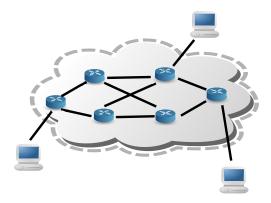
Implementation and Assessment of Modern Host-based Multipath Solutions

Sébastien Barré

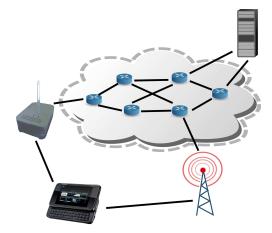
ICTEAM, Université catholique de Louvain http://inl.info.ucl.ac.be

Examining board: Marcelo Bagnulo Christophe De Vleeschouwer Marc Lobelle Olivier Bonaventure Mark Handley Rolf Winter


Nov. 2nd, 2011

phD public defense

Sébastien Barré


Implementation and Assessment of Modern Host-based Multipath Solutions

Motivations - Multipath in the past

- One link connects a host to the network
- Multiple links are used inside the network

Motivations - Multipath today

- Still multiple links inside the network, but...
- Several links connect the client to the network (e.g. mobile phones)
- The same holds for servers (e.g. datacenters)

Motivations - Multipath today

- Companies also connect to multiple providers
- this improves the availability of the company services
- but moving connections across providers still breaks communications...

Motivations - new protocols: Shim6

Figure: Path failure with TCP

Implementation and Assessment of Modern Host-based Multipath Solutions

Motivations - new protocols: Shim6

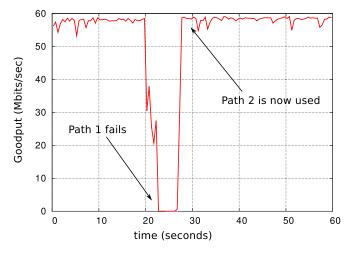


Figure: Path failure with Shim6

Sébastien Barré

Implementation and Assessment of Modern Host-based Multipath Solutions

Motivations - new protocols: MPTCP

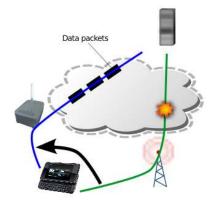
- Assume two hosts are connected with two 1Gbps links
 - Current connections (regular TCP) will get 1Gbps and use only one of the links
 - MPTCP can achieve **2Gbps**, without any change to the application (only to the operating system)

Motivations - The problems

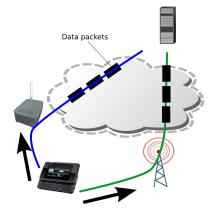
- Several protocols have been proposed (HIP[MN06], Shim6[NB09], MPTCP[FRHB11], LISP[FFML11], ILNP[Atk11], SCTP-CMT[IAS06] etc.)
- Due to their novelty, their impact is not widely understood
- Focus of the thesis: The host networking stacks now have to deal with multiple paths
- There is no host-based analysis of those new approaches

Motivations - Our goal

- Understand the implications of new multihoming protocols on the end-hosts.
 - Usability
 - Performance
 - System integration
- Improve the protocols accordingly

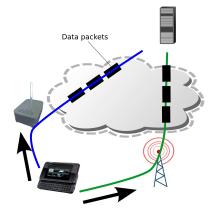


high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


End-host multipath control: high-level goals

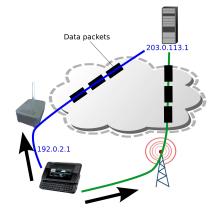
- Today: the user needs to restart the communication manually through the 3G interface
- Goal: we should preserve the communication even upon failure of a path
 - We cannot upgrade all applications

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


End-host multipath control: high-level goals

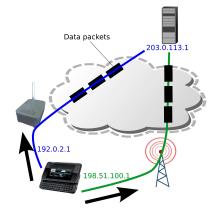
- Today: The user can use one interface at a time
- More ambitious goal: Achieve high resource utilisation
 - Use them all simultaneously

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


How to achieve session survival ?

