LinShim6 - Implementation of the Shim6 protocol
http://inl.info.ucl.ac.be/LinShing
Documentation - Version 0.6.X

Sébastien Barré

Université Catholique de Louvain
Belgium

Feb. 2008

Contents
1 Introduction

2 The user point of view
2.1 Installation e
2.2 Theshimédinterface e
2.3 Incaseofproblems e

3 LinShim6 overall architecture

4 The shim6d daemon
4.1 Overviewofthe sourcefiles e
4.2 pipe.c: Using a pipe to serialize accessto shareddata

5 Triggering a context establishment
6 Sending requests to the kernel : RTNetlink

7 The XFRM framework
7.1 Introductionto policiesandstates
7.2 xfrmpolicies e

7.3 xfrmstates e e e

8 The path of a packet through the networking stack
8.1 Incomingpackets e
8.2 Outgoingpackets e

9 REAP Implementation
9.1 Triggeringan exploration
9.2 Sendingprobes e
9.3 About (un)verifiedlocators

10 cgatool
10.1 CGAgeneration e
10.2 Verification e e e
10.3 cgatoolconsole

Awwh N

N

(0]

Appendix 18

A Shim6 control messages sent through Netlink 18
A.1 SHIM6_NL_NEW_LOC_ADDR : Announce the apparition of ankcator 18
A.2 SHIM6_NL_DEL_LOC_ADDR : Announce the removal of a lotatator 18
A.3 SHIM6_NL_NEW_CTX: A new context mustbecreated 18
A.4 REAP_NL_NOTIFY_IN : Incoming packet notification 18
A.5 REAP_NL_NOTIFY_OUT : Outgoing packet notification 19
A.6 REAP_NL_START_EXPLORE : Begin a new exploration 19
A7 REAP_NL_SEND_KA:Sendakeepalive cu...... 19

1 Introduction

This document presents the UCL implementation of Shim6tHerLinux Kernel. It will evolve concur-
rently with the implementation. The aim is to present thelengentation from three sides :

e The user point of view (implications on user programs, ShiR®)
e The programmer point of view : interfaces betwéémShimg the kernel and the shimé6d daemon.
e LinShim6internals.

An other goal of this document is to present current ongoiatkywas well as parts that could be done
by external developpers interested in joining the project.

The work presented here is based on my master’s thesis[Baidé thesis (written in French) discusses
in details the first version of the implementation and canderdoaded ahtt p: / /i nl . i nf o. ucl .
ac. be/ publi cati ons/ shi n6- nast ert hesi s.

Like the whole project, this documentation is a work in pexg. Every comment, suggestion of
improvement, or proposal to participate is welcome. Contssgarding the code or the documentation
may be sent to the mailing lisshim6-impl@lists.gforge.info.ucl.ac.fgbscriptionaht t p: / /| i st s.
gf orge.info.ucl.ac. be/mail man/ i stinfo/shinb-inpl.)

The version documented here is 0.6. This (still partiallypiements [NBO7] and almost fully [AvBO7]
(only the keepalive option is not supported currently areldkploration method can be made more effi-
cient).

Note that a complementary document [Bar07] gives a globahagw of the architecture. You can also
download it from the INL website.

2 The user point of view

Shim6 is a new sublayer inside IPv6. It is intended to be albslyl invisible by upper layers. Never-
theless, it could be useful for applications to specify thaty either want or don’t want to use the shim.
Alternatively, some applications may want to have spe@atl over the shim.

e current situation : Currently, applications aren’t able to control the shim.h&H the first IPv6
packet is sent to a new destination, a Shim6 negotiationiggdred. However, you can easily
implement your own heuristic for triggering a Shimé contergotiation by modifying the file
shim6_pkt_listener.cThe easiest is to specify another packet number threshotdyou can also
add a timestamp to the packet listener, so as to have a timghtbid, or use port information in the
packet to make a decision.

o the future : The intent for the future is to support a Shimé AP, like thespecified in [KBSS07].

2.1 Installation

Installing the patch : Patch the kernel the usual way, thee isake xconfi g. The Shim6 option is
available under Networking/Networking options/Shim6 goi. It is currently not possible to compile it
as a module.

Shim6 won't work with only the recompiled kernel. You willsal need to install the LinShim6-x.y.z
tarball. The LinShim6 daemon can be installed like any opfaekage :

tar -zxvf LinShinmb-x.y.z.tar.gz
cd LinShinmb-x.y.z
./ configure [--disabl e-debug] [enabl e-debug-kref]
[--enabl e-1 og-expl -ti ne]
[- - di sabl e- cgacheck]
[CPPFLAGS="-i system /usr/src/linux/include"]
make
make install (as root)
cgad (as root)
shi n6d (as root)

The configuration options are set by default to enable mdstiglenessages (you are encouraged to
let debug messages and report problems). [Thg- expl - ti me option may be enabled if you want
to do measurements of exploration times. If enabled, skugi@mations about explorations will be
stored insiddetc/shim6/expl.loginformations are the locators used before and after thieagon, the
exploration time (defined as the time interval between lggand coming back to the operational state),
and the number of probes sent and received.

Thedi sabl e- cgacheck option allows to build a LinShim6 that will accept unsecul@chtor sets.
That option exists only for interoperability tests (expeental phase) and should not be set otherwise. The
local use of CGA by LinShim6 is not disabled by that optionykuer.

The last option may prove useful if the configure script cdarmanage to find your Linux kernel
headers.

