xBGP: Faster Innovation in Routing Protocols

Tom Rousseaux
ICTEAM, UCLouvain

Thomas Wirtgen”
ICTEAM, UCLouvain

Randy Bush
Internet Initiative
Japan & Arrcus, Inc

Laurent Vanbever
NSG, ETH Ziirich

Abstract

Internet Service Providers use routers from multiple ven-
dors that support standardized routing protocols. Network
operators deploy new services by tuning these protocols. Un-
fortunately, while standardization is necessary for interoper-
ability, this is a slow process. As a consequence, new features
appear very slowly in routing protocols.

We propose a new implementation model for BGP, called
xBGP, that enables ISPs to innovate by easily deploying BGP
extensions in their multivendor network. We define a vendor-
neutral xBGP API which can be supported by any BGP im-
plementation and an eBPF Virtual Machine that allows ex-
ecuting extension code within these BGP implementations.
We demonstrate the feasibility of our approach by extending
both FRRouting and BIRD.

We demonstrate seven different use cases showing the ben-
efits that network operators can obtain using xBGP programs.
We propose a verification toolchain that enables operators to
compile and verify the safety properties of xBGP programs
before deploying them. Our testbed measurements show that
the performance impact of xBGP is reasonable compared to
native code.

1 Introduction

Internet Service Providers (ISP) are continuously challenged
by their users and customers to provide value-added services
that go beyond best-effort connectivity. Among others, these
new services include traffic engineering techniques to pri-
oritize some flows over others and improve network load,
fast reroute mechanisms to swiftly retrieve connectivity upon
failures, or anycast routing. In addition, ISPs are trying to
improve their internal operations in order to provide an ever
better service to their customers. This can be done by imple-
menting a monitoring system, re-architecting or tuning the
internal network.

*Thomas Wirtgen is supported by a grant from F.R.S.-FNRS FRIA.

ICTEAM, UCLouvain

Quentin De Coninck
ICTEAM, UCLouvain

Nicolas Rybowski
ICTEAM, UCLouvain

Olivier Bonaventure
ICTEAM, UCLouvain

Axel Legay

Almost invariably deploying these services require extend-
ing routing protocols. And among all protocols, the Border
Gateway Protocol (BGP) is probably the most used one given
its flexibility: for many network operators, BGP has become
a true “Swiss-army knife”. Originally designed to distribute
interdomain routes, BGP has been extended several times to
support different types of services [41,55].

While extending BGP is possible, it is certainly not easy, for
two main reasons. First, ISP networks often include routers
from different vendors [17, 69]. This diversity is inherent
and required for technical, safety, and economic reasons. Un-
fortunately, this diversity means that operators can only use
the intersection of the features set across all their routers,
hindering flexibility.

Second, it can take years for even a subset of the vendors to
implement new features as these need to be first standardized
by the Internet Engineering Task Force (IETF). Many view
this as a form of ossification of the routing protocols. As
an illustration, a recent paper [79] showed that the median
delay before RFC publication of BGP extensions is 3.5 years,
and that some features required up to ten years before being
standardized.' This is only the tip of the iceberg though: only
a small subset of the BGP extensions proposed by network
operators have been discussed and later adopted by the IETF.

Of course, this is not a new story. Frustrated by these delays
and the difficulty to innovate in networks, researchers have
argued for Software-Defined Networks (SDN) [48] for more
than a decade. Instead of relying on a myriad of distributed
protocols and features, SDN assumes that switches and routers
expose their forwarding tables through a standardized APL
This API is then used by logically centralized controllers to
“program” routers and switches.

While SDN has enabled countless new research works [21,
42], it has not been widely adopted by ISPs. One of the
main hurdles is that deploying SDN requires a major net-
work overhaul, both at the control-plane level, to deploy scal-
able and robust logically-centralized controllers, and at the

!Note that this delay ignores the time elapsed between the initial idea and
its first adoption by the working group, making the actual delay even longer.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 575

data-plane level, to deploy compatible network devices. Thus
far, only large cloud providers managed to perform this over-
haul [36,39].

Of course, instead of relying on commercial routers, net-
work operators could decide to adopt open-source implemen-
tations of routing protocols [16,23,33,67] running on servers
or custom hardware [3]. A network operator could for in-
stance fork a BGP implementation to add a desired feature.
Maintaining this fork requires a lot of software development
effort though. Such an approach is feasible for large cloud
providers [62] but not for ISPs. Another approach is to use
a modular routing implementation to take full control of the
protocol. The network operator is responsible for the entire
routing implementation. Unfortunately, it is too difficult to
maintain and evolve because the network operator must have a
complete understanding of the routing protocol and must have
software programming skills, which they often do not have.
To provide flexibility in the administration and automation of
their routers, router vendors have added a Python interpreter
to their operating systems [40]. However, the interpreter only
handles the administration part of the router and does not
provide an interface to add or modify protocol features. Fi-
nally, the use of active networks with centralized approaches
or descriptive configuration languages [10,27] is not possible
in today’s Internet, as autonomous systems still use decentral-
ized protocols to establish peering links.

In this paper, we argue for much lighter weight and prac-
tical approach to network control plane programmability by
allowing the network operators to easily extend the distributed
routing protocols that they already use. Our new approach,
which we call xBGP, is inspired by the success of the ex-
tended Berkeley Packet Filter (eBPF) in Linux [26,35] and
Windows [49]. eBPF is an in-kernel Virtual Machine (VM)
that relies on a custom instruction set. Thanks to eBPF, pro-
grammers can easily (and securely) deploy new programs that
can access a subset of the kernel functions and memory [26].
Similarly, in xBGP, different BGP implementations expose an
API and an in-protocol VM with a custom instruction set to
access and modify the intrinsic protocol functions and mem-
ory. Thanks to this API and the VM, the same code can be
executed on different implementations. Note that the instruc-
tions set and the in-protocol VM still need to be adopted and
implemented by each vendor, but this is a one-time effort,
instead of a per-feature effort.

Naturally, opening up BGP implementations to external
programs opens the door to many (research) questions: Which
API should BGP expose? How to implement this API effi-
ciently or What about the correctness and the safety of these
extensions? We answer these questions in this paper and make
four main contributions.

First, we introduce the xBGP API which defines a set of
functions that should be supported by an extensible BGP
implementation. We present this API in Section 2 and describe
how we modified two different BGP implementations, BIRD

and FRRouting, to support xBGP.

Second, we present a complete validation workflow that
enables operators to validate that their extensions correctly
terminate, do not interfere with the memory of the host imple-
mentation, produce syntactically valid BGP messages, or only
use the xBGP API functions authorized by the network op-
erator. We envision this workflow to become one element of
the qualification tests that operators already carry out before
deploying any new BGP feature in their network.

Third, we showcase the practicality of xBGP by imple-
menting eleven use cases with xBGP to: support a new BGP
attribute; introduce new selection rules; restrict the set of
paths it can compute; detect unused routes (zombies); or mon-
itor BGP operations. Each use case involves the same xBGP
bytecode running on both FRRouting and BIRD.

Fourth, we demonstrate the practicality of xBGP by measur-
ing its overhead compared to native implementations. Even
for complex extensions (re-implementing BGP Route Reflec-
tion), our benchmarks show that the overhead of xBGP is
always under 13%, a reasonable value given the flexibility
benefits.

Similarly to what OpenFlow [48] achieved, we believe that
programmable distributed routing protocols have the potential
to open up many promising avenues for research, while being
fundamentally more practical and deployable.

2 Architecture

At a high level, xBGP enables network operators to customize
or extend any compatible BGP implementation by injecting
and directly executing xBGP programs. As an illustration, we
consider how to expand a BGP implementation to support a
new BGP attribute, GeoLoc, that stores the geographic loca-
tion (i.e., longitude and latitude) of where each BGP route
was learned. Among others, this attribute can be used to adapt
router decisions, e.g., by filtering away routes learned more
than x kilometers away. Supporting such an attribute has been
discussed within the IETF but never standardized [13]. Yet,
large-scale ISPs reportedly use iBGP filters [71] to achieve
the same effect. Using iBGP filters is risky though as doing
so can lead to permanent oscillations [71].

To implement the GeoLoc extension, we need to support
several operations in a BGP implementation. (1) When a
route is received over an eBGP session, the router adds a
new attribute, Geo_Originator that contains the geographic
coordinates of the router that learns the BGP route in an
import filter. (2) If the BGP route already contains the
Geo_Originator attribute, the router needs to decode it. (3)
When exporting the route to another peer, the router can use
the Geo_Originator attribute to filter routes that are too far
away. (4) To be usable by other iBGP peers, the attribute
needs to be added to the BGP Update message.

To add this extension, we need to understand how BGP im-
plementations are designed. There are many ways to organize

576 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

XBGP Virtual Machine Manager

VM VM
i
xBGP Program xBGP Program

VM VM
7 “
xBGP Program xBGP Program
I
A

xBGP API

BGP
Messages
from Peers

__ BGP Decision | __
LocRIB Process

T AdiRIB Messages
ouT 1 toPeers

Background '
BGP Control Plane |

Tasks

Data Plane ;

Figure 1: An xBGP compliant implementation exposes the abstract BGP data structures defined in RFC4271 through a generic
API and uses 1ibxbgp’s Virtual Machine Manager to attach the bytecode that implements extensions to specific insertion points
(green circles). The four bytecodes in this example support a simple GeoLoc BGP attribute. For each xBGP program, we provide
the set of helper functions used to retrieve data from the host implementation.

a BGP implementation. Each implementer selects a partic-
ular software architecture and the associated data structures
based on their own requirements. However, all BGP imple-
mentations must adhere to the protocol specification [54].
This specification defines the format of the BGP messages, an
abstract BGP Finite State Machine that manages each BGP
session, and also an abstract workflow and data structures that
describe how BGP update and withdrawal messages should
be processed. This workflow is illustrated in black in Figure 1.
Starting from the left, a received BGP message is stored in
the Adj-RIB-in °. It then passes through the import filters
that may decide to discard the message or modify attributes
such as local-pref. If the route is accepted by the import
filters, it is inserted in the Loc-RIB. The Loc-RIB contains
all the BGP routes accepted by the router. The BGP decision
process extracts from the Loc-RIB the best routes that are
placed in the RIB. These routes then pass through the export
filters before being advertised over BGP sessions.

