in the hashtable to avoid token collisions.

5.2.2 Server side

On the server side, the connection establishment can be split in two ma-
jor steps. The first step happens during the reception of the SYN including the
MP CAPABLE option and the second step is triggered by the reception of the final
ACK of the 3-way handshake.

The Linux kernel TCP stack does not create a full-fledged socket upon recep-
tion of a SYN. Instead, it creates a lightweight so-called request sock that stores
the minimal information necessary for a stateful handling of the 3-way handshake.
To support a correct handling of Multipath TCP, only a small change had to be
done in this process (call graph is shown in Figure 5.5). First, the allocated re-
quest sock is slightly larger to accommodate the generated random key and some
other state variables specific to Multipath TCP. It must be noted that this larger
request sock is only allocated if the SYN contains the MP CAPABLE option. This
allows for legacy TCP connections to not be impacted by the increased memory
footprint and the resulting increase of cache misses. During the generation of the
random key, the uniqueness of the corresponding token must be verified. Further-
more, to avoid collisions, a similar hashtable is used as on the client side and the
request sock is added to this one.

Upon reception of the final third ack of the 3-way handshake all the structures
of Figure 5.1 are created. The TCP stack creates new sockets as a clone from
the listener socket, inheriting many of the settings (e.g., socket options). Our
implementation of Multipath TCP again tries to reduce the impact on the legacy
TCP stack, thus lets the TCP stack create the socket, which will be used as the



5.2. Connection setup 89

Figure 5.6: Similar to the client side, mptcp create master sk() is in
charge of creating the subflow and initializing all the necessary state.

meta-socket. Later in the stack, a call to mptcp create master sk() is in
charge of creating the subflow’s tcp sock and linking it to the mptcp cb through a
call to mptcp add sock() as shown in Figure 5.6.

We use a different type of request sock structure to handle SYN’s that contain
the MP CAPABLE option. This means that the release of the request socket’s
memory must be changed. Additionally, the request socket must be removed
from the hashtable. The Linux TCP stack handles the request socket through
several callbacks, defined in the structure request sock ops. To achieve our spe-
cific “treatment” of the request socket we redefined a new such structure (shown
in Listing 5.1). Redefining the destructor-callback allows a very clean way
to remove the request socket from the hashtable when its memory gets released.

Listing 5.1: Redefining a function pointer allows to nicely integrate Multipath
TCP in the legacy TCP stack

s t r u c t r e q u e s t s o c k o p s m p t c p r e q u e s t s o c k o p s r e a d m o s t l y = {
. f a m i l y = PF INET ,
. o b j s i z e = s i z e o f ( s t r u c t m p t c p r e q u e s t s o c k ) ,
. r t x s y n a c k = t c p v 4 r t x s y n a c k ,
. s e n d a c k = t c p v 4 r e q s k s e n d a c k ,
. d e s t r u c t o r = m p t c p v 4 r e q s k d e s t r u c t o r ,
. s e n d r e s e t = t c p v 4 s e n d r e s e t ,
. s y n a c k t i m e o u t = t c p s y n a c k t i m e o u t ,

} ;
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Figure 5.7: More than 20% of the time to generate a SYN/ACK with
MP CAPABLE is spent on the key and token generations while establishing the
initial subflow.

5.2.3 Evaluation
The initial handshake involves the generation of the key, token and IDSN and

the exchange of the keys. This has an impact on the computational overhead and
security of Multipath TCP. The token is a hash of the key and must be locally
unique. A consequence of using a hash is that the token may collide with an
already existing connection.

After each key-generation the server must verify if the resulting token is lo-
cally unique by computing the hash of the key. If it is not unique, a new random
key must be generated and again verified for the token’s uniqueness. This in-
creases the computational overhead, which grows with the number of existing
Multipath TCP connections.

We measured the time to generate a SYN/ACK with MP CAPABLE on Xeon-
class servers with an early version of our Linux Kernel implementation of Mul-
tipath TCP [RPB+12]. In order to identify the time consumed by the random
number generation and hashing, we replaced the corresponding code by dummy
functions. The gain observed when replacing the code represents the cost of the
corresponding code. Our evaluation shows that the random number generation
and hashing of the key introduces an important overhead. More than 20% of the
time taken to generate a SYN/ACK is spent in these two actions (Figure 5.7).

Further, we evaluate the impact of verifying the token’s uniqueness. This im-
pact increases as more and more Multipath TCP connections are established on
the server, as it must look through many tokens to verify the uniqueness of the
generated key.

Our measurement sends a SYN to the server (using the same hardware as the
above measurement), including an MP CAPABLE option. The server replies with
a SYN/ACK including the MP CAPABLE with its choice for the connection’s key.
This key is guaranteed to be unique among all Multipath TCP connections estab-
lished on the server. We send 20000 of these SYN segments to the server and



5.2. Connection setup 91

TCP
MPTCP 1000 10000 20000

TCP 200000

5

10

15

20

m
ic

ro
se

co
nd

s

Time to reply to SYN+MP CAPABLE

Figure 5.8: Multipath TCP increases the time required to reply to a SYN +
MP CAPABLE because it needs to verify the uniqueness of the token. The more
connections are pre-established, the longer this process takes.

collect with tcpdump traces on the server. To avoid increased CPU load due to
tcpdump storing on the hard drive, we save the trace on a ramdisk. This packet
capture allows us to compute the average delay between the reception of the SYN
and the transmission of the SYN/ACK. We compare regular TCP with Multipath
TCP without preloading the server with connections. Then, we preload the server
with 1000, 10000 and 20000 connections. This allows us to measure the impact
of the uniqueness verification of the token.

Figure 5.8 shows the mean among the 20000 SYN/ACK delays. It can be seen
that even without preloaded connections, Multipath TCP uses a slightly higher
delay. This is solely due to the generation of the random key, as well as the hash
computation to generate the token. This cost however does not increase if more
connections are preloaded. As the number of preloaded connections increases,
verifying the uniqueness of the token takes more time. During this verification,
the server needs to lookup the hashtable, searching for token collisions. However,
collisions in the hashtable make this lookup far from O(1). A solution would be
to simply increase the size of the hashtable. This increase comes together with
a cost in terms of memory consumption. Nevertheless, even with our relatively
small hashtable of only 1024 entries, we are able to keep the overhead with 20000
preloaded connections below 5 microseconds.
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Figure 5.9: The path manager invokes mptcp init4 subsockets(), in
charge of mimicking an application that creates a new legacy TCP socket.

5.3 Subflow handling
Once the initial subflow has been correctly established and some data has been

exchanged, additional subflows can be created. Our implementation only allows
the client to trigger the creation of new subflows. If we would allow also the
server to create new subflows, it may happen that multiple subflows are created
across the same pair of IP addresses, as client and server may decide to initiate
a subflow at the same time. Having multiple subflows across the same pair of
IP addresses is not always a desirable situation. Additionally, clients are typically
behind NAT devices, which actually do not allow the server from actively opening
a new subflow to the client. The creation of additional subflows is explained in
this section from the client’s and the server’s point-of-view.

5.3.1 Client side
A Multipath TCP implementation needs a heuristic that decides when to cre-

ate a new subflow. This heuristic can be influenced by different factors. It might
try to establish a full mesh across all available IP addresses, or just create multiple
subflows across the same pair of IP addresses to benefit from ECMP within the
network. One might imagine even more specific heuristics, based on the prop-
erties of the device’s interfaces. To accommodate these different use-cases we
implemented a generic and modular path-manager interface. This path manager
is invoked by the Multipath TCP implementation through callbacks that are reg-
istered at the creation of a connection. It allows to act upon events like the suc-
cessful establishment of the initial subflow or the reception of a remote address
through the ADD ADDR option. The path manager can then trigger the creation
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of a new subflow through a call to mptcp init4 subsockets(), detailed in
the following.

The creation of a new subflow on the client side involves multiple steps, simi-
lar to the creation of a legacy TCP connection by a client-side application, shown
in Figure 5.9. First, a tcp sock is created and bound to a specific interface by the
calls to inet create() and inet bind(). The sending of the SYN is then
triggered by the call to inet stream connect(). The TCP stack will then
simply include the MP JOIN inside the outgoing SYN together with the token and
a random number.

To allow the TCP stack to retrieve the token to add to the MP JOIN option,
our implementation creates the mptcp tcp sock structure prior to the sending of
the SYN (through a call to mptcp add sock()). This is in contrast with the
establishment of the initial subflow. The argument of reducing the overhead for
legacy TCP connections does not count anymore for additional subflows of an
existing Multipath TCP connection. The new subflow will not fallback to regu-
lar TCP if the SYN/ACK does not contain an MP JOIN option. It will rather be
destroyed by the Multipath TCP stack. Further, if we would only allocate the
structures upon reception of the SYN/ACK we would add the risk that a memory
allocation failure requires to discard the SYN/ACK. A cost we accepted for the
initial subflow for the sake of reducing the impact on legacy TCP - but a cost that
is unnecessary for the new purely Multipath TCP-related subflows.

When the server replies with a SYN/ACK, including the MP JOIN option, the
client must verify the correctness of the HMAC. In case it is incorrect, it replies
with a RST (as specified by RFC6824) and closes the new subflow.

The 3-way handshake of new subflows differs in Multipath TCP compared to
regular TCP in such a way that it requires a reliable transmission of the third ACK
to ensure the correct delivery of the HMAC included in this acknowledgment. This
implies that a substantial change must be done to the implementation, as we need
a retransmission timer for this third ACK. The regular retransmission timer cannot
be used as the ACK does not consume a byte in the subflow’s sequence number
space. Our implementation uses an additional retransmission timer, in charge of
retransmitting the third ACK until the server replies with an acknowledgment to
signal the reception and validity of the third ACK and its HMAC. Further, any
transmission of data must be prevented on this subflow as long as the final fourth
acknowledgment has not been received by the client. We achieve this by adding
a pre established-flag to the mptcp tcp sock that is being verified when the
Multipath TCP scheduler decides to transmit data on a subflow. As long as this
flag is set to 1, the scheduler will not attempt to transmit data on this subflow.
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Figure 5.10: If the SYN + MP JOIN matches on a listening socket, this code-path
is being reused.