2.2 The shim6d interface

Since version 0.4.3, the user interface with shim6d has lbeanged : Previously, a signal handler for
SIGUSRLI created files with a dump of state information. Thslheen removed and replaced with a telnet
server. This gives much more flexibility, for example one cantrol the shim6d daemon from a distant
machine by connecting to port 50000. The currently avadl@abimmands are :

e Is: List all states. States are named by their context tagemritt hexadecimal form.

e cat <state>: Provides much information about a specific state, namdditgitontext tag written in
hexadecimal form.

e rm <state>: Deletes a specific context state, both in the daemon anckikeinel. Note that if the
shim6d process is killed, every context state is automlgtidaleted.

e quit | exit: Close the telnet connection.

e gettimelog Only available if thd og- expl -t i me option was enabled when calliegnf i gur e
for the package. Dumps the contentetc/shim6/expl.log

e settimelog Only available if thd og- expl - t i me option was enabled when calliegnf i gur e
for the package. Deletes tlegpl.logfile. This is useful for automating exploration measurement

FoommmEmEmm , Shiméd
. timer | .
i r =1 tools/t Nl Bl Wi T ¥t ool b
Timer | ools/tqueue.c start/modify timer)
expiry| ! !
1 1
' Shimé control plane '
1 1
ieelelelelebulelebely ' v . shiméd.c '
i | Telnet server |, Request manager | > < !
| > : REAP path exploration] | - !
' info_server.c y 7 pipe.c p p '
:- : - reapd.c :
Y Y, .
! xfrm manager A \ 4 !
, xfrm.c y raw socket '
' - Kernel control shim6_raw_socket.c '
: A shimé_netlink.c '
e S e o o o= v PP PP &---J
RTNetlink Netlink User space
Kernel space
xfrm framework controller Daemon interface Shimé filter
net/xfrm/xfrm_user.c net/ipv6/shim6_netlink.c net/ipvé/raw.c
. / A
shim6 transforms
net/ipv6/shimé.c packet istener
REAP o detect net/ipv6/shim6_pkt_listener.c
net/ipv6/reap.c
Network

Figure 1: LinShim6 overall architecture

2.3 In case of problems

Error reports are very welcome and can be sent through théracigng system. You just need to follow
the Submit a bug repottink on the LinShim6 web pade

Error/info messages during execution are appended ins&l&ar/log/messagefile or another one,
depending on your configuration.

3 LinShim6 overall architecture

In order to get a global view of the system, we invite you ta fiead [Bar07] before to proceed. For the
sake of convenience, we reproduce here the big picture dfitf&him6 architecture (fig. 1).

Next sections will go deeper into the details of each parhef architecture. The upper part will be
described in section 4. Section 5 introducespheket listenemodule, responsible for deciding when and
for which flow to start a Shim6 negotiation. Next the RTNeklinterface is described (section 6), so that
we can follow with the details of thef r mframework (section 7).

4 The shiméd daemon

Since version 0.5, almost all thénShim6code has been moved to the daemon. This is why the previously
called reapd daemon is now called shim6d (but it performb Bttim6 and Reap operations). Only fail-
ure detection and packet transformation are still donelanghie kernel, for efficiency reasons (these two
functions require work for each packet sent or received).

Ihttp://inl.info.ucl.ac.be/LinShind

4.1 Overview of the source files
The daemon provides several functions that are separathffiarent files :

e main.c: Main thread. It does the necessary work to become a daemitializes every module,
then sits in an infinite loop, listening for three kinds of Bt hamely network messages (probes,
keepalives, 11, R1, ...), kernel netlink messages and pgmsages (requests from the other threads,
see below).

e shim6d.c performs every Shim6 related function (except addressitiagy which is let to the ker-
nel). The user space contexts are maintained there, indild@ hashtable and a ct hashtable (to
look up either by ULIDs or by context tags). The main job othriodule is to negotiate new contexts
with peers, upon request by the kernel (four-way handshake)

e reapd.c: Implements the path exploration part of the REAP protoédthen a failure is detected by
the kernel (send timer expiry) or an exploring probe is nesgjithis module performs the exploration,
and updates thef r mcontext states when a new working locator pair is found.

e raw_socket.c Tools for easily sending or receiving Shim6/Reap cont@atkets. Only control
packets are received, thanks to the filter present ititl_src/net/ipv6/raw.file of the kernel.

¢ shim6_netlink.c Responsible for the Netlink communication with the kernel

e xfrm.c: Communicates with thef r mframework inside the kernel through tRENETLI NK API.
The kernel side of the communication is implementeliiox_src/net/xfrm/xfrm_user.d his mod-
ule has a thread that listensxtbr mmessages from the kernel. This thread is necessary by dafsign
the RTNETLI NK API.

e info_server.c. Runs in its own thread. This is the implementation of theShim6information
server, waiting for telnet connexions on port 5000.

e pipe.c: Manages the transmission of requests from some threadi tmain thread. This system
has been designed to improve concurrency management.eBafrgion 0.5, many semaphores were
used to protect shared data, accessed concurrently frotimtéeor theinfo_servertthread (now also
the xf r mthread). But this was a useless complexity. We have thendatred the rule that any
shim6 data (contexts and hash tables) may only be accessie loyain thread. The mechanism
used is explained in section 4.2.

4.2 pipe.c: Using a pipe to serialize access to shared data

Since only the main thread may access the shim6 data, we obedible to ask for some service from the
other threads. For example, if some user tylpem the telnet console, the hash tables must be accessed to
list the currently available contexts.

Instead of directly accessing the data, ithfe _servempushes a request on the pipe, by calling :

pi pe_push_event (Pl PE_EVENT | NFO_ SRV, comand) ;

Thanks to thesel ect () system call, the main thread may be awoken by any event ametmgrk
messages, hetlink messages or pipe requests. Upon recepé@ipe requespi pe_r un_handl er ()
is called pipe.g and the message is dispatched to the correct handler. Tieecotnmand is executed
inside the handler, that is, from the main thread. This glesia natural way of serializing execution, and
allows for the removal of many mutexes.

Note that delegating actions to another thread implies siomes the need to wait for the action to com-
plete, before to do anything else. This is the case of thedafeer. If you typé s, the info server thread
will ask the main thread to perform the listing action. Bug frompt cannot be displayed before the listing
action completes. Thus after pushing the request to the(pippe_push_event ()), the info server
thread waits for a synchronization signal from the mainadldrt hr ead_cond_wai t ()). When the
listing action is done, the main thread sends the synchatiniz signal pt hr ead_cond_si gnal ()),
resulting in the info server thread displaying the promgiag

5 Triggering a context establishment

Currently the context establishment trigger doesn’t usexttr mframework. It is implemented as a sepa-
rate moduleshim6_pkt_listener,¢hat does something similar to connexion tracking : Foheaggoing
packet that is the first of an exchange, an entry is insersdera hashtable. It is removed if no packet is
seen for the same exchange during more than one minute.

