
Flexible failure detection and fast reroute
using eBPF and SRv6

Mathieu Xhonneux, Olivier Bonaventure
ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium

Email: firstname.lastname@uclouvain.be

Abstract—Segment Routing is a modern variant of source
routing that is being gradually deployed by network operators.
Large ISPs use it for traffic engineering and fast reroute
purposes. Its IPv6 dataplane, named SRv6, goes beyond the initial
MPLS dataplane, notably by enabling network programmability.
With SRv6, it becomes possible to define transparent network
functions on routers and endhosts. These functions are mapped
to IPv6 addresses and their execution is scheduled by segments
placed in the forwarded packets. We have recently extended the
Linux SRv6 implementation to enable the execution of specific
eBPF code upon reception of an SRv6 packet containing local
segments. eBPF is a virtual machine that is included in the Linux
kernel. We leverage this new feature of Linux 4.18 to propose and
implement flexible eBPF-based fast-reroute and failure detection
schemes. Our lab measurements confirm that they provide good
performance and enable faster failure detections than existing
BFD implementations on Linux routers and servers.

Index Terms—Failure detection, Segment Routing, IPv6, SRv6,
eBPF, BFD

I. INTRODUCTION

Segment Routing [1] is a new networking architecture that
can be summarised as a modern incarnation of the source
routing paradigm. This new architecture has received a lot
of interest within network operators, router manufacturers and
academic researchers. The Internet Engineering Task Force
(IETF) is finalising the key specifications for this new ar-
chitecture [2]. Two variants of Segment Routing are being
developed: an MPLS dataplane and an IPv6 dataplane. The
MPLS dataplane is mainly targeted at backbone networks
where it is used on routers. The IPv6 dataplane is more generic
and more flexible. It can also be used by routers in backbone
networks, but its recent implementation in the Linux kernel [3]
enables end-to-end use cases that also involve the endhosts.

In the IPv6 data plane, Segment Routing is enabled by
the usage of a Segment Routing Header (SRH), a new IPv6
extension header. The SRH contains a list of segments, i.e. an
ordered list of IPv6 addresses that must be reached before the
packet arrives to its final destination. It can also carry optional
Type-Length-Value (TLV) sub-fields to store additional data,
e.g. for OAM purposes. The flexibility offered by SRv6 in the
IPv6 data plane allows to revisit and design better solutions
to classic network problems (traffic engineering [4, 5, 6, 7, 8],
fast recovery [9], . . .), but also to implement new architectures
and solutions (e.g. software defined networks [10]).

Beyond the mere forwarding of packets along given seg-
ments, SRv6 is also a key enabler for network programming
[11]. Network virtual functions can be deployed in a SRv6

network by assigning them IPv6 addresses. The reception of
a packet with such address as destination will invoke the
execution of the mapped function. An operator can subse-
quently encapsulate SRHs into packets, effectively forward-
ing them across the NFVs of its choice. Although SRv6
opens new possibilities for activating networks, it also raises
new technical issues regarding how to implement Network
Function Virtualisation (NFV) [12, 13]. However, these two
recent approaches required modifications to the Linux kernel
to implement each virtualised network functions. Changing
the Linux kernel to implement each virtual function is not a
realistic solution in the long term. Other solutions such as the
VPP framework also allow SRv6 NFVs to be implemented
[14], but they act as kernel bypasses. Nevertheless, installing
a kernel bypass is a heavy configuration burden, hence not it
is not a suitable solution when only a handful of simple VNFs
needs to be deployed. A better approach would be to execute
virtualised functions directly inside the Linux kernel without
having to modify it. To meet this objective, we have recently
added eBPF support inside to the SRv6 implementation in
the Linux kernel and our modifications have been merged in
version 4.18 of the mainline Linux kernel [15, 16].

eBPF (for extended Berkeley Packet Filter) is a 64 bits
RISC-like virtual machine available inside the Linux ker-
nel [17, 18]. It provides a programmable interface to adapt
kernel components at run-time to user-specific behaviours.
C programs can be compiled to eBPF bytecode, which is
either executed in the kernel by an interpreter or translated
to native machine code using a Just-in-Time (JIT) compiler.
These programs can be attached to predetermined hooks in
the network stack. In the IPv6 layer, two principal hooks are
available to customize packet processing: BPF LWT, which
allows to modify the forwarding behaviour of packets headed
to specific destinations, and End.BPF, which enables to write
custom SRv6 network functions in eBPF. Depending on the
hook, eBPF programs can interact with packets in two ways:
either through direct read and write access, or using specific
primitives provided by the kernel, named helpers. For instance,
BPF LWT programs have the capability to encapsulate incom-
ing packets with an outer IPv6 header with SRH using the
bpf_lwt_push_encap helper. Persistent storage of state
can be achieved in eBPF using maps, i.e. key-value stores
located in kernel space and accessible by both eBPF and user
space programs. These maps allow eBPF programs to interact
with other components of the router.

ar
X

iv
:1

81
0.