5.3.2 Server side
On the server side, the incoming SYN must be linked to the Multipath TCP

connection based on the token included in the MP JOIN option. An incoming SYN
+ MP JOIN may have a different destination port than the one used in the initial
subflow or use different IP addresses. A Multipath TCP implementation must thus
check whether each and every incoming SYN contains an MP JOIN option and
whether the indicated token corresponds to an existing connection. In this case,
the processing of the SYN must be done in such a way that it does not trigger the
creation of a new legacy TCP connection but rather that this new subflow is linked
to the existing Multipath TCP connection that matches the indicated token. Thus,
an MP JOIN option inside the TCP option space has priority when it comes to
matching the SYN to a listening socket.

To redirect the SYN processing to the Multipath TCP connection, a naive im-
plementation would parse the TCP options of every incoming SYN segment, look-
ing for an MP JOIN option. Only after this “pre-parsing” the control flow would
be redirected to the legacy TCP stack to allow matching on a listening socket. It
is obvious that this presents a performance penalty for a generic operating sys-
tem, whose majority of the incoming SYN segments probably do not contain the
MP JOIN option.
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Figure 5.11: For every incoming ACK we need to verify whether a corresponding
request socket exists.

Our implementation handles this by implementing the control flow shown in
Figure 5.10. First, the incoming SYN may have a destination port corresponding
to an existing listening socket. In this case, the legacy TCP stack will match the
SYN on this socket through the call to inet lookup listener(). Later
on, in tcp v4 conn request(), the TCP option space is being parsed. At
this point, the stack realizes that indeed an MP JOIN option is included in the
SYN, enforcing us to redirect the SYN handling to the Multipath TCP connection.
mptcp do join short() will lookup in the hashtable the connection that is
linked to the indicated token and let it create a request sock and emit a SYN/ACK.
Figure 5.10 also shows another call-trace in which no listening socket was found
for the 5-tuple of the SYN. In this case we are still forced to parse the TCP options
separately in mptcp lookup join() to search the MP JOIN and lookup the
Multipath TCP connection in the hashtable.

The server then creates in mptcp v4 join request() our enhanced re-
quest socket that stores additional state information, already described in Sec-
tion 5.2.2. This request socket must be stored as part of the Multipath TCP
connection but also inside a hashtable that allows it to be looked up based on
the 5-tuple. This is necessary due to several reasons. During the 3-way hand-
shake, the third acknowledgment triggers the creation of the TCP socket on the
server side (as explained in Section 5.2.2). The host finds the request socket that
corresponds to the incoming ACK by matching it on the listening socket, which
stores this request socket in a list. But, during the establishment of a new sub-
flow, there is no listening socket holding the request socket. This means that
for every incoming acknowledgment that does not match on an existing estab-
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Figure 5.12: Upon the establishment of additional subflows, the HMAC accounts
for 25% of the time to generate a SYN/ACK with MP JOIN

lished socket we need to verify if there exists a pending request socket, waiting
for the final acknowledgment of the MP JOIN exchange. The current implemen-
tation indeed takes this brute-force approach, shown in Figure 5.11. A call to
mptcp check req() looks up the 5-tuple of an incoming ACK (through a call
to mptcp v4 search req()) inside our hashtable to see if there exists a pend-
ing request socket. This lookup is done for all ACK segments that did not match
on an existing, established socket. If a request socket has been found, the calls are
redirected to tcp check req(), which will create the new TCP socket struc-
tures, finalizing this by a call to mptcp check req child() that finishes the
initialization and link the new subflow to the Multipath TCP connection through
a call to mptcp add sock().

It must be said that this lookup in the hashtable for every incoming ACK is
rather suboptimal. A malicious node could flood our stack with ACK segments
and thus impose an increased CPU utilization. An optimization is possible to im-
prove the performance of the lookup inside the hashtable. RCU lists [McK07]
should be used instead of regular lists as they allow for a lock-less lookup, re-
ducing the impact of taking a spin-lock at the server. A similar approach as for
the SYN reception (explained above) might be difficult to achieve, because we
cannot rely on the fact that an MP JOIN option is included inside the third ACK.
For example a RST segment still needs to be processed correctly, as it might be
necessary to destroy the request socket.

5.3.3 Evaluation
The additional subflows require the computation of the HMAC in order to au-

thenticate the hosts. Furthermore, the token is used to identify the Multipath TCP
connection. What is the impact on the CPU resources and the security of the
additional subflows?

When receiving a SYN with MP JOIN, the server has to generate a random
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Figure 5.13: Looking up the token in the hashtables is a cost that increases with
the number of preloaded Multipath TCP connections.

number and calculate an HMAC. As already shown in Figure 5.7, generating a
random number takes a significant time. The HMAC calculation consumes even
more CPU cycles. In order to compute one HMAC, an implementation must per-
form four SHA-1 computations on 512 bit blocks. As can be seen in Figure 5.12,
calculating the HMAC accounts for 25% of the time spent to generate a SYN/ACK.

Further, the token included inside the SYN + MP JOIN identifies the connec-
tion. The server must lookup the token hashtable to find the Multipath TCP con-
nection that corresponds to the token to allow generating the HMAC included in-
side the SYN/ACK. As in Section 5.2.3 we measure the time it takes to generate
a SYN/ACK with a different number of preloaded connections. We observe again
an increase of the response-time, shown in Figure 5.13. One might think, that
this increase is because upon receiving the MP JOIN, the host must lookup the
meta-socket in the token hashtable. However, in our specific setup, this lookup
does not increase the response-time. This is because the connection is added to
the top of the collision-list in the hashtable. Looking up this token can thus be
done in O(1). The increased response-time is rather due to the more complex
code-path taken when receiving an MP JOIN. To reduce the complexity inside the
TCP stack we reuse some functions of the regular TCP stack (as has been shown
in Figure 5.10). This codepath involves multiple lookups for established sockets
with a five-tuple corresponding to the incoming SYN + MP JOIN. As more con-
nections are pre-established, this lookup takes more time and thus increases the
response-time.
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5.4 Data exchange
The previous sections explained how the subflows are setup and initialized so

that the hosts are ready to send and receive data. This section sheds some light on
the process of sending and receiving data.

5.4.1 Data transmission
The Linux Kernel uses a packet-based TCP implementation. An application

sending data through one of the system calls (e.g., send(), sendpage(),. . . )
provides to the kernel a buffer of continuous data to transmit. The kernel’s TCP
stack will split this data into individual segments, whose size is controlled by the
MSS of the connection. These segments are created upon skb’s that are control
structures containing pointers to the data of each segment and additional infor-
mation necessary to allow linking the skb into a queue and store layer-specific
information. This layer-specific information is for example (at the TCP layer) the
sequence numbers associated to this segment. The TCP sequence numbers are
stored in a structure called tcp skb cb (shown in Listing 5.2), part of the skb. A
part from the sequence numbers, it also stores information about when the seg-
ment has been sent, if it has been acknowledged by a SACK-block and some
IP-specific info inside inet skb parm. When transmitting data, the TCP stack
will populate the seq and end seq fields with the corresponding information
and queue the skb inside the send-queue. Storing the sequence numbers allows
for easy processing for example when receiving cumulative acknowledgments (to
know whether the segment can be freed) and is used when writing the sequence
numbers inside the TCP header before pushing the segment on the interface.

Multipath TCP has its layered architecture, where the subflows are separated
from our meta-socket. An application transmitting data will push the bytes onto
the meta socket, which splits the segments in MSS-sized segments2. Our imple-
mentation uses the same tcp skb cb structure to store the data sequence numbers
and adds the skb’s inside the send-queue of the meta socket. Upon reception of
data acknowledgments, these skb’s will be removed from the send-queue and their
memory is freed up.

These segments, queued up in the meta send-queue, will be pushed on the indi-
vidual subflows. The Multipath TCP scheduler, explained in Chapter 4, decides on
which subflow to transmit the data. This transition from meta send-queue to sub-
flow send-queue involves several steps, in the function mptcp write xmit(),
shown in Figure 5.14. First, we check whether the segment fits inside the re-
ceive window advertised by the peer through a call to tcp snd wnd test().

2The MSS may be different among the subflows. We take the largest MSS among all subflows.
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Listing 5.2: TCP control information part of the skb
s t r u c t t c p s k b c b {

union {
s t r u c t i n e t s k b p a r m h4 ;

# i f IS ENABLED ( CONFIG IPV6 )
s t r u c t i n e t 6 s k b p a r m h6 ;

# e n d i f
} h e a d e r ; / * For incoming f r a me s * /

u 3 2 seq ; / * S t a r t i n g s e q u e n c e number * /
u 3 2 e n d s e q ; / * SEQ + FIN + SYN + d a t a l e n * /
u 3 2 when ; / * used t o compute r t t ’ s * /
u 8 t c p f l a g s ; / * TCP h e a d e r f l a g s . ( t c p [ 1 3 ] ) * /

u 8 sa ck e d ; / * S t a t e f l a g s f o r SACK/FACK. * /
# d e f i n e TCPCB SACKED ACKED 0x01 / * SKB ACK’ d by a SACK b l o c k * /
# d e f i n e TCPCB SACKED RETRANS 0 x02 / * SKB r e t r a n s m i t t e d * /
# d e f i n e TCPCB LOST 0 x04 / * SKB i s l o s t * /
# d e f i n e TCPCB TAGBITS 0x07 / * A l l t a g b i t s * /
# d e f i n e TCPCB EVER RETRANS 0x80 / * Ever r e t r a n s m i t t e d f rame * /
# d e f i n e TCPCB RETRANS (TCPCB SACKED RETRANS |TCPCB EVER RETRANS)

u 8 i p d s f i e l d ; / * IPv4 t o s o r IPv6 d s f i e l d * /
/ * 1 b y t e h o l e * /

u 3 2 a c k s e q ; / * Sequence number ACK’ d * /
} ;

Figure 5.14: A simplified view of the different steps involved when transmitting
data in Multipath TCP
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Figure 5.15: The TCP options are written in the header anew at every transmis-
sion.