If the trigger condition is met, &Hl M6_NL_NEW CTX message is sent to the daemon (app. A.3),
so that a Shim6 negotiation is triggered. Currently the anlgported trigger condition is the number of
packets exchanged, it is configured by default to one packet.

By modifying the fileshim6_pkt_listener,one can quite easily implement its own heuristic for trigge
ing a Shim6 function. Currently the only heuristic is to g& a negotiation afterb_pkts_triggepackets
has been sent or received. This variable is currently senéo Burthermore, this heuristic only triggers a
context establishment if an outgoing packet is seen, inrdodavoid a third party to be able to make the
host create Shim6 states for arbitrary address pairs (whithd be a potential DoS attack).

Once the decision has been taken to trigger a context négatithe kernel just sendsSil M5_NL_NEW CTX
netlink message to the Shimé Netlink multicast group.

6 Sending requests to the kernel : RTNetlink

In figure 1, we can see that the xfrm manager of theShim6daemon communicates with asf r m
framework controller through the RTNetlink interface.

In our implementation, we use a library written by Alexey Ketsov that communicates with the
xf r mframework controllerfet/xfrm/xfrm_usenahrough message passing over netlink[SKKK03]. The
mapping from message number to message handler can be folind 2033 ofxfrm_user.qin kernel
2.6.23).

Whenxf r mpolicies or states (explained later) must be created, thescription is first created in
user space inside the daemanc(xfrm.g, then passed to the RTNetlink interface and interpretethby
xfrm_user.dile. The real creation off r mentities is thus implemented insidtém_user.c

7 The XFRM framework

The kernel space part @inShiméhas completely changed since version 0.5ioShim6 The hashtables
and shim6 contexts have disappeared from the kernel (tleep@w in user space only), and have been
replaced in the kernel by the r marchitecture.

Now only the context trigger, the address rewriting and Hikife detection are done in kernel space,
because each of these parts need actions to be taken foraaat poming in or going out.

In the next subsections we introduce ttfer mframework and our use of that framework for the spe-
cific purpose of Shim6 implementation. You can find additiosl@cumentation on that framework in
[YMN +04], where one of the main authors the Linux IPv6 stack erpltie general design ideas. The ap-
plication of the framework for IPsec is described in [KMEQ#§ application for Mobile IPv6 is explained
in [MNO4], and its application for Shim6 is described hereweell as in [Bar07] where a general overview
is given.

7.1 Introduction to policies and states

Because IPsec makes uses of an SPD (Security Policy DajadradeSAs (Security Associations), the
xf r mframework also works with policies and states.

Packets going out first go throughpmlicy lookup in order to determine the output path that the
packet must follow. For example if some flow needs AH and E&Rsformations, the policy associ-
ated to that flow will specify that the output path must be setht6_out put () — esp6_out put ()

— i p6_out put () (if the address family is IPv6). In the case of Shim6, theqoliill specify that the
output path must behi n6_out put () — i p6_out put ().

A policy is applied to a flow if its selector matches the flow. élextor has the following structure
(linux_src/include/linux/xfrm Jt

I/« Selector , used as selector both on policy rules (SPD) and .SAs

struct xfrm_selector

{
xfrm_address_t daddr;
xfrm_address_t saddr;
__bel6 dport;
__bel6 dport_mask;
__bel6 sport;
__bel6 sport_mask;
__ulé family;
_u8 prefixlen_d ;
__u8 prefixlen_s;
__u8 proto;
int ifindex;
uid_t user;

b

Selectors allow to match packets against addresses, parfsratocols, as well as ranges thanks to the
masks. If some field in the selector is set 0, it is interpretethny’.
For the case of Shim6, selectors are defined as folldasrfion_src/xfrm)c

Outgoing packets : All fields are ‘any’, except :
e the addresses : <ULID_local, ULID_peer>
e the user get ui d()

o the family AF_| NET6

Incoming packets : Also the addresses, user and family are the only filled indieRtrangely enough at
first sight, the <src,dst> address pair is set to <ULID_ja@sre;. This is to be able to efficiently reuse the
existingxf r mhashtables, with minimal extensions to support Shimé, pla@ed in section 7.3.

If there is a match between a given packet header and a pitiaythe path of the packet is appropri-
ately changed. We specify the path of a packet in the IPv&k digaising atemplate vector. A template
describes a given transformation. For example if we wanutzassively apply AH, ESP then Shim6
transformatiof, entry O of the template array would describe the AH tramafion, entry 1 the ESP
transformation and entry 2 would describe the Shim6 transdition.

The last part of the xfrm framework is the state, historickliown assecurity association A security
association maintains all the state necessary for perfaymgiven transformation. It is also unidirectional,
because of the design of the IPsec protocol.

The Shim6 Security Associations : In the case of Shim6, the outbound transformer must be able t
perform failure detection and ULIDs to locators rewritingf. thus need to contain the ULID pair, the
Locator pair and the Context tag that will be inserted in thex$ header in case of transformation. A
flag is also present to specify that address rewriting is @@ed is not. Similar data is maintained in the
reverse Security Association for performing the reverapdiation. Note that the context tag stored in the
outbound SA is the peer context tag (written to outbound ek while the one stored in the inbound
SA is the local context tag (expected in received packets fite peer). We also need to store the REAP
failure detection timers. They are stored in a memory areaselpointer is shared by the inbound and
outbound SA. We need to do that since the Keepalive and Sewddimust be started when packets flow
in one direction, and stopped when they flow in the other tivac

2This is an example, currently the implementation only afiocBhimé transformations. Extension to IPsec support shoeild
simple, however.

The next sections will describe with more details the wayigied, selectors, templates and Security
Associations are dealt with in the caseL@iShim6

All xf r moperations by the daemon partlghShim6are implemented isrc/xfrm.c(in the daemon
tarball).

7.2 xfrmpolicies

A policy embodies &elector adi r ecti on, anacti on and at enpl at e. After the shim6 negotiation
by the daemon terminates, the first thing the daemon doesasecthe kernel part of the shim6 state, which
consists in two policies and two states. We explain heredteeaf policies.

A policy is represented by a structure definedhiclude/net/xfrm.h

struct xfrm_policy

{

struct xfrm_selector selector;

struct dst_entry xbundles;

ulé family;

u8 action ;

struct xfrm_tmpl xfrm_vec [XFRM_MAX DEPTH];
}

The policy structure is filled in initially bxf rm add_pol i cy() (net/xfrm/xfrm_user)¢upon re-
ception of aXFRM_MSG_NEW POLI CY message from user space.