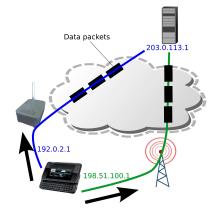
- Identifier: first address used for the session
- Locator: address used to forward the packet
- Locator: the Identifier is also a locator
- The applications only see the ID

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


How to achieve session survival ?

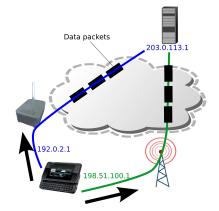
- Identifier: first address used for the session
- Locator: address used to forward the packet
- Locator: the Identifier is also a locator
- The applications only see the ID

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


How to achieve session survival ?

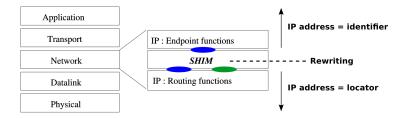
- Identifier: first address used for the session
- Locator: address used to forward the packet
- Locator: the Identifier is also a locator
- The applications only see the ID

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


How to achieve session survival ?

- Identifier: first address used for the session
- Locator: address used to forward the packet
- Locator: the Identifier is also a locator
- The applications only see the ID

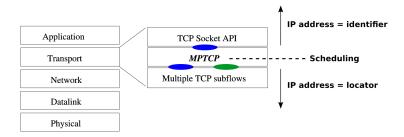
high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


How to achieve session survival ?

- Identifier: first address used for the session
- Locator: address used to forward the packet
- Locator: the Identifier is also a locator
- The applications only see the ID

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP

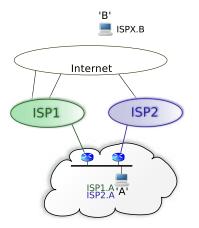
Doing it in the network layer (Shim6)

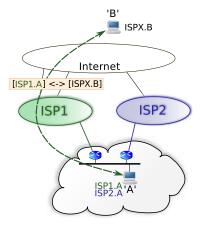

- Covers session survival across failures
- Cannot support packet level load balancing

Sébastien Barré

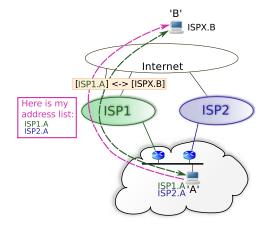
Implementation and Assessment of Modern Host-based Multipath Solutions

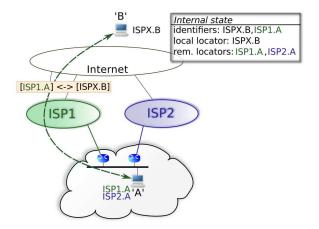
high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP

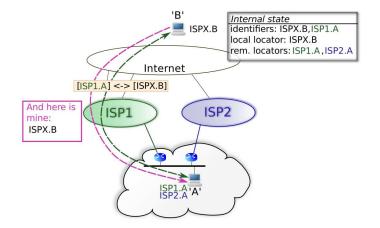

Doing it in the transport layer (MPTCP)

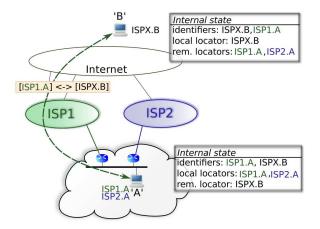

- Covers session survival across failures
- Does support packet level load balancing

Sébastien Barré


high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP

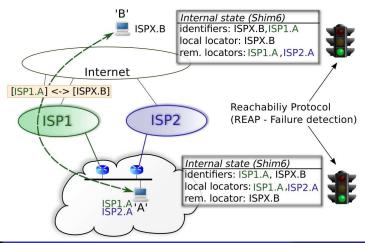

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP


high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP

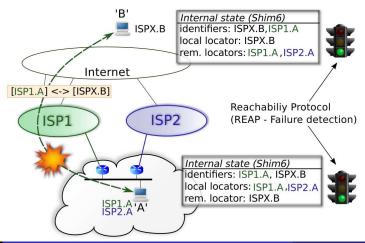
high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP

high level goals for end-hosts Requirements for the end-hosts Locators vs Identifiers Introduction to Shim6 and MPTCP