As the segment in the meta send-queue may be larger than the MSS allowed
on the chosen subflow (e.g., because we use the largest MSS among all sub-
flows, or simply because the MTU of the interface changed in the middle of
the connection) we fragment the segment to an appropriate size by a call to
mptso fragment(). The call to mptcp skb entail() does all the magic
of queuing the segment on the subflow’s send-queue. We cannot simply leave the
segment on the meta send-queue as the subflow’s retransmission timers need to en-
sure a coherent byte stream. The internal workings of mptcp skb entail()
are explained in a follow-up paragraph as it is very specific to how the TCP
stack handles the TCP options. Finally, mptcp write xmit() makes a call
to tcp transmit skb() to push the segment one layer further, on the IP-
layer where it will end up on the NIC interface. mptcp write xmit()
makes sure that the retransmission timer of the subflow is set accordingly and
that further state variables are correctly set within the subflow with a call to
mptcp sub event new data sent().

When a segment is being pushed on a subflow, the sequence number space
changes to the per-subflow sequence numbers. The values stored inside the
tcp skb cb are thus being changed. However, we still need to write the data se-
quence number inside the TCP option space. To understand the complexity of
this, let’s look at how the regular TCP stack handles TCP options. Figure 5.15
shows the call graph of the data transmission. The segments are pushed on the
interface by the call to tcp transmit skb(), which will also write the TCP
options inside the TCP header. This means, that every time a segment is pushed
on an interface, its TCP options are written anew inside the header. E.g., when a
segment is sent due to the application’s call to send(), its TCP options will be
written for the first time inside the header. If it is going to be retransmitted due
to a timeout (coming from tcp retransmit skb()) its options will again be
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Figure 5.16: The skb is divided in different parts. The control structure (sk buff ),
the linear data and the paged memory for the packet’s payload.

written inside the header. For Multipath TCP this implies that the DSS option (al-
though for a specific segment it does not change) would need to be written every
time inside the TCP header. We thus would need to store as part of the skb the
data sequence number. A solution might be to extend tcp skb cb with additional
fields to store the required information. However, this would mean to increase the
size of an skb - impacting the memory footprint of all networking protocols being
used inside the stack. A modification, unacceptable for a generic Linux Kernel as
it is critical for the performance to keep the size of an skb as small as possible.

Our implementation in Multipath TCP v0.88 handles this in the following way.
We actually benefit from the fact that the DSS option does not change across mul-
tiple transmissions of the same segment. We immediately write the DSS option
inside the TCP header space when moving a segment from the meta send-queue
to the subflow send-queue. This seems like a straight-forward approach to handle
the above mentioned problem. But - as usual - the devil is in the details and han-
dling the DSS option in the described way introduced new problems that needed
to be taken care of. To understand these problems (and the implemented solution),
more details about the structure of an skb must be provided.

An skb is divided into different parts, shown in Figure 5.16. The control struc-
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ture sk buff maintains the different informations about the skb, like list-pointers,
as well as tcp skb cb and pointers to the payload of the segment.There are several
such pointers, all shown in Figure 5.16. When creating the skb upon a send-
call, it is not yet known to the stack how much header space it should reserve for
the TCP, IP and link-layer header. Thus, it reserves the maximum that might be
used. This reserved space is the region between the head and data pointers.
The stack starts filling the payload of the application starting from data until it
reaches the end-pointer. Following the end-pointer is a reserved memory region
that holds pointers to paged memory regions so that the payload can be put inside
the memory pages3.

When the TCP stack writes the TCP header (together with the TCP options)
on top of the payload, it moves the data pointer upwards for the required num-
ber of bytes. As suggested above, Multipath TCP could write before the call to
tcp options write() the DSS option on top of the payload. Multipath TCP
would then need to move the data pointer upwards to still allow the TCP stack
to write the remaining options on top of it. This seems feasible but many corner
cases will then encounter problems and would need special handling. The len
field of the skb would need to take the DSS option into account. However, this
same field is also used to compare the length of the payload with the MSS. The
DSS option will thus make the segment look larger than it actually is. We would
need to check all accesses to skb->len and modify them to ignore (or not -
depending on the use-case) the size of the DSS option.

We decided that it is easier to simply add the DSS option, without modifying
the data-pointer nor the len-field of the skb. There is just one problem to handle
in this case, and in terms of implementation complexity, it is much more localized
and requires a smaller impact across the whole stack compared to the previous
solution. The problem is that calls to pskb copy(), in charge of copying an
skb with its linear memory, will not copy the DSS option as they only copy from
data to tail. This is easily solved, by handling the calls (only two of them
inside the current TCP stack) to this function in a special way, forcing it to take
into account the DSS option.

The above described problem of writing the DSS option inside the TCP option
space has gone through multiple iterations over the history of the Linux Kernel
implementation of Multipath TCP. We are far from the ideal solution and as of
this writing another approach is being envisioned to reduce the complexity and
overhead of the Multipath TCP implementation4. This latter solution seems to be
the most clean one and is being adopted for the next version of Multipath TCP.

3This allows for efficient use of memory-mapping through the splice() system call.
4https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2014-06/

msg00047.html
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5.4.2 Data reception
The receiving host processes the incoming segments on the individual sub-

flows as if they were regular TCP. Segments received out-of-order, e.g. due to a
packet loss, are appended to the out-of-order queue of the subflow. Cumulative
acknowledgments are sent for the in-order segments, allowing the sender to ad-
vance the subflow sequence number space. As soon as in-order data is received,
the subflow passes the control to the Multipath TCP layer to reconstruct the byte-
stream.

Passing the control to the Multipath TCP layer is done through the callback
sk data ready. In regular TCP this callback is used to wakeup the applica-
tion and signal that data is waiting in the receive-queue of the TCP socket. For
Multipath TCP this callback has simply been redefined, allowing a clean layer
separation between the TCP subflows and the Multipath TCP layer. The call-
back is redefined to the function mptcp data ready(), which is in charge
of extracting the segments from the subflow’s receive-queue and push it into the
meta-socket’s receive/out-of-order queue.

The Multipath TCP layer iterates over the in-order segments of the TCP sub-
flow and as a first step does some preliminary checks on the segments in the func-
tion mptcp prevalidate skb(). As already mentioned in Section 2.3.3, if
a host receives data at the beginning of the connection without a DSS option, it
should fallback to regular TCP or destroy the subflow with a RST. The function
mptcp prevalidate skb() is in charge of verifying this condition.

Next, the DSS mapping of the segments sitting at the head of the subflow’s
receive-queue is extracted in function mptcp detect mapping(). During
the parsing of the options, we store inside tcp skb cb the offset of the posi-
tion of the DSS option in the TCP header. This is because we do not have
the space in tcp skb cb to store the full information of the mapping. Within
mptcp detect mapping() the DSS option is read out of the TCP header.
If the Multipath TCP connection is in infinite mapping-mode due to a fallback to
regular TCP, the mapping is inferred from the next expected data sequence num-
ber5. Finally, we need to transform a potential 32 bit data sequence number in the
DSS option to the 64 bit counterpart. This can be done as we know where we are
currently situated in the 64 bit sequence number space. It may of course be the
case that the stack receives a very old segment (more than 232 bytes ago) and thus
we might infer the incorrect 64 bit data sequence number. In this case, the checks
on the DSS checksum will fail (as it covers the 64 bit sequence number) and no
corruption of data will happen.

Before the data can finally be pushed to the meta socket, the stack must take
5In infinite mapping, Multipath TCP guarantees that the data sequence numbers are in-order

on the subflow.
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care of split and/or coalesced segments. A NIC on the sender side that supports
TCP Segmentation Offload (TSO) will split segments, so that the DSS mapping
effectively covers multiple smaller TCP segments. A subsequent segment coa-
lescing middlebox might then coalesce again some of these. Creating segments
where the mapping only covers half of the TCP segment, meaning that multiple
mappings are associated to a single segment. These segments must again be split
by the Multipath TCP stack, so that the data of each segment belongs to one sin-
gle mapping. The function mptcp validate mapping() takes care of this
splitting.

Finally, a mapping of the subflow’s receive-queue head has been de-
tected. This mapping may be spread across multiple segments, but each of
these is split in such a way that they entirely belong to the same mapping.
mptcp queue skb() is now in charge of pushing these segments to the meta-
socket receive-queue or out-of-order queue. But first, the DSS checksum is val-
idated by a call to mptcp verif dss csum(). If this one is valid, the stack
verifies that the data sequence number indeed falls within the range defined by the
advertised receive-window. The processing finishes by moving the segments out
of the subflow’s receive-queue into the meta socket’s out-of-order queue (in case
of reordering) or to the receive-queue (in case of in-order reception).

To allow the stack to process fewer individual segments, continuous regions
in the data sequence space of the receive-queue and the out-of-order queue are
merged together in one single skb (an optimization already applied to the legacy
TCP stack of the Linux kernel). This allows to process the queues with fewer
iterations and reduces the memory overhead, as every additional skb consumes
additional memory for the sk buff control structure and the TCP/IP headers.

5.4.3 HTTP performance
From the latency results in Section 5.2.3, we can see that on a LAN, a Mul-

tipath TCP connection starts slightly behind the equivalent TCP connection. A
small amount of bandwidth and CPU cycles are also consumed to establish addi-
tional subflows. HTTP is notorious for generating many short connections. How
long does an HTTP connection using Multipath TCP need to be for these startup
costs to be outweighed by Multipath TCP’s ability to use extra paths?

We directly connected a client and server via two gigabit links. For our tests
we use apachebench 6, a benchmarking software developed by the Apache
foundation that allows us to simulate a large number of clients interacting with an
HTTP server. We configured apachebench to emulate 100 clients that generate
100000 requests for files of different sizes on a server. The server was running

6http://httpd.apache.org/docs/2.0/programs/ab.html
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Figure 5.17: Apache-benchmark with 100 clients - As the file size grows, Multi-
path TCP’s benefit becomes more apparent as it outweighs the cost of the CPU.

Multipath TCP Linux v0.86 and used apache version 2.2.16 with the default
configuration.

We tested regular TCP that uses a single link, TCP with Ethernet bonding
using both interfaces and finally Multipath TCP using one subflow per gigabit
link. Ethernet bonding uses an Equal Cost Multipath (ECMP) approach to send
flows across different interfaces in a round-robin manner. Ethernet bonding is only
possible with a custom configuration of the end-host and the switch connected to
this end-host. Figure 5.17 shows the number of requests per second served in
all three configurations. We expect Multipath TCP to be significantly better than
regular TCP, and indeed this shows up in experiments: when the file sizes are
larger than 100 KB Multipath TCP doubles the number of requests served.