In the above listing, we find the selector, the action, ande¢hgplate vector. These three things make
the core of the policy and will be explained hereafter in #@stion. The family is simplAF_| NET6 in
our case. Note that the direction is not part of the structoeeause policies are stored in different tables
according to their direction.

The possible directions abé~RM_PCLI CY_QUT, for outgoing packets, okFRM_POLI CY_I N, for
incoming packets. These two policies are actually quitiedsht.

Outbound policy : The outbound policy serves to detect the packets when tleestiélrin the transport
layer, and change their outgoing path, in such a way that gfeeshrough the Shim6 layer. For Shim6
packets, our intention is not to filter out packets, thus »dctionis alwaysXxFRM POLI CY_ALLOW The
selector is set to match with théentifiers (ULIDs), not the locators. This is because we are still above
the Shim6 layer. Aemplatemust also be assigned to the policy (policy creation by treatn is done in
xfrm add_shi n6_ct x (src/xfrm.Q). The template provides a description of the “transforarétthat
will be performed. Note that in the context ®f r mwith Shim6, the word “transformation” is used for
address rewriting, but also timer updates for REAP failetedtion, even if no actual transformation is
performed. This is because we use ttig m“transform” mechanism to perform both functions.

The Shim6 daemon defines the templatestireat e_shi n6_t npl () (src/xfrm.d. The template
indicates that the address family is IPv6 and the protoc8his6. Note that we store 32 low order bits of
the context tag in the spi field of the template. This is to g#étient context-tag based lookup of Shim6
context, and will be explained later.

The policy lookup for outgoing packets is done in the tramsjager, right after the routing table lookup
(seefig. 3). Forthe case of TCP, the function of interdshist 6_csk_xm t () (net/ipv6/ineté_connection_sock.c
First a check is done to see if a routing cache entry is predaie that the routing cache entry is also an
xfrm cache and thus XFRM policy lookup is only necessary wihexfirst packet is sent (or when the pol-
icy is changed). The routing table is consulted 6 _dst | ookup() and immediately after the xfrm
policy table is consulted byf r m | ookup() . Note that UDP does the same thingiipdv6_sendnsg
(net/ipv6/udp.k; and the raw sockets implement it irmw6_sendnsg (net/ipv6/raw.¢. This part of
outgoing packet processing is represented in the uppletpart of figure 3.

Let’s now dig into thexf r m_| ookup() function (filenet/xfrm/xfrm_policy)e If no policy is cached
for that particular socket, then a general policy lookupasfgrmed &kf r m pol i cy_| ookup()). The

<<include/linux/skbuff.h>>
struct sk_buff

*, ¢ —
struct dst_entry *dst; L <<include/net/dst.h>> <<include/net/dst.h>>
struct dst_entry struct dst_entry

sk_buff_data_t transport_header; -
sk_buff_data_t network_header; dst->output=shim6_output

sk_buff _data_t mac_header; dst->xfrm="Shimé state"
dst->child

dst->output=ip6_output
dst->xfrm=NULL

Figure 2: Linked list of output functions

lookup uses a hashtable and verifies a matching between thetdaeader and the selector we have con-
figured previously. If no matching policy is found, xfrm pessing is now finished. If a policy is found,
then the corresponding template is resolved, leading tadmstruction of ebundle of transformations
CurrentlyLinShim6only supports one transformation for a given flow (future kvimrcludes supporting
for example chaining AH or ESP transformation with Shim@)tHe case of Shim6, The bundle contains
only one entry, for Shim6. As indicated previously, the aing path of the packet must be changed. The
outgoing path is described by a linked list@$t structures. Each such structure contains a pointer to
adst _out put () function. After a basic routing table lookup, the linked lisly contains one entry,
which points toi p6_out put () (net/ipv6/ip6_output) Figure 2 shows the state of the linked list after
the execution okf r m_ | ookup() .

Figure 2 also shows that a dst structure contains an entigdadét - >xf r m This entry is of type
struct xfrm.state+, and points to the real Shim6 state, that must have beeredréafore, since
the xf r m_| ookup function only performs a lookup for such a state, it does meat it. The lookup
is performed based on the same selector as defined previddste details orxf r mstates are given in
section 7.3.

Inbound policy : The inbound policies are used differently from the outbopaticies. The main dif-
ference can be summarized by saying that outgoing packptrience golicy—statesequence, while
incoming packets experiencestate—policy sequence. This can be observed by comparing the left and
right part of fig. 3. For the outbound direction, the policgtdies the transformations that the packet will
undergo. For the inbound direction, we receive a packet witliven order of extension headers. The
extension headers are parsed, and a ‘transformation véctarilt as the headers are parsed, so that the
sequence of transformations is remembered. Néxtn6_pol i cy _check() verifies that the observed
sequence of headers were indeed authorized. The Shiméndlipalicy is only necessary to prevent Shimé
packets from being dropped by thér msubsystem.

In the case of Shim6, we currently only support one transétion (the Shim6 transform). Thus our
inbound policy simply verifies that the received packet wemgormal Shim6 packet, without any other
transformation.

Shim6 policies are defined by thenShimédaemonirkf r m add_shi nb_ct x() (src/xfrm.9. Note
that the policies are defined with the ULIDs in the selectbegause policies are managed in the transport
layer. They thus need not be updated (m updat e_shi n6_ct x() upon update of the context (that
is, change of the current locators). Neverthelg$s,m updat e_shi n6_ct x() does make a policy
update for the outbound direction only, because this triggerouting cache flush as a side effect. This
flush is necessary to force a new routing table lookup for tiiecerned sockets, since the new locators may
need to go out through a different interface.

