
1

Deployment of an Algorithm for
Large-Scale Topology Discovery

Benoit Donnet, Philippe Raoult, Timur Friedman, Mark Crovella

Abstract— Topology discovery systems are starting to be in-
troduced in the form of easily and widely deployed software.
Unfortunately, the research community has not examined the
problem of how to perform such measurements efficiently and
in a network-friendly manner. This paper describes several
contributions towards that end. These were first presented in the
proceedings of ACM SIGMETRICS 2005. We show that standard
topology discovery methods (e.g., skitter) are quite inefficient,
repeatedly probing the same interfaces. This is a concern, because
when scaled up, such methods will generate so much traffic
that they will begin to resemble DDoS attacks. We propose two
metrics focusing on redundancy in probing and show that both
are important. We also propose and evaluate Doubletree, an
algorithm that strongly reduces redundancy while maintaining
nearly the same level of node and link coverage. The key ideas
are to exploit the tree-like structure of routes to and from a single
point in order to guide when to stop probing, and to probe each
path by starting near its midpoint. Following the SIGMETRICS
work, we implemented Doubletree, and deployed it in a real
network environment. This paper describes that implementation,
as well as preliminary favorable results.

Index Terms— network topology, traceroute, cooperative algo-
rithms.

I. I NTRODUCTION

Systems for active measurements in the internet are un-
dergoing a radical shift. Whereas the present generation of
systems operates on largely dedicated hosts, numbering be-
tween 20 and 200, a new generation of easily downloadable
measurement software means that infrastructures based on
thousands of hosts could spring up literally overnight. Unless
carefully controlled, these new systems have the potential
to impose a heavy load on parts of the network that are
being measured. They also have the potential to raise alarms,
as their traffic can easily resemble a distributed denial of
service (DDoS) attack. This paper examines the problem, and
proposes and evaluates, through simulations and prototype
deployment, an algorithm for controlling one of the most
common forms of active measurement:traceroute [1].

There are a number of systems active today that aim to
elicit the internet topology at the IP interface level. The most
extensive tracing system, CAIDA ’s skitter [2], uses 24 moni-
tors, each targeting on the order of one million destinations.
In the fashion of skitter,scamper [3] uses several monitors to
traceroute IPv6 addresses. Some other well known systems,
such as the RIPE NCC’s TTM service [4] and the NLANR

AMP [5], have larger numbers of monitors (between one- and

Messrs. Donnet and Friedman are with the Université Pierre & Marie Curie,
LiP6–CNRS Laboratory. Mr. Raoult is with N2NSoft. Mr. Crovella is with
the Boston University Computer Science Department

two-hundred), and conduct traces in a full mesh, but avoid
tracing to outside destinations.Scriptroute [6] is a system
that allows an ordinary internet user to perform network
measurements from several distributed vantage points. It pro-
poses remote measurement execution onPlanetLab nodes [7],
through a daemon that implements ping, traceroute, hop-by-
hop bandwidth measurement, and a number of other utilities.

Recent studies have shown that reliance upon a relatively
small number of monitors to generate a graph of the internet
can introduce unwanted biases. There is reason to question
well known results, such as Faloutsos et al.’s finding [8]
that the distribution of router degrees follows a power law.
That work was based upon an internet topology collected
from just twelve traceroute hosts by Pansiot and Grad [9].
Lakhina et al. [10] showed that, in simulations of a network
in which the degree distribution does not at all follow a power
law, traceroutes conducted from a small number of monitors
can tend to induce a subgraph in which the node degree
distribution does follow a power law. Clauset and Moore [11]
have since demonstrated analytically that such a phenomenon
is to be expected for the specific case of Erdös-Ŕenyi random
graphs [12].

Removing spatial bias is not the only reason to employ
measurement systems that use a larger number of monitors.
With more monitors to probe the same space, each one can
take a smaller portion and probe it more frequently. Network
dynamics that might be missed by smaller systems can more
readily be captured by the larger ones while keeping the
workload per monitor constant.

The idea of releasing easily deployable measurement soft-
ware is not new. To the best of our knowledge, the idea of
incorporating a traceroute monitor into a screen saver was first
discussed in a paper by Cheswick et al. [13] from the year
2000 (they attribute the suggestion to Jörg Nonnenmacher).
Since that time, a number of measurement tools have been
released to the public in the form of screen savers or daemons,
such asGrenouille [14] or NETI@home [15]. In the summer
of 2004, the first tracerouting tool of this type was made
available:DIMES [16] conducts traceroutes and pings from,
at the time of writing this paper, 8,700 agents distributed over
five continents.

Given that large scale network mapping is emerging, con-
templating such a measurement system demands attention to
efficiency, in order to avoid generating undesirable network
load. Save for our work, described here, and first presented
at ACM SIGMETRICS 2005 [17], this issue has not been
systematically tackled by the research community.