With files that are shorter than 30 KB, Multipath TCP decreases the perfor-
mance compared to regular TCP. This is mainly due to the overhead of establish-
ing and releasing a second subflow compared to the transmission time of a single
file. These small flows take only a few RTTs and terminate while still in slow
start.

TCP with link-bonding performs very well especially when file sizes are small:
the round-robin technique used by the Linux implementation manages to spread
the load evenly, utilizing all the available capacity. Multipath TCP has a slight
advantage over TCP with link-bonding only when file sizes are greater than 150
KB in our experiment.

With larger files, there is a higher probability that link-bonding ends up con-
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gesting one of its two links, and some flows will be slower to finish. Flows on
the faster link will finish quickly generating new requests, half of which will be
allocated to the already congested link. This generates more congestion on an
already congested link, with the effect that one link is highly congested while one
is underutilized; the links will flip between the congested and underutilized states
quasi randomly.

This evaluation shows that the transmission and reception of data through Mul-
tipath TCP can compete in terms of performance with regular TCP, although all
over our implementation we needed to make choices that are suboptimal for Mul-
tipath TCP in order to comply with the restrictions of a generic operating system
design.

5.5 Connection closure
Closing a Multipath TCP connection involves the handling of different state-

machines. Each subflow has to go through its own TCP-specific state-machine,
as well as the Multipath TCP layer together with the meta socket. The former is
triggered through the exchange of FIN flags in the TCP header, while the latter is
controlled through the DATA FIN inside the DSS option. Due to this, no particular
implementation needed to be done for the subflow’s state transitions. For the state
transitions of the meta socket, additional processing has been added to handle the
reception and transmission of the DATA FIN.

5.5.1 Avoiding time-wait state
Figure 5.18 shows a very particular issue within Multipath TCP. Many high-

performance applications try to avoid Time-Wait state by deferring the closure of
the connection until the peer has sent a FIN. That way, the client on the left of
Figure 5.18 does a passive closure of the connection, transitioning from Close-
Wait to Last-ACK and finally freeing the resources after reception of the ACK of
the FIN. An application running on top of a Multipath TCP enabled Linux kernel
might also use this approach. The difference here is that the close() of the con-
nection (Step 1 in Figure 5.18) only triggers the sending of a DATA FIN. Nothing
guarantees that the kernel is ready to combine the DATA FIN with a subflow-FIN7.
The reception of the DATA FIN will make the application trigger the closure of
the Multipath TCP connection (step 2), trying to avoid Time-Wait state with this
late closure. This time, the kernel might decide to combine the DATA FIN with
a subflow-FIN. This decision will be fatal, as the subflow’s state machine will

7As specified in RFC6824, this combination can only be done if no other outstanding data is
awaiting acknowledgment on other subflows.
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Figure 5.18: Although the application tries to avoid Time-Wait state by doing a
“late” close() (step 2) of the connection, the subflow may still end up in Time-
Wait state if the peer chose to not combine its FIN with the DATA FIN (step 1)
during its active closure.
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not transition from Close-Wait to Last-Ack, but rather go through Fin-Wait-2 into
Time-Wait state. The Time-Wait state will consume resources on the host for at
least 2 MSL (Maximum Segment Lifetime). Thus, a smart application, that tries
to avoid Time-Wait state by doing late closure of the connection actually ends up
with one of its subflows in Time-Wait state. A high-performance Multipath TCP
kernel implementation should honor the desire of the application to do passive
closure of the connection and successfully avoid Time-Wait state - even on the
subflows.

The solution to this problem lies in an optimistic assumption that a host doing
active-closure of a Multipath TCP connection by sending a DATA FIN will soon
also send a FIN on all its subflows. Thus, the passive closer of the connection can
simply wait for the peer to send exactly this FIN - enforcing passive closure even
on the subflows. Of course, to avoid consuming resources indefinitely, a timer
must limit the time our implementation waits for the FIN.

5.5.2 Resource freeing
The different structures that have been allocated during the creation of the

Multipath TCP connection must be freed by the kernel during the connection clo-
sure. This operation can be split in two parts. The subflows and the meta socket.

Subflows are not visible to the application and must thus be closed by the ker-
nel. The closure of a TCP socket is achieved through a call to tcp close().
This function assumes to be running in user-context, meaning that the call usually
comes directly from the application. However, the application does not have ac-
cess to the subflows and thus cannot close them. Additionally, it is not up to the
application to decide when to close a subflow. It’s rather the kernel that has the
knowledge of when a closure is appropriate (e.g., when a REMOVE ADDR option
has been received). To execute tcp close() within user-context we create a
work-queue when the closure of the subflow is scheduled.

All over the TCP stack, we have to access the meta socket to handle different
parts of a Multipath TCP connection. This implies, that the memory of the meta
socket cannot be freed until all TCP subflows have been closed. A simple way
to achieve this is to “abuse” the reference counter of the meta socket. In legacy
TCP, a reference counter is used on a socket which is being increased for example
when a timer is launched to prevent the kernel from freeing the socket while the
timer is still scheduled. Multipath TCP increases this reference counter for every
subflow that is added to the connection. That way, as long as subflows remain, the
memory of the meta socket will not be freed.

Additional structures have been created while establishing the Multipath TCP
connection, shown in Figure 5.1. The mptcp tcp sock of each socket will be
freed as soon as the corresponding tcp sock’s memory is liberated. This is sim-
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ply achieved through the callback sk destruct, which has been redefined to
mptcp sock destruct(), which is in charge of freeing the Multipath TCP
specific structures.

5.6 Squeezing the performance

The TCP stack of the Linux Kernel has gone through many years of perfor-
mance improvements. Sometimes, new APIs were offered to the applications to
allow a more efficient use of the Kernel’s stack, sometimes the hardware offered
new capabilities that the stack could use to its benefits.

The following explains how we changed the Multipath TCP implementation
to use three of these performance improvements to achieve up to 51.8 Gbps per-
formance for a single Multipath TCP connection.

5.6.1 Hardware offloading

Handling many small segments in the TCP stack of the operating system im-
poses a significant cost in terms of CPU consumption. Every segment imposes
an overhead on the OS. The more data is included inside a segment, the better
the overhead/payload-ratio will be. TCP Segmentation Offload (TSO) tries to im-
prove this ratio, by allowing the stack to create segments that are longer than one
MSS. These large segments are then sent to the NIC, which is in charge of splitting
them in MSS-sized segments. That way, the stack can process fewer individual
segments for a large transmitted payload.

At the receiver-side the same overhead/payload-ratio should be minimized.
Generic Receive Offload (GRO) allows the receiver to group consecutive incom-
ing segments into one larger segment, before passing it to the TCP/IP stack. This
can be done either by the NIC, or by the operating system. Segments, that are
consecutive in the TCP sequence number space, and have the same TCP options
can thus be merged together to form one single larger segment.

Multipath TCP can also benefit from TSO and GRO. At the sender side, using
large segments allows spending less CPU cycles for a given amount of bytes. The
TSO implementation splits the segments in smaller pieces, copying the DSS op-
tion on each segment. At the receiver side, the Multipath TCP stack merges these
segments back together to reconstruct the mapping. A Multipath TCP sender,
supporting TSO also allows the use of GRO at the receiver because the DSS op-
tion for the split segments will be the same - allowing GRO to merge the small
segments in a larger one.
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5.6.2 Flow-to-core affinity

Recent years have shown a trend in the architecture of today’s microprocessor.
The performance increase nowadays does not come anymore from an increase in
the clock speed, but rather by increasing the number of cores of the CPU and thus
increasing the parallelism of the execution. This parallelism needs to be correctly
handled by the applications running on this system. The TCP stack of the kernel
is also influenced by the increasing number of CPU cores on the end-hosts.

Incoming packets of a TCP connection could get spread across the CPU cores
to increase the parallelism of the packet-processing. Although the packet handling
inside the TCP-stack cannot be parallelized (as the shared memory - the socket -
must be protected from concurrent accesses), the processing prior to the TCP
stack (e.g., IP-layer and the other lower layers) could benefit from the parallelism.
However, the gain of this parallelism does not outweigh the cost. The cost consists
in the increased number of cache misses and lock contention when the segments
are being aggregated in the TCP layer. Lock contention and cache misses are
the biggest performance bottleneck in modern architectures as the CPU speed is
considerably higher than the memory speed [JNW10].

The TCP stack and the NICs handle this by enforcing flow-to-core affinity.
Indeed, a NIC will send the hardware-interrupt upon packet-reception always on
the same CPU core for all segments belonging to the same 5-tuple. Further, the
operating system will then reschedule this hardware-interrupt in a soft-interrupt
to process the incoming packet. An extension to the operating system allows
to schedule this software interrupt on the same CPU core as the application is
running. This process, called Receive-Flow-Steering (RFS) [Edg10] requires the
kernel to track on which CPU the application is running. This is achieved by a
simple function-call upon the send()/recv()/. . . system calls. This call regis-
ters the 5-tuple of TCP connections in a hashtable such that the soft-interrupt of
incoming segments can be scheduled on the appropriate CPU.

With Multipath TCP multiple TCP subflows are being used to transmit and
receive the data. These segments might be handled by a different CPU, as neither
the NIC nor the RFS-implementation is aware of Multipath TCP. As the subflows
are being sent on the different CPU cores, a considerable amount of cache misses
and lock contention will limit Multipath TCP’s performance. An ideal implemen-
tation would send the hardware interrupts as well as the soft-interrupts each on
the same CPU core to reduce the amount of cache misses and lock contention.
Scheduling the hardware interrupts of all TCP subflows belonging to a Multipath
TCP connection on the same CPU core would require that the NIC understands
Multipath TCP and recognizes which subflow belongs to which Multipath TCP
connection. We do not have the capabilities to modify the hardware of the NIC to
take Multipath TCP into account. However, with RFS - an in-kernel implementa-



5.6. Squeezing the performance 111

tion - we are able to improve the situation.
As previously mentioned, RFS tracks on which CPU core the application is

running and registers the 5-tuple of the corresponding connection in a hashtable to
schedule the soft-interrupt on the specified CPU core. Extending RFS to support
Multipath TCP is relatively easy. In fact, RFS must simply register the 5-tuples
of all the TCP subflows belonging to the same Multipath TCP connection in the
hashtable in such a way that the segments of all these subflows will be scheduled
on the same CPU core.