Thexf r mimplementation of policies is located imet/xfrm/xfrm_policy.cln the next section, we will
describe the state-related implementation, locategetrkfrm/xfrm_state.c

7.3 xfr mstates

Like the policiesxf r mstates are created by the functidnr m add_shi n6_ct x() (src/xfrm.g. xf rm
states are defined through a structsre uct xfrm st at e described innclude/net/xfrm.hSome parts

of this structure are given below :

{

}

struct xfrm_state

I/« Note: bydst is reused during gcx*/
struct hlist_node bydst;

struct hlist_node bysrc;

struct hlist_node byspi;

struct xfrm_id id;

struct xfrm_selector sel;

struct xfrm_lifetime_cfg Ift;

/+ Shim6-related data =/
struct shim6_data *shim6 ;

struct xfrm_lifetime_cur curlft;

/+ Reference to data common to all the instances of this
* transformer. x/

struct xfrm_type xtype;

struct xfrm_mode xmode ;

[/« Private data of this transformer , format is opaque,
x interpreted by xfrm_type methodsx/
void xdata;

I/« ldent of a specific xfrm_state. It is used on input to lookup

x the state by (spi,daddr,ah/esp) or to store information abo
x spi, protocol and tunnel address on output.

*/

struct xfrm_id

{
xfrm_address_t daddr;
__be32 spi;
__us8 proto;

b

The hashtables : The three fieldbydst, bysrc andbyspi , are the collision lists of three different
hashtables. Each hashtable permits retrievingfanmstate with a different key (resp. dst, src or spi). The
corresponding lookup functions, locatediet/xfrm/xfrm_state.are :

e xfrm state | ookup() : Uses thebyspi hashtable. The exact key used is the tuple
(daddr, spi, proto, fam | y). Note that the contexts with null spt{>i d. spi is 0)are
not inserted in that hashtable.

e xfrm state | ookup_byaddr () : Uses thébysr c hashtable. The exact key used is the tuple
(daddr, saddr, fanily).

e xfrmstate find() :Usesthéydst hashtable. The exact key used is the tuple

With our LinShim6 patch, we define two additional lookup ftions, necessary for proper operation

of the Shim6 protocol.

e xfrm state | ookup_byct () : Performs a context tag based lookup. Because we don’t want
to pollute kernel code with additional hashtables, we rehseSPI hashtable (where of course, SPI

10

does not mean Security Parameter Index). The SPI is 32 bigs lehile the context tag is 47 bits
long. Thus we store the 32 low order bits of the context tapénSPI field of the Shimgf r mstate.
So that those bits are used as a key for finding the contextxThen st at e_| ookup_byct ()
function computes the hash and iterates over the colligsofthat is, thebyspi collision list) until
the matching state is found. A state is considered to matith family is AF_I NET6 protocol is

| PPROTO_SHI Mo the 47 bits of context tag match and thier mstate is inbound.

e xfrm state_| ookup_byulid_in() : PerformsaULID-based lookup forinbound states. The
outbound Shimé6 states are found with the stana@ndm st at e_| ookup_byaddr () function.
But for the inbound states, things are more complicated usecthexf r mframework expects the
source and destination addresses carried inside the ingop@icket to be the identifiers for the
context. Thus we must use tleeatorsasxf r midentifiers if we want to use the standard functions.
This is not acceptable since two different Shim6 states nsaytiie same locator pair, and thus the
locator pair is not a unique identifier.

The solution is to store the identifiers in thhi n6 field of the structuref r m st at e, and create
this custom lookup function. In order to still make an effitibbokup, we make use of tHeysr c
hashtable. The exact key used is the tymaddr , daddr, f ani | y) , where the source address is
the remote identifier. However, we must set the destinatioiness tany (: :), to avoid a conflict
with thebyspi hashtable, which uses that address as part of its key.

The two functions described above make possible for the ssimoeindx f r mstate to receive packets,
either with any locators and the Shim6 extension headerh st at e _| ookup_byct ()), or without
the extension header and using the ULIDs as locatbrsn st at e_| ookup_byul i d_i n()).

Selector and identifier : The next two fields are the selector and the identifier. Thecsa is the same
as the one used for defining the associated policy. It is usatkhtify a state, but it is not sufficient, since
the selector actually identifiesraange of states (because of the possibility to define masks foremseis
and ports). Thus theaddr field of thexf r m i d is the particular address associated to that flow. Because
of the one-one relationship between Shim6 policies anéstatedaddr field from the selector and the
xfrm id are the same.

Note that thepr ot o field also exists in both the selector and xfrm id structudsgain, the meaning
is different. In the selector, the proto field indicates tthat upper layer flow must have the given protocol
number. Shim6 sets this field to 0 (any), becadisent associations are only based on network data, not
at all on transport data. On the other handghet o field of thexf r m i d refers to the protocol number
of the particular transformation performed with that s@emember that each state is responsible for only
one transformation, and thus a vector of states must be ftisederal transforms are to be applied). In the
case of Shim6, we put there the Shim6 protocol number. Wedeamily chose 61, since IANA has not yet
given a number for the Shim6 protocol.

Shimé6-related data : Thexf r mstates have a pointer to each possible transform data. Tkus are
other fields for AH, ESP, ... (not shown here). Unused poindee set to NULL. Our Shim6 structure is
defined as followsificlude/linux/shim6é.h

/+shim6 data to be stored inside struct xfrm_state
struct shim6_data ({

/xinbound — ct is ct_local

xoutbound — ct is ct_peer/

__ub4 ct;
/xinbound — in6_local is ULID_local, in6_peer is ULID_peer
xoutbound — in6_local is Ip_local, in6_peer is Ip_peer/
struct in6_addr in6_peer;
struct in6_addr in6_local;

I« flagsx*/
__u8 flags;

11

#define SHIM6_DATA_TRANSLATE 0x1 /« Translation activated/
#define SHIM6_DATA_INBOUND 0x2 /x context is inbound/
#define SHIM6_DATA UPD 0x4 /x context update/

b

As shown in the comments, the content depends on whetheatieasinbound or outbound. If the context
is inbound, eithexfr m st at e_| ookup_byct () will use the local context tag to find the state, or
xfrm sate_| ookup_byul i d_i n() will use the identifiers. If the context is outbound, then veed

to replace the identifiers (stored in the selector) with tiwators, and insert the Shim6é extension header
with the peer context tag.