Our first contribution is to measure the extent to which



2

classic topology discovery systems involve duplicated effort.
By classic topology discovery, we mean those systems, such
as skitter, tracing from a small number of monitors to a
large set of common destinations. We define two metrics
to gauge duplicated effort in such systems: the quantity of
measurements made by an individual monitor that replicate
its own work (intra-monitor redundancy) and, the quantity of
measurements made by multiple monitors that replicate each
other’s work (inter-monitor redundancy).

Using skitter data from August 2004, we quantify both kinds
of redundancy. We show that intra-monitor redundancy is high
close to each monitor. This fact is not surprising given the tree-
like structure (orcone, as Broido and claffy describe it [18]) of
routes emanating from a single monitor. Further, with respect
to inter-monitor redundancy, we find that most interfaces are
visited by all monitors, especially when those interfaces are
close to destinations. This latter form of redundancy is also
potentially quite large, since it would be expected to grow
linearly with the number of monitors in future large-scale
measurement systems.

Our analysis of the nature of redundant probing suggests
more efficient algorithms for topology discovery. In partic-
ular, our second contribution is to propose and evaluate an
algorithm calledDoubletree. Doubletree takes advantage of
the tree-like structure of routes, either emanating from a single
source towards multiple destinations or converging from mul-
tiple sources towards a single destination, to avoid duplication
of effort. Unfortunately, general strategies for reducingthese
two kinds of redundancy are in conflict. On the one hand,
intra-monitor redundancy is reduced by starting probing far
from the monitor, and working backwards along the tree-like
structure that is rooted at that monitor. Once an interface is
encountered that has already been discovered by the monitor,
probing stops. On the other hand, inter-monitor redundancy
is reduced by probing forwards towards a destination until
encountering a previously-seen interface. The inter-monitor
redundancy reduction implies that monitors share information
about what they have already discovered.

We show a means of balancing these conflicting strategies in
Doubletree. In Doubletree, probing starts at a distance that is
intermediate between monitor and destination. We demonstrate
methods for choosing this distance, and we then evaluate the
resulting performance of Doubletree. Despite the challenge
inherent in reducing both forms of redundancy simultaneously,
we show in simulations that probing via Doubletree can reduce
measurement load by approximately 76% while maintaining
interface and link coverage above 90%.

Based on our prior work, we have now deployed Doubletree
in the internet. We describe its deployment on the Planet-
Lab [7] testbed and evaluate the initial results. This evaluation
is achieved by comparing results with a standard tracerouting
system. We show that the simulations results are confirmed by
the deployed prototype.

The remainder of this paper is organized as follows: Sec. II
introduces the simulation setup and the data set we use;
Sec. III describes the two metrics we consider and applies
them on the skitter data; Sec. IV describes and evaluates
the Doubletree algorithm based on the simulations; Sec. V

presents our implementation of Doubletree and evaluates itin
a real environment; Sec. VI discusses related work; finally,
Sec. VII concludes this paper and introduces directions for
future work.

II. GENERAL METHODOLOGY

Our study in Sec. III and IV is based on skitter data from
August 1st through 3rd, 2004. This data set was generated
by 24 monitors located in the United States, Canada, the
United Kingdom, France, Sweden, the Netherlands, Japan, and
New Zealand. The monitors share a common destination set
of 971,080 IPv4 addresses. Each monitor cycles through the
destination set at its own rate, taking typically three daysto
complete a cycle. For the purpose of our studies, in order to
reduce computing time to a manageable level, we worked from
a limited destination set of 50,000, randomly chosen from the
original set.

Visits to host and router interfaces are the metric by which
we evaluate redundancy. We consider an interface to have
been visited if its IP address appears at one of the hops
in a traceroute. Therefore, probes that pass through a router
interface and are routed onwards are not considered as visits
to that interface. Only a probe that stops at a host or router,
generating an ICMP message that bears the IP address of
the interface, constitutes a visit. Furthermore, we maintain
our metric at the interface level. Though it would be of
interest to calculate the load at the host and router level, we
make no attempt to disambiguate interfaces in order to obtain
router-level information. We believe that the load on individual
interfaces is a useful measure. As Broido and claffy note [18],
“interfaces are individual devices, with their own individual
processors, memory, buses, and failure modes. It is reasonable
to view them as nodes with their own connections.”

How do we account for skitter visits to router and host
interfaces? Like many standard traceroute implementations,
skitter sends three probe packets for each hop count. An IP
address appears thus in a traceroute result if the interface
replies with an ICMP message, at least, to one of the three
probes sent (but it may also respond two or three times). If
none of the three probes are returned, the hop is recorded as
non-responding.

Even if an IP address is returned for a given hop count, it
might not be valid. Due to the presence of poorly configured
routers along traceroute paths, skitter often records anomalies
such as private IP addresses that are not globally routable.
We account for invalid hops as if they were non-responding
hops. The addresses that we consider as invalid are a subset
of the special-use IPv4 addresses described in RFC 3330 [19],
as we detail in our SIGMETRICS paper [17, Sec. 2.1]. Special
addresses cover around 3% of the entire considered address
set.

III. M ETRICS TOEVALUATE TOPOLOGYDISCOVERY

TOOLS

This section introduces two metrics that allow one to
evaluate a distributed tracerouting system.