5.6.3 Zero-copy support

An application transmitting data puts this data inside a memory region, and
passes this pointer via the send()-system call to the kernel. The kernel needs to
copy this memory region from the user-space to the kernel-space. This is because
after the send() system call, the user-space may overwrite the memory region,
although the segment has not even left the host. This copying from user-space to
kernel-space consumes a significant amount of CPU cycles, as many cache-misses
may happen during this operation.

To avoid this memory copying process, zero-copy support has been added to
the kernel. System-calls like sendfile() and splice() use this feature.
It takes benefit of the use-case where the user-space does not even process the
data it is transmitting from one file-descriptor to another. This may for example
be the case when copying two files. The user actually does not care about the
content of the file. The same principle applies to web- or file-servers. They use
the sendfile() system call as the content of a static webpage does not need to
be parsed by the user space.

The system calls end up in the kernel, where the function
do tcp sendpages() is simply moving memory pages from one file-
descriptor to another. On the Multipath TCP side of the file descriptors, skb’s
are being created. As the memory-pages may be scattered around the entire
memory, scatter/gather must be supported by the NIC to allow using zero-copy
support. The TCP-stack verifies the NIC’s scatter/gather capabilities before using
sendfile(). In case the NIC does not support it, it falls back to regular
behavior, copying the data from the pages to the kernel memory.

For Multipath TCP we must make sure that scatter/gather is supported on all
NICs that are used among the subflows belonging to this Multipath TCP connec-
tion. If there is a NIC that does not support it, the Multipath TCP connection
cannot benefit from zero-copy support.
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Figure 5.19: We interconnect our servers with 6 10 Gig interfaces back-to-back.

5.6.4 Pushing Multipath TCP to the limits
With the Linux kernel implementation of Multipath TCP moving out of its

“prototype” status over the last years, we are curious what performance this imple-
mentation actually can achieve when being offered high-end servers and enough
capacity between these servers. For this trial we use HP DL 380p G7 servers,
each equipped with 3 dual-port 10Gig NICs. The machines were interconnected
back-to-back, as shown in Figure 5.19.

We used a slightly customized implementation of the Multipath TCP Linux
Kernel. We modified the kernel to only create one single subflow for each in-
terface8. Apart from this minor modification, the kernel is a standard Multipath
TCP implementation. It includes all hardware offloading extensions, flow-to-core
affinity as well as zero-copy support, as described earlier in this section. Fur-
ther, we optimized the kernel configuration for the specific hardware and disabled
unwanted features from the stack (like iptables).

We also optimized the run-time configuration of the system. We hand-tuned
the interrupt coalescing on the server to improve its segment coalescing when per-
forming generic receive offloading. Increasing the interrupt-coalescing allows for
more segments to be received by the NIC, before triggering the hardware interrupt.
This increases the chances of having consecutive segments that are candidates for
the generic receive coalescing feature as described in Section 5.6.1

We also pinned the application to a specific CPU, to prevent the OS’s sched-
uler from moving the application from one CPU core to another, introducing cache
misses. Further, we instructed the NIC to send all its hardware interrupts for in-
coming segments to the same CPU core (different than the one where the appli-
cation is running). This allows to make the pre-processing of the segments (like
GRO) happen on another CPU, freeing CPU cycles for the Multipath TCP stack

8Multipath TCP by default tries to establish a full mesh across all available interfaces - not
required for our purposes
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Figure 5.20: Our Linux kernel implementation of Multipath TCP is able to
scale up to 51.8 Gbps for a single Multipath TCP connection. https://www.
youtube.com/watch?v=VMdPI9Cfi9k

and the application. Finally, we significantly increased the memory limitations of
the socket-configuration to avoid being limited by the receive window.

All these tunings allowed us to scale the Multipath TCP kernel up to a good-
put of 51.8 Gbps for a single Multipath TCP connection, transmitting data across
these two machines, using 6 10 Gig interfaces. A video (screenshot can be
seen in Figure 5.20), available at https://www.youtube.com/watch?v=
VMdPI9Cfi9k, shows how Multipath TCP behaves when each of these 10 Gig
interfaces is added one after the other to the connection.

5.7 Conclusion
This chapter has shown the high-level design of the Linux kernel implemen-

tation of Multipath TCP. It has been shown why certain choices have been made
and what their underlying motivation is. Many of these decisions have been made
in order to reduce the performance overhead for regular TCP. This kind of design
decision would not be necessary in a “Multipath TCP”-only world. However, we
are still far away (and may never reach this state) from such a world and thus must
rather optimize for the common-case which nowadays is still regular TCP, with
Multipath TCP being the exception.
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Nevertheless, it has been shown that our design - even when respecting all
these restrictions - is still able to achieve a high performance of up to 51.8 Gbps.
It remains to be seen how the implementation will evolve in the future and whether
Multipath TCP will be accepted in an upstream submission to the standard Linux
kernel.



Chapter 6

Retrospecting on Multipath TCP

The previous chapters have discussed and proposed improvements to different
parts of Multipath TCP. The specification has been explained in detail in Chap-
ter 2. The Experimental Design approach allows to evaluate Multipath TCP and
has shown that our reactive approach to receive-window limitations brings good
performance in heterogeneous environments. Chapter 5 explains the implementa-
tion of Multipath TCP and how the code has been designed to be scalable. Mul-
tipath TCP is being commercially deployed [Bon13] and many researchers are
using and improving it. This shows that Multipath TCP, as it is specified today,
works reasonably well for most use-cases.

However, one might still ask how could we design Multipath TCP today, tak-
ing into account the lessons learned during the last four years? More specifically,
we address the following questions. Does the specification allow for sufficient
flexibility to accommodate new use-cases in the future? Does the security ele-
ments of Multipath TCP satisfy the requirements other use-cases might demand?

This chapter takes a step back and looks at how one might design Multipath
TCP by taking into account the experience gained during the last years.

6.1 Establishing connections
The initial handshake of a Multipath TCP connection serves different goals,

as described in Section 2.1.1. Among these are the exchange of the tokens, the
computation of the IDSN and the derivation of the keys for subflow authentication.
We have shown in Chapter 5 that both, the key generation and the verification for
its uniqueness, add a cost in terms of performance.

In this section we consider how Multipath TCP could be redesigned if we
ignore for a moment the security requirements. This means that during the initial
handshake, no keys need to be negotiated. The security aspect of Multipath TCP

115
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will then be considered in the next section.
We suggest a low-overhead Multipath TCP whose goal is to reduce the over-

head in terms of CPU cycles during the handshake of the initial subflow as well
as for the additional subflows. We achieve this by removing the security from
Multipath TCP. The target environment for this flavor of Multipath TCP might be
closed environments like data centers, where one can be sure that no attackers are
present. Another use-case would be where the application-layer protocol already
provides sufficient security such that hijacking-attacks of the Multipath TCP con-
nection are not possible. Transport Layer Security (TLS) provides such kind of
protection against session hijacking.

The following details how our proposed low-overhead handshake allows to
establish the initial as well as the subsequent subflows.

6.1.1 Initial Handshake

The information that needs to be negotiated during the initial handshake are
the token and the IDSN. The negotiation must take place during the establishment
of the initial subflow, inside the MP CAPABLE options. In order to differentiate
our proposed low-overhead version from Multipath TCP as defined in RFC 6824,
the version field of the MP CAPABLE is set to 1 during the handshake.

In order to negotiate the tokens during the handshake, each host generates a
locally unique token (Figure 6.1(a)). The tokens are echoed back in the third ACK
of the handshake to support stateless servers [Edd06].

The generation of an IDSN can be done thanks to the concatenation of the
tokens. The IDSN for packets going from the client to the server (IDSN

A

) is
given by concatenating token

B

and token
A

. The reverse approach is used for the
packets sent by the server (IDSN

B

).:

IDSN
A

= token
B

��token
A

IDSN
B

= token
A

��token
B

Using a concatenation of the tokens weakens the security of Multipath TCP
against data-injection attacks compared to the hash of the keys used by RFC 6824.
The hash of the keys is more secure, because the keys will never be exchanged
in clear-text after the 3-way handshake of the initial subflow. In low-overhead
Multipath TCP, the tokens are revealed during the establishment of additional
subflows, giving the attacker an indication of the initial data-sequence number.
However, as we consider the high-performance version of Multipath TCP to be
used in secure environments (e.g., data centers), this tradeoff should be acceptable.
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(a) Initial subflow establishment.

(b) Additional subflows establishment.

Figure 6.1: Low-overhead Multipath TCP: A very simple mechanism to start a
Multipath TCP connection and create new subflows.

6.1.2 Additional subflows

As we do not intend to protect against hijacking attacks, the authentication
of new subflows is not necessary. Our proposal only needs a way to identify the
Multipath TCP connection to which the subflow must be linked.

To establish a new subflow, the client sends the SYN together with the
MP JOIN option (Figure 6.1(b)) that contains the token of the server (token

B

).
The token allows the server to identify the connection associated to this new sub-
flow – similar to standard Multipath TCP. Including the token in the third ACK
allows to handle the MP JOIN in a stateless manner (see below).

Compared to the analysis of Section 5.2.3 it is obvious that the most costly
parts of the handshake for additional subflows have been removed. There is
no need to generate a random number or compute an HMAC. Furthermore, the
MP JOIN option consumes fewer bytes in the TCP header – beneficial for future
extensions to TCP.



118 Chapter 6. Retrospecting on Multipath TCP

6.1.3 Token generation
In Section 5.2.3 we identified the issue of the token generation and the possi-

bility of token collisions. We mitigate this in our proposal, as shown hereafter.
The token can be the result of applying a 32-bit block cipher (e.g.,

RC5 [Riv95]) on a counter together with a local secret: token = RC5(counter ⊗
secret). Although, we may have token-collisions (wrap-around of the counter), a
collision is very rare as the old token has to survive 232 other connections. Addi-
tionally, the output looks random (due to RC5) and is hard to guess for an attacker,
thanks to the local secret.