The two first flags are self-explained. The third one is set iy the daemon when communicat-
ing the structure to the kernekf{r m updat e_shi n6_ct x() - src/xfrm.g, to tell the kernel that
the given state is an update, not a new Shimé6 context. Thisrirdtion is used in the kernel side by
shinb_init_state() (net/ipv6/shimé.c

lifetime : Thecurl ft field keeps track of the number of bytes, packets, and sedbedstate have
seen. In Shim6 we are more interested in the lifetime in sggosince we want to remove a state if it is
no longer used. The time is updatedsihi m6_i nput () andshi n6_out put () (net/ipvé/shimé.c
The timeouts are configured by setting thiet field of that state. This is done through a message from
user space. LinShim6 configures the timeousitt M6 TEARDOWN _TI MEQUT (defaults to 10 minutes)
inxfrm. | ft() (src/ xfrmc). As can be seen in that function, there exist a soft and atimrasbut.
Both are managed irfrm_timer_handler({net/xfrm/xfrm_state)c The hard timer automatically deletes
the state and notifies the daemon, while the soft timer justi@@the daemon. In LinShim6 we only set
the soft timer, because it is not sufficient to delete theestat need to delete the inbound and outbound
states and policies, as well as the daemon state. The exgtification is sent through RTNetlink (see fig.
1), and handled byf rm rcv() (src/xfrm.g.

type and mode : Eachxfr mtransform is defined by a mode and a type. Currently 5 transfondes
can be seen irf r m Each mode is defined by>@RM MODE_* constant innclude/linux/xfrm.rand a
specific file,net/ipv6/xfrm6_mode_*.dhemodedefines an input and an output function, thrtdify the
packet structure appropriately. Thaype also defines an input and an output function, tfzinge the
packet contentaccording to the particular transformation. Thus, the sarade may be used with several
types if they need the same transformation.

For Shim6, we defined both a new mode and a new type. Our new63hade (iet/ipv6/xfrm6_mode_shim®.c
performs a conditional packet structure modification. Tibaif the SHI M5_DATA_ TRANSLATE flag is
set, then the locators differ from the ULIDs and space musetberved for the Shim6 extension header.
On the other hand, if the locators and ULIDs are the same,nibgracket modification is needed.

The Shim6 type is defined ishim6.c It registers theshi m6_i nput () andshi nb_out put ()
functions, that perform the real work of the Shim6 sublay@ose functionsresp. caleap_noti fy_in()
andreap_notify_ out () (reap.Q for updating the REAP timers.

REAP timers: REAP timers are placed in the privatat a field of the state, because they need to be
shared by the inbound and outbound state. We allocate a rgespace for the REAP context when creating
the outbound Shim&f r mstate, then the inbound state is just linked to it (seenb_i nit _stat e()
(net/ipv6/shim6.))

8 The path of a packet through the networking stack

The anchor points dfinShime6inside the Linux Kernel are as shown in figure 3. In this secti@ sum-
marize the path of packets by describing this figure.

12

ip6_dst _lookup

ROUTING

if sk->sk_dst_cache is not
defined

xfrm6_policy_check \ /
/'Ihmsport layer \

shim6_input _std

ip6_push_pending_frames

shim6list_local out

R e

‘IPG_POST_ROUTING I

ip6_output_finish

Figure 3: Packet path inside the IPv6 stack withShim6

13

8.1 Incoming packets

Incoming packets go through the Shim6 packet listener witéindithel P6_LOCAL | N netfilter hook.
If an entry already exist for that packet, the correspondimgnter is incremented, if not nothing is done
(only outgoing packet may generate a new entry in that mgdule

Next thei p6_i nput _fi ni sh() function verifies if a raw socket is listening for that packktis
the case of Shim6 control packets, that directly go throbghShimé6 filter (and pass the filter), to finally
arrive in the LinShim6 daemon, as indicated in the generdligacture (fig. 1).

i p6_i nput _fini sh() then iterates over each extension header and calls thesporrding han-
dler. The behaviour for Shim6 depends on whether the Shintehsion header is present or not.

e with the extension: Like other extension headers, the Shim6 payload extertséadler is reg-
istered as an IPv6 protocol, so that it is dispatched the abmay by the ‘resubmit’ loop in
i p6_i nput _finish(). In this case theshi n6_i nput () function is called to handle the
packet. This can be either a Shim6 control packet or a paylaaket. In the first case, the packet is
sent to the raw socket and interpreted by the daemon.

Inthe later case, the payload extension header is used thimabntextghi n6_xfrm_i nput _ct ()),
the addresses are translated and the packet is furtheisgeathy the ‘resubmit’ loop inp6_i nput _fi ni sh().

¢ without the extension: This case is more complicated since we need to match thespaghinst
a potential Shim6 context, at the right step. When the eidartseader is present, we can parse the
extension headers normally, and be sure that Shimé will beagned at the right place. Without the
extension, we need to do as if it were there.

Thus, the chosen solution is to use #td n6_i nput _st d() function for packets without exten-
sion headers, and insert some code@®_i nput _fi ni sh() to check when to send the packet
to the Shim6 layer (relative to other extension headergjage the Shimé header is not present. The
shi n6_i nput _std() function in turn callsshi n6_xfrm_i nput _ul i d() in order to enter
the xfrm framework, with a context lookup based on the ULIDs.

Later, in the transport layer, acallxd r n6_pol i cy_check() verifies that the transformed packet
was indeed acceptable according to the local policies.

8.2 Outgoing packets

The first outgoing packet of a newly opened socket has normgutache yet. For that packet only
i p6_dst _I ookup() finds the outgoing interface through the routing table. Thwse address is also
chosen there according to RFC3484 rules[Dra03] if it watsue$pecified by the application.

Right after thatxf r m_| ookup() checks if anxf r mpolicy exists for that flow, in which case it
constructs the bundle of transformations correspondintpab flow. This determines the sequence of
skb- >dst - >out put () functions thatwill be called later. For Shim6, the outputdtionisshi n6_out put () .

When hitting the netfiltet P6_LOCAL _QOUT hook, the packet goes through the Shim6 packet listener
module, that creates an entry for that flow. If the packet ésfitst one with this address pair (from any
socket), the.inShimédaemon is notified to start a Shim6 negotiation (with theenirheuristic). The other
packets will just cause the corresponding counter to bemented.

If a routing cache entry already exists for a given socket {ge 3,sk- >sk_dst _cache), the calls
toi p6_dst _I ookup() andxfrm | ookup() are notneeded. For that reason we must flush the socket
caches when we change the current locators of a flow, sinserthy result in a change of the outgoing
interface.