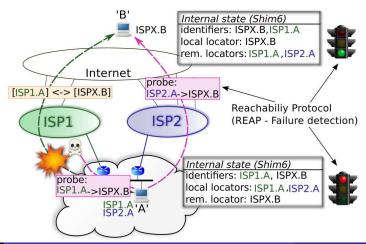


Shim6 LinShim6 Failure recovery procedure

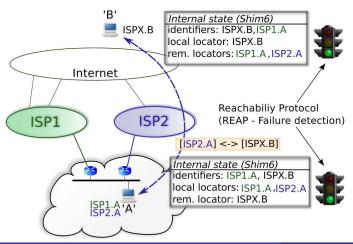
Shim6


Shim6 LinShim6 Failure recovery procedure

Shim6 operation


Shim6 LinShim6 Failure recovery procedure

Shim6 operation


Shim6 LinShim6 Failure recovery procedure

Shim6 operation

Shim6 LinShim6 Failure recovery procedure

Shim6 operation

Sébastien Barré

Implementation and Assessment of Modern Host-based Multipath Solutions

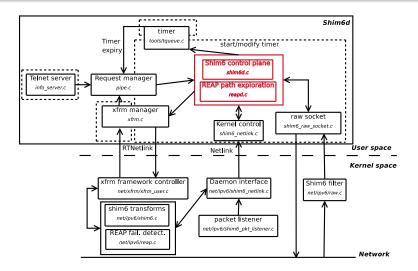
Shim6 LinShim6 Failure recovery procedure

Contributions

Shim6 LinShim6 Failure recovery procedure

LinShim6 - A Shim6 implementation

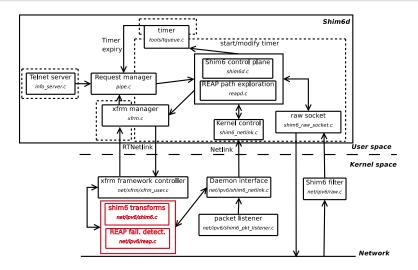
- Many research prototypes done in high level frameworks
 - +: quick implementations
 - +: can test external protocol behaviour (e.g. middleboxes)
 - -: cannot test internal behaviour (system-level)
- Our choice: kernel-level implementation
 - +: can test external protocol behaviour (e.g.middleboxes)
 - +: can test internal behaviour
 - +: can be maintained to reach production-quality
 - +: reusable by others [MKS⁺07, Mek07, RBKY08, DM08, RA08, DM09, RM10, AKP11]
 - -: slower development


Shim6 LinShim6 Failure recovery procedure

LinShim6 - design goals

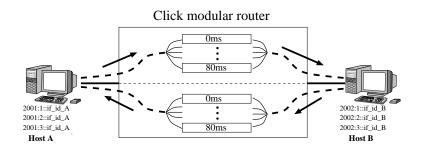
- Maximum efficiency: user/kernel space separation
 - Kernel handles per-packet processing
 - userspace handles protocol control
 - minimizes context switches
 - maximizes amount of userspace code
- Interaction with other protocols, e.g. Mobile IP

Shim6 LinShim6 Failure recovery procedure

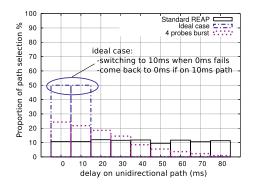

LinShim6 - implementation architecture

22 / 52

Shim6 LinShim6 Failure recovery procedure


LinShim6 - implementation architecture

22 / 52


Shim6 LinShim6 Failure recovery procedure

Can Shim6/REAP find a low-delay path ?