10
26

0v
1

 [
cs

.N
I]

 2
4

O
ct

 2
01

8

In this paper, we leverage the newly added eBPF support in
the SRv6 implementation of the Linux kernel to demonstrate
how it can be used to provide fast-reroute services. A fast-
reroute service is always composed of three elements: (i)
a dataplane mechanism to detect failures, (ii) an efficient
dataplane mechanism to reroute packets once a failure has
been detected and (iii) a control plane that computes the
backup paths. Various control-plane techniques have been
proposed to compute backup paths [19, 20, 21]. We focus
this short paper on the two above mentioned dataplane mech-
anisms and implement them by using eBPF with SRv6 on
Linux. More precisely, Section II describes how eBPF can
be used to implement one particular fast reroute technique,
namely the Topology-Independant Loop Free Alternate (TI-
LFA). Section III describes a fast failure technique detection.

II. IMPLEMENTING SRV6 TI-LFA

Classic IP Fast ReRoute (FRR) techniques share a trade-off
between coverage (e.g. loop-free alternates) and configuration
burden among cooperating routers (e.g. tunnels) [22]. SR
transcends this trade-off as it inherently allows routers to
reroute packets along any path, i.e. tunnelling them, without
having to set up extra state in the network beforehand, and
independently of the network topology.

Topology-Independent Loop-Free Alternate (TI-LFA) [21]
is a recently suggested FRR technique that efficiently leverages
the Segment Routing architecture: upon the failure of a pro-
tected resource, routers insert a repair list, i.e. an outer MPLS
header or a SRH in a SRv6 network, forcing a packet to follow
a loop-free alternate path towards the original destination. The
repair list contains a segments list corresponding to the explicit
post-convergence path that is computed by the control plane.
Simulations on real topologies show that inserting up to 3
(resp. 4) segments for link (resp. node) protection guarantees
a 100% coverage in a SR-MPLS network [21]. These results
also hold for SRv6 networks.

To the best of our knowledge, we are not aware of any public
SRv6 TI-LFA implementations on Linux and hence developed
our own to illustrate the benefits of using eBPF. Our FRR
feature is implemented as a custom compiled on-the-fly BPF
LWT program (the template is presented in listing 1) loaded
into the kernel for each link to be protected. When the control
plane installs a route using a protected link, it indicates to
the kernel that the corresponding BPF FRR program must be
executed for each packet following the route.

Each BPF FRR program is associated to a BPF map, in
this case an array containing only a single unsigned integer.
This integer represents the link status, i.e. if it is up or down.
An external link failure detection component (e.g. a BFD
daemon) is responsible for feeding the map whenever the state
of the corresponding link changes. Modifying a map from user
space is performed through a system call. Since the execution
of system calls are prioritized by the system scheduler, this
ensures that the map modification is always quickly executed
[23]. The program of listing 1 executes the following steps. For
each packet routed to a protected link, the program performs

BPF TABLE(” a r r a y ” , u i n t 3 2 t , u i n t 3 2 t , f r r map
, 1) ;

i n t f r r (s t r u c t s k b u f f * skb) {
u i n t 3 2 t k = 0 ; / / k e y i n d e x
u i n t 3 2 t * l i n k u p = f r r map . lookup (&k) ;
i f (l i n k u p | | * l i n k u p)

r e t u r n BPF OK ;

c h a r s r h [] = {FILLED BY CONTROL PLANE} ;
b p f l w t p u s h e n c a p (skb , BPF LWT ENCAP SEG6

, (vo id *) s rh , s i z e o f (s r h)) ;
r e t u r n BPF OK ;

}

Listing 1: Template of our BPF FRR program, compiled using
bcc. The repair list associated to the route is hard-coded in
the program by the control plane, which subsequently compiles
the program and installs it into the FIB.

a lookup in the map and extracts the status of the link. If it is
up, the program directly exits by returning BPF_OK 1 and the
default packet processing continues. Else, a SRH containing
the repair list is inserted using bpf_lwt_push_encap and
the packet is routed towards its first segment, enforcing the
TI-LFA policy.