9 REAP Implementation

As previously mentioned, the REAP implementation is spléikernel and a user space part. The division
may be summarized by figure 4.

14

REAP_NL ART_EXPLORE

Send timeout :
SEND Probe Exploring;

1. Keepalive timeout :
SEND Keepalive

2. Incoming Keepalive
STOP Send

3. Outgoing packet
START Send;
STOP Keepalive

4. Incoming packet :
STOP Send;
START Keepalive

5. Incoming Probe InboundOK
SEND Probe Operational;
RESTART Send;

1. (retransmit)
SEND Probe Exploring
2. Outgoing packet

STOP Keepalive
6. Incoming Probe Operational:
STOP Send;
START Keepalive

SEND Ppébe Exploring

23 X 1. Incoming Probe Exploring;
ng Probe Exploring SEND Probe InboundOk;
pEAR Probe InboundOK; START Send
RESYORT Send; 2. Incoming packet
sTOl %pallve SEND Probe InboundOk;
2N START Send
3. Incoming Keepalive :
SEND Probe InboundOk;
START Send

SEND Probe Operatiggéfl;
RESTART Send;

\Shimed Daemon

Kernel
Space

Inbound

1. Outgoing packet : OK
START Send

2. Incoming packet :
STOP Send

3. Incoming Keepalive
STOP Send

4. Incoming Probe Exploring
SEND Probe InboundOK;
RESTART Send

5. (retransmit)

SEND Probe InboundOK;
START Send

REAP state machine :
(modified from draft-ietf-shimé6-failure-detection-09.pdf, page 27)

Figure 4: Interaction kernel/userspace for REAP

The REAP protocol runs in user space, almost independewity the kernel. The idea is to manage
the send and keepalive timers in kernel space. Then, if thetdmer occurs to timeout, the kernel informs
the REAP daemon (by netlink), in order to start an exploratid/hen the exploration is terminated, the
REAP daemon informs the kernel about the new operationakadgair to be used.

The daemon also has its own send timer, which is used onlynglam exploration (while the kernel
send timer is used only when the reap context is in state tpead).

9.1 Triggering an exploration
Two things can trigger an exploration :

e Sendtimer expiry : This is detected by the kernel, which sengktlink messageEAP_NL_START_EXPLORE
to the daemon. This results in the daemon starting the egdorprocess.

e Receiving a probe message : The probes are received by Eottagmon and the kernel, so that it
isn’'t necessary to send a netlink message from one to the dthe kernel just goes into inbound_ok
state and adapts its timers, but lets the daemon perfornxgheration.

9.2 Sending probes

The REAP context maintains a list of sent and received preperts (with the locator pair used and the
nonce of each probe). This list is kept during the whole tif@moexploration. It is cleared either after the
reception of probe operational or 10 seconds after the tiecepf a probe inbound ok. (because in the first
case we are certain that the peer is operational, in the degemope so, but this is not sure. That's why
we keep the locators during 10 seconds after ending an etjaoj.

15

9.3 About (un)verified locators

HBA is not supported in versions 0.6.x. But CGA is supporiede version 0.6.

We have used the DoCoMo SEND implementation as a starting fmi CGA support in LinShim6.
DoCoMo SEND provides a way to configure CGAs with differewells of granularity, ranging from one
CGA PDS for the whole system, to a specific CGA PDS per address.

LinShim6 reuses the DoCoMo SEND configuration file for CGAgmaeters, thus benefiting from the
same granularity. When starting, it registers every exis€GA address in the system, as well as every
CGA PDS. However, only one PDS is sent to the peer for a given&hkession, to be in accordance with
the draft, Annex D.4. The chosen PDS is the one associatédhatULID pair used for that session. This
means that LinShim6 is able to manage several PDS for diff€8him6 sessions, while keeping exactly
one PDS for a given session.

10 cgatool

Since Version 0.6.1, a new binary is available in the LinShitarball and called cgatool. It is a tool
originated from the DoCoMo SEND implementation, and in&gd in the LinShim6 package. It has also
been modified to better suit the needs of LinShim6. Note thatéxt of this section is almost completely
taken from the DoCoMo SEND documentation, and is reprodheee for the sake of convenience.

10.1 CGA generation

When generating a CGA, use thg or - - gen command line argument. To generate, you must provide a
key, an IPv6 prefix, and a CGA sec value. There are four waysavige a key:

1. Provide a certificate withCor--certfile.
2. Provide a PEM-encoded RSA key pair witk or - - keyfi | e.

3. Generate a RSA key on the fly wittRor - - r sa <bi t s>. You must also provide a keyfile with
-k to which to write the new key. Note that the number of bitstfee key is anandatory argument.
If you fail to give it, you will receive an errdEVP_PKEY_assign_RSA() failed

4. Provide DER-encoded CGA parameters withor - - derfi | e.

Provide an IPv6 prefix with p or- - prefi x <prefi x>.

Provide a CGA sec value withs or- - sec <sec val ue>.

When generating, you must also provide a derfile witlito which to write the new DER-encoded
CGA parameters.

Some examples:

e Provide the key from mykey.pem:
cgatool -g -k nykey.pem-o myder -p 2000:: -s 1

e Provide the key from myder:
cgatool -g -D nyder -o nyder -p 2000:: -s 1

e Generate from the example parameters provided in rfc3972:

cgatool --gen -D rfc_exanple.parans -o nyder -p fe80:: -s 1
fe80: : 3c4a: 5bf 6: f f b4: cabce

16

The amount of time needed for CGA generation depends on tetlspf your hardware and the sec value.
You should choose the largest sec value your hardware arghpatcan reasonably handle. On a 2GHz
Pentium 4, sec=1 usually takes just a few milliseconds,evgic=2 takes at least a few hours. The faster
your hardware (and the more patient you are), the largerthgalue you can use. The largest possible sec
value is 7. If you provide the key from a derfile, cgatool wilauthe modifier in the CGA parameters, and
will not search for a new madifier. Once finished generatiggteol will print the new CGA to stdout, and
write the CGA parameters to the provided derfile.

