Shim6: Multihoming for IPv6

Sébastien Barré

Université catholique de Louvain http://inl.info.ucl.ac.be

Nov. 18th, 2008

INGI Research Meeting

1 Introduction

- Multihoming with IPv4
- Motivations for IPv6
- IPv6 addresses

2 The Shim6 protocol

- Shim6 operation
- The REAP exploration protocol
- Shim6: Security issues

3 LinShim6 implementation for Linux

4 Conclusion

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 Pv6 addresses

1 Introduction

- Multihoming with IPv4
- Motivations for IPv6
- IPv6 addresses

2 The Shim6 protocol

3 LinShim6 implementation for Linux

4 Conclusion

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 Pv6 addresses

What is multihoming ?

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

What is multihoming ?

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 Pv6 addresses

Motivations for Multihoming

- A/16 ISP1
- Redundancy
 - Physical/logical link failure
 - Routing failure
 - Provider failure
- Load Balancing
- Performance issues such as long term congestion
- Policy

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

1 Introduction

- Multihoming with IPv4
- Motivations for IPv6
- IPv6 addresses

2 The Shim6 protocol

3 LinShim6 implementation for Linux

4 Conclusion

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Using a Provider Independent (PI) IPv4 address block

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Using a Provider Independent (PI) IPv4 address block

- Customer network needs an AS number
- It becomes difficult to obtain a /24 PI now
- Introduces an additional prefix into the global routing system

Réf.: Abley et al., RFC4116, IPv4 multihoming practices and limitations

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Using a Provider Aggregatable (PA) IPv4 address block

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

ISP2 B/16

Using a Provider Aggregatable (PA) IPv4 address block

- Customer gets a subprefix from its provider
 - May need to renumber if customer wants to leave ISP1.
- Customer network needs an AS number
- Makes routing tables bigger

A/16 |SP]

Réf.: Abley et al., RFC4116, IPv4 multihoming practices and limitations

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

1 Introduction

- Multihoming with IPv4
- Motivations for IPv6
- IPv6 addresses
- 2 The Shim6 protocol
- 3 LinShim6 implementation for Linux

4 Conclusion

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Mainly: IPv4 address depletion

Shim6: Multihoming for IPv6

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Mainly: IPv4 address depletion

Sébastien Barré

Shim6: Multihoming for IPv6

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

IPv4 address depletion: latest informations

Source: http://www.potaroo.net/tools/ipv4/index.html

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Other expectations for IPv6

Lower load of Internet routing tables

- Less packet processing in the core of the Internet
 - Push state towards the edges
- No more NATs: IP address for everyone
- Improved security, mobility and multihoming

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Other expectations for IPv6

- Lower load of Internet routing tables
- Less packet processing in the core of the Internet
 - Push state towards the edges
- No more NATs: IP address for everyone
- Improved security, mobility and multihoming

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Other expectations for IPv6

- Lower load of Internet routing tables
- Less packet processing in the core of the Internet
 - Push state towards the edges
- No more NATs: IP address for everyone
- Improved security, mobility and multihoming

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

Other expectations for IPv6

- Lower load of Internet routing tables
- Less packet processing in the core of the Internet
 - Push state towards the edges
- No more NATs: IP address for everyone
- Improved security, mobility and multihoming

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

1 Introduction

- Multihoming with IPv4
- Motivations for IPv6
- IPv6 addresses

2 The Shim6 protocol

3 LinShim6 implementation for Linux

4 Conclusion

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

IPv6 address format

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

IPv6 address format

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA vs PI addresses

- The site announces its PI address set through BGP
- If multihomed: multiple BGP annoucements
 - Global announcements of PI prefixes
 - What if many sites get multihomed ?
 - → Scalability problem
- PA: Provider Aggregatable addresses
 - The site receives a subset of its provider's addresses
 - Only the provider announces its address set through BGP
 - If multihomed : The site receives several address blocks

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA vs PI addresses

- The site announces its PI address set through BGP
- If multihomed: multiple BGP annoucements
 - Global announcements of PI prefixes
 - What if many sites get multihomed ?
 - → Scalability problem
- PA: Provider Aggregatable addresses
 - The site receives a subset of its provider's addresses
 - Only the provider announces its address set through BGP
 - If multihomed : The site receives several address blocks

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA vs PI addresses

- The site announces its PI address set through BGP
- If multihomed: multiple BGP annoucements
 - Global announcements of PI prefixes
 - What if many sites get multihomed ?
 - ➡ Scalability problem
- PA: Provider Aggregatable addresses
 - The site receives a subset of its provider's addresses
 - Only the provider announces its address set through BGP
 - If multihomed : The site receives several address blocks