3

Fig. 1. Quantiles key

We evaluate such a system by considering the redundancy
(i.e., the duplication of effort) at two levels. One is the individ-
ual level of a single monitor, considered in isolation from the
rest of the system. This intra-monitor redundancy is measured
by the number of times the same monitor visits an interface.
The other, global, level considers the system as an ensemble
of monitors. This inter-monitor redundancy is measured by the
number of monitors that visit a given interface, counting only
once each monitor that has non-zero intra-monitor redundancy
for that interface. By separating the two levels, we separate the
problem of redundancy into two problems that can be treated
somewhat separately. Each monitor can act on its own to
reduce its intra-monitor redundancy, but cooperation between
monitors is required to reduce inter-monitor redundancy.

In the following sections, we plot interface redundancy
distributions. Since these distributions are generally skewed,
quantile plots give us a better sense of the data than would
plots of the mean and variance. There being several ways
to calculate quantiles, we employ the method described by
Jain [20, p. 194], which is: rounding to the nearest integer
value to obtain the index of the element in question, and using
the lower integer if the quantile falls exactly halfway between
two integers.

Fig. 1 provides a key to reading the quantile plots found in
Figs. 2 and 3 and figures found later in the paper. A dot marks
the median (the 2nd quartile, or 50th percentile). The vertical
line below the dot delineates the range from the minimum to
the 1st quartile, and leaves a space from the 1st to the 2nd

quartile. The space above the dot runs from the 2nd to the 3rd

quartile, and the line above that extends from the 3rd quartile
to the maximum. Small tick bars to either side of the lines
mark some additional percentiles: bars to the left for the 10th

and 90th, and bars to the right for the 5th and 95th.
In the figures, each quantile plot sits directly above an

accompanying bar chart that indicates the quantity of data
upon which the quantiles were based. For each hop count, the
bar chart displays the number of interfaces at that distance.
For these bar charts, a log scale is used on the vertical axis.
This allows us to identify quantiles that are based upon very
few interfaces (fewer than twenty, for instance), and so for
which the values risk being somewhat arbitrary.

In addition, each plot has a separate bar to the right, labeled
“all”, that shows the quantiles for all interfaces taken together
(upper part of the plot) and the number of discovered interfaces

106
104
102
100

all 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

all

re
du

nd
an

cy

Fig. 2. skitter intra-monitor redundancy for thechampagne monitor

(lower part of the plot).

A. Intra-Monitor Redundancy

Intra-monitor redundancy occurs in the context of the tree-
like graph that is generated when all traceroutes originate
at a single point. Since there are fewer interfaces closer to
the monitor, those interfaces will tend to be visited more
frequently. In the extreme case, if there is a single gateway
router between the monitor and the rest of the internet, the
single IP address of the outgoing interface belonging to that
router should show up in every one of the traceroutes.

We measure intra-monitor redundancy by considering all
traceroutes from the monitor to the shared destinations,
whether there be problems with a traceroute such as illegal
addresses, or not.

Having calculated the intra-monitor redundancy for each
interface, we organize the results by the distance of the
interfaces from the monitor. We measure distance by hop
count. Since the same interface can appear at a number of
different hop counts from a monitor, for instance if routes
change between traceroutes, we arbitrarily attribute to each
interface the hop count at which it was first visited. This
process yields, for each hop count, a set of interfaces that
we sort by number of visits. We then plot, hop by hop, the
redundancy distribution for interfaces at each hop count.

Fig. 2 shows the intra-monitor redundancy metric applied
to thechampagne monitor. Plots for other monitors can be
found in our prior publications [17], [21].

Looking first at the histogram for interface counts (lower
half of the plot), we see that these data are consistent with
distributions typically seen in such cases. The histogram
represents the 92,354 unique IP addresses discovered by that
monitor. This total is shown as a separate bar to the right
of the histogram, labeled “all”. The interface distances are
distributed with a mean at 17 hops corresponding to a peak
of 9,135 interfaces that are visited at that distance.



4

The quantile plot (upper part of the plot) shows the nature
of the intra-monitor redundancy problem. Looking first to the
summary bar at the right hand of the chart, we can see that
the distributions are highly skewed. The lower quantile andthe
median interface have a redundancy of one, as evidenced by
the lack of a gap between the dot and the line representing the
bottom quarter of values. However, for a very small portion of
the interfaces there is a very high redundancy. The maximum
redundancy is 150,000 — equal to the number of destinations
multiplied by the three probes sent at each hop.

Looking at how the redundancy varies by distance, we see
that the problem is worse the closer one is to the monitor.
This is what we expect given the tree-like structure of routing
from a monitor, but here we see how serious the phenomenon
is from a quantitative standpoint. For the first two hops, the
median redundancy is 150,000. A look at the histograms shows
that there are very few interfaces at these distances.

Beyond three hops, the median redundancy drops rapidly.
By the eleventh hop, the median is below ten. However, the
distributions remain highly skewed. Even fifteen hops out,
some interfaces experience a redundancy on the order of
several hundred visits. With small variations, these patterns
are repeated for each of the monitors.