Going back to our GeoLoc extension, we can see that it
can be added to the different parts of the BGP workflow. (1)
needs to be added to the part that parses a BGP attribute. (2)
and (3) must be designed as import and export filters respec-
tively. And (4) will be added to the serialization part of the
BGP implementation. The question now is how to add those
subcomponents to the main BGP implementation. To answer
this, we defined the insertion points depicted in Figure | with
the green circles on which functionalities can be added or
modified. These insertion points correspond to the major BGP
events. It is now easy to add the four components of our simple

2Some implementations do not explicitly maintain a separate
Adj-RIB-{in,out} to reduce their memory consumption and store every-
thing in the Loc-RIB. We ignore this implementation detail in this paper.

extension to the BGP implementation in their respective inser-
tion points. (1) is attached to the BGP_RECEIVE_MESSAGE ()
insertion point. First, it queries the BGP neighbor’s table and
determines the type of the eBGP session. Then, it retrieves the
contents of the received BGP update in network byte order.
Finally, it attaches the new GeoLoc attribute to the route. The
second program (2) is attached to the BGP_INBOUND_FILTER
@) insertion point. It retrieves the router coordinates from the
router configuration to add them to the attributes of the route.
The program (3) attached to the BGP_OUTBOUND_FILTER (@)
retrieves the neighbor information and the GeoLoc attribute
to check if the route can be advertised to the peer. Finally, the
fourth program (4) is attached to the BGP_ENCODE_MESSAGE
(® insertion point. It uses the BGP GeoLoc attribute received
over an iBGP session decoded by the first program and sends
it to the peer.

To be able to dynamically augment the BGP implementa-
tion, the four xBGP programs are executed inside a Virtual
Machine and are attached to specific insertion points in the
BGP implementation. An xBGP program is composed of
eBPF bytecode executed by a user space virtual machine that
is included in any xBGP compliant implementation. Thanks
to this eBPF virtual machine, the same xBGP program can be
executed on the CPUs used by different router platforms.

An xBGP program is not a standalone executable that per-
forms computations autonomously. It can interact with the
underlying BGP implementation, access its data structures,
and call some of its functions. In contrast with operating sys-
tem kernels such as Linux, FreeBSD or macOS that expose
a similar POSIX interface, there is no standard API for BGP
implementations. xBGP must then propose a common API
to support several BGP implementations. If we take our ex-

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 577

tension, when the GeoLoc program has finished decoding
the Geo_Originator attribute, it must update the BGP route
stored in the BGP implementation. Thus, our extension needs
to fetch or set data from the host implementation. For this,
the BGP implementation must propose a set of functions, the
xBGP API [75], that enable the interactions between the ex-
tension and the internal data structures. For example, with a
call to the function set_attr, the extension can add a new
attribute to the BGP route being processed.

An important data structure of a BGP implementation is
its Routing Information Base (RIB). It contains the routes
selected by the BGP decision process and pushed in the For-
warding Information Base (FIB). The BGP RIB stores, for
each known destination prefix, its BGP route containing its
BGP attributes, including its AS-path and the address of the
BGP next hop. The RIB also contains information from the
intradomain routing protocol such as the cost to reach each
next hop. BGP implementations use various data structures to
store their RIB. Some implementations simply store the BGP
attributes as they were received from the wire. Others use a
specific structure for each type of attribute. To ensure that
the same xBGP program can be executed on any compliant
implementation, xBGP defines its own representation for IP
prefixes, next hops, and BGP attributes. For the latter, xBGP
simply relies on the wire format [54]. xBGP also defines a neu-
tral representation of the BGP neighbor’s table. With these
representations, xBGP programs can access the data struc-
tures of the underlying BGP implementation. When required,
xBGP converts the internal representation to its own format
before returning data to xBGP programs and vice versa.

The remaining of this section describes the composition
of the xBGP API enabling xBGP programs to interact with
BGP implementations in Section 2.1. Section 2.2 shows how
we execute an xBGP program inside the BGP implementa-
tion. We explain in Section 2.3 which challenges we faced
to make two BGP implementations, BIRD and FRRouting,
xBGP compatible.

2.1 The xBGP API

Besides some utility functions (memory management, con-
version between network and host byte orders, simple math
functions, etc.), most of the xBGP API is specific to BGP [75].

To modify internal BGP data structures, xBGP programs
rely on getters and setters to access data structures stored
on the host implementation. This ensures (i) an isolation layer
between the host and the xBGP program and (ii) a uniform
method of accessing data regardless of the BGP implemen-
tation. These functions convert the internal representation
into a universal one understood by xBGP programs. In ad-
dition, extension codes require access to the BGP internal
state (e.g., list of peers, the route attributes, the route next
hop). Hence, xBGP requires BGP implementations to provide
routines translating their internal data structures into xBGP

ones. These include getters and setters to access/modify
a BGP route including its attributes, next hop and the data that
identifies a BGP peer. We also provide functions to iterate
the RIB. These enable searching for a route other than those
provided by the insertion points, and therefore for searching
routes already installed in the BGP routing table.

Existing router OSes do not provide a common way to ac-
cess internal routing data. The xBGP API provides functions
to access IGP data, e.g., to retrieve the next hop for routes and
use them in use cases described in Section 5.

An xBGP program can deliberately send a custom BGP
message to any peer it wants. Instead of relying on an inser-
tion point to generate the message, the xBGP API contains
functions to send BGP messages allowing a program to send
an urgent message like a BGP notification because the xBGP
program detected a problem with a given peer.

To access non-standard data such as the geographic coordi-
nates of the router, an extension code may require additional
configuration. One approach is to directly include the data
inside the code of the xBGP program. However, this is not
scalable if the operator wants to deploy it on a large number
of routers. This induces a recompilation of the code for each
of its router. Instead, the xBGP API proposes to the network
operator to include a configuration data part in a structured
textual file accompanying xBGP programs called manifest.
The xBGP program uses it later to retrieve what it needs. This
extra configuration part is not directly accessible to the xBGP
program but can be accessed through a set of API functions.

Finally, xBGP programs can be executed as background
tasks () that are called when a timer expires. These tasks are
not triggered by a specific BGP event like an insertion point
but are rather executed when a timer expires. Background
tasks are only used for processes that do not interact with the
BGP workflow. Each task controls its timer and xBGP delib-
erately restricts one timer per task to avoid timer explosions.
However, the task may ask to queue forever as long as the
BGP router is alive. This is particularly interesting for xBGP
programs that make routine maintenance for example. Each
background task is executed in a dedicated thread to allow
the original BGP implementation to run in parallel. If the
xBGP program must access or update data, the x\BGP API
must be thread safe. This constraint must be respected when
implementing the xBGP APIL.

2.2 Executing xBGP programs

An xBGP program is a set of eBPF bytecodes, either attached
to different insertion points or executing background tasks.
Each xBGP bytecode has its own dedicated memory, includ-
ing a stack and a heap that are automatically freed after ex-
ecution. This memory isolation between extension codes is
guaranteed by the eBPF virtual machine. This ensures that
orthogonal extensions will not interfere with each other. Yet,
xBGP programs may need to keep persistent storage or to

578 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

exchange data between the different bytecodes that compose
a program. For this, the xBGP API provides a key-value store
that is similar to the BPF maps used in the Linux kernel.

Each xBGP implementation includes userspace eBPF vir-
tual machines that are controlled by a manager. The Virtual
Machine Manager (VMM) attaches bytecode with an associ-
ated virtual machine to one specific insertion point exposed
by the host implementation. Each xBGP program includes a
manifest listing the extension codes and their insertion point.
Different extension codes can be attached to the same in-
sertion point, and the manifest defines in which order they
are executed. The manifest also lists the different xBGP API
functions that the bytecode may use.

An xBGP program can be attached at different insertion
points, i.e., specific code locations in a BGP implementation
from where the program can be called. These insertion points
correspond to specific operations that are performed during
the processing of BGP messages, enabling xBGP programs
to modify the router’s behavior. xBGP defines six generic
insertion points (green circles in Fig. 1) based on the original
definition of BGP [54]. The sixth insertion point is dedicated
for background tasks.

By default, the VMM only runs one xBGP program per
insertion point. Y\BGP programs must explicitly tell the host
implementation to run the next xBGP program if any through
the next () function. This mechanism avoids executing use-
less code. For example, if we attach two xBGP programs
that parse different BGP attributes into the insertion point
that processes a single BGP attribute, and the first program
successfully parses the message, there is no need to run the
second one.

2.3 Adding xBGP to BGP implementations

To demonstrate the feasibility of xBGP, we have adapted
two open-source implementations: BIRD v2.0.7 [16] and
FRRouting v7.3 [23].
Adding the xBGP API. Implementing the API induced a
total of 400 and 589 additional lines of code [78] on BIRD
and FRRouting, respectively. The difference between both is
their internal representations of the BGP data structures. The
xBGP functions that deal with BGP messages and attributes
always manipulate them in network byte order (xBGP’s neu-
tral representation), performing the translation to the storage
format used by the implementation if required. FRRouting
uses an internal representation that is different from our neu-
tral one. We thus had to implement several functions to do
the conversion between the two representations. Another dif-
ference is the handling of BGP attributes. BIRD includes a
flexible API to manage BGP attributes. xBGP simply extends
this API. FRRouting does not include such an API, so we had
to implement one to be able to manipulate BGP attributes in
BGP updates.

Integrating 1ibxbgp. 1ibxbgp is a portable library, im-

plemented as 432 lines of header code, which consists of two
parts: (i) the utility functions of the xBGP API; and (ii) the
VMM. The VMM is in charge of executing the right extension
code according to the state of the host implementation. This
layer acts as a multiplexer. To include xBGP operations, the
BGP implementation calls the VMM to execute the associated
extension codes. Then, the VMM proceeds as follows. It first
checks if there are attached extension bytecodes to the called
xBGP operation. If not, the VMM executes the default func-
tion provided by the implementation. Otherwise, it runs the
first extension code mentioned in the manifest. Two outcomes
are possible. First, the extension code provides a result for
the operation and the VMM returns the output to the caller.
Second, the extension code delegates the outcome to another
one by calling the special next () function. In that case, the
VMM checks whether there are remaining codes in the or-
dered queue. If there are, the VMM runs the next extension
code in its virtual machine. Otherwise, the behavior of the
xBGP operation falls back to the default function provided by
the BGP implementation. For instance, two extensions can
attach bytecode to the BGP_RECEIVE_MESSAGE operation that
processes their own dedicated BGP attribute, calling next ()
once they are done.

