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Abstract Recently, a first step towards a highly distributed IP-level topology dis-
covery tool has been made with the introduction of the Doubletree al-
gorithm. Doubletree is an efficient cooperative algorithm that allows
the discovery of a large portion of nodes and links in the network while
strongly reducing probing redundancy on nodes and destinations as well
as the amount of probes sent. In this paper, we propose to reduce more
strongly the load on destinations and, more essentially, the communica-
tion cost required for the cooperation by introducing a probing stopping
rule based on CIDR address prefixes.
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1. Introduction

This is a time when highly distributed applications are in full ex-
pansion. Among others, we can cite SETI@home [Anderson et al., 2002]
(probably the first one and the most famous), FOLDING@home [Larson
et al., 2002] and the Human Proteome Folding Project [Bonneau et al.,
2004].

The network measurement community is not an exception to this
fashion. Some measurement tools have already been released as daemons
or screen savers. In particular, in France, we have Grenouille [A. Schmitt
et al., vice], a monitoring tool for broadband networks. More recently,
we saw the introduction of NETI@home [Simpson and Riley, 2004], an
application collecting network performance statistics from end-systems.

Tools allowing for topology discovery at the IP level, based on trace-
route [Jacobsen, 1989], are becoming more distributed. There is a num-
ber of well known systems, such as skitter [Huffaker et al., 2002], RIPE
NCC TTM [Georgatos et al., 2001] or NLANR AMP [McGregor et al.,
2000], skitter being probably the most extensive one as it considers a set
of between 20 and 30 monitors tracing towards a million destinations.
The two others, TTM and AMP, consider a larger number of monitors
(on the order of one or two hundreds) but they trace in full mesh, avoid-
ing to probe outside their own network. However, the need to increase
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the number of traceroute sources in order to obtain more complete topol-
ogy measurement is felt [Clauset and Moore, 2004, Lakhina et al., 2003].

The idea of placing a tracerouting tool inside a screen saver, an idea
first suggested by Jörg Nonnenmacher as reported by Cheswick et al.
in [Cheswick et al., 2000] should allow one to quickly obtain a struc-
ture of a considerable size. Following this idea, a publicly downloadable
measurement tool within a daemon, DIMES [Shavitt and Shir, 2005],
has been released in September 2004. At the time of writing this paper,
DIMES counts 4644 agents distributed across 78 countries.

Such a large structure has, however, inherent scaling problems. For
instance, if all the monitors trace towards the same destination, it could
easily appear as a distributed denial of service (DDoS) attack. Further-
more, such a system must avoid consuming undue network resources.
However, before the development of the Doubletree algorithm [Donnet
et al., 2005b], little consideration had been given to how to perform
large-scale topology discovery efficiently and in a network-friendly man-
ner.

Based on the tree-like structure of routes in the internet, Doubletree
acts to avoid retracing the same routes through these structures. The
key to Doubletree is that monitors share information regarding the paths
that they have explored. If one monitor has already probed a given
path to a destination then another monitor should avoid that path. We
have found that probing in this manner can significantly reduce load on
routers and destinations while maintaining high node and link coverage.

In this paper, we aim to improve Doubletree in order to more strongly
reduce the impact on destinations. We propose to replace a stopping
rule based on destination addresses with a stopping rule based on the
CIDR address prefixes [Fuller et al., 1993] of destinations. The idea is
to aggregate the destinations set into subnetworks, i.e. we filter each
destination address and associate them to a subnetwork with the use of
the CIDR address prefixes. Each monitor will probe all the destinations
in each subnetwork. Futher, this proposal should also allow to reduce
the amount of communication required by Doubletree. Indeed, instead
of shareing a set of (interface, destination) pairs, monitors will share a
set of (interface, prefix destination) pairs.

The rest of the paper is organized as follow: in Sec. 2, we introduce
our prior work on the Doubletree algorithm. In Sec. 3, we present our
methodology and our results. In Sec. 4, we present related work. Finally,
in Sec. 5, we conclude and discuss further works.

2. Prior Work

Our prior work [Donnet et al., 2005b] described the inefficiency of the
classic topology probing technique of tracing routes hop by hop outwards
from a set of monitors towards a set of destinations. It also introduced
Doubletree, an improved probing algorithm.

Data for our prior work, and also for this paper, were produced by 24
skitter monitors on August 1st through 3rd, 2004. Of the 971,080 desti-
nations towards which all of these monitors traced routes on those days,
we randomly selected a manageable 50,000 for each of our experiments.