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA vs PI addresses

• PI: Provider Independent addresses

- The site announces its PI address set through BGP
- If multihomed: multiple BGP annoucements
 - Global announcements of PI prefixes
 - What if many sites get multihomed ?
 - → Scalability problem

• PA: Provider Aggregatable addresses

- The site receives a subset of its provider's addresses
- Only the provider announces its address set through BGP
- If multihomed : The site receives several address blocks

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA vs PI addresses

- The site announces its PI address set through BGP
- If multihomed: multiple BGP annoucements
 - Global announcements of PI prefixes
 - What if many sites get multihomed ?
 - → Scalability problem
- PA: Provider Aggregatable addresses
 - The site receives a subset of its provider's addresses
 - Only the provider announces its address set through BGP
 - If multihomed : The site receives several address blocks

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA vs PI addresses

- The site announces its PI address set through BGP
- If multihomed: multiple BGP annoucements
 - Global announcements of PI prefixes
 - What if many sites get multihomed ?
 - → Scalability problem
- PA: Provider Aggregatable addresses
 - The site receives a subset of its provider's addresses
 - Only the provider announces its address set through BGP
 - If multihomed : The site receives several address blocks

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA vs PI addresses

- The site announces its PI address set through BGP
- If multihomed: multiple BGP annoucements
 - Global announcements of PI prefixes
 - What if many sites get multihomed ?
 - → Scalability problem
- PA: Provider Aggregatable addresses
 - The site receives a subset of its provider's addresses
 - Only the provider announces its address set through BGP
 - If multihomed : The site receives several address blocks

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

More about PA - Reminder: IPv4 PA

Introduction The Shim6 protocol

Conclusion

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

More about PA - And so... IPv6 PA ?

LinShim6 implementation for Linux

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

More about PA - And so... IPv6 PA ?

Sébastien Barré

Shim6: Multihoming for IPv6

22 / 54

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

More about PA - And so... IPv6 PA ?

Conclusion

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

The case of UCLouvain

- Two providers, thus two global routing prefixes:
 - 2001:6a8:3080: Provider is Belnet
 - 2001:6f8:31c: Provider is Easynet
- Several subnetworks:
 - 2: Staff
 - 3: Servers
 - 4: Experiments
 - 2001: Wifi staff

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

A typical laptop in our department

Sébastien Barré

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

A typical laptop in our department

2001:6a8:3080

2001:6f8:31c
Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

A typical laptop in our department

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

A typical laptop in our department

Introduction

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA implications

• PA addresses reduce the load for the BGP system...

... But it pushes new responsibilities to the end system
 Failover from one address to another working one
 Load balancing

• Those are completely managed by the network in v4.

In v6, part is now managed by the end-system
 We need to upgrade the end-hosts !

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA implications

- PA addresses reduce the load for the BGP system...
- ... But it pushes new responsibilities to the end system
 Failover from one address to another working one
 Load balancing
- Those are completely managed by the network in v4.
- In v6, part is now managed by the end-system
 We need to upgrade the end-hosts !

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA implications

- PA addresses reduce the load for the BGP system...
- ... But it pushes new responsibilities to the end system
 Failover from one address to another working one
 Load balancing
- Those are completely managed by the network in v4.
- In v6, part is now managed by the end-system
 We need to upgrade the end-hosts !

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA implications

- PA addresses reduce the load for the BGP system...
- ... But it pushes new responsibilities to the end system
 Failover from one address to another working one
 - → Load balancing

• Those are completely managed by the network in v4.

In v6, part is now managed by the end-system
 We need to upgrade the end-hosts !

Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA implications

- PA addresses reduce the load for the BGP system...
- ... But it pushes new responsibilities to the end system
 Failover from one address to another working one
 - → Load balancing
- Those are completely managed by the network in v4.
- In v6, part is now managed by the end-system
 - → We need to upgrade the end-hosts !

Introduction

The Shim6 protocol LinShim6 implementation for Linux Conclusion Multihoming with IPv4 Motivations for IPv6 IPv6 addresses

PA implications

Shim6 operation The REAP exploration protocol Shim6: Security issues

1 Introduction

2 The Shim6 protocol

- Shim6 operation
- The REAP exploration protocol
- Shim6: Security issues
- 3 LinShim6 implementation for Linux

4 Conclusion

Shim6 operation The REAP exploration protocol Shim6: Security issues

End-host upgrade: the problem

- Current applications assume one <src,dest> address pair for a given communication
- They also assume that the network ensures failover if a problem happens somewhere.
 - → How to manage failover in the end-host without changing applications ?

Shim6 operation The REAP exploration protocol Shim6: Security issues

End-host upgrade: the problem

- Current applications assume one <src,dest> address pair for a given communication
- They also assume that the network ensures failover if a problem happens somewhere.

→ How to manage failover in the end-host without changing applications ?