From the point of view of planning a measurement system,
the extreme values are the most worrisome. It is clear that there
is significant duplicated effort, and it is especially concentrated
in selected areas. The problem is most severe on the first few
interfaces, but even interfaces many hops out receive hundreds
or thousands of repeat visits. Beyond the danger of triggering
alarms, there is a simple question of measurement efficiency.
Resources devoted to reprobing the same interfaces would be
better saved, or reallocated to more fruitful probing tasks.

Overall, we also found that 86% of the probes are redundant,
in the sense that they visit interfaces that the monitor has
already discovered.

B. Inter-Monitor Redundancy

Inter-monitor redundancy occurs when multiple monitors
visit the same interface. The degree of such redundancy is of
keen interest to us when we envisage increasing the number
of monitors by several orders of magnitude.

We calculate the inter-monitor redundancy for each interface
by counting the number of monitors that have visited it. A
monitor can be counted at most once towards an interface’s
inter-monitor redundancy, even if it has visited that interface
multiple times. For a given interface, the redundancy is calcu-
lated just once with respect to the entirety of the monitors:it
does not vary from monitor to monitor as does intra-monitor
redundancy. However, what does vary depending upon the
monitor is whether the particular interface is seen, and at what
distance. In order to attribute a single distance to an interface, a
distance that does not depend upon the perspective of a single
monitor but that nonetheless has meaning when examining the
effects of distance on redundancy, we attribute the minimum
distance at which an interface has been seen among all the
monitors.

Fig. 3 shows the inter-monitor redundancy metric applied
to the 24 skitter monitors.

106
104
102
100

all 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

0

5

10

15

20

25

all

re
du

nd
an

cy

Fig. 3. skitter inter-monitor redundancy

The distribution of interfaces by hop count differs from the
intra-monitor case due to the difference in how we account
for distances. The mean is closer to the traceroute source (9
hops), corresponding to a peak of 19,742 interfaces that are
visited at that distance.

The redundancy distribution also has a very different aspect.
Considering, first, the redundancy over all of the interfaces (at
the far right of the plot), we see that the median interface is
visited by nearly all 24 monitors, which is a subject of great
concern. The distribution is also skewed, though the effectis
less dramatic. Keep in mind that the vertical axis here is on a
linear scale, with only 24 possible values.

We also see a very different distribution by distance. In-
terfaces that are very close in to a monitor, at one or two
hops, have a median inter-monitor redundancy of one. The
same is true of interfaces that are far from all monitors, at
distances over 20, though there are very few of these. What is
especially notable is that interfaces at intermediate distances
(5 to 13) tend to be visited by almost all of the monitors.
Though their distances are in the middle of the distribution,
this does not mean that the interfaces themselves are in the
middle of the network. Many of these interfaces are in fact
destinations. Recall that every destination is targeted byevery
host.

IV. D OUBLETREE

In this section, we present Doubletree, our method for
probing the network in a friendly manner while discovering
nearly all the interfaces and links that a classic tracerouting
approach would discover.

A. Algorithm

Doubletree is the key component of a coordinated probing
system that significantly reduces both kinds of redundancy
(i.e. inter- and intra-monitor) while discovering nearly the



5

(a) Monitor-rooted

(b) Destination-rooted

Fig. 4. Tree-like routing structures

same set of nodes and links. It assumes that routes in the
internet have a tree-like structures, as shown in Fig. 4. Routes
leading out from a monitor towards multiple destinations form
a tree rooted at the monitor (see Fig. 4(a)). Similarly, routes
converging towards a destination from multiple monitors form
also a tree, but rooted at the destination (see Fig. 4(b)). A
monitor probes hop by hop so long as it encounters previously
unknown interfaces. However, once it encounters a known
interface, it stops, assuming that it has touched a tree and the
rest of the path to the root is also known. Using these trees
suggests two different probing schemes: backwards (based on
a monitor-rooted tree) and forwards (based on a destination-
rooted tree).

It is not necessary for monitors to maintain information
about the whole tree structures. Instead, both backwards and
forwards probing use data structures, calledstop sets. The one
for backwards probing, called thelocal stop set, consists of
all interfaces already seen by that monitor. Forwards probing
uses theglobal stop set of (interface,destination) pairs
accumulated from all monitors. A pair enters the stop set if
a monitor visited the interface while sending probes with the
corresponding destination address.

A monitor that implements Doubletree starts probing for a
destination at some number of hopsh from itself. It will probe
forwards ath + 1, h + 2, etc., adding to the global stop set at
each hop, until it encounters either the destination or a member
of the global stop set. It will then probe backwards ath − 1,
h − 2, etc., adding to both the local and global stop sets at

Fig. 5. Cumulative mass plot of path lengths from skitter monitor
champagne

each hop, until it either has reached a distance of one hop or it
encounters a member of the local stop set. It then proceeds to
probe for the next destination. When it has completed probing
for all destinations, the global stop set is communicated tothe
next monitor. A formal description of the Doubletree algorithm
is presented in our SIGMETRICS paper [17, Sec. 3.1].