Shim6 LinShim6 Failure recovery procedure

Yes, with burst probing

- +: higher probability to select better path
- -: higher probability to generate probe storm

Shim6 LinShim6 Failure recovery procedure

Shim6: summary

- We provide an efficient, modular implementation of Shim6
 - $\bullet~\sim$ 30000 lines in the daemon, \sim 3500 in the kernel.
 - Widely used by other researchers [MKS⁺07, Mek07, RBKY08, DM08, RA08, DM09, RM10, AKP11]
- We evaluate and improve the recovery time of Shim6
- (in the thesis): we built a MipShim6 prototype, combining Mobile IPv6 with Shim6, with an architecture similar to [BGMA07]
 - Routing Optimization now secured with Shim6 CGAs
 - MIPv6 required to handle the double jump
 - Integrated implementation available

concepts Linux MPTCP MPTCP performance Use case: datacenters

Multipath TCP

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP - concepts

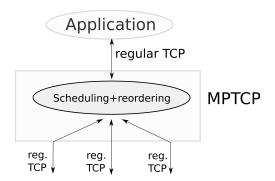


Figure: MPTCP is transparent to both the network and the applications

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP - concepts

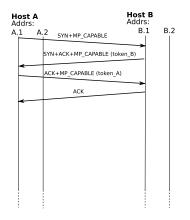


Figure: MPTCP subflow initiation

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP - concepts

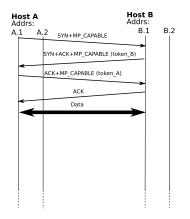


Figure: MPTCP subflow initiation

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP - concepts

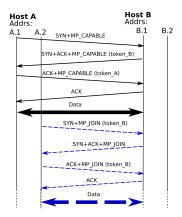


Figure: MPTCP subflow initiation

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP - concepts

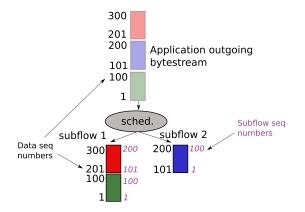


Figure: MPTCP Data Sequence Numbers (DSNs)

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP - concepts

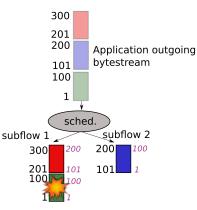


Figure: MPTCP retransmission

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP - concepts

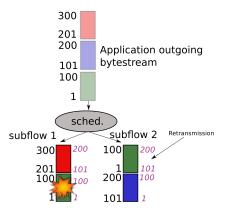
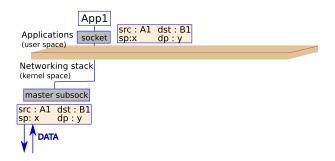


Figure: MPTCP retransmission

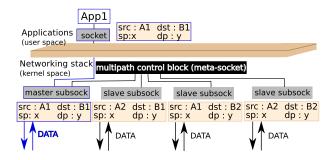

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

Contributions

concepts Linux MPTCP MPTCP performance Use case: datacenters

Linux MPTCP

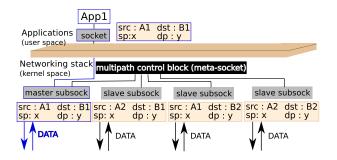


[BPB11a] S. Barré, C. Paasch, and O. Bonaventure. MultiPath TCP - Guidelines for implementers. draft-barre-mptcp-impl-00.txt, March 2011.

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

Linux MPTCP



[BPB11a] S. Barré, C. Paasch, and O. Bonaventure. MultiPath TCP - Guidelines for implementers. draft-barre-mptcp-impl-00.txt, March 2011.

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

Linux MPTCP

- $\bullet\,\sim\,10000$ lines in the Linux kernel
- Already used by other researchers: [SBS⁺10, NZNP11]

[BPB11a] S. Barré, C. Paasch, and O. Bonaventure. MultiPath TCP - Guidelines for implementers. draft-barre-mptcp-impl-00.txt, March 2011.

