
SRv6-FEC: Bringing Forward Erasure Correction to
IPv6 Segment Routing

Louis Navarre
Université catholique de Louvain

Louvain-la-Neuve, Belgium
navarre.louis@student.uclouvain.be

François Michel
Université catholique de Louvain

Louvain-la-Neuve, Belgium
francois.michel@uclouvain.be

Olivier Bonaventure
Université catholique de Louvain

Louvain-la-Neuve, Belgium
olivier.bonaventure@uclouvain.be

ABSTRACT
IPv6 Segment Routing (SRv6) is a recent implementation of the
source routing paradigm in IPv6 network. A programmability frame-
work has recently been added to SRv6 and enables it to support
diverse use-cases. We leverage this support to design, implement
and assess a Forward Erasure Correction (FEC) technique that trans-
parently protects IPv6 packets. We implement our encoders and
decoders using eBPF on the Linux kernel and evaluate the benefits
that they bring with IoT devices.

CCS CONCEPTS
•Networks→ Programmable networks; Error detection and
error correction.

KEYWORDS
IPv6 Segment Routing, Forward Erasure Correction, extended Berke-
ley Packet Filter, Internet of Things

ACM Reference Format:
Louis Navarre, François Michel, and Olivier Bonaventure. 2021. SRv6-FEC:
Bringing Forward Erasure Correction to IPv6 Segment Routing. In SIG-
COMM ’21 Poster and Demo Sessions (SIGCOMM ’21 Demos and Posters),
August 23–27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3472716.3472863

1 INTRODUCTION
Most protocols rely on retransmissions to recover from packet
losses which can be caused by random transmission errors or con-
gestion. Retransmissions work well, but they have two important
drawbacks. First, the source must store unacknowledged data to
be able to retransmit it. This can be a problem for applications
running on embedded systems such as some Internet of Things
(IoT) devices. Second, retransmissions inevitably increase the tail
latency for delay-sensitive applications.

Different types of network coding and Forward Erasure Cor-
rection (FEC) techniques have been proposed to cope with this
problem [1, 15, 17]. However, implementing these techniques on
IoT devices, for example at the transport layer (e.g., TCP), can be
challenging given their CPU cost, notably when recovering from
errors.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8629-6/21/08. . . $15.00
https://doi.org/10.1145/3472716.3472863

In this paper, we explore a different approach, performing the
computation inside the network. With IPv6 Segment Routing [10]
(SRv6) and its network programmability [9] in particular, it be-
comes possible for SRv6 routers to expose functions that they can
apply when forwarding packets. We implement encode and decode
functions on SRv6 routers such that IoT devices send their packets
through an encode function on one router and a decode function
on a distant router. Each packet sent by the IoT device includes in
its SRv6 Header the addresses of the intermediate routers with the
functions that they need to execute.

Thanks to these SRv6 functions, an automatic and protected
tunnel is created between the upstream and the downstream routers
to protect packets from losses. We can deploy this tunnel anywhere
in the network. For example, we could attach the encode function at
the ingress router of a backbone network and the decode function
at its egress, right before the IoT server, transparently for the IoT
device and the backbone network. The routers use XOR-based FEC
or Random Linear Codes (RLC) to enable the downstream router to
recover from losses with minimal impact on latency.

We briefly describe our FEC Framework and its implementation
using eBPF on Linux in section 2 and evaluate its performance in
section 3. Our prototype code is available [16].

2 FEC WITH SRV6 NETWORK
PROGRAMMING

This section presents our Forward Erasure Correction plugin at
the network layer, leveraging IPv6 Segment Routing. Our plugin
is specific to the Linux implementation of SRv6 since we rely on
its BPF endpoint [22]. However, the approach will work under
any implementation of SRv6 following RFC8754 [10]. This section
presents our solution and the current technical limitations of the
eBPF support in Linux 5.4 temporarily limiting the domain of appli-
cation of our solution. We base our FEC Frameworks respectively
on RFC6363 [20] and RFC8680 [18] for Block and Convolutional
Codes. The FEC Framework provides a common abstraction for the
FEC Schemes, i.e., the specific coding algorithms.