To measure the performance of our implementation, we
ran several measurement campaigns in a small lab, illustrated
in Figure 1. Our lab is composed of 3 servers with Intel
Xeon X3440 processors, 16GB of RAM and 10 Gbps NICs,
connected via Ethernet. Although these servers have multiple
cores, we configured the interrupts of their NICs to direct
all received packets to the same CPU core. All experiments
throughout this paper use the BPF JIT compiler. We first
analysed the effect of protecting a route, i.e. the overhead of
running the FRR BPF program. We use trafgen to send
IPv6 UDP packets with no SRH and a 64 bytes payload, from
R1 to R3. R2 is capable of handling raw IPv6 forwarding at
a rate of 610 kpps.

Installing the FRR BPF program on R2 to protect the route
towards R3 reduces this throughput by 8% when no SRH
encapsulation takes place, i.e. when the link is up. However,
actively fast rerouting packets by inserting a SRH drops the
forwarding rate to 75% of the baseline. 2

Fig. 1: Lab setup used for our experiments.

1Return values are either BPF_OK or BPF_DROP if the program wants to
drop the packet.

2Due to the lack of a fourth router in our lab, a SRH is inserted with the
loopback address of R3 instead of the address of a back-up node. This trick
should not impact the measures, as the main performance penalty is the SRH
encapsulation.

III. ROBUST FAILURE DETECTION WITH SRV6 AND EBPF
Fast recovery schemes must be activated as soon as possible

when a link fails. Hence, such schemes are only useful if they
can quickly be triggered when needed. A failure detection time
of 50ms is usually targeted, however routing protocols using
slow Hello control messages for detection and link liveness
monitoring, such as OSPF or IS-IS, cannot meet this objective
[24]. The Bidirectional Forwarding Detection (BFD) protocol
[25] is since its inception the de facto solution for monitoring
the liveness of a link or path between given endpoints. It is a
fairly simple protocol that has been shown capable of detecting
failures within 50 milliseconds [26]. A BFD setup comprises
two peers asynchronously sending control messages to each
other at an agreed frequency. The peers, that are beforehand
configured to communicate together, first establish a BFD
session. The session is torn down if the time since the last
control message received exceeds the failure detection time
for one of the peers.3

To prevent consuming resources from the principal CPU,
BFD is often implemented on modern commercial routers in
hardware and therefore directly runs on the linecard. However,
for servers and software routers, a user space BFD daemon
is required on both peers. Such daemons run on the main
CPU. This is a major drawback, since BFD being a time-
sensitive protocol, user space daemons cannot guarantee that
they are always capable of sending control messages in due
time. This limitation becomes significant when the CPU is
stressed by other tasks such as packet forwarding, control
plane computations, etc.

We measured the robustness of bird’s BFD implementa-
tion4, a well-known multi-protocol routing daemon, against
CPU load. We reuse the setup described in Figure 1. A bird
BFD setup in asynchronous mode is deployed between R2 and
R3. As for the first experiment, we generate traffic from R1 to-
wards R3, but we also artificially stress R2 using the stress
command, such that all its CPU cores are overloaded. We then
ran 15 minutes campaigns for different probes intervals and
thresholds, measuring the number of false forwarding failure
detections per campaign. The results are presented in Figure
2. They show a high number of false positives for failure
detection times up to 60ms. Further measurements showed
that, in our lab, the bird implementation had only stable
sessions with a minimum failure detection time of 150ms.

To partially improve this issue, BFD peers can also operate
in Echo mode. In this mode, a stream of packets is transmitted
in such a way as to have the other system loop them back
through its forwarding path. These packets hence do not need
to be processed by the BFD agent of the peer, only by its
data plane. As a consequence, the CPU of the remote peer
is less burdened, which allows using more aggressive timers.
The BFD session is considered alive as long as the BFD agent
receives the Echo packets it sent.

3This limit is usually configured as three times the interval between the
transmission of two control messages in order to avoid false positives.

4bird, like most software implementations of BFD, does not support the
Echo mode. The measures were taken in a classic asynchronous setting.

3x 5ms 3x 10ms 3x 20ms 3x40 ms
100

101

102

103

104

Configured failure detection time

N
um

be
r

of
fa

ls
e

po
si

tiv
es bird stressed

Fig. 2: Robustness analysis of bird’s BFD implementation
under a stressed CPU.

