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Introduction

◮ More and more mobile devices can use multiple mediums to access
the Internet (3G, wifi, . . . ).

◮ Why not to use them simultaneously ?
◮ Advantages:

◮ Better experienced throughput

◮ Better tolerance to failures

◮ Possibility to switch to a cheaper medium when available

◮ At which layer to (de)multiplex ? → The transport layer
◮ Doing it lower could create reordering in TCP, causing a drop in the performance.

◮ TCP handles a lot of information about path properties, and can quickly react to
changes of those properties.

Architecture overview

◮ One socket manages the communications with the application
(master subsocket)

◮ Upon a connect() or accept(), a new multipath control block is
created.
◮ Responsible for shared buffer management,

◮ Holds the list of available subflows,

◮ Manages connection-level reordering queues.

◮ When new paths are discovered (alternate local or remote
addresses), slave subsockets are created.
◮ Slave subsockets behave like normal TCP sockets, but are completely hidden to

the application.

Applications

Networking stack

socket

master subsock

src : A1 dst : B1
sp:x dp : y

src : A1 dst : B1
sp: x dp : y

path index: 1

multi-path control block

slave subsock slave subsock slave subsock

src : A2 dst : B1
sp: x dp : y

path index: 2

src : A1 dst : B2
sp: x dp : y

path index: 3

src : A2 dst : B2
sp: x dp : y

path index: 4

DATA DATA DATA DATA

MPTCP protocol overview

◮ SYN exchange with “Mulipath capable” option.

◮ If the peer replies with the same option, it supports MPTCP.

◮ Optional address exchange to allow more paths to be established.

◮ Additional paths are established just like independent TCP flows
(3-way handshake)

◮ A scheduler decides on which path to send every segment.
◮ Upon timeout on any path, data is retransmitted on another path.

◮ Allows recovering from failures.

MPTCP in action

◮ Adding one 100mbps wire just doubles the bandwidth:
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◮ MPTCP can use several subflows with different path properties
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Figure: First path at 100mbps, second one at 10mbps

Failure support

◮ Upon failure, MPTCP moves to another working subflow:
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◮ Communication starts with two 100mbps paths
◮ After 15 seconds, we simulate a link failure on path 2.
◮ Very fast (one RTO later), path 1 resends data originally sent on path 2.
◮ After 35 seconds, we repair path 2 and simulate a failure on path 1.
◮ Due to exponential backoff and slow start, path 2 needs some time to recover, but

then comes back to the original 100mbps transmission rate.

Conclusions

◮ MPTCP allows using several paths concurrently

◮ It supports transparent failover, and reacts at the scale of RTO.

◮ unmodified applications can directly benefit from multipath.
◮ Current work:

◮ System performance impact of MPTCP

◮ MPTCP applicability to datacenters

◮ Path selection heuristics

◮ To download MPTCP for Linux:
http://inl.info.ucl.ac.be/mptcp
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