2.1 Source and repair symbols
The source symbols correspond to the data that are protected by
FEC. The repair symbols carry the redundancy payload used to
recover the lost source symbols. To inform the decoder of the pres-
ence of a source symbol, we leverage the Type-Length-Value (TLV)
options of the extended headers, specified by RFC8200 [6]. This
source TLV carries a 32-bits Source FEC Payload ID (SFPID) identify-
ing the source symbol. Any packet containing a Segment Routing
Header (SRH) with an SFPID will be protected with FEC.

45

https://doi.org/10.1145/3472716.3472863
https://doi.org/10.1145/3472716.3472863

SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA Louis Navarre, François Michel, and Olivier Bonaventure

We transmit the repair symbols in dedicated packets. Information
needed for the FEC framework to recover packets such as the Repair
FEC Information or the window/block size of the Framework are
also sent in a Segment Routing TLV.

2.2 Challenges of FEC in IPv6
Recent works about FEC focus on end-to-end protection [4, 5, 15].
Yet, at the internet layer, we must also protect routing information,
as we potentially aggregate multiple flows with different sources
and destinations. FEC requires the source symbols to be the same
between the encoder and the decoder, otherwise the data will be
incorrectly recovered. RFC8280 [6] and RFC8754 [10] state that
multiple fields of the IPv6 and SRv6 headers can be changed by
intermediate routers of the network, such as the Traffic Class or
the Destination Address using IPv6 Segment Routing. Our design
takes into account these varying fields and provides an algorithm
to recover for example the true Destination Address of a recovered
packet based on the Segment List of the SRH. However, we do not
attempt to recover varying fields of other extended headers.

2.3 Technical limitations of eBPF
Due to technical limitations of the eBPF support inside Linux 5.4,
we restrict the plugin to the protection of small packets (at most 512
bytes). However, the IoT traffic is generally composed of small pack-
ets [21] and can still benefit from our prototype. We also perform
specific tasks in user space instead of within the eBPF program,
such as the RLC encoding/decoding or the repair symbol transmis-
sion. We leverage the eBPF architecture to communicate between
the kernel and user space. Modifying the kernel or implementing
kernel modules could overcome these limitations.

3 EVALUATION
We assess our plugin in a lossy environment to evaluate the benefits
of FEC. We use MQTT-Benchmark [13], a Go implementation of the
MQTT protocol [11] running over TCP, to simulate IoT clients push-
ing messages to a Mosquitto [14] broker. We use a topology where
the clients and the broker are separated by 3 routers, respectively
to add an SRH on the packets, and run the encoder and the de-
coder plugins. Our evaluation is performed using the IPMininet [3]
environment, an extension of Mininet [8] supporting SRv6.

IPMininet provides tools to emulate the losses. However, we
implement our own two-states Markov model to emulate losses
into the network [7] using eBPF. The losses are generated using a
seed, making the results reproducible for deeper analysis. In the
PASS state, the packet is accepted and is forwarded; in the DROP state,
the model erases the data, simulating a loss. We use a probability
of 𝑘 to remain in the PASS state, and of 𝑑 to stay in the DROP state.
This model allows emulating burst losses of length 1

1−𝑑 on average.
We use the experimental design approach [12] to assess our so-

lution. This method samples the experiment’s parameters values
from a defined range and reports the Experimental Cumulative
Distribution Function (ECDF) associated with the results. It allows
exploring numerous scenarios that could happen in real-life commu-
nication. We uniformly sample the space defined by 𝑘 ∈ [0.9, 0.99]
and 𝑑 ∈ [0, 0.5] with 260 points. A test consists of 10 MQTT clients
pushing 500 messages of 100 bytes each to the broker. We also add

a 10 ms delay on the link between the encoder and the decoder.
As IoT devices do not send much traffic [2], we analyze the mean
message time (MMT) for a client to send a message to the broker
to see the impact of the plugin on retransmissions, instead of the
throughput. Due to space constraints, we only evaluate here the
Convolutional RLC FEC Scheme, as it provides a lower delay to re-
cover lost symbols than Block codes [19]. The window step gives the
shifting value of the source symbols window after each iteration.