Seamless BFD (S-BFD) [27] is an evolution of the original
BFD protocol whose principal objective is to enable quicker
monitoring provisioning, i.e. avoiding the mandatory three-
way handshake to establish BFD sessions. Instead of having
two peers asynchronously sending control messages towards
each other, S-BFD introduces the concept of initiators and
reflectors. Initiators are regular BFD agents sending control
message towards a reflector. Reflectors are passive BFD agents
who do not send control messages upon the expiration of a
local timer, but when they receive a control message sent from
the remote peer.

A. SRv6 forwarding detection

BFD’s Echo mode can easily be mimicked in an SRv6 envi-
ronment, without having to resort to a specific application layer
protocol. A node A can verify the bidirectional forwarding
towards a remote SRv6 node B by crafting and sending SRv6
packets with segments < Blo, Alo >5, i.e. the packets first
need to traverse the data plane of B before reaching A. Using
this technique, replicating a BFD Echo setup simply requires
two agents, one running on each peer, which regularly send
such SRv6 packets. In this setting, the agents do not need
to communicate together and can independently send their
probes.

SRv6 network programming can be used to improve this
detection technique. Instead of resorting to two independent
agents, we propose the following scheme, similar to S-BFD se-
tups. A single master agent continuously sends liveness probes
with segments < Bslave, Alo >. Bslave corresponds to an IPv6
address mapped to a custom SRv6 network function on node B,
denoted as the slave. Whenever a packet reaches this segment,
the slave function builds from the source address field and the
segments list the path of the packet, e.g. [Alo, Bslave, Alo],
stores this path and the reception timestamp of the packet in
a map, and finally forwards the packet to the next segment.
In this setup, although only one peer is periodically sending

5Alo denotes the IPv6 loopback address of node A.

probes, both can use them to assess bidirectional connectivity
via the reception timestamps.

However, this scheme does not allow the slave to detect
a failure of the return path. To overcome this situation, we
leverage the optional TLV subfield of the SRH. The master
agent inserts a sequence number in each probe and keeps track
of the probes that successfully looped back. It then inserts into
each probe a TLV containing two values: SEQ, the sequence
number of the probe, and ACK, the number of the latest
probe it acknowledged.6 The slave updates the corresponding
timestamp in the map only when the received probe containing
a new ACK value 7 Whenever the master detects a forwarding
failure, it sets SEQ and ACK to zero until a probe loops back.

We leveraged eBPF to implement this SRv6 forwarding
detection mechanism and integrated it with our precedent TI-
LFA feature, the former serving as stimuli for the latter.

B. Architecture of an integrated fast detection and reroute
solution

The architecture of our implementation is illustrated in Fig-
ure 3. The master agent is implemented as a user space daemon
written in C, similarly to a BFD software implementation. The
slave network function is a short SRv6 End.BPF program that
parses the segments list and the TLV, updates the map when
necessary, and forwards the packet to the next segment.

Fig. 3: Architecture of our SRv6 bidirectional forwarding
detection and fast reroute solution. The slave implementation
is fully contained in kernel space.

BPF FRR programs are installed on both the master and the
slave. The master daemon uses a multi-threaded architecture
to regularly send probes and to assess, in the absence of replies
from the slave, if the time elapsed since the reception of the
last probe exceeded the configured detection time threshold.
In this case, it modifies the corresponding BPF map to trigger
the fast reroute feature.

Unfortunately, this principle cannot be used on the slave,
as BPF programs are only executed upon the reception of a

6Other values can be embedded in the TLV, such as the configured time
interval between two probes, or a session identifier.

7The latest ACK value is also stored in a map, along with its timestamp.

packet. As such, they cannot keep external timers and trigger
a map modification at their expiration. Instead, a slightly
different BPF FRR program is used on the slaves. The status
of a link is no longer accessible in a map, but rather computed
by the program by retrieving the last reception timestamp and
calculating if the time elapsed since then exceeds the config-
ured time threshold. This value is also hard-coded into the
program. This modification does not impact the performance
results described in Section II.

C. Performance measurements

We measured the robustness of our solution against bird’s
BFD implementation. We kept the methodology used to obtain
the results from Figure 2. R2 alternately hosts the master
and the slave. The results are presented in Figure 4. As the
implementation of the master’s daemon is very similar to
bird’s one, their performances do not significantly differ.
However, the slave network function, since it runs inside
the kernel and is triggered by interrupts and not the system
scheduler, is much more robust against CPU load and performs
well, even with aggressive timers. The slave is capable of
flawlessly handling a session with 10ms intervals and a 30ms
failure detection time, that neither the master daemon nor
bird can achieve.