Shim6 operation The REAP exploration protocol Shim6: Security issues

End-host upgrade: How to do it ?

- To detect failures: Monitor the communications
- To switch to a working path: Change the current address pair

Shim6 operation The REAP exploration protocol Shim6: Security issues

End-host upgrade: a solution ?

Shim6 operation The REAP exploration protocol Shim6: Security issues

End-host upgrade: a solution ?

Shim6 operation The REAP exploration protocol Shim6: Security issues

- An IP address has currently a double semantics: Locator and Identifier
 - Locator: The IP address is used to forward the packet towards its destination.
 - \rightarrow Changing the IP address has the effect of changing the path.
 - Identifier: The IP address is used as part of the TCP context identifier

→ Changing the IP address has the effect of breaking TCP connexions

Shim6 operation The REAP exploration protocol Shim6: Security issues

- An IP address has currently a double semantics: Locator and Identifier
 - Locator: The IP address is used to forward the packet towards its destination.
 - \rightarrow Changing the IP address has the effect of changing the path.
 - Identifier: The IP address is used as part of the TCP context identifier

→ Changing the IP address has the effect of breaking TCP connexions

Shim6 operation The REAP exploration protocol Shim6: Security issues

- An IP address has currently a double semantics: Locator and Identifier
 - Locator: The IP address is used to forward the packet towards its destination.
 - \rightarrow Changing the IP address has the effect of changing the path.
 - Identifier: The IP address is used as part of the TCP context identifier
 - → Changing the IP address has the effect of breaking TCP connexions

Shim6 operation The REAP exploration protocol Shim6: Security issues

The Shim6 proposal

• Separate the two semantics

- The transport and application layer see an identifier
- The network and data link layer see a locator.
- A new Shim layer **rewrites** identifiers to replace them with locators
- The same Shim layer **rewrites** locators to replace them with identifiers

Shim6 operation The REAP exploration protocol Shim6: Security issues

- Separate the two semantics
- The transport and application layer see an identifier
- The network and data link layer see a locator.
- A new Shim layer **rewrites** identifiers to replace them with locators
- The same Shim layer **rewrites** locators to replace them with identifiers

Shim6 operation The REAP exploration protocol Shim6: Security issues

- Separate the two semantics
- The transport and application layer see an identifier
- The network and data link layer see a locator.
- A new Shim layer **rewrites** identifiers to replace them with locators
- The same Shim layer **rewrites** locators to replace them with identifiers

Shim6 operation The REAP exploration protocol Shim6: Security issues

- Separate the two semantics
- The transport and application layer see an identifier
- The network and data link layer see a locator.
- A new Shim layer **rewrites** identifiers to replace them with locators
- The same Shim layer **rewrites** locators to replace them with identifiers

Shim6 operation The REAP exploration protocol Shim6: Security issues

- Separate the two semantics
- The transport and application layer see an identifier
- The network and data link layer see a locator.
- A new Shim layer **rewrites** identifiers to replace them with locators
- The same Shim layer **rewrites** locators to replace them with identifiers

Shim6 operation The REAP exploration protocol Shim6: Security issues

Locators vs Identifiers (ULIDs)

Shim6 operation The REAP exploration protocol Shim6: Security issues

Locators vs Identifiers (ULIDs)

Shim6 operation The REAP exploration protocol Shim6: Security issues

Locators vs Identifiers (ULIDs)

Shim6 operation The REAP exploration protocol Shim6: Security issues

1 Introduction

2 The Shim6 protocol

Shim6 operation

- The REAP exploration protocol
- Shim6: Security issues

3 LinShim6 implementation for Linux

4 Conclusion

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation

Sébastien Barré

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation

Sébastien Barré

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation The REAP exploration protocol Shim6: Security issues

Shim6 operation The REAP exploration protocol Shim6: Security issues

REAP operation

Shim6 operation The REAP exploration protocol Shim6: Security issues

TCP connection survival

Figure: Evolution of throughput for an iperf TCP session

Shim6 operation The REAP exploration protocol Shim6: Security issues

1 Introduction

2 The Shim6 protocol

- Shim6 operation
- The REAP exploration protocol
- Shim6: Security issues

3 LinShim6 implementation for Linux

4 Conclusion

Shim6 operation The REAP exploration protocol Shim6: Security issues

New solutions - new problems: the time shifting attack

Shim6 operation The REAP exploration protocol Shim6: Security issues

How to avoid that ?

• Sign the message with a private key

- Put the public key in the message
- The receiver verifies the signature thanks to the provided public key.

Shim6 operation The REAP exploration protocol Shim6: Security issues

How to avoid that ?

- Sign the message with a private key
- Put the public key in the message
- The receiver verifies the signature thanks to the provided public key.

Shim6 operation The REAP exploration protocol Shim6: Security issues

How to avoid that ?