B. Tuning Parameter p

Doubletree has one tunable parameter. The choice of initial
probing distanceh is crucial. Too close, and intra-monitor
redundancy will approach the high levels seen by classic
forwards probing techniques. Too far, and there will be high
inter-monitor redundancy on destinations. The choice mustbe
guided primarily by this latter consideration to avoid having
probing look like a DDoS attack.

While Doubletree largely limits redundancy on destinations
once hop-by-hop probing is underway, its global stop set
cannot prevent the initial probe from reaching a destination if
h is set too high. Therefore, we recommend that each monitor
set its own value forh in terms of the probabilityp that a
probe senth hops towards a randomly selected destination will
actually hit that destination. Fig. 5 shows the cumulative mass
function for this probability for skitter monitorchampagne.
If we consider as reasonable a0.2 probability of hitting a
responding destination on the first probe,champagne must
chooseh 6 14. The shape of this curve is very similar for
each of the 24 skitter monitors, but the horizontal position
of the curve can vary by a number of hops from monitor to
monitor.

In order to test the effects of the parameterp on both
redundancy and coverage, we implement Doubletree in a
simulator. We examine the following values forp: between 0
(i.e., forwards probing only) and 0.2, we incrementp in steps
of 0.01. From 0.2 to1 (i.e., backwards probing in all cases
when the destination replies to the first probe), we increment p
in steps of 0.1. As will be shown, the concentration of values



6

close to 0 allows us to trace the greater variation of behavior
in this area.

To validate our results, we run the simulator using the skitter
data from early August 2004. We assume that Doubletree is
running on the skitter monitors, during the same period of time
that the skitter data represents, and implementing the same
baseline probing technique described in Sec. II, of probingup
to three times at a given hop distance. The difference in the
application of Doubletree lies in the order in which Doubletree
probes the hops, and the application of Doubletree’s stopping
rules.

A single experiment uses traceroutes from all 24 monitors
to a common set of 50,000 destinations chosen at random.
Each data point represents the mean value over fifteen runs
of the experiment, each run using a different set of 50,000
destinations randomly generated. No destination is used more
than once over the fifteen runs. We determine 95% confidence
intervals for the mean based, since the sample size is rela-
tively small, on the Studentt distribution. These intervals are
typically, though not in all cases, too tight to appear on the
plots.

Doubletree requires communication of the global stop set
from one monitor to another. We therefore choose a random
order for the monitors and simulate the running of Doubletree
on each one in turn. Each monitor adds to the global set the
(interface,destination) pairs that it encounters, and passes the
augmented set to the subsequent monitor. This is a simplified
scenario compared to the way in which a fully operational co-
operative topology discovery protocol might function, which is
to say with all of the monitors probing and communicating in
parallel (see Sec. V). However, we feel that the scenario allows
greater realism in the study of intra-monitor redundancy. The
typical monitor in a large, highly distributed infrastructure will
begin its probing in a situation in which much of the topology
has already been discovered by other monitors. The closest
we can get to simulating the experience of such a monitor is
by studying what happens to the last in our random sequence
of monitors. All Doubletree intra-monitor redundancy results
are for the last monitor in the sequence. (In contrast, the inter-
monitor redundancy for one monitor is not dependent on what
happens at other monitors.)

Since the valuep has a direct effect on the redundancy
of destination interfaces, we initially look at the effect of p
separately on destination redundancy and on router interface
redundancy. We are most concerned about destination redun-
dancy because of its tendency to appear like a DDoS attack,
and we are concerned in particular with the inter-monitor
redundancy on these destinations, because a variety of sources
is a prime indicator of such an attack. The right-side vertical
axis of Fig. 6 displays destination redundancy. With regards
router interface redundancy, which is displayed on the left-
side vertical axis, we are concerned with overall load, and so
we consider a combined intra- and inter-monitor redundancy
measure that we callgross redundancy, defined as the total
number of visits to an interface by all monitors. For both
destinations and router interfaces, we are concerned with the
extreme values, so we consider the 95th percentile.

We see that the inter-monitor redundancy increases with

Fig. 6. Doubletree redundancy, 95th percentile. Inter-monitor redundancy on
destinations, gross redundancy on router interfaces

p. This is expected by definition ofp. Values increase until
p = 0.5, at which point they plateau at 24. The pointp = 0.5
is, by definition, the point at which the probe sent to a
distanceh hits a destination in 50% of the cases. Doubletree
allows a reduction in 95th percentile inter-monitor redundancy
when compared to classic probing for lower values ofp.
The maximum reduction is 84% whenp = 0, implying pure
forwards probing.

As opposed to destination redundancy, the 95th percentile
gross router interface redundancy decreases withp. The 95th

percentile for the internal interface gross redundancy using the
classic approach is 1,340. Doubletree thus allows a reduction
between 59.6% (p = 0) and 72.6% (p = 1).

This preliminary analysis suggests that Doubletree should
employ a low value forp, certainly below 0.5, in order to
reduce inter-monitor redundancy on destinations. Furthermore,
the value must not be too low, in order to avoid a negative
impact on router interfaces.