Technical challenges. While adding the xBGP API and inte-
grating 1ibxbgp, we encountered some interesting technical
issues. To successfully use the xBGP API, data must be avail-
able when the function is called. In some cases, data in the
host implementation was not available when the insertion
point was called to execute the extension code. For example,
in FRRouting, export filters are applied to a set of peers shar-
ing the same type of outbound policies. This set is not passed
to the code checking the outbound policies but is required to
implement the helper function that retrieves data about the
BGP peers of the router. We had to write 5 extra lines of
code to get the set of peers before calling the insertion point.
Also, some data structures were not flexible enough to fully
support the xBGP API such as the function that adds or modi-
fies a new attribute to a BGP route. However, the internals of
FRRouting do not allow adding unsupported attributes that
are not defined by any standard (e.g., ORIGINATOR_ID). We
rewrote this part of FRRouting. To address those issues, we
had to add 30 and 10 lines of code to FRRouting and BIRD
respectively.

Each API function is called within a context of execution.
This context is hidden within the extension code but visible
in the host BGP implementation. This makes it possible to
control which extension code has called the function. The con-
text is also used to retrieve variables that cannot be directly
used inside the extension code. For example, if an extension
code needs to allocate extra memory (ephemeral or not), the
ephemeral memory is also automatically freed when the ex-
tension code terminates its execution. Similarly, the context
enables helper functions to access data structures that are out
of the extension code’s scope. For instance, a dedicated helper

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 579

function enables an extension to add a new route to the RIB.
When setting an insertion point, the BGP implementation can
pass a set of arguments. While some are visible inside the ex-
tension code, others are not. The RIB function leverages such
hidden arguments to access the data structure while being
transparent to the extension code.

Limitation of xBGP. To better understand what can and
cannot be done with xBGP, we analyzed the complete list
of RFCs, which defines extensions to BGP, that have been
published since the publication of RFC4271 [54]. The RFCs
can be classified into two different types. (1) The RFCs that
modify the original definition of RFC 4271 (6 RFCs) and
(2) those that add features on top of BGP (30 RFCs). For
(1), xBGP cannot be used to implement these types of RFCs
because it requires a direct modification of the underlying
BGP implementation. For example, increasing the internal
buffer size of the BGP message size [9] is not feasible with
xBGP. For (2), xBGP can be used. However, it turns out that
our current prototype focuses only on the messages that BGP
speakers exchange once the session is established (BGP Up-
dates and BGP Withdraw). Not all session-level extensions to
BGP can be handled by xBGP. For example, our current proto-
type cannot extend the BGP Open or BGP Route-Refresh [12]
message. However, xBGP contains a generic insertion point,
DECODE_BGP_MSG, that can handle future types of BGP mes-
sages. If the underlying BGP implementation does not support
route refresh, we can implement it as an xBGP program. Mod-
ifying xBGP to allow it to support the session level could
be implemented at a later time, but xBGP cannot change the
architectural design of the underlying implementation. This
is an important limitation of our solution. For example, no
xBGP program can increase the size of the BGP transmit and
receive buffers as defined in the corresponding RFC [9]. The
internal structure of an implementation cannot be modified
on the fly by a program since the definition of the structures
is strongly integrated in the program binaries.

In addition to the limitation of the features that can be im-
plemented, xBGP focuses mainly on the internal network, we
assume that the network operator enables the necessary xBGP
programs on the relevant routers. However, if the BGP routers
decode an unknown message, it will be silently discarded and
will not harm the router but will compromise the other router’s
computation. BGP capability negotiation messages can be
exchanged to indicate whether the extension implemented by
the xBGP program is supported by both routers implied in the
BGP session. Capability support is beyond the scope of this

paper.
3 Ensuring the safety of xBGP programs
BGP implementations generally run 24/7 and never stop.

When operators deploy a new router or a new version of
a router operating system, they typically run extensive tests

to verify that the new feature will not break their network.
From an operator’s viewpoint, injecting an xBGP program is
always risky since the program will be executed within the
BGP implementation. A simple approach would consist in let-
ting the VMM monitor their execution and stop them in case
of error. This could be too late for errors that could disrupt
BGP sessions. Network operators typically need some safety
guarantees from the xBGP program. The Linux kernel copes
with a similar problem by using a custom online verifier [1]
that checks different aspects of eBPF programs before they
are injected into the kernel.

Verifying xBGP programs. xBGP also relies on verification
techniques to ensure that programs can be safely injected.
However, instead of developing a custom verifier [24], we (i)
establish a list of properties that an xBGP program should
respect to be considered as safe and (ii) we build a toolchain
embedding three existing and well-tested software verification
tools allowing the verification of our properties. Our xBGP
toolchain receives the xBGP programs as input. They consist
of C code that uses the YBGP API and a manifest provided by
the network operator containing the configuration data. This
code is by nature untrusted and must be manually augmented
with various annotations providing hints to the code verifiers,
given the specificities of each one. Such annotated extensions
can then enter the xBGP toolchain which executes in paral-
lel each verifier. The bytecode is produced only if the code
passes all of them. Once the bytecode is generated, it is added
to the integrated xBGP store. A network operator can safely
select and load xBGP programs coming from this store. We
expect that initially each ISP will have its own store. Later,
third parties or router vendors could also develop their own
stores. We consider this toolchain as trusted, i.e., we select
a particular compiler, clang, and specific verifiers, all con-
sidered as correct. Therefore, we do not need to reason about
the produced bytecode and ignore problems such as handling
maliciously formatted bytecode.

Embedded verification tools. The whole xBGP toolchain,
illustrated in Figure 2, is designed to prevent four types of
problems that a program can cause. First, if an xBGP pro-
gram enters an infinite loop, it will block the underlying BGP
implementation. We use the Terminator 2 (T2) automated
termination checker [15] to verify the termination of xBGP
programs.

The second set of possible problems is the way xBGP pro-
grams interact with the memory of the underlying BGP im-
plementation. We use CBMC [43] and SeaHorn [31] to verify
memory-related properties.

The third type of problem is related to xBGP and BGP
themselves. xBGP programs can create new BGP attributes or
messages that are sent over a BGP session. We use SeaHorn
to verify that the BGP messages emitted by xBGP programs
are fully compliant with the BGP RFCs and that their return
values respect the xBGP requirements.

Finally, operators may want to be able to impose restric-

580 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Untrusted Trusted

B xBGb
xBGP
Program Program

e

I

Archive
Generation

-

Manifest

xBGP Toolchain |

Figure 2: High-level view of the xBGP verification toolchain.

Property Verifier Type
Termination T2 Safety
Reads/Writes Vw’/lthln CBMC Safety
xBGP program’s memory space
No buffer overflow, use after
free memory, invalid read, etc.
All strings must be
null terminated
Correct size/buffer combination
RFC-compliant syntax
of BGP attributes
Valid return value
Checking attribute reads/writes SeaHorn | BGP
Checking API function) Safet
accessesg 11ibxbgp + BG)I]’
Call the next () function to
trigger the next xBGP program

CBMC Safety

SeaHorn | Safety

SeaHorn | Safety

SeaHorn | BGP

SeaHorn | Safety

SeaHorn | Safety

Table 1: Properties that xBGP programs must satisfy.

tions on the xBGP functions and data structures that a given
xBGP program can use. For example, a customer filter should
only be able to set a local-pref value in a chosen range and
to change nothing else. So it could never add a new BGP at-
tribute to a route it filters. These restrictions are enforced with
(i) SeaHorn that checks the validity of the arguments of the
API functions and (ii) 1ibxbgp which restricts the available
API functions at loading time.

To be considered valid, any xBGP program must satisfy the
properties listed in Table 1. If every xBGP bytecode satisfies
this list, the router is guaranteed (i) not to crash and (ii) to
still follow the definition of the protocol. These properties
ensure the local stability of each router. Ensuring the global
stability of BGP [28-30,46] is a problem that goes beyond
the scope of this paper.

Verification macros. Because of their diversity, the verifica-
tion tools do not offer a common way to annotate programs.
In the case of xBGP, this would mean annotating the plugin 3
times with different annotations and running the 3 tools man-
ually. For a network operator, manually using several tools
can be a long, tedious, and error-prone process. To ease the
annotation process, we define a set of multipurpose macros
PROOF_INSTS_* () abstracting the annotation syntax of the
verifiers. Those are only expanded if the corresponding veri-
fier is invoked. When the extension programs are compiled

buf[0] = attribute —>flags; assert(buf[0] == ATTR_TRANSITIVE);

buf[1] = attribute —>code; assert (buf[1] == ORIGIN_ATTR_ID);

buf[2] = attribute —>length; assert (buf[2] == 1);

buf[3] = attribute —>data; assert (((buf)[3] == 0 11 \
(buf)[3] == 1 Il \

CHECK_ORIGIN(buf) (buf)[3] == 2))):

(a) Annotated Code. (b) Expanded Code (verifier).

Figure 3: Example of a verification macro that checks the
origin attribute of a BGP route. The macro can be extended
or not according to its use. (a) is the original source code and
(b) is the code viewed by a verifier.

for routers, the annotations are not expanded and thus will not
interfere with the normal BGP execution. Figure 3 shows an
example of such verification macro.

Aside from the verifier syntax abstraction, we mainly bring
two contributions. First, we define a set of macros helping
network operators to verify the properties listed in Table 1.
Network operators can use them to annotate their xBGP pro-
grams. The macros are translated to their corresponding an-
notation to the right software verifier. For example, a network
operator can use the BUF_CHECK_* macros to verify if the
BGP attributes sent to a BGP peer are formatted as stated in
the RFCs.

Second, we set up a verification toolchain that automati-
cally performs verification on the xBGP programs. It auto-
matically and transparently calls all the verification tools and
verifies the annotations contained in the source code of the
programs. If all properties are satisfied, the system stores the
verified plugins in a “plugin store”, which the programmer
or network operator can use to inject into their routers. The
routers will only accept plugins that have been verified and
signed by the plugin store.

Those macros, in conjunction with our verification
toolchain, allow a complete abstraction of the verification
process. This makes the usage of xBGP simpler for network
operators. The entire set of verification macros is defined in
Appendix B.