6.1.4 Stateless server
Handling the establishment of additional subflows in a stateless manner is ben-

eficial as an attacker cannot consume memory resources on the server by sending
out SYN segments with the MP JOIN option. However, allowing stateless han-
dling of new subflows implies that the third ACK has to carry all the information
to allow the server to identify the Multipath TCP connection, and that this third
ACK is indeed a reply to a SYN/ACK issued by the server.

To support stateless handling of SYN’s with MP JOIN, the server has to per-
form the following upon the reception of a SYN:

• Check if there exists a Multipath TCP connection corresponding to the to-
ken inside the MP JOIN.

• Reply with a SYN/ACK

When receiving the third ACK (sent reliably as in today’s standardized Multi-
path TCP [FRHB13]), the server verifies that indeed it has generated a SYN/ACK
(like regular TCP’s SYN-cookie mechanism [Edd06]). The third ACK also con-
tains an MP JOIN with the token, allowing the server to identify the Multipath
TCP connection this new subflow is joining.

6.1.5 Evaluation
We implemented the proposed low-overhead Multipath TCP on top of our

Linux Kernel implementation [RPB+12]. Our evaluation is twofold. First, we
measure the time taken to generate a SYN/ACK, and analyze where the perfor-
mance gain comes from. Second, we evaluate the benefits of our proposal on the
number of HTTP-requests a server can handle.

Our testbeds contain two types of machines. The first testbed uses two Xeon-
class servers, interconnected over 10Gig Ethernet interfaces. These machines use
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2 dual-core Intel Xeon 2.53Ghz processors and 8GB of RAM. The second testbed
uses a Raspberry Pi as the server 1. A Raspberry Pi is a low-end machine with a
100Mb Ethernet interface and an ARM (700 BogoMIPS) processor.

Generating a SYN/ACK

It is important to distinguish two cases when evaluating the time to generate
a SYN/ACK. Indeed, as described in Section 2.1.1, the establishment of the ini-
tial subflow (MP CAPABLE) involves different steps and computations than the
establishment of additional subflows (MP JOIN).

To evaluate the cost of our solution, we establish Multipath TCP connections
and measure the time a server takes to reply to a SYN/ACK. To achieve best
performance, this time must be small. The measurement setup and procedure is
similar to the one used in Section 5.2.3.

MP CAPABLE Figure 6.2 shows the time taken to reply to a SYN for the initial
subflow. The Xeon-class servers (Figure 6.2(a)) take between 12 and 14 µs with
standard Multipath TCP. Our proposal to use a low-overhead handshake improves
this by 2 to 3 µs. On a Raspberry Pi (Figure 6.2(b)), this improvement is even more
apparent, as 80% of the SYN’s experience a gain of 40 µs. Overall, we see a 20%
reduction of the time needed to generate a SYN/ACK regardless of the server’s
hardware.

This improvement comes from the time it takes to generate a random 64-bit
key. Indeed, today’s standard Multipath TCP performs two computations to re-
ply to a SYN with the MP CAPABLE option: (i) Generate a random 64-bit key;
(ii) Compute a SHA-1 on this key in order to verify the token’s uniqueness. We
observe that generating the 64-bit random key accounts for half of the gain. Re-
placing the random key generation by a simpler hash (e.g. using MD5) on the
5-tuple and a local secret greatly improves the performance. MPTCP No Random
in Figure 6.2 shows the improvement of standard Multipath TCP by using such a
more efficient random number generator.

To improve the overall performance, we therefore recommend to replace all
random number generations in Multipath TCP with a hash of the 5-tuple and a
local secret. This complies with current recommendations for generating random
numbers provided by RFC 4086 [ESC05].

MP JOIN Establishing an additional subflow involves more complex computa-
tion than for the initial subflow such as an HMAC calculation and the generation
of a random number. MPTCP No Random from Figure 6.3 depicts the effect

1http://www.raspberrypi.org/
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Figure 6.2: Our implementation of low-overhead Multipath TCP decreases the
time to generate a SYN/ACK with MP CAPABLE by more than 20%.



6.1. Establishing connections 121

4 6 8 10 12 14 16 18
Micro Seconds

0

20

40

60

80

100
C

D
F

%

Standard MPTCP

MPTCP No Random

Low-overhead MPTCP

(a) Xeon Class Server

150 200 250 300
Micro Seconds

0

20

40

60

80

100

C
D

F
%

Standard MPTCP

MPTCP No Random

Low-overhead MPTCP

(b) Raspberry Pi

Figure 6.3: The cost of the HMAC becomes apparent when measuring the time to
reply to a SYN with MP JOIN.
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of replacing the random number generation of standard Multipath TCP by the
above proposed hash computation. The main difference between standard Mul-
tipath TCP and the low-overhead proposal is the HMAC computation. The dif-
ference between MPTCP No Random and low-overhead Multipath TCP in Fig-
ure 6.3 shows the impact of generating an HMAC on the time taken to generate a
SYN/ACK. Overall, the gain is around 33% for the Xeon-class server as well as
on the Raspberry-Pi.

Impact on real traffic

We also measured the performance of network-heavy applications with respect
to each solution. Indeed, changing the Multipath TCP handshake also impacts the
application’s performance as it influences the time taken to generate the SYN, re-
ceiving the SYN/ACK and sending the third ACK, and finally verifying the HMAC
in the third ACK.

We use apachebenchmark2, a benchmarking software developed by the
Apache foundation, that allows us to simulate a large number of HTTP-clients
sending requests to a server. We measure the number of HTTP-requests the server
is able to handle. We use an HTTP reply of 1KB in order to identify the impact of
the Multipath TCP handshakes.

We simulated 250 clients with apachebenchmark, talking to the Xeon-
class server over a 10Gig interface. We instructed Multipath TCP to create be-
tween 1 and 4 subflows. The results are presented in Figure 6.4. Our proposed
Multipath TCP variant improves the performance by up to 10% compared to stan-
dard Multipath TCP. Replacing the random number generation by the previously
described hash generation improves the performance if the number of subflows is
not too high. Indeed, when too many subflows are being created, the generation
of the HMAC becomes the bottleneck in today’s Multipath TCP.

We have performed a similar evaluation by replacing the Xeon-class HTTP
server with a Raspberry Pi. We down-scaled the number of parallel clients to
10 as the Raspberry Pi is not able to handle a large number of parallel HTTP
requests. The Raspberry Pi shows similar results as on the Xeon-class server,
with an improvement of up to 8% in terms of number of requests per second it can
serve.

6.2 Securing Multipath TCP
The previous section explored how we could redesign the handshake of the

initial subflow in order to reduce the computational overhead that comes with the
2 http://httpd.apache.org/docs/2.2/programs/ab.html
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Figure 6.4: The low-overhead variant of Multipath TCP increases the number of
requests per second by up to 10% on Xeon-class servers. A similar improvement
can be observed on a Raspberry Pi.
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key generation. One motivation for this might be that upper layer protocols like
TLS already provide protection against hijacking/traffic injection attacks.

However, even Multipath TCP as specified in RFC 6824 [FRHB13] has some
weaknesses with respect to security and its vulnerability with respect to Denial-
of-Service attacks.

6.2.1 Residual threats in Multipath TCP
The security of Multipath TCP is based on the clear-text exchange of a pair

of keys during the handshake of the initial subflow. Further, the exchange of
HMACs allows the end-hosts to authenticate each other during the establishment
of additional subflows. The following analyses some of the residual threats that
are present in the specification of Multipath TCP [BPG+14].

Eavesdropper in the initial handshake

An attacker, which observed the 3-way handshake of the initial subflow, can
move away from the initial path and establish a subflow with the original end-
hosts. It can authenticate itself since it has knowledge of the keys - observed
during the 3-way handshake of the initial subflow. This subflow then allows the
attacker to fully hijack the connection. This vulnerability was readily identified
at the moment of the design of the Multipath TCP security solution and the threat
was considered acceptable.

DoS attack on MP JOIN

Upon reception of a SYN + MP JOIN message of the 3-way handshake for ad-
ditional subflows, the server needs to create state. This, because the token is used
to identify the Multipath TCP connection this new subflow belongs to. As this
token is not resent in the third ACK of the handshake, the server must remember
that the 5-tuple of the SYN belongs to the specified Multipath TCP connection.

Assume that there exists a Multipath TCP connection between host A and host
B, with tokens T

A

and T
B

. An attacker, sending a SYN + MP JOIN to host B, with
the valid token T

B

, will trigger the creation of state on host B. The number of
these half-open connections that a host can store per Multipath TCP connection is
limited. This limitation is implementation dependent. The attacker can simply ex-
haust this limit by sending multiple SYN + MP JOIN with different 5-tuples. The
(possibly forged) source address of the attack packets will typically correspond to
an address that is not in use, or else the SYN/ACK sent by Host B would elicit a
RST from the impersonated node, thus removing the corresponding state at Host
B.
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This effectively prevents host A from sending any more SYN + MP JOIN to
host B, as the number of acceptable half-open connections per Multipath TCP
connection on host B has been exhausted.

The attacker needs to know the token T
B

in order to perform the described
attack. This can be achieved if it is a partial on-time eavesdropper, observing the
3-way handshake of the establishment of an additional subflow between host A
and host B. If the attacker is never on-path, it has to guess the 32-bit token.

SYN flooding amplification

SYN flooding attacks [Wes07] use SYN messages to exhaust the server’s re-
sources and prevent new TCP connections. A common mitigation is the use of
SYN cookies [Wes07] that allow the stateless processing of the initial SYN mes-
sage.

With Multipath TCP, the initial SYN can be processed in a stateless fashion
using the aforementioned SYN cookies. However, as we described in the previous
section, as currently specified, the SYN + MP JOIN messages are not processed
in a stateless manner. This opens a new attack vector. The attacker can now open
a Multipath TCP connection by sending a regular SYN and creating the associ-
ated state but then sending as many SYN + MP JOIN messages as supported by
the server with different source address and source port combinations, consuming
server’s resources without having to create state in the attacker. This is an am-
plification attack, where the cost on the attacker side is only the cost of the state
associated with the initial SYN while the cost on the server side is the state for the
initial SYN plus all the state associated to all the following SYN + MP JOIN.

