A Declarative and Expressive Approach to Control Forwarding Paths in Carrier-Grade Networks

Sat, 07/04/2015 - 17:34 by Stefano Vissicchio


SDN simplifies network management by relying on declarativity (high-level interface) and expressiveness (network flexibility). We propose a solution to support those features while preserving high robustness and scalability as needed in carrier-grade networks. Our solution is based on (i) a two-layer architecture separating connectivity and optimization tasks; and (ii) a centralized optimizer called DEFO, which translates high-level goals expressed almost in natural language into compliant network configurations. Our evaluation on real and synthetic topologies shows that DEFO improves the state of the art by (i) achieving better trade-offs for classic goals covered by previous works, (ii) supporting a larger set of goals (refined traffic engineering and service chaining), and (iii) optimizing large ISP networks in few seconds. We also quantify the gains of our implementation, running Segment Routing on top of IS-IS, over possible alternatives (RSVP-TE and OpenFlow).

Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence Filsfils, Thomas Telkamp and Pierre Francois
SIGCOMM, 2015.
Full text
pdf   (351.41 KB)
pdf   (1.7 MB)
Cite it
See here

IEEE Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ACM Copyright Notice: Copyright 1999 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page or intial screen of the document. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Springer-Verlag LNCS Copyright Notice: The copyright of these contributions has been transferred to Springer-Verlag Berlin Heidelberg New York. The copyright transfer covers the exclusive right to reproduce and distribute the contribution, including reprints, translations, photographic reproductions, microform, electronic form (offline, online), or any other reproductions of similar nature. Online available from Springer-Verlag LNCS series.