3.1 Proving xBGP Programs’ Termination

T2 (TERMINATOR 2) is a program analysis tool for termi-
nation [15] and temporal property [7] verification. We were

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 581

successfully able to prove the termination of every xBGP
program that implements the use cases defined in this pa-
per. Table 3 reports the total time taken by the verification
toolchain to verify all the properties defined for the xBGP pro-
grams, including the termination checks. However, to check
the termination we had to slightly modify the source code
since some specific features of the C language were not sup-
ported by the prover. First, when using fixed-width integer
types (e.g., uint8_t), T2 was not able to generate the proof of
termination. We had to convert those types to their primitive
type. Second, all the loops of the program must be explicitly
bounded. For example, if the xBGP program needs to parse a
BGP attribute, we must explicitly bound it to 4096 iterations,
the maximum size of a BGP message [54]. Third, T2 does not
handle bit shift operations. To solve this issue, we encapsu-
lated the bit shift computation in a non-deterministic function.
This is a function that is not defined in the source code of
the xBGP program but simply tells T2 that it returns an arbi-
trary integer value that T2 can handle. Such non-deterministic
function is also considered to terminate by T2.

3.2 Preventing Memory and C Errors

C is a permissive language and programmers can easily make
mistakes in their programs while handling memory. A bug in
an xBGP program that causes a buffer overflow or leads to
using freed memory could crash the underlying BGP imple-
mentation. An earlier prototype automatically instrumented
the eBPF code to verify these properties online [79]. The
verification was made at runtime by adding memory check
instructions to the xBGP bytecode. However, this had a per-
formance impact. Our new xBGP toolchain uses the CBMC
bounded model checker [43] to verify the absence of sim-
ple memory-related issues and SeaHorn [31] to detect more
complex issues. That being said, the online verification of the
memory bounds remains in xBGP and the operator can enable
it or not at xBGP bytecode load time.

CBMC is a C Bounded Model Checker that uses loop
unwinding methods. It requires that loops are strictly
bounded [43] which implies that the code of xBGP programs
must be adapted. It automatically annotates code, generates a
formula and proves it via an integrated SAT solver. It can spot
common C programming errors [14]. However, more com-
plex properties cannot be checked automatically. For example,
xBGP programs can log data to syslog. The functions used
for that take a string as arguments. Nevertheless, C strings
are not safe by design. We must ensure that each string is
correctly null-terminated to prevent buffer overflows. Another
example is the alteration of BGP attributes. An xBGP pro-
gram needs to call an API function that takes as arguments a
pair <buffer, length>.Those two values must correlate: if
the actual buffer length is shorter than the announced length,
the host implementation is vulnerable to a buffer overflow.
We use SeaHorn [31] to prove properties written directly in

the code as assertions.

We provide a set of C macros that operators call in the
xBGP programs they verify. The first one is verified by search-
ing for a null byte within the string. For the second one, we
verify before each API call if the length passed to the func-
tion matches the buffer length. This is achieved by inserting
custom annotations in the xBGP programs and passing them
to SeaHorn.

3.3 Ensuring BGP and xBGP Compliance

xBGP programs can (i) send new BGP messages or (ii) mod-
ify the internal representation of BGP routes. If such a pro-
gram sends a message deviating from the standardized BGP
syntax [54], it could disrupt BGP sessions and have a huge
impact [47]. For (i), we verify that the syntax of the BGP
message generated by an xBGP program conforms to the
BGP RFCs. For (ii), we check that the modification is cor-
rectly formatted. A corrupted BGP route accessed outside
the xBGP program could result in a crash of the xBGP im-
plementation. For this, the code is annotated with assertions
representing BGP invariants that are checked by SeaHorn.
We also created a set of C macros verifying that standard
attributes comply with their definitions (correct flags, size,
etc.). For non-standard attributes, we check that they respect
a TLV format. For BGP messages, we check that the buffer
containing the message conforms to the BGP syntax [54].

In addition, xBGP programs also have to comply to xBGP
requirements. Some insertion points require a ‘“‘communica-
tion channel” with 11bxbgp to change the behavior of the host
BGP implementation. This is achieved by using the return
values of the executed bytecode. Therefore, bytecodes cannot
deviate from predefined values. For example, an xBGP filter
returns a specific value to tell the host to reject the current
route. This property is verified with SeaHorn by considering
the xBGP program as a function called inside a “fake” main.
The return value is then retrieved and verified using a custom
assertion.

3.4 Enforcing Operator-Imposed Restrictions

Thanks to the manifest, the operator can list the xBGP API
functions and the data structures that each xBGP program can
use. Imagine a filter that only checks the validity of the route
without modifying any data related to this route. To decrease
the risk of introducing bugs in xBGP programs, the operator
can restrict the set of API functions the program can call. In
this example, the filter should have a read-only view, and thus
should not call any function altering BGP data structures.

To settle this, we implemented a permission manager inside
libxbgp that verifies, at load time, the functions that a given
xBGP program calls according to its manifest. Just before
being loaded, 1ibxbgp checks the xBGP bytecode to look for
unauthorized API function calls.

582 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Network operators use BGP communities [20, 64] to en-
able their customer to activate specific features such as set-
ting local-pref, AS-path prepending, or selective advertise-
ments on a per-route basis. With xBGP they could provide
even more advanced services. Imagine you are a network
provider that proposes to attach filters developed by its clients
to their eBGP sessions. You define a set of BGP attributes
the client can modify such as MED, local-pref, etc. When
they use communities, operators establish policies on the at-
tributes which can be modified in a BGP route. For example,
they define ranges of possible values for the local-pref
attribute [20]. To modify an attribute for a route, an xBGP
program calls the set_attr API function. When the xBGP
toolchain processes such a program, SeaHorn verifies if the
arguments of the API functions respect the policies defined in
the manifest, i.e., if both the argument to change and its new
value are legitimate. This is done by adding assertions in the
source code of the xBGP program supplied by the customer.

4 Overhead of the current xBGP prototype

Using xBGP in BGP implementations brings flexibility for a
network operator since they can use a simple abstraction to
program their router. However, this flexibility has a price in
terms of performance. To evaluate the overhead of 1ibxbgp,
we consider three different features that are already imple-
mented in both native FRRouting and Bird to have a fair
comparison with xBGP. The first is a simple filter adding
an arbitrary MED value to all exported routes. The second
provides support for extended communities [59]. The third
is a complete implementation of Route Reflection [4]. While
we expect operators to mostly develop simple plugins such
as the first two, the Route Reflection extension demonstrates
the of flexibility xBGP by covering the whole BGP workflow
described in Section 2. Furthermore, since Route Reflection
is supported by both FRRouting and BIRD, this extension en-
ables us to compare the overhead of an xBGP implementation
with native ones.

To evaluate the performance impact of xBGP, we use the
simple network described in Figure 4. We measure the delay
between the first BGP update sent by the Upstream router
and the last update received by the Downstream one. This re-
flects the time needed for the Device under Test (DuT) router
to process the routes sent by the Upstream router. The Up-
stream and Downstream routers are running an unmodified
implementation of BIRD v2.0.8 while the DuT router is run-
ning the xBGP version of BIRD or FRRouting according to
the test. The DuT router is running an Intel® Xeon® X3440
@2.53GHz with 16 GB of RAM, Linux kernel v5.15.29 and
Debian 11.

The Upstream router sends a full routing table from a recent
RIPE RIS snapshot (June 3, 2021, at 4:15 PM) containing
873k IPv4 routes and 120k IPv6 routes. We consider multiple
executions of the BGP daemon located in the DuT router.

==

Downstream

& &

Upstream DuT

Figure 4: Simple network used for xBGP evaluations.

Processing Time
Use Case XFRR | xBIRD
No xBGP program +1.05% +1.6%
Filter Set MED +6.67% | +2.59%
Extended | 5930, | -0.67%
Communities
Route Reflection | +12.97% | +7.43%

Table 2: Performance impact of running xBGP programs to
xBIRD and xFRR.

Table 2 shows the relative performance impact of running
the extensions with xBGP programs compared to their na-
tive implementation in both BIRD and FRRouting. For each
xBGP compatible implementation, we run 10 times the xBGP
programs and compute the convergence time. The conver-
gence time is the time between the first BGP update message
is received from Upstream to DuT and the last BGP update
message sent from router DuT to Downstream.

Before even loading any xBGP extensions, bringing sup-
port of xBGP in a BGP implementation involves an initial
overhead. More specifically, the host implementation must
first construct the argument to be passed to the xBGP program,
then request execution of the corresponding insertion point,
and finally execute the xBGP termination routine. These addi-
tional steps increase the total number of instructions to be ex-
ecuted compared to the native non-xBGP implementation. To
quantify the cost that 1ibxbgp takes in BIRD and FRRouting,
we ran both implementations of xXBIRD and xFRR without
plugins and compared them to their non-xBGP compatible
versions. Making both implementations of xBGP compatible
adds a cost in the convergence time of 1% and 1.6% in FRR
and BIRD respectively.

‘We now consider the MED filter (one insertion point) and
the extended communities (two insertion points) extensions.
When implemented as xBGP programs, these slightly increase
the convergence time compared to their native version. The
Just-In-Time compiler used inside the virtual machine does
not optimize as efficiently as the one producing native code.
In particular, computation-intensive bytecode involving addi-
tions, subtractions, and multiplications take 50% more time
to run than native code. This overhead is even worse when
considering division and modulo operations.

Yet, we observe a higher convergence time increase for
FRRouting than BIRD. By analyzing the execution of each
xBGP bytecode with a code profiler, we identified two main
reasons for this difference. First, to communicate with the
host implementation, the xBGP program must pass through
a dedicated xBGP API. For security reasons and because of

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 583

the internal mechanism of 1ibxbgp, the data of the host im-
plementation are first translated into a neutral representation,
then copied into a dedicated memory area, accessible in writ-
ing and reading by the bytecode. Translation and copying play
an important role in the execution of a plugin but are needed
to run the same xBGP program in several BGP implementa-
tion. BIRD internally uses data structures that are closer to the
xBGP neutral representation than the FRRouting ones, hence
involving less translation overhead. Second, FRRouting and
BIRD have different internal architectures. The interactions
between the 1ibxbgp API and the BGP implementations are
different. FRRouting is less flexible as its implementation
is not designed to be quickly extended with new functional-
ities. While in BIRD, most of the insertion points map to a
specific place, in FRRouting some insertions points must be
repeated at different code places, involving up to four times
more xBGP program calls than BIRD.