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

Linux architecture - Keeping Path Management appart

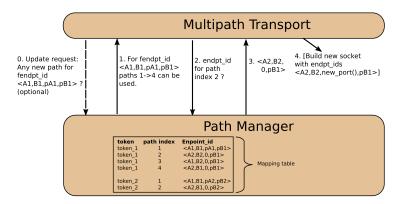
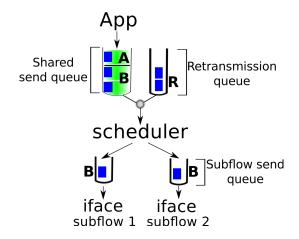
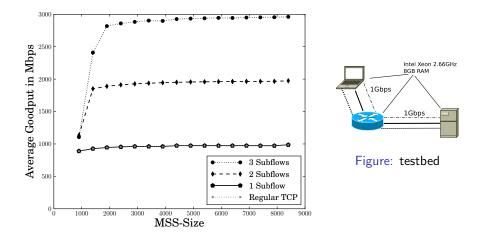



Figure: Functional separation of MPTCP in the transport layer

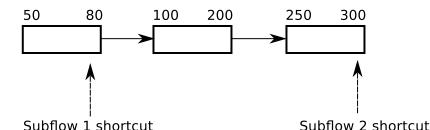

concepts Linux MPTCP MPTCP performance Use case: datacenters

Linux architecture - Scheduling/retransmitting data

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP performance - MSS impact

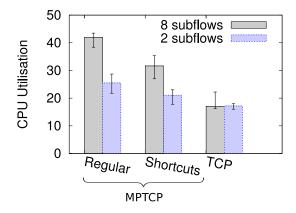
concepts Linux MPTCP MPTCP performance Use case: datacenters


MPTCP performance - CPU consumption

• The MPTCP receiver requires special optimisations compared to regular TCP

- Regular TCP: segments arrive mostly in sequence, reordering only happens upon a loss event
- MPTCP: subflow segments arrive in sequence, but MPTCP-level data does not arrive in sequence

concepts Linux MPTCP MPTCP performance Use case: datacenters


MPTCP performance - CPU consumption

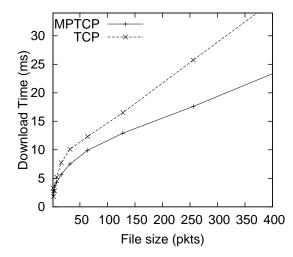
 Shortcuts were successful in 80% of the out-of-order packet receptions in our testbed.
(2 hosts, Intel Xeon 2.66Ghz, 8GB RAM, 2 links with capacity 1Gbps)

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP performance - CPU consumption

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP performance - When to start MPTCP ?

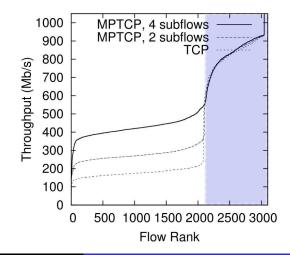

- Datacenter communications may be short (a few packets)
- MPTCP negotiation has a cost (one handshake per subflow, second subflow established *after* the first one)
- We run TCP and MPTCP for short flows, testing download times for a set of transfer sizes

[RBP+11] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving data center performance and robustness with multipath TCP. *SIGCOMM*, Toronto, 2011.

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP performance - When to start MPTCP ?

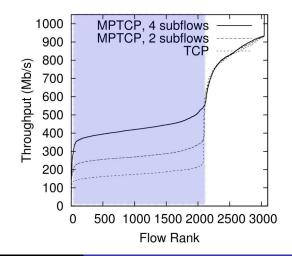

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP in action in a real datacenter

- Linux MPTCP has been run in the Amazon EC2 testbed
- 12 hours, sequentially measuring bandwidth between 40 nodes
- Linux MPTCP configured to use random ports with constant addresses
 - goal: take benefit from load-balancing

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP in action in a real datacenter


 1/3 of paths share the same switch or physical machine

 2/3 of paths are balanced according to traceroute.

Sébastien Barré

concepts Linux MPTCP MPTCP performance Use case: datacenters

MPTCP in action in a real datacenter

- 1/3 of paths share the same switch or physical machine
- 2/3 of paths are balanced according to traceroute.