Considering first the inefficiency, we note that only 10.4% of the
probes from a typical monitor serve to discover an interface that the
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monitor has not previously seen. An additional 2.0% of the probes
return invalid addresses or do not result in a response. The remain-
ing 87.6% of probes are redundant, visiting interfaces that the monitor
has already discovered. Such redundancy for a single monitor, termed
intra-monitor redundancy, is much higher close to the monitor, as can
be expected given the tree-like structure of routes emanating from a
single source. In addition, most interfaces, especially those close to des-
tinations, are visited by all monitors. This redundancy from multiple
monitors is termed inter-monitor redundancy.

While this inefficiency is of little consequence to skitter itself, it poses
an obstacle to scaling far beyond skitter’s current 24 monitors. In partic-
ular, inter-monitor redundancy, which grows in proportion to the num-
ber of monitors, is the greater threat. Reducing it requires coordination
among monitors.

Doubletree is the key component of a coordinated probing system that
significantly reduces both kinds of redundancy while discovering nearly
the same set of nodes and links. It takes advantage of the tree-like
structure of routes in the internet. Routes leading out from a monitor
towards multiple destinations form a tree-like structure rooted at the
monitor. Similarly, routes converging towards a destination from multi-
ple monitors form a tree-like structure, but rooted at the destination. A
monitor probes hop by hop so long as it encounters previously unknown
interfaces. However, once it encounters a known interface, it stops, as-
suming that it has touched a tree and the rest of the path to the root is
also known.

Both backwards and forwards probing use stop sets. The one for
backwards probing, called the local stop set, consists of all interfaces
already seen by that monitor. Forwards probing uses the global stop set
of (interface, destination) pairs accumulated from all monitors. A pair
enters the stop set if a monitor visited the interface while sending probes
with the corresponding destination address.

A monitor that implements Doubletree starts probing for a destination
at some number of hops h from itself. It will probe forwards at h + 1,
h + 2, etc., adding to the global stop set at each hop, until it encounters
either the destination or a member of the global stop set. It will then
probe backwards at h−1, h−2, etc., adding to both the local and global
stop sets at each hop, until it either has reached a distance of one hop
or it encounters a member of the local stop set. It then proceeds to
probe for the next destination. When it has completed probing for all
destinations, the global stop set is communicated to the next monitor.

The choice of initial probing distance h is crucial. Too close, and
intra-monitor redundancy will approach the high levels seen by classic
forward probing techniques. Too far, and there will be high inter-monitor
redundancy on destinations. The choice must be guided primarily by this
latter consideration to avoid having probing look like a DDoS attack.

While Doubletree largely limits redundancy on destinations once hop-
by-hop probing is underway, its global stop set cannot prevent the ini-
tial probe from reaching a destination if h is set too high. Therefore,
we recommend that each monitor set its own value for h in terms of
the probability p that a probe sent h hops towards a randomly selected
destination will actually hit that destination. Fig. 1 shows the cumula-
tive mass function for this probability for skitter monitor apan-jp. For
example, in order to restrict hits on destinations to just 10% of initial
probes, this monitor should start probing at h = 10 hops. This distance
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Figure 1. Cumulative mass plot of path lengths from skitter monitor apan-jp

can easily be estimated by sending a small number of probes to randomly
chosen destinations.

For a range of p values, compared to classic probing, Doubletree is able
to reduce measurement load by approximately 70% while maintaining
interface and link coverage above 90%.

One possible obstacle to successful deployment of Doubletree concerns
the communication overhead from sharing the global stop set among
monitors. Tracing from 24 monitors to just 50,000 destinations with
p = 0.05 produces a set of 2.7 million (interface, destination) pairs. As
pairs of IPv4 addresses are 64 bits long, an uncompressed stop set based
on these parameters requires 20.6MB.

A way to reduce this communication overhead is to use Bloom filters
[Bloom, 1970] to implement the global stop set. A Bloom filter summa-
rizes information concerning a set in a bit vector that can then be tested
for set membership. An empty Bloom filter is a vector of all zeroes. A
key is registered in the filter by hashing it to a position in the vector and
setting the bit at that position to one. Multiple hash functions may be
used, setting several bits set to one. Membership of a key in the filter
is tested by checking if all hash positions are set to one. A Bloom filter
will never falsely return a negative result for set membership. It might,
however, return a false positive. For a given number of keys, the larger
the Bloom filter, the less likely is a false positive. The number of hash
functions also plays a role.