Fig. 7 compares Doubletree to skitter in terms of coverage
accuracy (nodes and links) and quantity of probes sent. On the
horizontal axis, we vary the probabilityp. On the vertical axis,
we show the performance of Doubletree. A value of 1.0 would
mean that Doubletree performs exactly the same as skitter.

Considering first the coverage (the two upper curves), we
see that it increases withp until reaching the maximum
coverage approximately whenp = 0.7: Doubletree discovers
92.9% of links and 98.1% of nodes. The minimum coverage
appears whenp = 0: 76.8% of links and 89.3% of nodes.
However, link coverage grows rapidly forp values between0
and0.4. After that point, a kind of plateau is reached, before
a small decrease. These two curves suggest that a Doubletree
monitor should employ a high value forp, certainly around
0.7 in order to maximize its coverage accuracy.

Regarding now the quantity of probes sent (the lower curve),
we can see that Doubletree allows a reduction between 40.3%
(p = 0) and 75.8% (p = 0.13). As opposed to the coverage,
this curve suggest that a monitor should employ a low non



7

Fig. 7. Doubletree in comparison to skitter regarding the level of coverage
and the probes sent

Fig. 8. Doubletree in comparison to skitter regarding the communication
cost

zero value forp.
Fig. 8 compares Doubletree and skitter regarding the com-

munication cost. By communication cost, we mean the amount
of data sent by the system in the network. It includes the
probes sent for the traceroute (probe cost) as well as the data
exchanged by monitors (stop set cost). On the horizontal axis,
we vary the probabilityp. The vertical axis gives the quantity
of megabytes sent into the network.

The vertical line indicates the quantity of megabytes sent by
all skitter monitors. They only send probes into the network.
For Doubletree, each bar is divided into two parts: the lower
part (in gray) shows the probe cost (in MB) and the upper part
(in black) the stop set cost (in MB). The sum of both parts
gives the total communication cost required by Doubletree.
We do not take into account the cost of data repatriation to
a centralized server after probing. This cost is incurred by
both skitter and Doubletree, and the comparison would favor

Doubletree, which collects less data.
To evaluate the probe cost, we give a weight to each probe

that corresponds to the sum of the IP and UDP header lengths.
We multiply this weight by the number of probes sent into
the network by each system. Fig. 8 indicates that skitter has
a probe cost of 1,667.37 MB. For Doubletree, the probe cost
oscillates between 996.49 MB (p = 0) and 403.25 MB (p =
13). Using Doubletree allows one to have a probe cost between
40.3% and 75.8% less than skitter.

Concerning the stop set cost, we consider the global stop
set as a list of bit strings, each string being 64 bits (two IP
addresses) long. We do not consider any possible compression
of the global stop set, such as that suggested by authors of this
paper [22], which would further favor Doubletree. In Fig. 8,
we see that the stop set cost is negligible compared to the
probe cost. It oscillates between 70.33 MB (p = 0) and 12.51
MB (p = 0.5).

When putting both costs together, we see that the total
oscillates for Doubletree between 1,066.82 MB (p = 0) and
418.03 MB (p = 0.15). The reduction compared to skitter is
between 46.02% and 74.93%.

Therefore, although Doubletree requires communication be-
tween monitors, it does not increase the overall communication
cost, and, rather, strongly reduces it.

Based on Figs. 6, 7 and 8, we suggest choosing ap value
belonging to the range [0.05, 0.2], which allows a compro-
mise between coverage accuracy, redundancy reduction, and
communication cost. In this range, coverage is relatively high,
redundancy can be strongly reduced, and communication costs
remain relatively low.

Further details, specifically with respect to the intra- and
inter-monitor redundancy metrics (see Sec. III) forp = 0.05,
are to be found in our SIGMETRICS paper [17, Sec. 3.3].

V. DOUBLETREEPROTOTYPE

This section describes the deployed version of Doubletree.
The Java code for this prototype is freely available online [23].
This section also describes the results of initial runs of
Doubletree in a real environment. We compare its performance
to a classic probing system modeled on skitter.

A. Prototype Design

The simulations described earlier in this paper were based
on a simple probing system: each monitor in turn works
through the destination list, adds to the global stop set the
(interface,destination) pairs that it encounters, and passes
the augmented set to the subsequent monitor.

This simple scenario is not suitable in practice: it is too slow,
as an iterative approach allows only one monitor to probe the
network at a given time. We want all the monitors probing in
parallel. However, how would one manage the global stop set
if it were being updated by all the monitors at the same time?

An easy way to parallelize is to divide the destination list
into severalsliding windows. At a given time, a given monitor
focuses on its own window, as shown in Fig. 9. There is
no collision between monitors, in the sense that each one is
filling in its own part of the global stop set. The entire system



8

Monitor 1

Monitor 3

Monitor 2Monitor 4

Sliding Window 1

Sliding Window 2

Sliding Window 3

Sliding Window 4

Fig. 9. Doubletree with sliding windows

countsm different sliding windows, wherem is the number of
Doubletree monitors. If there aren destinations, each window
is of sizew = n/m.