We now consider the Route Reflection extension covering
the whole BGP workflow. Supporting this feature requires a
list of all iBGP client peers. Routers’ implementations use
their dedicated CLI syntax to define all their iBGP client
peers. 1ibxbgp does not have access to this CLI configura-
tion since it is implementation-dependent. Instead, it relies
on its configuration data within the manifest that can be ac-
cessed at any time by the xBGP program. On average, the
BIRD’s convergence time is 7.5% slower than the native
code while FRRouting’s one is 13% slower. The previous
elements still hold to explain the difference between BIRD
and FRRouting. In particular, there are more calls to xBGP
programs in FRRouting due to its code architecture than in
BIRD (BGP_ENCODE_MESSAGE is called 4 times more), and
the translation time to convert data structures is non-negligible
in FRRouting (up to 40% overhead for the import filter). Still,
the performance overhead of xBGP remains in acceptable
bounds.

5 Use Cases

Section 2 presented the GeoTLV feature to demonstrate that
xBGP programs can create new attributes that influences the
router. Section 4 presented the MED filter, extended commu-
nities, and route reflectors to make a performance comparison.
This section presents other use cases, which are not imple-
mented natively in FRRouting and BIRD, that illustrate the
advantages of xBGP for various classes of problems that the
operator wants to solve. It is true that the features of this sec-
tion can be implemented in any BGP implementation without
xBGP. However, feature support depends on the pace of im-
plementation by all vendors. Thanks to the xBGP design, an
operator can quickly design its features and introduce them
into the network before they are implemented by the vendor.
xBGP is the first step to bring extensibility to the network.
The first use case defines an xBGP program (Section 5.1)
to influence the decision process and the import and export

Total
Use Case ¢ eBPF Verif
LoC | Insts .

Time(s)
Geo TLV (§2) 388 1340 664
MED Filter (§4) 55 149 79
Extended Communities (§4) 196 322 86
Route Reflection (§4) 509 3853 27
Route Selection (§5.1) 62 148 27
Zombie Detection (§5.2) 1071 5697 277
Decision Monitor (§5.3) 306 437 29
Propagation Time (§5.4) 560 805 73
Valley Free (§A.1) 143 960 182
Prefix Origin (§A.2) 150 661 57
IGP Data (§A.3) 36 149 3

Table 3: Verification of the xBGP programs supporting our
use cases.

filters from the BGP client point of view. The second use
case detects zombie routes (Section 5.2). These are routes
that are installed in the routing table but are no longer reach-
able. Third, operators always try to understand the state of
their network to improve it as much as possible. We present
two use cases (Section 5.3 and 5.4), where BGP is monitored
using communities. Due to space limitations, we detail three
other extensions in appendix. The fifth use case is related to
route filtering in data-centers (Section A.1). It demonstrates
that xBGP can provide a programmable interface to design
complex import and export filters. Our sixth xBGP program
(Section A.2) gives another example of a special filter that
checks the origin of a route. Finally, our seventh use case (Sec-
tion A.3) shows that an xBGP compatible implementation can
leverage IGP information to make routing decisions.

Table 3 reports the size of the xBGP bytecode, the number
of lines of code and the time taken to validate every xBGP
program according to the properties defined in Section 3.

5.1 Customer Selecting Routes

A BGP router only selects one route for each prefix even
though it learns multiple routes. As a result, it will only send
one route to each BGP neighbor, which decreases the path
diversity. Consider Figure 5 to illustrate the situation. AS1, a
multihomed stub network having peering links with Transit
1 and AS2. We are interested in the propagation of the routes
to the destination network depicted in gray. To maximize path
diversity in AS1, it should learn the purple path from AS2
to leverage the two different transits. However, AS1 cannot
influence the decision process of AS2’s routers.

Enabling the dissemination of multiple routes can bring
several benefits such as load-balancing [45], avoiding route
oscillation [29] and faster local recovery upon a network fail-
ure [61]. With xBGP it becomes possible to influence the
border router to announce the route the client prefers. To de-
sign such an xBGP program, all edge routers must enclose
their BGP client to one Virtual Routing and Forwarding table

584 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Figure 5: Path Diversity in a Network.

(VRF) [70]. All the routes learned from all neighbors will
be exported to the main BGP-VPN RIB’s router and then
exported to the VRF of each client so that they can have a
full view of the routes. Since all clients are in their respective
VRFs, the BGP decision process is different for each of them
and can therefore be influenced by an xBGP program that
decides which route to advertise.

We designed a simple xBGP program that randomly se-
lects one of the available routes in the VPN RIB thanks to
the xBGP API function get_vrf. It demonstrates that xBGP
allows the operator to create a customized and more powerful
route selection compared to the traditional router CLI. Ac-
cessing the VPN RIB through a simple router configuration
is something that cannot be done with traditional BGP imple-
mentation. Furthermore, an xBGP program has access to the
entire BGP route and the internal data structure of the BGP
router. xBGP therefore provides greater flexibility compared
to the classical CLIL

We were successfully able to check the termination with
T2, the C errors with CBMC, its compliance to the xBGP
return values. We also verified that the program does not use
API functions altering the BGP internal state.

5.2 Detecting BGP Zombies

When a route becomes unavailable, a BGP router sends a with-
draw message to all its peers. Because of software bugs [22],
it may happen that one of these BGP peers fails to process
such a withdraw message. As a result, the route is still con-
sidered reachable by the failed router. This is an operational
problem because the withdrawal is not propagated, and part
of the network still believes that the route is available. If pack-
ets still follow this zombie route, they will be black holed.
Measurements indicate that these zombie routes are common
and affect many ASes [50].

To detect zombie routes, we designed an xBGP program
that is executed periodically. It uses the timestamp of the
arrival of a route in the RIB to detect the routes that are
older than x days. Our threshold is arbitrarily fixed to a day.
Our xBGP program is configured to be executed during the
maintenance window. It parses the entire BGP RIB thanks to
the API functions *_rib_iterator. If a route is older than
the configured threshold, it is flagged as a possible zombie.

To confirm the status of the route, the router needs to request
it again from the peer that announced it. This could be done
with standardized mechanisms such as Graceful Restart [58]
or Route Refresh [12,51]. However, those two approaches
require the remote router to announce again its entire BGP
routing table. For the sake of performance, we decided to only
ask the remote peer to reannounce the routes flagged by the
xBGP program. We introduce a new type of BGP message
called BGP Refresh. It contains a list of prefixes that the
router wants to confirm. The peer receiving the BGP Refresh
message will announce a withdraw or an update message if
the routes are not available anymore or still in its BGP routing
table respectively. xBGP allows sending BGP messages via
the schedule_bgp_message API function.

It is difficult with a traditional BGP implementation to de-
tect such a zombie route. Indeed, there is no mechanism to
analyze and perform an action according to the state of the
BGP routing table. To include this feature, the network opera-
tor must convince each router vendor to add this feature into
its implementation. This use case demonstrates that xBGP can
outperform the current configuration method that is proposed
in classical BGP implementation.

This xBGP program successfully passes the T2 and CBMC
verifications. As it manages BGP messages, we verified their
compliance to the RFC. We also checked that the size of the
buffers announced to the API function matches their real size.
This program xBGP is an example of functionality that cannot
be performed with the traditional router CLI while the router
is running.

5.3 Monitoring the BGP Routing Decision

Currently, if a network operator would like to debug its BGP
routers, he only has monitoring information from the routers
it directly controls. This is due to the fact that the traditional
BGP specification only provides the exchange of local routing
information but does not provide any abstraction to send mon-
itoring information about the routing process. Yet, a support
of a dedicated monitoring channel has been proposed [60]
but this is still not implemented on all vendor’s routers. In a
nutshell, a BGP router can ask its neighbor to give different
metrics such as its number of reachable prefixes, its ADJ-
RIB-IN, its current state, etc. This shows that many network
operators need to monitor the BGP session to enable better
control of routing information in the network. Some router
vendors actually provide commands to retrieve the local state
of a router. However, the information is restricted to the router
view only and does not include the status of routers that are
outside the operator’s management scope. Having statistics
from other routers could bring many benefits such as the se-
lection of a better route. More specifically, if the BGP router
sends its best routes with the step at which routes have been
decided, the remote BGP router can learn much information
about the route diversity in a network. If the routes are al-

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 585

ways decided at the very end of the BGP decision process, it
indicates a lack of diversity in the remote network. On the
contrary, if the routes are decided early in the process such
when the AS_PATH is shorter than the previous best route,
it can indicate a higher level of diversity. Thanks to this in-
formation, the BGP router can adapt its behavior to prefer a
path with more diversity to be more resilient to a router or
link failure.

We leverage xBGP to instrument the BGP implementation
to retrieve at which step of the BGP decision process the
route has been chosen. Each time it runs, an xBGP program
retrieves the reason of the decision in the process. It can be
retrieved through the arguments passed to the xBGP program.
To inform other BGP routers, this information is added as a
BGP community when sent to other BGP speakers. This is
done by the API function set_attr_to_route. This way,
other routers can parse and use this information to adapt their
routing strategies. This xBGP program also collects statistics
about the other steps of the BGP decision. Each time a route
is selected, the xBGP program increments an internal counter.
It repeats the operation for each decision step. When a route is
sent to any peer, these statistics are attached as a community.
The BGP router receiving the statistics can have a broader
view of the current routing table of its peer. If all the routes
have been decided by the BGP tiebreaker that compares the IP
address of the router that sends the route then it shows a lack
of path diversity. The network operator could then attribute a
lower preference to the route advertised by the remote router.

This xBGP program successfully passes all the verifiers.
Since it handles the BGP community attribute, we verified if
the format is respected according to the corresponding RFC.

Since this information cannot be retrieved with traditional
router CLI, this new approach could enable more fine-grained
routing decisions. Indeed, this new type of active monitoring
cannot be achieved with traditional monitoring tools such as
BMP, SNMP, etc. as these later tools do not modify the BGP
message they sent to the BGP neighbor. Network operators
have thus at their disposal new information from outside their
network.

5.4 Measuring BGP Route Propagation Times

For mission critical systems, the convergence time of a rout-
ing protocol is an important metric to know. It helps to better
understand what could be the cause of a slow convergence.
Discussions with network operators indicated that commer-
cial router vendors provide undocumented CLI commands
to access profiling points. However, this profiling informa-
tion is local to each router. It could be useful to exchange
such information within an entire network. This could open
new opportunities to better understand the current state of
the network. One example of such monitoring is the time
taken by a BGP route to traverse an AS. To support such
monitoring information, BGP must be augmented to add in

each route its arrival time at each AS border router. Our xBGP
program defines a new non-transitive BGP attribute, called
RECEIVED_TIME. It adds this attribute when a route is re-
ceived over an eBGP session (thanks to the set_attr xBGP
API function family). It traverses the AS with the BGP route
until it reaches an edge router. The RECEIVED_TIME attribute
is removed when the associated route is sent over an eBGP
session and the border router computes the difference between
its current NTP time and the one of the attribute. As for the
previous use case, exchanging such monitoring information
is not currently feasible with traditional routers. These two
use cases show that xBGP can perform a new type of active
monitoring by exposing the internal data of the BGP imple-
mentation itself to inform the other neighbor of the current
BGP routing state.