In [Donnet et al., 2005a], we show that, when p = 0.05, using a bit
vector of size 107 and five hash functions allow nearly the same coverage
level as a list implementation of the global stop set while reducing only
slightly the redundancy on both destinations and internal interfaces and
yielding a compression factor of 17.3.

To reduce the load on destinations, we already investigated the con-
cepts of capping and clustering [Donnet et al., 2005a]. The capping aims
to impose an explicit limit on the number of monitors that target a desti-
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nation. The clustering may be seen as a specialization of the capping by
dividing the monitors into clusters, each cluster focusing on a different
destination list. The real problem in theses mechanisms is how to assign
monitors to destinations. In [Donnet et al., 2005a], we chose to work
randomly but future work might reveal that a topologically informed
approach provides better yield.

3. Doubletree with CIDR

3.1 Methodology

Skitter data from the beginning of August 2004 serves as the basis
of our work. This data set is composed of traceroutes gathered from 24
monitors scattered around the world: United States, Canada, the United
Kingdom, France, Sweden, the Netherlands, Japan and New Zealand.
All the monitors share a common destination list of 971,080 IPv4 ad-
dresses. Each destination is probed in turn by each monitor. To cycle
through the destination list, it can takes a few days, usually three. For
our studies, in order to reduce computing time and hard disk space to a
manageable level, we decided to work on a limited destination subset of
50,000 items randomly chosen amongst the whole set.

We conduct simulations based on the skitter data, applying Double-
tree, as described in [Donnet et al., 2005b]. A single experiment uses
traceroutes from all 24 monitors to a common set of 50,000 destinations
chosen at random. Each data point represents the average value over
fifteen runs of the experiment, each run using a different set of 50,000
destinations. No destination is used more than once over the fifteen
runs. We determine 95% confidence intervals for the mean based, since
the sample size is relatively small, on the Student t distribution. These
intervals are typically, though not in all cases, too tight to appear on
the plots.

We use p = 0.05, which is a value that belongs to the range of p values
that our previous work identified as providing a good compromise be-
tween coverage accuracy and redundancy reduction. We test all prefixes
length from /8 to /24, as well as lengths /28 and /32 (i.e. full IPv4
addresses).

Each monitor probes each destination and records in the global stop
set (interface, destination prefix) pairs instead of (interface, destination)
pairs. Compared to classic Doubletree, we only change the global stop
set stop rule. Each result considered is compared, in Sec. 3.2, with classic
Doubletree and skitter.

3.2 Results

Fig. 2 shows the main performance metric for a probing system: its
coverage of the nodes and links in the network. It illustrates how the
nodes and links coverage vary in function of the prefix length. A value
of 1.0 (not shown here) would mean that application of Doubletree with
the given prefix length had discovered exactly the same set of nodes
and links as skitter. As already pointed out in our previous work, the
use of Doubletree implies a small accuracy loss in the link and node
coverage compared to skitter. The lowest level of performance is reached
for the /8 prefix. In our data set, on average, there are thirteen /8
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Figure 2. Coverage when using prefixes

subnetworks. As these subnetworks are quite large, monitors are stopped
early in their probing. The loss of accuracy, however, is not so dramatic.
The link coverage is 0,742 instead of 0,823 and node coverage is 0,897
instead of 0,924. We believe that the coverage level is still high due
to the way exploration is performed by the first monitor to probe the
network. Indeed, this first monitor uses an empty stop set (by definition
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/8 /16 /24 /32
Prefix DT 2.31 7.40 19.87 20.61
Prefix DT with BF 0.361 0.689 1.192 1.192

Classic DT 20.61
Classic DT with BF 1.192

Table 1. Global stop set size comparison (in MB)

of Doubletree) and is thus never stopped in its exploration. We further
note that performance improves with prefix length until reaching nearly
the same accuracy as classic Doubletree with /24 prefixes.

We believe that the loss of accuracy, compared to classic Doubletree,
is essentially located within the subnetworks containing destinations but
also inside the core of the network, where duplicated links (and the asso-
ciated nodes) are missed due to the prefix based stopping rule. Typically,
probes reach a very few number of destinations in each subnetwork but,
in general, they are stopped at the ingress routers. We miss thus essen-
tially the vast majority of destinations located in a given subnetwork.
However more nodes and links may be missed if the network structure
of the subnetwork is more complex, i.e. the subnetwork is not only com-
posed of an ingress router that connects destinations with the rest of the
network.