A sliding window mechanism requires us to decide on a
step size by which to advance the window. We could use a
step size of a single destination. After probing that destination,
a Doubletree monitor sends a small set of pairs corresponding
to that destination to the next monitor, as its contributionto the
global stop set. It advances its window past this destination,
and proceeds to the next destination. Clearly, though, a step
size of one will be costly in terms of communication. Packet
headers will not be amortized over a large payload, and
the payload itself, consisting of a small set, will not be as
susceptible to compression as a larger set would be.

On the other hand, a step size equal to the size of the
window itself poses other risks. Supposing a monitor has
completed probing each destination in its window, and has sent
the resulting subset of the global stop set on to the following
monitor. It then might be in a situation where it must wait for
the prior monitor to terminate its window before it can do any
further useful work.

A compromise must be reached, between lowering commu-
nications costs and continuously supplying each monitor with
useful work. This implies a step size somewhere between 1 and
w. For our implementation of Doubletree, we have arbitrarily
chosen a step size ofw/5. Unfortunately, this did not eliminate
blocking situations. When the system was run, one Doubletree
monitor waited a cumulative 25 minutes, over the five hours
total experiment time, without useful work to do. Tuning the
step size parameter is a subject for further evaluation.

Interested readers might find further information about our
prototype in a technical report [24].

B. Experiment Methodology

We deployed the Doubletree prototype on the PlanetLab [7]
testbed.

As described earlier in this paper, security concerns are
paramount in our approach to active probing. It is important
to not trigger alarms inside the network with our probes. It is
also important to avoid burdening the network and destination
hosts. It follows from this that the deployment of a cooperative
active probing tool must be done carefully, proceeding step
by step, from an initial small size, up to larger scales. Note
that this behavior is strongly recommended [25, Pg. 5] by
PlanetLab.

Our initial prototype was therefore deployed to onlym =
5 PlanetLab nodes. We selected five nodes based on their
relatively high stability (i.e., remaining up and connected),
and their relatively low load. By coincidence, all five nodes
are located in Europe: France, England, Denmark, Spain and
Germany. In future, we will wish to deploy with greater
geographic diversity. However, even with this small number
of stable and lightly-loaded nodes, we found it difficult to run
even a single experiment to completion. Node failure in the
midst of an experiment was common, and stable but more
heavily loaded nodes lead to prohibitively lengthy run times.
Over the course of two weeks, we succeeded in bringing only
two runs to completion.

For comparison to Doubletree, we implemented a classic
tracerouting system, based on skitter, labeledskitter-like in
the rest of the paper.

Both the Doubletree module and the skitter-like module
send three probes for each TTL value, as standard traceroute
does.

The destination list consists ofn = 500 PlanetLab nodes.
Restricting ourselves to PlanetLab nodes was motivated by
security concerns. By avoiding tracing outside the PlanetLab
network, we avoid disturbing end-systems that do not welcome
probe traffic. None of the five PlanetLab monitors belongs to
the destination list. This was done to remain consistent with
skitter’s approach, which is to probe outwards to a set of
destinations that does not include the monitors themselves. (In
future, we would want to probe between monitors in addition
to this outwards probing.) The window size ofw = n/m
consists of 100 destinations. The step size, ofw/5, is 20.

Some routers along the paths may be poorly configured and
reply with a not well-formatted ICMP message. We choose
to record these routers as non-responding. Among the whole
set of probes sent (considering the Doubletree and skitter-like
modules), only 0.00101% (first run) and 0.00096% (the second
run) of replies came back with formatting problems.

The application was run twice on the PlanetLab nodes
between Dec. 26th and Dec. 31st, 2005. For the Doubletree
module, we use ap value of0.05.

The experiment stops when both modules have probed all
the destinations. Doubletree, as it sends fewer probes, finished
the first.

C. Experiment Results

During our experiment a total of 186,936 probes were sent
for the first run and 186,663 for the second. As shown in
Table I, the Doubletree module reduces the probe traffic by
67.91% for run 1 and 67.87% for run 2. This is less good than



9

Skitter-like Doubletree
run 1 141,525 45,411
run 2 141,273 45,390

TABLE I

QUANTITY OF PROBES SENT

|S| |S \ D| |D| |D \ S| |S ∩ D|

run 1
nodes 2.209 110 2.141 42 2.099
links 2.799 495 2.496 192 2.304

run 2
nodes 2.228 119 2.149 40 2.109
links 2.825 504 2.521 200 2.321

TABLE II

NODES AND LINKS DISCOVERED

in our simulations (see Sec. IV-B) where, for the samep value,
the reduction was on the order of 74.19%. However, the results
are remarkably close for an experiment that is conducted at a
much different scale than the simulations (one fifth the number
of monitors, and one hundredth the number of destinations).

The principal measure of performance for a probing system
is the extent to which it discovers what it should. Unfortu-
nately, without an exact knowledge of the complete topology
(if such a thing can be said to exist), it is difficult to evaluate
that performance. However, we can compare the modules to
each other.