- Sign the message with a private key
- Put the public key in the message
- The receiver verifies the signature thanks to the provided public key.

Shim6 operation The REAP exploration protocol Shim6: Security issues

How to avoid that ?

- Sign the message with a private key
- Put the public key in the message
- The receiver verifies the signature thanks to the provided public key.

Shim6 operation The REAP exploration protocol Shim6: Security issues

How to ensure public key authenticity ?

• Classical solution: Use a certificate, signed by a trusted third-party

 \rightarrow We cannot give a certificate to everyone in the Internet !

• We have long addresses anyway: let's embed the public key inside the address...

Shim6 operation The REAP exploration protocol Shim6: Security issues

How to ensure public key authenticity ?

• Classical solution: Use a certificate, signed by a trusted third-party

 \rightarrow We cannot give a certificate to everyone in the Internet !

• We have long addresses anyway: let's embed the public key inside the address...

Shim6 operation The REAP exploration protocol Shim6: Security issues

Cryptographically Generated Addresses (CGAs)

A first proposal:

Sébastien Barré

Shim6: Multihoming for IPv6

Shim6 operation The REAP exploration protocol Shim6: Security issues

Cryptographically Generated Addresses (CGAs)

• 59 bits is too short a hash to ensure that it won't be broken.

- Solution: artificially extend the hash length
 - Compute a second hash, with an additional input called *modifier*
 - Require that *n* bits be 0 in the result
 - increment the modifier and retry the hash computation until *n* bits are zero
 - → Brute-force attack of our own address...
 - \rightarrow But we are $\mathcal{O}(2^{59})$ in advance over our attacker !

Shim6 operation The REAP exploration protocol Shim6: Security issues

Cryptographically Generated Addresses (CGAs)

- 59 bits is too short a hash to ensure that it won't be broken.
- Solution: artificially extend the hash length
 - Compute a second hash, with an additional input called *modifier*
 - Require that *n* bits be 0 in the result
 - increment the modifier and retry the hash computation until *n* bits are zero
 - → Brute-force attack of our own address...
 - \rightarrow But we are $\mathcal{O}(2^{59})$ in advance over our attacker !

Shim6 operation The REAP exploration protocol Shim6: Security issues

Cryptographically Generated Addresses (CGAs)

Shim6 operation The REAP exploration protocol Shim6: Security issues

Cryptographically Generated Addresses (CGAs): the cost

- Generation (owner): $\mathcal{O}(2^{16*sec})$
- Breaking the address (attacker): $\mathcal{O}(2^{59+16*sec})$
- Verification (receiver): $\mathcal{O}(1)$
 - → Two hash computations

Shim6 operation The REAP exploration protocol Shim6: Security issues

Hash Based Addresses

- Similar to CGA addresses, but lighter.
- Same input as for CGAs
- Public key is a random number
- Extension field is the list of prefixes.
- No signature needed, addresses validated by the fact that they are all bound together.

Shim6 operation The REAP exploration protocol Shim6: Security issues

HBA vs CGA

- CGA is computationnally more expensive (key generation, signature).
- But HBA does not allow adding addresses later
 - All prefixes are included in the hash
 - Adding one prefix results in changing all addresses
- Tradeoff: CGA-compatible HBAs
 - A public key is used for generation, but the multi-prefix extension is included
 - Initial address set is announced through HBA
 - Additional addresses can be generated and announced using CGA.

Shim6 operation The REAP exploration protocol Shim6: Security issues

HBA vs CGA: efficiency

Comparison of security mechanisms

2 The Shim6 protocol

3 LinShim6 implementation for Linux

4 Conclusion

Want to play ?

- LinShim6 can be downloaded at http://inl.info.ucl.ac.be/LinShim6
- Currently the implementation that best supports the specification
- Allows using CGA/HBA/CGA-compat HBAs.
- Can be easily installed in Ubuntu thanks to .deb packages.
- No special configuration needed (except for special purposes).

- 2 The Shim6 protocol
- 3 LinShim6 implementation for Linux

4 Conclusion

Shim6 challenges

- Bootstrap problem: both ends need to support Shim6 in order to get any benefit
 - If you install Shim6 now, almost no peer will know about it...
 - But if it gets installed in standard distributions, the whole world would have it at once.
- Load balancing: The end-host is now responsible for part of it. How to give control back to the network ?
 - Use a central server that hints the end-hosts ? (IDIPS)
 - Allow routers to re-rewrite Shim6 packets to enforce network policy ?

Shim6 challenges

- Renumbering: All ongoing communications are broken in case of renumbering
 - We would probably need a separate identifier space to solve that.
- Transport level multipath: Extending Shim6 to make it a path manager for transport protocols ?
- Mobility: To be investigated

Questions ?