Doubletree aims also to reduce the load on routers. It would be a con-
cern if the redundancy were to increase when introducing a prefix based
stopping rule. The ordinates in Fig. 3(a) specify the gross redundancy
on router interfaces, i.e. the total number of visits. The ordinates in
Fig. 3(b) represent the inter-monitor redundancy. Inter-monitor redun-
dancy, as defined in [Donnet et al., 2005b], is the number of monitors
that visit a given interface. The maximum inter-monitor redundancy on
destinations, not shown here, is 24. As the extreme values are the most
worrisome, we consider redundancy on the 95th percentile interface.

As shown by Fig. 3, the redundancy is not increased when using prefix
based stopping rule. Further, for low prefix lengths, the redundancy is
reduced for both destinations and routers.

Fig. 4 compares global stop set size. Fig. 4(a) shows the number of
keys recorded in the global stop set (in log-scale) as a function of CIDR
block prefixes. Fig. 4(b) shows the global stop set size in megabytes.

We can see that there is a strong reduction for low prefixes. For
instance, if we consider a /8 prefix, the global stop set will only contain,
in average, 302,854 keys. As each key is recorded as a 64 bit value, it
corresponds to a stop set of around 2.31MB. Compared to the classic
Doubletree, there is a compression factor of 8.9.

In addition to the mechanism presented in this paper, we could also
implement the global stop set as a Bloom filter without losing much
coverage accuracy [Donnet et al., 2005a, Sec. 3].

Table 1 compared the global stop set implemented as a set of pairs
and as a Bloom filter. It also compares classic Doubletree with the
mechanism presented in this paper. Concerning Bloom filters, we follow
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Figure 3. Redundancy on 95th percentile interfaces when using prefixes

Fan et al’s suggestions [Fan et al., 1998, Sec. V.D] for tuning the vector
size and the number of hash functions to use.

We see that coupling the prefix based stop rule with a Bloom filter
implementation of the global stop set introduces a very strong reduction
in the global stop set size. For instance, using a /8 prefix stop rule gives,
compared to classic Doubletree, a compression factor of 57.1.
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Figure 4. Global stop set size when using prefixes

4. Related Work

Very little work has been conducted on efficient measurement of the
overall internet topology. This is in contrast to the number of papers
on efficient monitoring of networks that are in a single administrative
domain (see for instance, Bejerano and Rastogi’s work [Bejerano and
Rastogi, 2003]). The two problems are extremely different. An admin-
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istrator knows their entire network topology in advance, and can freely
choose where to place their monitors. Neither of these assumptions
hold for monitoring the internet with end-host based software. Since
the existing literature is based upon these assumptions, we need to look
elsewhere for solutions.

Govindan and Tangmunarunkit [Govindan and Tangmunarunkit, 2000]
have proposed the idea of starting traceroutes far from the source. Using
a probing strategy based upon IP address prefixes, the Mercator system
conducts a check before probing the path to a new address that has a
prefix P . If paths to an address in P already exist in its database, Mer-
cator starts probing at the highest hop count for a responding router
seen on those paths. No results have been published on the performance
of this heuristic, though it seems to us an entirely reasonable approach
in light of our data.

The Mercator heuristic requires that a guess be made about the rel-
evant prefix length for an address. That guess is based upon the class
that the address would have had before the advent of CIDR.

Finally, Some authors [Siamwalla et al., 1998, Burch and Cheswick,
1999] have already suggested the idea of guiding topology discovery at IP
level according to BGP information. They use BGP backbone routing
tables in order to determine the destinations of traceroutes. For each
prefix in the tables, they repeatedly generate a random IP address within
that prefix. With the traceroute results to these destinations, they build
a router adjacency graph. By probing only one destination per prefix,
this technique may miss several nodes and links.

5. Conclusion

In this paper, we present an improvement to the Doubletree probing
algorithm. By using stop rules based on address prefixes, we show that
we are able to reduce load on destinations while maintaining an accept-
able level of coverage accuracy. Further, if we use this simple mechanism
with a global stop set implemented as a Bloom filter, we still reduce the
global stop set size to very low proportions.

The next prudent step for future work would be to test the algo-
rithms that we describe here on an infrastructure of intermediate size,
on the order of hundreds of monitors. We have developed a tool called
traceroute@home that we plan to deploy in this manner.

We also aim to improve Doubletree in order to guide probing with a
higher level information. We plan to develop and experiment algorithms
allowing Doubletree to realise more accurate exploration through the use
of AS level topology and AS path information.
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