10.2 \Verification

You will ordinarily not need to manually verify CGAs. Thisriationality is provided for experimentation
and sanity checks. When verifying, use the or - - ver command line argument. To verify, you must
provide the CGA to be verified, and the CGA's DER-encodedipatars. Provide the address with or

- - addr ess, and the derfile with theDor- - der f i | e argument. For example:

cgatool --ver -a 2000::2073: 8e00: 6d: aa09 - D nyder

10.3 cgatool console

Run cgatoolwiththei or--i nt er acti ve command line argument. You can set all the arguments one-
by-one, and use thrghowcommand to display current CGA context state. If youd®E THREADS=y in
Makefile.configyou can also use multiple threads to search for the CGA newdifiparallel. (Of course,
this is only useful if you have a multi-processor and / or fircdire syster®). Set the number of threads

to use with 'thrent <num>'. While generating, cgatool wilarch a certain number of modifiers, and then
check for interrupts (i.e. You can halt generation with "The number of modifiers searched between
interrupt checks is called the batchsize. You can changevéiue with the 'batchsize <num>’ command.
The default batchsize §0000.

Aknowledgements

This work has been funded by the FRIA (Fonds pour la FormatitanRecherche dans I'Industrie et dans
I'Agriculture, rue d’Egmont 5 - 1000 Bruxelles, Belgium).

I would like to thank John Ronan for the bug reports he pradjdeus helping in the improvement
of this work. Thanks also to Shinta Sugimoto and Miika Komutfee constructive discussion held on
the usagi mailing list. The original idea to use thler mframework for Shim6 implementation has been
suggested by Shinta Sugimoto. Masahide Nakamura alsode@\some explanations about the xfrm
architecture. Junxiu Lu provided several bug reports aceintty joined the project as a developer. Thanks
to Marcelo Bagnulo and his research group for interestisgudisions and comments about this work.

3This feature was present in DoCoMo SEND and the correspgratide has been kept in LinShimé. But it is not yet integrated
nor tested

17

Appendix

A Shim6 control messages sent through Netlink

While xf r mhas its own RTNetlink interface for communicating with uspace, we still use our own
Netlink channel for sending some messages from the kertleéldnShimédaemon. Note that as integra-
tion with thexf r mframework continues, this interface may completely disspn the future.

A.1 SHIM6_NL_NEW_LOC_ADDR : Announce the apparition of a new locator

< | | Pv6 addr. (128 bits) |

o from kernel to daemon

e role : Add a locator in the local locator list for the daemon. Theyofithe message is only the new
locator.

A.2 SHIM6_NL_DEL_LOC_ADDR : Announce the removal of a local locator

< | | Pv6 addr. (128 bits) |

o from kernel to daemon

e role : Removes a locator from the local locator list in the daemdre Body of the message is only
the locator.

A.3 SHIM6_NL_NEW_CTX : A new context must be created

* |local ulid (128 bits) | peer ulid (128 bits) |

o from kernel to daemon

e role : Announce to the daemon that the condition to trigger a Shiegdtiation is met for the given
ULIDs. Currently, this is sent by the packet listener modsl@m6_pkt _listener)c

A.4 REAP_NL_NOTIFY_IN : Incoming packet notification

* | local context tag (64 bits, 47 used) |
e from kernel to daemon

e role : Notifies the daemon that a packet belonging to the context giiten context tag has been
received. This is used only when there is an ongoing exptorg@irocess for the affected context.

18

A.5

REAP_NL_NOTIFY_OUT : Outgoing packet notification

| ocal context tag (64 bits, 47 used) |

from kernel to daemon

role : Notifies the daemon that a packet belonging to the context giiten context tag has been
sent. This is used only when there is an ongoing explorationgss for the affected context.

REAP_NL_START_EXPLORE : Begin a new exploration

| ocal context tag (64 bits, 47 used) |

from kernel to daemon

The (kernel) send timer has expired. The daemon must stagtvaerploration. Note that a the
daemon can also decide by itself to start an exploratiorexample if a locator disappears (as is the
case when the wire is unplugged) or an exploring probe iswede

REAP_NL_SEND_KA : Send a keepalive

| ocal context tag (64 bits, 47 used) |

from kernel to daemon

role : Asks the daemon to send a keepalive for the specified conféis.is necessary because in
operational state, the keepalive timer is maintained #ie kernel.

19

References

[AVBO7]

[Bar06]

[Bar07]

[Dra03]

[KBSS07]

[KMEO4]

[MNO4]

[NBO7]

[SKKKO3]

[YMN +04]

J. Arkko and I. van Beijnum. Failure Detection anddator Pair Exploration Protocol for IPv6
Multihoming. Internet Draft, IETF, July 2007. <draft-iethim6-failure-detection-09.txt>,
work in progress.

S. Barré. Développement d’extensions au Kernelikipour supporter le multihoming IPv6.
Master’s thesis, UCL, 2006.

S. Barré. Implementing SHIM6 using the Linux XFRMafnework. InRouting In Next
Generation workshgpMiadrid, dec 2007.

R. Draves. Default Address Selection for Internedtécol version 6 (IPv6). RFC 3484,
Internet Engineering Task Force, February 2003.

M. Komu, M. Bagnulo, K. Slavov, and S. Sugimoto. BetcApplication Program Interface
(API) for Multihoming Shim. Internet Draft, IETF, July 200&draft-ietf-shim6-multihome-
shim-api-03.txt>, work in progress.

M. Kanda, K. Miyazawa, and H. Esaki. USAGI IPv6 IPsevelopment for Linux. Idnter-
national Symposium on Applications and the Interpages 159-163, January 2004.

K. Miyazawa and M. Nakamura. IPv6 IPsec and Mobile 8fmplementation of Linux. In
Proceedings of the Linux Symposiuralume 2, pages 371-380, July 2004.

E. Nordmark and M. Bagnulo. Level 3 multihoming shimofocol. Internet draft, draft-ietf-
shim6-proto-08.txt, work in progress, May 2007.

J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsovnlux Netlink as an IP Services Protocol.
RFC 3549 (Informational), July 2003.

H. Yoshifuji, K. Miyazawa, M. Nakamura, Y. Sekiya, H. k$aand J. Murai. Linux IPv6
Stack Implementation Based on Serialized Data State RsiogetEICE TRANSACTIONS on
CommunicationgE87-B(3):429-436, March 2004.

20