6.2.2 Leveraging user-space security

It has been shown that an eavesdropping attacker can easily hijack the Multi-
path TCP connection as the keys are sent in clear during the 3-way handshake of
the initial subflow.

However, some application-layer protocols like TLS or SSH already negotiate
a shared key between the end-points. In this section we reconsider the design-
decision to negotiate keys within Multipath TCP. We do this by setting us in the
context of an application-layer protocol that already negotiates a secret between
the end-points. Our solution then relies on this secret to authenticate the new
subflows to each other.

The following explains how we transform Multipath TCP to achieve the above
goal.
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Figure 6.5: Header of the MP CAPABLE option

Connection initiation

The handshake of the initial subflow is a small variation to the handshake of
RFC 6824 and also integrates nicely with the handshake proposed in Section 6.1.
The header of the MP CAPABLE option of these two Multipath TCP-versions has
the format, shown in Figure 6.5.

We propose to use the B bit in this option to indicate whether the host that
sent the MP CAPABLE option will use an application supplied key to authenticate
the additional subflows or not. When the B bit is set, it indicates that the authen-
tication key is supplied by the application. If the B bit has not been set in both
directions, the authentication mechanism is used as defined by the Multipath TCP
version ([FRHB13] or [PB12]).

In Multipath TCP version 0, even if the B bit is set, the end-hosts still have to
generate a key that fulfills the requirements as defined in Multipath TCP version
0. This is necessary to handle the case where the client supports the B bit, but the
server not yet. A more in-depth analysis of the deployment scenario is provided
below.

By using the same handshake as in Section 6.1, the proposed handshake can
also benefit from the lower overhead for generating the token and thus the faster
establishment of the initial subflow.

Starting a new subflow

The handshake for the establishment of a new subflow is similar to the one
specified in [FRHB13]. There are two important differences. First, the HMAC is
computed by using the keys provided by the application. Second, the token and
the client’s random number are included inside the third ACK to allow stateless
operation of the passive opener of an additional subflow.

In order to allow the token
B

and R
A

inside the third ACK, the HMAC
A

must
also be a truncated version of the 160-bit HMAC-SHA1. Thus, HMAC

A

is the
truncated (leftmost 128 bits) of the HMAC as shown in Figure 6.6.

As the third ACK includes the token and the random nonce, the MP JOIN
message format of the third ACK is as show in Figure 6.7. The length of the
MP JOIN option in the third ACK is 28 bytes. There remains enough space to
insert the timestamp option in the third ACK.

The semantics of the backup-bit ”B” and the Address ID are the same as
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Figure 6.6: Handshake of a new subflow.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype B Address ID

Sender’s Truncated HMAC (128 bits)

Sender’s Random Number (32 bits)

Receiver’s Token (32 bits)

Figure 6.7: Format of the MP JOIN option

in [FRHB13].

Multipath TCP API

The proposed mechanism requires an interaction between the application and
the Multipath TCP layer. This can be achieved by the means of socket options.
We define two socket options:

MPTCP ENABLE APP KEY : This socket option tells the socket layer that an
application supplied key will be used to secure the establishment of addi-
tional subflows. This socket option must be used before establishing the
initial subflow, or before starting to listen on a socket to accept new con-
nections. When this socket option is used, the MP CAPABLE option is sent
with the ”B”-bit set to 1.
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MPTCP KEY : This socket option allows the application to provide a key to the
Multipath TCP layer. Both end-points must use this socket option in order
to allow the Multipath TCP-layer to create new subflows. It is up to the
application to negotiate the key between the end-points. E.g., in the case
of TLS, a derivate of the master secret can be used, by following the key
derivation recommended in RFC 5705 [Res10].

Evaluation

Leveraging the user-space keys to the Multipath TCP layer may have impli-
cations in terms of performance as well bring deployment problems. This section
sheds some light on these issues.

Deployment This proposed mechanism assumes that the application uses new
socket-options to provide the key to the Multipath TCP-layer. Thus, the first
requirement for deploying this Multipath TCP handshake is that the TLS-layer
has been modified. There may of course be scenarios, where the client is sup-
porting the proposed solution, but the server not. Thus, the client sends out the
MP CAPABLE with the B bit set, but the server replies without enabling the B
bit. Upon reception of the SYN/ACK, it is up to the client’s policy to react. It can
either continue with the negotiated version of Multipath TCP but without using
the key from the application or fallback to regular TCP.

The applications will have to pass the shared key to the Multipath TCP-layer
by the means of a socket-option. It may be that the client’s application has already
done the call to the socket-option but not the server’s application. The server will
receive a SYN with the MP JOIN option, without knowing the key. In that case
the server should silently drop the SYN. The TCP retransmission mechanism on
the client-side will retransmit the SYN after the expiration of the initial RTO (after
1 second). And the server’s application will have eventually set the key via the
socket-option.

Performance We implemented the proposed solution in order to measure how
long it takes to establish a second subflow, compared to standard Multipath TCP.
We decided to implement it with TLS. However, it is also possible to implement it
with SSH, or any other application-level protocol that negotiates a shared secret.
In order to provide a derivate of TLS’s master secret to the Multipath TCP layer
we extended the OpenSSL3 library.

Today’s Multipath TCP opens a second subflow after 2 RTTs. The first RTT is
dedicated to the 3-way handshake of the initial subflow, the second RTT is spent

3http://openssl.org/
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while waiting for a first ACK of the first chunk of data over the initial subflow
(described in [RPB+12]). With external keys, an additional subflow can only be
established after 3 RTTs. The first RTT is still dedicated to the 3-way handshake.
The second and third RTTs are necessary to allow TLS to negotiate the master
secret.

Type Delay (Data Center) Delay (Internet-like) RTTs
Standard MPTCP 352 ± 2 µs 40.372 ± 0.002 ms 2
MPTCP ext. keys 1910 ± 13 µs 61.934 ± 0.02 ms 3

Table 6.1: Using the external keys delays the establishment of an additional sub-
flow by one RTT in the realistic Internet-like-scenario.

We evaluate this in our testbed in two scenarios. First, without adding any
additional delay (e.g., data-center like). Second, by emulating a 20 ms delay
between the hosts. The results are presented in Table 6.1. Without additional
delay, the creation of the second subflow is delayed 5-6 times more than with
standard Multipath TCP. This is due to the delay it takes for the application to
perform the crypto computation and provide the shared secret to Multipath TCP
via the MPTCP KEY socket option. The influence of the RTT is negligible in this
scenario.

With an RTT of 20 ms, it becomes apparent, that standard Multipath TCP
needs two RTTs in order to start establishing the second subflow, while using the
external keys increases this delay to three RTTs.

We argue that this additional delay is not of a big concern. In Internet-like
scenarios, the second subflow is delayed by only one RTT. Moreover, as TLS is
being used, no data will be sent unless the shared secrets have been exchanged by
TLS. The second subflow will be established as soon as TLS starts sending the
application’s data and thus the user can fully benefit from Multipath TCP.

6.3 Long-term extensibility
The previous sections introduced a low-overhead Multipath TCP handshake

and another extension that allows to do the authentication of new subflows by us-
ing keys derived by the application. It becomes apparent that Multipath TCP re-
quires more flexibility when signaling its control information to allow a long-term
extensibility. Especially the limitation of 40 bytes within the TCP option-space
is a major concern for future extensions to Multipath TCP and TCP in general.
Further, it has been shown that there are some problems that require a different
way of exchanging the control information within Multipath TCP. For example,



130 Chapter 6. Retrospecting on Multipath TCP

the ADD ADDR option has been proven to be a security risk, as it allows off-
path attackers to hijack a Multipath TCP connection [BPG+14]. A solution to this
requires to add additional security to the address-advertisement, requiring even
more bytes in the TCP option space. Further, it has been shown that the loss of
a REMOVE ADDR can cause performance problems [PDD+12]. A reliable trans-
mission of the REMOVE ADDR option would be beneficial for Multipath TCP.

All these problems have their origin in the design-choice of using the TCP
option space for the signalling of Multipath TCP’s control information. In this
section, we show that another design can be envisioned. Instead of using only
TCP options to exchange control information, we show that it is possible to de-
fine a control stream in parallel with the data stream. This new stream can be
used to exchange the control information over the established subflows. It allows
two Multipath TCP hosts to reliably exchange control information without being
restricted by the limited TCP option space. A similar suggestion has been done
early at the design-time of Multipath TCP with MCTCP [Sch12]. However, this
proposal was vulnerable to deadlocks, because the DATA ACK was considered to
be part of the ”control stream”. Our proposal uses the control stream solely to
exchange control information that is not directly linked to the progression of the
data stream.

Together with the control stream, we propose to modify the Multipath TCP-
handshake so that no crypto information is exchanged inside the TCP options and
basically use the low-overhead handshake presented in Section 6.1. We suggest
to use the control stream instead to negotiate the crypto information.

A new sequence number space

In contrast to SCTP [Ste07], TCP and Multipath TCP [FRHB13] only support
one data stream. SCTP uses chunks to allow the communicating hosts to ex-
change control information of almost unlimited size. As explained earlier, having
a control stream in Multipath TCP would enable a reliable delivery of the control
information without strict length limitations.

This section defines a control stream that allows to exchange Multipath TCP
control information of arbitrary length besides the regular data stream. The control
stream holds data in a TLV-format and thus any type of data can be exchanged
within it. Further, the control stream provides a reliable and in-order delivery of
the control data.

The control stream is sent inside the payload of TCP segments. This ensures a
reliable delivery of the TLVs exchanged in the control stream. Further, a separate
control-sequence number space is defined for the control stream to ensure in-
order delivery of the control stream. The Initial Control stream Sequence Number
(ICSN) is the same as the IDSN in the respective directions. A DSS-mapping is
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Lenght Subtype (reserved) S F m M a A

Control ACK (4 or 8 octets, depending on flags)

Control sequence number (4 or 8 octets, depending on flags)

Subflow Sequence Number (4 octets)

Control-Level Length (2 octets Checksum (2 octets)

Figure 6.8: The S bit of the ’reserved’ field is set to 1 when sending on the control
stream.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Length

Value (Length - 4)

Figure 6.9: The TLV option format

used within the TCP option space to signal the control stream sequence numbers
as well as control stream acknowledgements. This DSS-mapping option is the
same as the one defined in [FRHB13]. To differentiate the control stream from
the data stream, we use the last bit of the ’reserved’ field of the Multipath TCP
DSS option. We call this bit the Stream (S) bit. When the DSS option is used
to map regular data, this bit is set to 0 as currently recommended in RFC 6824.
When the DSS option is used to map a TLV on the control stream, it is set to 1
(see Figure 6.8).