6 Related Work

Protocol programmability. In the late nineties active net-
works were proposed as a solution to bring innovation back
inside the network that was perceived as being ossified [65].
Most of the work in this area focused on the possibility of
placing bytecode inside network layer packets. PLAN [66],
ANTS [73] and router plugins [19] are examples. In the con-
trol plane, researchers built upon this idea to propose new
solutions such as the 4D architecture [25], the Routing Con-
trol Platform that centralizes routing [11] or Metarouting [27]
that proposed to open the definition of routing protocols using
a declarative language. While these previous works propose
configuration languages or centralized approaches to deal
with network programmability, xBGP relies on an existing
decentralized control plane protocol on which an operator can
add its new functionality to locally influence the routing.

Bringing flexibility to an implementation of a network
protocol has been studied in the literature. Researchers have
proposed using extension codes to extend transport protocols
like STP [52], QUIC [18] and the FRRouting implementation
of OSPF and BGP [80]. However, the architecture of these
pluginized approaches is close to the internal architecture
of a single protocol implementation and does not offer the
flexibility to pluginize different implementations of the same
protocol. xBGP goes one important step further by enabling
very different implementations to execute the same xBGP
program. xBGP tries to determine what all implementations
of a protocol have in common to try to find a common usable
interface.

To ease the automation and the configuration of their de-
vices, routers vendors added scripting languages that enable
the network operator to execute recurrent tasks [6]. However,
this acts as a simple shell that cannot be used to extend the
router implementation. Other vendors integrated the python
language into their router OS [40] to perform automation task
more easily, such as configuring the router or executing a
monitoring routine when a particular event occurs.

586 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Reducing the BGP implementation to its minimum has
been studied with CoreBGP [74]. However, it only manages
the basic BGP Finite State Machine on which plugins written
in the Go language are inserted. The remainder of the BGP
logic such as sending BGP messages or managing the routing
table is passed to the plugins. CoreBGP plugins react to an
FSM events while xBGP programs react to protocol events
defined by the insertion points depicted in Figure 1.

XORP [33,34] was introduced to propose an open-source
software router platform. This solution has been designed to
allow researchers to easily develop their own extensions to a
routing protocol. Other open-source routing stacks have been
developed such as Quagga [2], FRRouting [23] or BIRD [16].
While these open-source stacks allow modifying the source
code of the routing software, xBGP goes one step further by
introducing a simple API to interact with the routing soft-
ware. There is no need to look directly in the code of the
implementation to understand how to integrate an extension.
Anyone who wants to add their own extension will interact
with the router through xBGP. Throughout this paper, we
demonstrated that an xBGP extension code written only once
can be successfully executed by two open-source routing
stacks, FRRouting and BIRD.

Virtual Machines. 1ibxbgp is based on a user-space im-
plementation of the kernel eBPF VM [53]. In recent years,
Linux kernel developers have integrated a virtual machine
called eBPF [63] which enables programs to inject executable
bytecode at specific locations inside the kernel. It was initially
targeted at monitoring kernel operations [35], but also for
fast packet processing [35]. Researchers have used eBPF to
support networking programming with IPv6 Segment Rout-
ing [83] and extend TCP [68]. Other frameworks could have
been used such as WebAssembly [32] or lua [38] that is widely
used in industrial systems. Using another type of VM can be
studied to measure its performance and its relevance to rout-
ing protocols.

Verification tools. The PDS (Plugin Distribution Sys-
tem) [57] provides secure verification and distribution of
extension code for Pluginized QUIC [18]. It allows the au-
tomation of different types of verification for several extension
codes at the same time. Our xBGP toolchain includes more
verifiers and checks more properties. While the PDS uses a
Merkel tree to secure the distribution of plugins, the xBGP
toolchain simply keeps them in a store that is used by the
network operator.

7 Conclusion

We presented xXBGP, a new paradigm that enables network
operators to innovate in routing protocols. xBGP allows them
to write their extensions or modifications in the form of an
xBGP program that can be executed inside the protocol im-
plementation. This programmability could help network op-
erators innovate with existing distributed routing protocols

as Software Defined Networking lead to the development of
programmable switches. Our solution has been proposed for
BGP but could also be adapted to support other routing proto-
cols. We further introduced the xBGP toolchain that allows
operators to annotate xBGP programs to verify their safety. It
checks if the xBGP program meets the local properties of the
router such as the termination, the memory constraints and if
the xBGP program meets the definition of BGP. If it passes
the verification step, the xBGP program can be safely added
to the BGP implementation and is guaranteed not to corrupt
the router. Finally, we demonstrated xBGP’s capabilities by
proposing several use cases that have been implemented with
our solution. Among them, xBGP enables the operator to add
new attributes to a BGP route, implementing complex filters,
allowing a client to influence the BGP decision process and
executing background tasks.

Future Directions. We see two directions to improve
xBGP. The first would be to look at how to structure an exist-
ing BGP implementation to support xBGP more efficiently.
The second is related to the virtual machine used. eBPF was
the most mature virtual machine during the development of
xBGP. However, other virtual machines such as WebAssem-
bly seem more promising and start to perform well. It might
be interesting to see the advantages of using them in the
context of xBGP.

Software artifacts

To encourage other researchers to reproduce and extend our re-
sults we provide the entire source code of 1ibxbgp [78] com-
posed of 3506 LoC, the eBPF virtual machine we use (2236
LoC), the two versions of FRRouting [77] (+2675 LoC) and
BIRD [76] (+2083 LoC) xBGP compatible, the whole xBGP
programs (15 programs) we developed on top of xBGP [81],
the experimental scripts we use to evaluate the impact of
the performance with our approach (853 LoC) [78] and our
verification toolchain based on the PDS [56]. We will also
provide the set of annotation to verify xBGP programs (1121
LoC) [82].

Acknowledgments

This work has been partially supported by the French Com-
munity of Belgium through the funding of a FRIA (Fund
for Research training in Industry and Agriculture) grant. We
thank the anonymous reviewers and our shepherd, Phillipa
Gill, whose helpful comments improved the quality of this

paper.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 587

References

(1]

(2]

3

—_—

[4

—

(3]

[6

—_

[7

—

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

(16]

The linux kernel static checker. https://github.com/
torvalds/linux/blob/master/kernel/bpf/verifier.
c.

Quagga software routing suite. https://www.nongnu.org/
quagga/.

"Microsoft Azure". Software for open networking in the cloud.
https://azure.github.io/SONiC/.

T. Bates, E. Chen, and R. Chandra. BGP Route Reflection:
An Alternative to Full Mesh Internal BGP (IBGP). RFC 4456
(Draft Standard), April 2006. Updated by RFC 7606.

Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye,
and David Walker. Network configuration synthesis with ab-
stract topologies. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, pages 437-451, 2017.

Raymond Blair, Arvind Durai, and John Lautmann. Tcl script-
ing for Cisco 10S. Cisco Press, 2010.

Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf,
and Nir Piterman. T2: temporal property verification. In In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 387-393. Springer,
2016.

R. Bush and R. Austein. The Resource Public Key Infras-
tructure (RPKI) to Router Protocol. RFC 6810 (Proposed
Standard), January 2013.

R. Bush, K. Patel, and D. Ward. Extended Message Support
for BGP. RFC 8654 (Proposed Standard), October 2019.

Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer
Rexford, Aman Shaikh, and Jacobus van der Merwe. Design
and implementation of a routing control platform. In Pro-
ceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 15-28.
USENIX Association, 2005.

Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer
Rexford, Aman Shaikh, and Jacobus van der Merwe. Design
and implementation of a routing control platform. In Pro-
ceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 15-28,
2005.

E. Chen. Route Refresh Capability for BGP-4. RFC 2918
(Proposed Standard), September 2000. Updated by RFC 7313.

Enke Chen, Naiming Shen, and Robert Raszuk. Carrying
Geo Coordinates in BGP. Internet-Draft draft-chen-idr-geo-
coordinates-02, Internet Engineering Task Force, October 2016.
Work in Progress.

Edmund Clarke and Daniel Kroening. Ansi-c bounded model
checker user manual. School of Computer Science, Carnegie
Mellon University, 2006.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Ter-
minator: beyond safety. In International Conference on Com-
puter Aided Verification, pages 415-418. Springer, 2006.
CZ.NIC, z.s.p.o. BIRD internet routing daemon. https://
gitlab.nic.cz/labs/bird.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

Guy Davies. Designing and Developing Scalable IP Networks.
John Wiley & Sons, 2004.

Quentin De Coninck, Francois Michel, Maxime Piraux, Flo-
rentin Rochet, Thomas Given-Wilson, Axel Legay, Olivier
Pereira, and Olivier Bonaventure. Pluginizing QUIC. In Pro-
ceedings of the ACM Special Interest Group on Data Commu-
nication, pages 59-74. 2019.

Dan Decasper, Zubin Dittia, Guru Parulkar, and Bernhard
Plattner. Router plugins: A software architecture for next
generation routers. SIGCOMM Comput. Commun. Rev.,
28(4):229-240, October 1998.

Benoit Donnet and Olivier Bonaventure. On BGP communities.
ACM SIGCOMM Computer Communication Review, 38(2):55—
59, 2008.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to
SDN: an intellectual history of programmable networks. ACM
SIGCOMM Computer Communication Review, 44(2):87-98,
2014.

Romain Fontugne, Esteban Bautista, Colin Petrie, Yutaro No-
mura, Patrice Abry, Paulo Gongalves, Kensuke Fukuda, and
Emile Aben. BGP zombies: An analysis of beacons stuck
routes. In International Conference on Passive and Active
Network Measurement, pages 197-209. Springer, 2019.

The Linux Foundation. FRRouting project. https://

frrouting.org/.

Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodyt-
ska, Jorge A Navas, Noam Rinetzky, Leonid Ryzhyk, and
Mooly Sagiv. Simple and precise static analysis of untrusted
linux kernel extensions. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pages 1069—1084, 2019.

Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy
Myers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan,
and Hui Zhang. A clean slate 4D approach to network con-
trol and management. SIGCOMM Comput. Commun. Rev.,
35(5):41-54, October 2005.