Figure 1 shows the results obtained by experimental design with
our setup. We see that we reduce the MMT using FEC. Without
the plugin, more than 50% of the experiments have an MMT longer
than 40 ms, where the baseline - without the plugin nor losses -
is 23 ms. On the contrary, depending on the RLC parameters, the
maximum MMT lies in 99% of the experiments between 34 ms and
40 ms. Moreover, this quantity is lower than 30 ms for 90-99% of
the experiments depending on the RLC parameters. We see that
FEC recovers numerous lost packets, hence decreasing the need
for time-consuming TCP retransmissions. Figure 1 also shows the
impact of the window size and step on the results. As expected,
we provide better recovering capabilities when the window step
decreases: we generate more repair symbols for the same set of
source symbols, thus increasing the probability of recovering longer
burst losses. The dotted line illustrates that reducing the window
size from 8 to 4 slightly decreases the performance, but its impact
is lower than the window step. Indeed, increasing the window size
adds more overhead, and the generated burst losses are not long
enough to see the positive impact on the recovering capabilities.

Using FEC, we increase the link utilization. With RLC_4_2, we
send 125% more bytes compared to the baseline - without the plugin
nor losses - but we only see an increase of 50% in terms of sent
packets - corresponding to the 2

3 code rate. This difference is due to
the Segment Routing Header overhead, which would be amortized
by protecting packets larger than 512 bytes. However, in 90-95%
of the experiments, we observed a stable link utilization, meaning
that fewer packets are retransmitted by the TCP client. It shows the
benefits of FEC where the losses are hidden to the sender, especially
IoT devices with constrained resources.

30 40 50 60 70
Mean message time [ms]

0.0

0.5

1.0

EC
D
F

TCP
RLC_8_1
RLC_8_2
RLC_8_4
RLC_4_2

Figure 1: MMT between an MQTT client and the Mosquitto
broker, with SRv6-FEC compared to TCP only. RLC_X_Y is the
RLC FEC Scheme with a window size of X and of step of Y.

4 CONCLUSION
In this paper, we have shown that using IPv6 Segment Routing it
becomes possible to provide in-network FEC services to protect
delay-sensitive applications that are unable to implement them. Our
evaluation shows that this reduces the latency of IoT applications
such as MQTT when packet losses occur.

46

SRv6-FEC: Bringing Forward Erasure Correction to
IPv6 Segment Routing SIGCOMM ’21 Demos and Posters, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Meinolf Blawat, Klaus Gaedke, Ingo Huetter, Xiao-Ming Chen, Brian Turczyk,

Samuel Inverso, Benjamin W Pruitt, and George M Church. 2016. Forward error
correction for DNA data storage. Procedia Computer Science 80 (2016), 1011–1022.

[2] Yuang Chen and Thomas Kunz. 2016. Performance evaluation of IoT protocols
under a constrained wireless access network. In 2016 International Conference on
Selected Topics in Mobile & Wireless Networking (MoWNeT). IEEE, 1–7.

[3] CNP3. 2017. IPMininet. https://github.com/cnp3/ipmininet. Accessed: 2021-05-
16.

[4] Alejandro Cohen, Derya Malak, Vered Bar Bracha, and Muriel Médard. 2020.
Adaptive causal network coding with feedback. IEEE Transactions on Communi-
cations 68, 7 (2020), 4325–4341.

[5] Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet, Thomas
Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaventure. 2019. Plug-
inizing quic. In Proceedings of the ACM Special Interest Group on Data Communi-
cation. 59–74.

[6] Dr. Steve E. Deering and Bob Hinden. 2017. Internet Protocol, Version 6 (IPv6)
Specification. RFC 8200. https://doi.org/10.17487/RFC8200

[7] Edwin O Elliott. 1963. Estimates of error rates for codes on burst-noise channels.
The Bell System Technical Journal 42, 5 (1963), 1977–1997.