The control information exchanged in the control stream is encoded by using
a TLV format, where the type and length are 16-bit values. This allows for maxi-
mum extensibility and to use very long data within the control stream. The format
of the proposed TLV option is shown in Figure 6.9.

Window considerations Multipath TCP uses the receive window to do flow
control at the receiver. The Multipath TCP receive window is used at the data
sequence level, however any segment sent on a subflow must obey to the last
window-announcement received on this particular subflow with respect to the
subflow-level sequence number.

The control stream is no different with respect to this last point. The subflow-
sequence numbers used for control stream data must fit within the window an-
nounced over this specific subflow. However, to avoid issues of receive-window
handling at the control stream sequence number level, a host may never have
more than one unacknowledged TLV in-flight. This effectively limits the amount
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of memory required to support the control-stream down to 64 KB (the maximum
size of a TLV-field).

TCP uses the congestion window to limit the amount of unacknowledged in-
flight data within a TCP connection. The control stream must also obey to this
limitation on each TCP subflow. As the control stream uses regular TCP sequence
numbers, the congestion-window limitations apply too.

Use-cases

The control stream can be used to negotiate the crypto material to authenticate
new subflows. Thus, the handshake of the initial subflow does not need anymore
to exchange teh 64-bit keys in plaintext. The control stream actually enables the
use of our low-overhead variant of Multipath TCP, presented in Section 6.1.

How this exchange of the crypto material within the control stream is achieved
remains to be specified and depends on the different use-cases. For example, a
Diffie-Hellman key exchange could be done over the control stream.

Further, other use cases can benefit from the control stream. E.g., the address
advertisement could be done via this solution. In RFC6824, the address-signaling
is achieved through the ADD ADDR and REMOVE ADDR options. These options
are sent within the TCP option space and thus do not benefit from reliable delivery.
However, it has been shown that such a reliable delivery of the REMOVE ADDR
would be beneficial for Multipath TCP [PDD+12]. Further, security concerns
rose concerning the ADD ADDR option (as explained in [BPG+14]). Using the
control stream to signal the addition or removal of addresses allows to make these
options reliable and provides the space to add any kind of cryptographic material
to enhance their security.

6.4 Conclusion
In this chapter we took a step back and reflected on the issues as well as the

possible room for improvement that have been identified during the last years
of Multipath TCP’s usage and implementation experience. We have shown that
the current Multipath TCP handshake introduces an overhead in terms of per-
formance, while not even providing sufficient security to protect against on-path
passive attackers. An alternative, lightweight handshake would improve the per-
formance, while leveraging the security from application-layer protocols would
bring the required security to Multipath TCP.

Going even further, we considered in this chapter how Multipath TCP might
look like if we fundamentally change the way the control information is ex-
changed. The control stream would allow for a reliable and flexible way to ex-
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change the necessary control information, while not being limited by the scarce
amount of TCP option space. Our proposed control stream allows to exchange ar-
bitrary information and opens the door for a more flexible way to exchange crypto
material and control the way subflows are used. This control stream is a more
disruptive change in Multipath TCP and it remains to be seen whether it will be
deemed to be useful in the future.
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Conclusion

The ever-growing amount of traffic that transits the Internet, as well as the
ultimate goal to deliver an even better experience to its users, demands for more
and more improvements on how the data is exchanged between the end hosts.
Multipath TCP tries to improve this by using the available multiple paths in the
most efficient way. Users benefit from Multipath TCP, because it is able to pool
the resources among these paths, effectively increasing the goodput of the trans-
mission. It also allows for a better resilience against link failures as traffic can
be moved from a failed path to another. However, efficiently using these multiple
paths remains a challenge for Multipath TCP.

1. It must be usable across today’s Internet with all its middleboxes and fire-
walls. This constraint had a significant impact on the design of Multipath
TCP.

2. Multipath TCP must be able to use the different paths in an optimal way.
The congestion control schemes developed for Multipath TCP [WRGH11,
KGP+12, CXF12] manage to balance the load across the different paths.
Heterogeneous environments bring another dimension to Multipath TCP,
with new problems that demand specific heuristics on how to transmit the
data.

3. To the applications Multipath TCP should be as usable as regular TCP,
which implies that it must provide the same reliable and in-order delivery
service.

4. The security of Multipath TCP is handled in the protocol by exchanging
keys during the handshake of the initial subflow. These keys serve as a
shared secret, being used to authenticate during the establishment of addi-
tional TCP subflows.

135
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Bringing Multipath TCP to a wide-spread deployment demands that it works
well in a large range of environments and use-cases. This thesis contributed to
this goal, by improving Multipath TCP in different aspects. The basis of this the-
sis lies in the usage and improvement of the Linux kernel implementation. Indeed,
a protocol can only be deployed if a scalable implementation allows end-users to
actually use it. We improved Multipath TCP by evaluating it in a wide range of en-
vironments using experimental design – an approach seldom used in networking
research. We designed heuristics so that it works well in heterogeneous environ-
ments, providing the best possible user-experience. We implemented Multipath
TCP in such a way that it fits nicely within the Linux TCP stack, while still be-
ing scalable and achieving high performance. Finally, we took a step back and
reflected on how Multipath TCP could have been designed while taking into ac-
count the lessons learned during the last years. In detail, the main contributions
of this thesis were:

In Chapter 3 we introduced “Experimental Design”, the planned approach
to experimentation that provides a statistical ground to support claims about the
performance of a protocol. We explained how this approach can be applied to
the evaluation of transport-layer protocols like Multipath TCP. We listed a set of
influencing factors that have an impact on the performance with respect to the
different Multipath TCP goals. For these goals we established metrics that allow
to quantify how well each goal is met. Finally, we designed the experiment by
using space-filling across the space of influencing factors. This allows to measure
how the protocol behaves within the bounds of this space. Applying this pro-
cess to Multipath TCP allowed us to discover its performance with respect to its
resource-pooling capabilities, its load balancing as well as the delay perceived by
the application.

As mentioned above, heterogeneous environments bring a new set of problems
to Multipath TCP. Chapter 4 shed some light on these problems and how they in-
fluence the user-experience. We explained that heterogeneous environments pro-
voke receive-window limitations and head-of-line blocking. Receive-window lim-
itations prevent the end host from fully using the capacity of its subflows, effec-
tively decreasing the goodput of the data stream. Head-of-line blocking prevents
the stack from delivering the data to the application in a continuous way, creating
bursts of data. Such bursts are bad for applications relying on a low application
delay, like video streaming applications. We established a reactive approach to
handle receive-window limitations. The reactive approach retransmits segments
who cause the limitation on low-delay subflows. Further, the subflow causing
these limitations is penalized by reducing its congestion window. We showed that
this approach is very promising and we fine-tuned it by using the experimental
design approach. Another way of solving these issues would be to schedule the
data across the subflows in such a way that they cannot occur. We opened the door
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for such a scheduler by implementing a modular scheduler framework that allows
researchers to easily experiment with different schedulers.

Chapter 5 describes the implementation of Multipath TCP in the Linux Ker-
nel. We outlined the goals that were the basis for the design of the implemen-
tation. Throughout the chapter we showed how these goals affected the design
decisions. The implementation tries to minimize the performance impact on reg-
ular TCP. Sometimes, this constraint required us to take decisions that are not
optimal from a performance point-of-view for Multipath TCP. Nevertheless, we
were able to show that Multipath TCP still achieves very good performance. It is
able to quickly respond to incoming connection requests, transmit data at a high
speed – even when using benchmarking tools that put a high pressure on the im-
plementation. Finally, we showed that Multipath TCP is able to achieve up to
51.8 Gbps of goodput. Such a record has never been established before for the
transmission of one single data stream.

With several years of experience in designing, implementing, testing and de-
ploying Multipath TCP, we take a step back and looked at three key-components
of Multipath TCP and whether they could have been designed differently. Chap-
ter 6 first analyses the handshake and how its key-exchange affects the perfor-
mance of the Linux Kernel implementation. It suggests and alternative, light-
weight handshake which sacrifices security for the benefit of improved perfor-
mance. Following this in Chapter 6, we consider how Multipath TCP could benefit
of the security provided by other layers. Particularly we explore how to leverage
the shared secrets exchanged in Transport Layer Security (TLS) into Multipath
TCP in order to authenticate new subflows. Finally, we reflect on a more dis-
ruptive change to the way Multipath TCP exchanges control information. The
original design-decision to exchange it in the TCP option space has shown to of-
ten be the limiting factor in Multipath TCP. We explore a new control stream that
allows to reliably exchange arbitrary-length control information. This would open
the door for a more flexible way of controlling Multipath TCP’s behavior.

Open problems
This thesis does one step into improving Multipath TCP so that multipath

communication can become the rule on the future Internet. However, there still
remain some open research challenges as described hereafter.

The introduction of experimental design to the evaluation of Multipath TCP
shows the benefits of such an approach to improve a protocol. We believe that
it can advance future research as it provides a tool to validate the overall perfor-
mance of a protocol. A more in-depth analysis of the performance of Multipath
TCP still remains to be done, e.g., considering a wider range of applications, as
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well as introducing competing traffic to the environment being used during the
evaluation. Further, different metrics could be established to quantify the perfor-
mance of Multipath TCP with respect to other aspects than the ones considered in
this thesis.

The scheduling of data across the different subflows opens up a whole new
dimension. Scheduling might reduce head-of-line blocking in heterogeneous en-
vironments, enabling streaming applications to reduce their buffer requirements.
It remains unclear, how such a scheduling should take into account the feedback in
terms of round-trip-time and bandwidth-delay-product estimation to achieve high
performance.

Finally, the longer term evolution of the Multipath TCP protocol specification
will probably require a stronger security than the one provided by RFC 6824. This
thesis has suggested some possible ways to go. The control-stream might be the
addition to Multipath TCP that provides the required flexibility. Future research
might also come up with a completely different strategy that allows to provide a
secure communication with Multipath TCP.
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