3x 5ms 3x 10ms 3x 20ms 3x 40ms
100

101

102

103

104

Configured failure detection time

N
um

be
r

of
fa

ls
e

po
si

tiv
es Master stressed

Slave stressed

Fig. 4: Robustness comparison under a stressed CPU between
the master, implemented as a user space daemon, and our slave
End.BPF function, implemented as a BPF program in the
kernel.

IV. DISCUSSION

The Fast ReRoute BPF program described in Section II is
the first public implementation of SRv6 TI-LFA on Linux. It
can be deployed in any recent Linux router. Its usage induces a
slight overhead and decreases the maximum number of packets
forwarded by 8% without failure, and 25% when actively
rerouting packets along a backup path. These 25% are however
largely caused by the SRH encapsulation. Earlier work [3] has
demonstrated that the SRH encapsulation directly performed
by the kernel, i.e. without the eBPF overhead, decreases the
performances by 17%. Hence, in both situations, only an

acceptable performance decrease of 8% can be imputed to the
overhead of executing a BPF program. We did not investigate
if this overhead could be reduced.

Our liveness monitoring scenario presents several advan-
tages compared to BFD. First of all, it is more flexible as a
master can monitor a link even if the slave function is not
installed on the peer. BFD and S-BFD require two active
agents, even if only one is interested by the monitoring.
Furthermore, our scheme has two principal advantages. First,
like S-BFD, only the master agent actively sends probes. Fur-
thermore, in contrast with S-BFD, our scheme does not require
an application layer protocol. These two assets considerably
simplify the implementation of the slave function. Our eBPF
slave function is only 150 lines of source code long. No
local timers are required in the slave, hence software and
hardware implementations can directly fit into the IPv6 data
plane. Putting the function in the data plane notably enables
better performances, as show in Section III-C, than locating it
in the control plane, i.e. in user space, as shown in Figure 4.

Combined together, these two mechanisms constitute an
efficient and lightweight integrated solution for liveness mon-
itoring and fast recovery on the slave. Although our solution
does not improve the performances of the master peer, our
eBPF slave is capable of handling much more aggressive
timers. A setup with a master agent implemented in hardware
that sends probes to a Linux slave could leverage the gain
in performance provided by eBPF and outperform traditional
user space implementations.

V. CONCLUSION

The source routing properties of SRv6 enable many classic
IP network problems to be revisited. Combined with the
benefits of the network programming paradigm, new effi-
cient solutions are emerging. In this paper, we propose a
new scheme for link liveness monitoring using SRv6, fitting
entirely into the network layer. We implement this scheme
and the TI-LFA fast reroute mechanism in Linux. These two
implementations interact together in an integrated architecture
leveraging eBPF. Performances show that our eBPF TI-LFA
implementation induces only an 8% throughput overhead.
Whereas the traditional BFD solution uses an additional
application layer protocol and requires a symmetric setup,
the simplicity of our liveness monitoring solution allows the
implementation of one the two peers to be fully expressed in
eBPF. As a consequence, the code of this peer runs entirely in
the kernel, making it much more robust than traditional BFD
user space daemons.

ARTEFACTS

The source codes of the programs described in this paper
are available at the following URL: https://github.com/Zashas/
SRv6-BFD.

ACKNOWLEDGEMENTS

This work was partially supported by a Cisco URP grant.

REFERENCES

[1] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona,
and P. Francois, “The Segment Routing architecture,” in
GLOBECOM’2015. IEEE, 2015.

[2] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene,
S. Litkowski, and R. Shakir, “Segment routing architec-
ture,” Internet Requests for Comments, RFC Editor, RFC
8402, July 2018.

[3] D. Lebrun and O. Bonaventure, “Implementing ipv6 seg-
ment routing in the linux kernel,” in ANRW’17. ACM,
2017, pp. 35–41.

[4] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure,
C. Filsfils, T. Telkamp, and P. Francois, “A declarative
and expressive approach to control forwarding paths in
carrier-grade networks,” in SIGCOMM’15. ACM, 2015,
pp. 15–28.

[5] A. Cianfrani, M. Listanti, and M. Polverini, “Incremental
deployment of segment routing into an isp network: a
traffic engineering perspective,” IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 3146–3160, 2017.

[6] S. Gay, R. Hartert, and S. Vissicchio, “Expect the un-
expected: Sub-second optimization for segment routing,”
in INFOCOM 2017. IEEE, 2017.

[7] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman,
“Optimized network traffic engineering using segment
routing,” in Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE, 2015, pp. 657–665.