Brendan Gregg. BPF Performance Tools. Addison-Wesley
Professional, 2019.

Timothy G. Griffin and Jodo Luis Sobrinho. Metarouting.
SIGCOMM Comput. Commun. Rev., 35(4):1-12, August 2005.

Timothy G Griffin and Gordon Wilfong. An analysis of bgp
convergence properties. ACM SIGCOMM Computer Commu-
nication Review, 29(4):277-288, 1999.

Timothy G Griffin and Gordon Wilfong. Analysis of the med
oscillation problem in bgp. In 10th IEEE International Confer-
ence on Network Protocols, 2002. Proceedings., pages 90-99.
IEEE, 2002.

Timothy G Griffin and Gordon Wilfong. On the correctness of
ibgp configuration. ACM SIGCOMM Computer Communica-
tion Review, 32(4):17-29, 2002.

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and
Jorge A Navas. The SeaHorn verification framework. In In-
ternational Conference on Computer Aided Verification, pages
343-361. Springer, 2015.

588 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://www.nongnu.org/quagga/
https://www.nongnu.org/quagga/
https://azure.github.io/SONiC/
https://gitlab.nic.cz/labs/bird
https://gitlab.nic.cz/labs/bird
https://frrouting.org/
https://frrouting.org/

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and JF Bastien. Bringing the web up to speed with
webassembly. SIGPLAN Not., 52(6):185-200, June 2017.

Mark Handley, Orion Hodson, and Eddie Kohler. Xorp: An
open platform for network research. SIGCOMM Comput. Com-
mun. Rev., 33(1):53-57, jan 2003.

Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson,
and Pavlin Radoslavov. Designing extensible ip router soft-
ware. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation-Volume 2, pages
189-202, 2005.

Toke Hgiland-Jgrgensen, Jesper Dangaard Brouer, Daniel Bork-
mann, John Fastabend, Tom Herbert, David Ahern, and David
Miller. The EXpress Data Path: Fast programmable packet pro-
cessing in the operating system kernel. In Proceedings of the
14th International Conference on Emerging Networking EX-
periments and Technologies, CONEXT 18, page 54—66, New
York, NY, USA, 2018. Association for Computing Machinery.

Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Vijay Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving
high utilization with software-driven wan. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, pages
15-26, 2013.

G. Huston and G. Michaelson. Validation of Route Origina-
tion Using the Resource Certificate Public Key Infrastructure
(PKI) and Route Origin Authorizations (ROAs). RFC 6483
(Informational), February 2012.

Roberto Ierusalimschy. Programming in lua. Roberto lerusal-
imschy, 2006.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Jun-
lan Zhou, Min Zhu, et al. B4: Experience with a globally-
deployed software defined WAN. ACM SIGCOMM Computer
Communication Review, 43(4):3-14, 2013.

Junos. Junos PyEZ developer guide.
//www.juniper.net/documentation/en_US/
junos-pyez/information-products/pathway-pages/
junos-pyez-developer-quide.html, July 2021.

https:

K. Kompella, B. Kothari, and R. Cherukuri. Layer 2 Virtual Pri-
vate Networks Using BGP for Auto-Discovery and Signaling.
RFC 6624 (Informational), May 2012.

Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve
Uhlig. Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, 103(1):14-76, 2014.

Daniel Kroening and Michael Tautschnig. CBMC-C bounded
model checker. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages
389-391. Springer, 2014.

P. Lapukhov, A. Premji, and J. Mitchell (Ed.). Use of BGP
for Routing in Large-Scale Data Centers. RFC 7938 (Informa-
tional), August 2016.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Petr Lapukhov and Jeft Tantsura. Equal-Cost Multipath Con-
siderations for BGP. Internet-Draft draft-lapukhov-bgp-ecmp-
considerations-07, Internet Engineering Task Force, June 2021.
Work in Progress.

Ratul Mahajan, David Wetherall, and Tom Anderson. Under-
standing bgp misconfiguration. ACM SIGCOMM Computer
Communication Review, 32(4):3-16, 2002.

Robert Mc Millan. Research experiment disrupts inter-
net, for some. Computerworld, pages August, 28, 2010.
https://www.computerworld.com/article/2515036/
research-experiment-disrupts-internet--for-some.
html.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review,
38(2):69-74, 2008.

Microsoft Corporation. ebpf for windows. https://github.
com/microsoft/ebpf-for-windows.

Porapat Ongkanchana, Romain Fontugne, Hiroshi Esaki, Job
Snijders, and Emile Aben. Hunting BGP zombies in the wild.
In Proceedings of the Applied Networking Research Workshop,
ANRW ’21, page 1-7, New York, NY, USA, 2021. Association
for Computing Machinery.

K. Patel, E. Chen, and B. Venkatachalapathy. Enhanced Route
Refresh Capability for BGP-4. RFC 7313 (Proposed Standard),
July 2014.

Parveen Patel, Andrew Whitaker, David Wetherall, Jay Lep-
reau, and Tim Stack. Upgrading Transport Protocols using
Untrusted Mobile Code. ACM SIGOPS Operating Systems
Review, 37(5):1-14, 2003.

IO Visor Project.
https://github.com/iovisor/ubpf.

Y. Rekhter (Ed.), T. Li (Ed.), and S. Hares (Ed.). A Border
Gateway Protocol 4 (BGP-4). RFC 4271 (Draft Standard),
January 2006.

E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private Net-
works (VPNs). RFC 4364 (Proposed Standard), February 2006.
Updated by RFCs 4577, 4684, 5462.

Nicolas Rybowski. Plugin Distribution System. https://
github.com/nrybowski/SPMS.

Userspace eBPF VM.

Nicolas Rybowski, Quentin De Coninck, Tom Rousseaux, Axel
Legay, and Olivier Bonaventure. Implementing the plugin dis-
tribution system. In Proceedings of the SIGCOMM ’21 Poster
and Demo Sessions, page 39-41. Association for Computing
Machinery, New York, NY, USA, 2021.

S. Sangli, E. Chen, R. Fernando, J. Scudder, and Y. Rekhter.
Graceful Restart Mechanism for BGP. RFC 4724 (Proposed
Standard), January 2007. Updated by RFC 8538.

S. Sangli, D. Tappan, and Y. Rekhter. BGP Extended Com-
munities Attribute. RFC 4360 (Proposed Standard), February
2006. Updated by RFCs 7153, 7606.

Rob Shakir, Robert Raszuk, Rob Shakir, and David Freedman.
BGP OPERATIONAL Message . Internet-Draft draft-frs-bgp-
operational-message-00, Internet Engineering Task Force, July
2011. Work in Progress.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation

589

https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.computerworld.com/article/2515036/research-experiment-disrupts-internet--for-some.html
https://www.computerworld.com/article/2515036/research-experiment-disrupts-internet--for-some.html
https://www.computerworld.com/article/2515036/research-experiment-disrupts-internet--for-some.html
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://github.com/nrybowski/SPMS
https://github.com/nrybowski/SPMS

[61] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC
5714 (Informational), January 2010.

[62] Rachee Singh, Mugeet Mukhtar, Ashay Krishna, Aniruddha
Parkhi, Jitendra Padhye, and David Maltz. Surviving switch
failures in cloud datacenters. ACM SIGCOMM Computer
Communication Review, 51(2):2-9, 2021.

[63] A Starovoitov. BPF-in-kernel virtual machine. Linux Kernel
Developers’ Netconf, 2015.

[64] Florian Streibelt, Franziska Lichtblau, Robert Beverly, Anja
Feldmann, Cristel Pelsser, Georgios Smaragdakis, and Randy
Bush. BGP communities: Even more worms in the routing can.
In Proceedings of the Internet Measurement Conference 2018,
pages 279-292, 2018.

[65] David L. Tennenhouse and David J. Wetherall. Towards an
active network architecture. SIGCOMM Comput. Commun.
Rev., 37(5):81-94, October 2007.

[66] D.L. Tennenhouse and D.J. Wetherall. Towards an active
network architecture. In Proceedings DARPA Active Networks
Conference and Exposition, pages 2—15, 2002.

[67] The OpenBSD Project. Openbgpd. http://openbgpd.com/.

[68] Viet-Hoang Tran and Olivier Bonaventure. Beyond socket
options: making the linux TCP stack truly extensible. In 2019
IFIP Networking Conference (IFIP Networking), pages 1-9,
2019.

[69] Yves Vanaubel, Jean-Jacques Pansiot, Pascal Mérindol, and
Benoit Donnet. Network fingerprinting: Ttl-based router sig-
natures. In Proceedings of the 2013 conference on Internet
measurement conference, pages 369-376, 2013.

[70] Laurent Vanbever. Customized BGP route selection using
BGP/MPLS VPNs. In Routing Symposium, Cisco Systems,
20009.

[71] Stefano Vissicchio, Luca Cittadini, and Giuseppe Di Battista.
On iBGP routing policies. IEEE/ACM Transactions on Net-
working, 23(1):227-240, 2014.

[72] Matthias Wihlisch, Fabian Holler, Thomas C Schmidt, and
Jochen H Schiller. Rtrlib: An open-source library in ¢ for rpki-
based prefix origin validation. In Presented as part of the 6th
Workshop on Cyber Security Experimentation and Test, 2013.

[73] D.J. Wetherall, J.V. Guttag, and D.L. Tennenhouse. Ants: a
toolkit for building and dynamically deploying network proto-
cols. In 1998 IEEE Open Architectures and Network Program-
ming, pages 117-129, 1998.

[74] Jordan Whited. Corebgp - plugging in to bgp. https://
github.com/jwhited/corebgp, July 2020.

[75] Thomas Wirtgen. xBGP api documentation. https:
//github.com/pluginized-protocols/xbgp_plugins/
blob/master/xbgp_compliant_api/xbgp_plugin_api.
h.

[76] Thomas Wirtgen. xBGP bird. https://github.com/
pluginized-protocols/xbgp_bird.

[77] Thomas Wirtgen. xBGP frrouting. https://github.com/
pluginized-protocols/xbgp_frr.

[78] Thomas Wirtgen. xBGP source code. https://github.com/
pluginized-protocols/libxbgp.

[79] Thomas Wirtgen, Quentin De Coninck, Randy Bush, Laurent
Vanbever, and Olivier Bonaventure. xXBGP: When you can’t
wait for the ietf and vendors. In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, HotNets *20, page 1-7,
New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[80] Thomas Wirtgen, Cyril Dénos, Quentin De Coninck, Mathieu
Jadin, and Olivier Bonaventure. The case for pluginized rout-
ing protocols. In 27th International Conference on Network
Protocols (ICNP), pages 1-12. IEEE, 2019.