[8] Bob Lantz et al. 2009. Mininet. https://http://mininet.org. Accessed: 2021-05-16.
[9] Clarence Filsfils, Pablo Camarillo, John Leddy, Daniel Voyer, Satoru Matsushima,

and Zhenbin Li. 2021. Segment Routing over IPv6 (SRv6) Network Programming.
RFC 8986. https://doi.org/10.17487/RFC8986

[10] Clarence Filsfils, Darren Dukes, Stefano Previdi, John Leddy, Satoru Matsushima,
and Daniel Voyer. 2020. IPv6 Segment Routing Header (SRH). RFC 8754. https:
//doi.org/10.17487/RFC8754

[11] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. 2008. MQTT-S—A
publish/subscribe protocol forWireless Sensor Networks. In 2008 3rd International
Conference on Communication Systems Software and Middleware and Workshops
(COMSWARE’08). IEEE, 791–798.

[12] Roger E Kirk. 2012. Experimental design. Handbook of Psychology, Second Edition
2 (2012).

[13] Alexandr Krylovskiy. 2015. MQTT benchmarking tool. https://github.com/
krylovsk/mqtt-benchmark. Accessed: 2021-04-30.

[14] Roger A Light. 2017. Mosquitto: server and client implementation of the MQTT
protocol. Journal of Open Source Software 2, 13 (2017), 265.

[15] François Michel, Quentin De Coninck, and Olivier Bonaventure. 2019. QUIC-
FEC: Bringing the benefits of Forward Erasure Correction to QUIC. In 2019 IFIP
Networking Conference (IFIP Networking). IEEE, 1–9.

[16] Louis Navarre. 2021. SRv6-FEC: prototype code (GitHub). https://github.com/
louisna/FEC-SRv6-libbpf.git. Accessed: 2021-06-08.

[17] Pouya Ostovari and Jie Wu. 2015. Reliable broadcast with joint forward error
correction and erasure codes in wireless communication networks. In 2015 IEEE
12th International Conference onMobile Ad Hoc and Sensor Systems. IEEE, 324–332.

[18] Vincent Roca and Ali C. Begen. 2020. Forward Error Correction (FEC) Framework
Extension to SlidingWindowCodes. RFC 8680. https://doi.org/10.17487/RFC8680

[19] Vincent Roca, Belkacem Teibi, Christophe Burdinat, Tuan Tran, and Cédric
Thienot. 2017. Less latency and better protectionwith al-fec slidingwindow codes:
A robust multimedia cbr broadcast case study. In 2017 IEEE 13th International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob). IEEE, 1–8.

[20] Vincent Roca, Mark Watson, and Ali C. Begen. 2011. Forward Error Correction
(FEC) Framework. RFC 6363. https://doi.org/10.17487/RFC6363

[21] Arunan Sivanathan, Daniel Sherratt, Hassan Habibi Gharakheili, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2017. Charac-
terizing and classifying IoT traffic in smart cities and campuses. In 2017 IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
559–564.

[22] Mathieu Xhonneux, Fabien Duchene, and Olivier Bonaventure. 2018. Leveraging
ebpf for programmable network functions with ipv6 segment routing. In Proceed-
ings of the 14th International Conference on emerging Networking EXperiments
and Technologies. 67–72.

47

https://github.com/cnp3/ipmininet
https://doi.org/10.17487/RFC8200
https://http://mininet.org
https://doi.org/10.17487/RFC8986
https://doi.org/10.17487/RFC8754
https://doi.org/10.17487/RFC8754
https://github.com/krylovsk/mqtt-benchmark
https://github.com/krylovsk/mqtt-benchmark
https://github.com/louisna/FEC-SRv6-libbpf.git
https://github.com/louisna/FEC-SRv6-libbpf.git
https://doi.org/10.17487/RFC8680
https://doi.org/10.17487/RFC6363

	Abstract
	1 Introduction
	2 FEC with SRv6 network programming
	2.1 Source and repair symbols
	2.2 Challenges of FEC in IPv6
	2.3 Technical limitations of eBPF

	3 Evaluation
	4 Conclusion
	References