[8] L. Davoli, L. Veltri, P. L. Ventre, G. Siracusano, and
S. Salsano, “Traffic engineering with segment routing:
SDN-based architectural design and open source imple-
mentation,” in EWSDN’2015, 2015, pp. 111–112.

[9] K.-T. Foerster, M. Parham, M. Chiesa, and S. Schmid,
“Ti-mfa: Keep calm and reroute segments fast,” in 21st
IEEE Global Internet Symposium (GI 2018), April 2018.

[10] D. Lebrun, M. Jadin, F. Clad, C. Filsfils, and O. Bonaven-
ture, “Software Resolved Networks: Rethinking enter-
prise networks with IPv6 Segment Routing,” in SOSR’18,
2018.

[11] C. Filsfils et al., “SRv6 network programming,” Working
Draft, Internet-Draft draft-filsfils-spring-srv6-network-
programming-05, July 2018.

[12] F. Duchêne, D. Lebrun, and O. Bonaventure,
“SRv6Pipes: enabling in-network bytestream functions,”
in IFIP Networking 2018, 2018.

[13] A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracu-
sano, and L. Veltri, “Implementation of virtual network
function chaining through segment routing in a linux-
based nfv infrastructure,” in NetSoft’17. IEEE, 2017.

[14] “VPP/Segment Routing for IPv6,” https://wiki.fd.io/
view/VPP/Segment Routing for IPv6, 2018, [Online;
accessed 11 October 2018].

[15] M. Xhonneux and O. Bonaventure, “Leveraging eBPF
for programmable network functions with IPv6 Segment
Routing,” in CoNEXT ’18. New York, NY, USA: ACM,
2018.

https://github.com/Zashas/SRv6-BFD
https://github.com/Zashas/SRv6-BFD
https://wiki.fd.io/view/VPP/Segment_Routing_for_IPv6
https://wiki.fd.io/view/VPP/Segment_Routing_for_IPv6

[16] “Programming network actions with bpf,” https://
segment-routing.org/index.php/Implementation/BPF, ac-
cessed: 2018-09-18.

[17] “Linux kernel documentation - linux socket filtering
aka berkeley packet filter (bpf),” https://www.kernel.org/
doc/Documentation/networking/filter.txt, 2018, [Online;
accessed 8 June 2018].

[18] “Linux weekly news - a thorough introduction to ebpf,”
https://lwn.net/Articles/740157/, 2018, [Online; accessed
8 June 2018].

[19] A. Atlas and A. Zinin, “Basic specification for ip
fast reroute: Loop-free alternates,” Internet Requests for
Comments, RFC 5286, September 2008.

[20] P. Francois, C. Filsfils, A. Bashandy, B. Decraene, and
S. Litkowski, “Topology independent fast reroute using
segment routing,” 2014.

[21] A. Bashandy, C. Filsfils, B. Decraene, S. Litkowski,
P. Francois, and D. Voyer, “Topology independent
fast reroute using segment routing,” Working Draft,
Internet-Draft draft-bashandy-rtgwg-segment-routing-ti-

lfa-05, October 2018.
[22] “an evaluation of ip-based fast reroute techniques.”
[23] L. Soares and M. Stumm, “Flexsc: Flexible system

call scheduling with exception-less system calls,” in
OSDI’10. USENIX Association, 2010, pp. 33–46.

[24] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure,
“Achieving sub-second IGP convergence in large IP
networks,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 3, pp. 35–44, 2005.

[25] D. Katz and D. Ward, “Bidirectional Forwarding Detec-
tion (BFD),” Internet Requests for Comments, RFC 5880,
June 2010.

[26] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takács,
and P. Sköldström, “Scalable fault management for open-
flow,” in Communications (ICC), 2012 IEEE interna-
tional conference on. IEEE, 2012, pp. 6606–6610.

[27] C. Pignataro, D. Ward, N. Akiya, M. Bhatia, and S. Palla-
gatti, “Seamless Bidirectional Forwarding Detection (S-
BFD),” Internet Requests for Comments, RFC 7880, July
2016.

https://segment-routing.org/index.php/Implementation/BPF
https://segment-routing.org/index.php/Implementation/BPF
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://lwn.net/Articles/740157/

	I Introduction
	II Implementing SRv6 TI-LFA
	III Robust failure detection with SRv6 and eBPF
	III-A SRv6 forwarding detection
	III-B Architecture of an integrated fast detection and reroute solution
	III-C Performance measurements

	IV Discussion
	V Conclusion