[81] Thomas Wirtgen and Tom Rousseaux. xBGP plugins source
code. https://github.com/pluginized-protocols/
xbgp_plugins.

[82] Thomas Wirtgen and Tom Rousseaux. xBGP verifi-
cation. https://github.com/pluginized-protocols/
xbgp_plugins/tree/master/prove_stuffs.

[83] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure.
Leveraging eBPF for programmable network functions with
ipv6 segment routing. In Proceedings of the 14th Interna-
tional Conference on Emerging Networking EXperiments and
Technologies, CONEXT 18, page 67-72, New York, NY, USA,
2018. Association for Computing Machinery.

A Additional use cases

This section describes some additional use cases for xBGP.

A.1 BGP in data centers

Although BGP was designed as an interdomain routing proto-
col, it is now widely used as an intradomain routing protocol
in data centers [44]. This is mainly because BGP scales better
since it does not rely on flooding in contrast with OSPF or
IS-IS. Another benefit of BGP is its ability to support a wide
range of configuration knobs and policies. However, BGP suf-
fers from several problems that forces the network operators
to tweak their BGP configurations [44]. These tweaks make
BGP configurations complex and more difficult to analyze
and validate [5]. To illustrate this complexity, let us consider
the data center shown in Fig. 6. Routers S1 and S2 are the
Spine routers, L10...L13 the leaf routers, and 720. .. the top-
of-the rack routers. In such a data center, there is no direct
connection between the routers at the same level in the hier-
archy. Data center operators usually want to avoid paths that
include a valley (e.g. L10 — S1 — L11 — S2). To achieve
this, they usually run eBGP between routers, but configure
the same AS number on S1 and S2 (even if these routers are
not connected). Similarly, L10 and L11 (resp. L12 and L13)
use the same AS number. With this configuration, when $2
receives a BGP update with an AS-Path through S1, it recog-
nizes its AS number and rejects the route. This automatically
blocks paths that include a valley and also helps to prevent
path hunting.

Unfortunately, using the same AS number on separate
routers can cause problems. First, operators can no longer

590 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

http://openbgpd.com/
https://github.com/jwhited/corebgp
https://github.com/jwhited/corebgp
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_bird
https://github.com/pluginized-protocols/xbgp_bird
https://github.com/pluginized-protocols/xbgp_frr
https://github.com/pluginized-protocols/xbgp_frr
https://github.com/pluginized-protocols/libxbgp
https://github.com/pluginized-protocols/libxbgp
https://github.com/pluginized-protocols/xbgp_plugins
https://github.com/pluginized-protocols/xbgp_plugins
https://github.com/pluginized-protocols/xbgp_plugins/tree/master/prove_stuffs
https://github.com/pluginized-protocols/xbgp_plugins/tree/master/prove_stuffs

‘ VEI) ‘

[evel }
| | | |
[[=] [fom[=] [=] |

Figure 6: A simple data center.

look at the AS Paths to troubleshoot routing problems since
different routers use the same AS number. Second, by pro-
hibiting valley-free paths, the operator implicitly agrees to
partition the network when multiple failures occur. Con-
sider again Figure 6. If both links L10 — S1 and L13 — S2
fail, then the only possible path between L10 and L13 is
L10 — 82 — L12 — S1 — L13. If the same AS number is
used on S1 and S2, this path will never be advertised.

With xBGP, a network operator can use different AS num-
bers for their routers and implement specialized filters on the
spine and leaf routers. For example, if S1 and S2 are both con-
nected to transit providers and can reach the same prefixes,
then L10 should never reach S2 via §1 and L11. However, this
path should remain valid if the final destination is a prefix
attached to below R13.

To implement such a filter, we load a manifest containing
every eBGP session from a router of level i to a router of level
i+ 1 in a pair having the following form: (AS;,AS;(;)). For
each route, the filter checks each consecutive pair of the AS-
Path. If a pair of this manifest is included in the AS-Path, the
filter rejects the route since it is not valley-free.

This xBGP program successfully passes T2 and CBMC
checks. SeaHorn confirms its xBGP compliance relative to its
use of the API functions and the return values.

A.2 Validating BGP Prefix Origins

The interdomain routing system is regularly affected by dis-
ruptions caused by invalid BGP advertisements originated
from ISPs. Examples include the AS7007 incident in 1997,
the announcement of a more specific prefix covering the
YouTube DNS servers by Pakistan Telecom in 2008, or BGP
prefixes leaked by Google in 2017 that disrupted connectivity
in parts of Asia. These problems and many similar ones were
caused by configuration errors.

To illustrate the flexibility of xBGP, we consider a RPKI-
based route origin [37] validation variant. The network op-
erator includes in the configuration data of the manifest all
prefixes it knows the origin. We assume the operator has them-
self validated the ROA signatures before generating the file.
This file is used by the xBGP program each time a BGP route
is received by a peer to check if the origin AS of the route
matches with the one contained in the file.

To evaluate the performance of our prefix origin validation,

we use the same testbed as in Section 4 excepted that we use
eBGP sessions for links L1 and L2. Our DuT does not imple-
ment the RPKI-Rtr protocol [8, 72] but loads configuration
data that considers 75% of the injected prefixes as valid. For
this test, our extension code checks the validity of the origin
of each prefix but does not discard the invalid ones.

Table 2 compares our extension codes running on BIRD
and FRRouting to their native implementations without any
prefix validation. We do not compare our solution with the
RPKI-Rtr protocol since we do not totally implement the
RPKI protocol. We only check the origin of the route. The
difference in execution between the two implementations is
also explained by the difference in the internal representation
of the data structures used.

The termination and absence of C errors were proved with
T2 and CBMC. SeaHorn also confirms that the xBGP program
does not write any data in the memory of the host implemen-
tation and its compliance on the return values.

A.3 Filtering Routes Based on IGP Costs

Since the xBGP API provides access to the data structures
maintained by a BGP implementation, network operators can
leverage it to implement new filters. As a simple example,
consider an ISP having a worldwide presence that wants to
announce to its peers the routes that it learned in the same
continent as the advertising BGP. This policy can be im-
plemented by tagging routes with BGP communities on all
ingress routers and then filtering them on export. While being
frequently used [20], this solution is imperfect. Consider an
ISP having two transatlantic links terminated in London, UK,
and Amsterdam in The Netherlands. This ISP has a strong
presence in Europe and two links connect the UK to other
European countries. If these two links fail, packets between
Germany and London will need to go through Amsterdam, the
USA, and then back to the UK. When such a failure occurs,
the ISP does not want to advertise the routes learned in the
UK to its European peers. With BGP communities, it would
continue to advertise these routes after the failure.

Using the xBGP API, the operator could implement this
policy as follows. First, he configures the IGP cost of the
transatlantic links at a high value, say 1000 to discourage
their utilization. Second, he implements a simple export filter
that checks the IGP cost of the next-hop before announcing
a route. The complete source code of such a filter is shown
in Listing 1. It is attached to the BGP_OUTBOUND_FILTER (@)
insertion point. If the IGP cost to the BGP next hop distance
is acceptable, the function calls the special function next ().
This informs the VMM to execute the next bytecode attached
to the insertion point. If the extension code is the last to
be executed, the insertion point proposes to fall back to the
native code. To reject the route, the extension code returns the
special value FILTER_REJECT to the host implementation.

For this xBGP program, we used SeaHorn to ensure return

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 591

Flag Enables

PROVERS Verification macros.
PROVERS_ARGS next() call verification macros.
PROVERS_T2 T2 related macros.

PROVERS_CBMC
PROVERS_SEAHORN

CBMC related macros.
SeaHorn related macros.

Table 4: Verification flags.

Macro Code only provided to
PROOF_INSTS_SEAHORN SeaHorn.
PROOF_INSTS_CBMC CBMC.
PROOF_INSTS_T2 T2.

Table 5: Macro allowing to provide pieces of code for a spe-
cific verifier.

values were meaningful to 1ibxbgp. T2 and CBMC are also
used to check the termination and the absence of any C errors.
We also verify that the xBGP program has only a read-access
to the host implementation.
uint64_t export_igp(bpf_full_args_t sxargs UNUSED) ({
struct ubpf_nexthop xnexthop = get_nexthop(NULL);
struct ubpf_peer_info =peer = get_peer_info ();
if (peer—>peer_type != EBGP_SESSION) {
next(); // Do not filter on iBGP sessions
} if (nexthop-—>igp_metric <= MAX METRIC) {
next(); // the route is accepted by this filter;
} // next filter will decide to export route
return FILTER_REJECT;
}
Listing 1: An export filter rejecting BGP routes having a too

large IGP nexthop metric.

B Verification macros

This appendix provides in Tables 5, 6, and 7 exhaustive lists
of our custom-made verification macros. Those are enabled
at compile time with different flags described in Table 4.

Macro prefix

Attribute name/macro suffix

Check

BUF_CHECK_*

LENGTH

ORIGIN

ASPATH

NEXTHOP

MED

LOCAL_PREF
ATOMIC_AGGR
AGGREGATOR
COMMUNITY
ORIGINATOR
CLUSTER_LIST
EXTENDED_COMMUNITIES
AS4_PATH
AS4_AGGREGATOR
AIGP
LARGE_COMMUNITY

The correct formatting
of the attribute which
is stored in a buffer.

CHECK_*

LENGTH

ORIGIN

ASPATH

NEXTHOP

MED

LOCAL_PREF
ATOMIC_AGGR
AGGREGATOR
COMMUNITY
ORIGINATOR
CLUSTER_LIST
EXTENDED_COMMUNITIES
AS4_PATH
AS4_AGGREGATOR

The correct formatting
of the attribute which
is stored in a
path_attribute
structure.

AIGP
LARGE_COMMUNITY
CHECK_IN_BOUNDS_* | LOCAL_PREF The given attribute
MED lies in the range
specified by the
operator.
CHECK_* ARG The next() function is
ARG_CODE called if the xBGP
ouT program cannot parse

RET_VAL_FILTER

the current attribute.

Table 6: BGP attributes verification macros used by SeaHorn.

Macro prefix | Target Check

CHECK_* BUFFER The given buffer respects
the specified size.
STRING | The given string is null-byte terminated.

COPY The copied buffer is unchanged.

Table 7: Memory check macros used by SeaHorn.

592 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