Sébastien Barré

Conclusion

Shim6 vs MPTCP: Shim6 strengths

- Security:
 - protects against time-shifting attack
 - $\bullet\,$ can use the longer IPv6 addresses to encode security information
- State:
 - One state, one negotiation per address pair
 - MPTCP has one state, one negotiation per TCP socket
- Supports all transports protocols

Shim6 vs MPTCP: MPTCP strengths

- Major strength: supports simultaneous use of paths
- Consequences:
 - Better use of resources
 - Faster reaction to failures (timescale of the TCP timeout)
- Supports both IPv4 and IPv6

- How to do it:
 - MPTCP dictates its path choices to Shim6 (per segment)
 - REAP disabled (Failure detection by MPTCP)
 - MPTCP security ignored (Shim6 stronger security is used)
- If 10 connections established between same hosts, only one address exchange happens
- Proof of concept available (was Linux MPTCP 0.1)
- Not useful now...But the benefits will appear when IPv6 will be widely deployed

- How to do it:
 - MPTCP dictates its path choices to Shim6 (per segment)
 - REAP disabled (Failure detection by MPTCP)
 - MPTCP security ignored (Shim6 stronger security is used)
- If 10 connections established between same hosts, only one address exchange happens
- Proof of concept available (was Linux MPTCP 0.1)
- Not useful now...But the benefits will appear when IPv6 will be widely deployed

- How to do it:
 - MPTCP dictates its path choices to Shim6 (per segment)
 - REAP disabled (Failure detection by MPTCP)
 - MPTCP security ignored (Shim6 stronger security is used)
- If 10 connections established between same hosts, only one address exchange happens
- Proof of concept available (was Linux MPTCP 0.1)
- Not useful now...But the benefits will appear when IPv6 will be widely deployed

- How to do it:
 - MPTCP dictates its path choices to Shim6 (per segment)
 - REAP disabled (Failure detection by MPTCP)
 - MPTCP security ignored (Shim6 stronger security is used)
- If 10 connections established between same hosts, only one address exchange happens
- Proof of concept available (was Linux MPTCP 0.1)
- Not useful now...But the benefits will appear when IPv6 will be widely deployed

Conclusion

- We performed an in-depth study of the Shim6 and MPTCP protocols
- We showed how they can be combined to take advantage of strengths in both protocols
- We showed that MPTCP in particular is not only an ambitious protocol change, but also involves a number of Operating System challenges, some of them being solved today

- Our implementations of LinShim6 and MPTCP are both the most complete and efficient prototypes available to researchers.
- Our work lead to several improvements that are now reflected in the protocol specifications

External publications citing LinShim6

- M. Mekking. Formalization and verification of the shim6 protocol. Master's thesis, Radboud University - NLnet Labs, 2007
- K. Mitsuya, R. Kuntz, S. Sugimoto, R. Wakikawa, and J. Murai. A policy management framework for flow distribution on multihomed end nodes. SIGCOMM MobiArch Workshop, 2007
- J. Ronan, S. Balasubramaniam, A. K. Kiani, and W. Yao. On the use of SHIM6 for mobility support in IMS networks. TRIDENTCOM, ICST, 2008
- A. Dhraief and N. Montavont. Toward Mobility and Multihoming Unification- The SHIM6 Protocol: A Case Study. WCNC 2008

External publications citing LinShim6

- M.S. Rahman and M. Atiquzzaman. SEMO6 a multihoming-based seamless mobility management framework. MILCOM 2008
- A. Dhraief and N. Montavont. Rehoming decision algorithm: design and empirical evaluation. International Conference on Computational Science and Engineering, IEEE, 2009
- J. Ronan and J. McLaughlin. An empirical evaluation of a Shim6 implementation. ICST Conference, 2010
- A. Achour, B. Kervella, and G. Pujolle. Shim6-based mobility management for multi-homed terminals in heterogeneous environment. WOCN 2011

External publications citing MPTCP

- M. Scharf, T.R. Banniza, P. Schefczik, A. Singh, and A. Timm-Giel. Evaluation and prototyping of multipath protocol mechanisms. 2010
- S.C. Nguyen, X. Zhang, T.M.T. Nguyen, and G. Pujolle. Evaluation of throughput optimization and load sharing of multipath tcp in heterogeneous networks. WOCN 2011

The End