Let S be the set of information gathered by the skitter-like
module. Similarly, letD be the set of information gathered by
the Doubletree module. By information, we mean nodes (i.e.
interfaces) or links. Table II shows the cardinality of these
sets, their intersections, and their differences.

Looking first at the cardinality of the sets (columns|S| and
|D|), we find that the skitter-like module discovers more links
and nodes than Doubletree. This was already suggested by our
simulations where we showed that Doubletree was unable to
reach the same coverage level as skitter (see Sec. IV-B).

Considering now the intersection of both sets (column
|S ∩D|), we see that the modules discover much information
in common. Compared to the skitter-like module, Doubletree
is able to discover 95.02% (94.65% for the second run) of
nodes and 82.31% (82.15% for the second run) of links. This
confirms our simulations in which, for the samep value,
Doubletree was able to discover 92.43% of the nodes and
82.31% of the links.

A look at the set differences (columns|S \ D| and |D \
S|), shows that both the skitter-like module and Doubletree
discover information that is not discovered by the other.
Doubletree’s unique discoveries are approximately five times
fewer than the skitter-like monitor’s. But they are not zero,
as they were in the simulation. Only an experiment in the
real world could reveal the extent to which Doubletree would
discover things that skitter did not.

Unique discoveries can be explained by three related obser-
vations. First, some of the skitter-like monitor’s unique discov-
eries are attributable to the the application of the stop set. This
prevents a Doubletree monitor from exploring some paths that
have changed (due, for instance, to routing dynamics or load

balancing). When a Doubletree monitor encounters either an
interface (local stop set) or an(interface,destination) pair
(global stop set), it assumes that the rest of the path to the root
of the tree is already known and does not change. In practice,
paths are dynamic.

Second, as shown in Table I, the skitter-like module sends
many more probes than Doubletree. When considering this
difference in scale, combining with route dynamics, it is easy
to understand that the skitter-like module has the potential to
discover more nodes and links.

Third, if we consider that the experiment terminates at time
T , then Doubletree ends probing at approximately timeT/4.
As the skitter-like module probes the network over a longer
time frame than Doubletree, it is normal that it is able to
capture network changes occurring during this additional time.

How would Doubletree behave in an experiment in which
the skitter-like and Doubletree modules send exactly the same
quantity of probes over the same time frame? That is, allowing
Doubletree to recycle through its destination list after ithas
completed the first round. Would Doubletree discover the same
number of nodes and links as the skitter-like module; more;
or fewer? These questions are the subject of ongoing work.

VI. RELATED WORK

This paper addresses an area, efficient measurement of the
overall internet topology, in which very little related work has
been done. This is in contrast to the number of papers on effi-
cient monitoring of networks that are in a single administrative
domain (see for instance, Bejerano and Rastogi’s work [26]).
The two problems are extremely different. An administrator
knows their entire network topology in advance, and can
freely choose where to place their monitors. Neither of these
assumptions hold for measuring the internet with @home-
style monitors. Since the existing literature is based uponthese
assumptions, we need to look elsewhere for solutions.

Some prior work has addressed strategies for tracing routes
in the internet. Govindan and Tangmunarunkit [27] employ
backwards probing with a stopping rule in theMercator
system, in order to reduce intra-monitor redundancy. However,
no results have been published regarding the efficacy of this
approach. Nor have the effects on inter-monitor redundancy
been considered, or the tension between reducing the two types
of redundancy (for instance, Mercator tries to start probing at
the destination, or as close to it as possible, which, as we have
seen, is highly deleterious to inter-monitor redundancy).

Rocketfuel [28] is a tool for mapping router-level ISP topolo-
gies. For reducing the number of measurements required,
Rocketfuel makes use ofingress reduction and egress reduc-
tion heuristics. Ingress reduction is based on the observation
that probes to a destination from multiple monitors may con-
verge and enter a target ISP at the same node. Egress reduction
is based on the observation that probes to multiple destinations
may leave the target ISP at the same node. The ingress and
egress reduction heuristics are similar to Doubletree’s forwards
and backwards stopping rules. However, Rocketfuel appliesits
heuristics exclusively at the boundaries of ISPs, and so it does
not take advantage of the redundancy reductions that might be



10

found by paths that converge within an ISP. Doubletree reduces
redundancy starting at the point of convergence, wherever
that might be found. Nor does Rocketfuel employ backwards
probing; all of its probes are presumably forwards. In contrast,
Doubletree employs both, and our work explicitly examines
the tradeoffs between the two types of probing, in terms of
coverage and overhead. Furthermore, the Rocketfuel work
assumes a centralized controller, and so it does not consider
how the information regarding where to stop probing could be
efficiently encoded for exchange between monitors. In Dou-
bletree, this is done through the global stop set for forwards
probing, encoded as a series of(interface,destination) pairs.

Scriptroute [6]’s Reverse Path Tree (RPT) discovery tool is
used to avoid overloading the network when multiple monitors
probe towards a given destination. A reverse path tree is a
destination-rooted tree, of the sort that we describe in this
paper, i.e., a tree formed by routes converging from a set of
monitors on a given destination. The RPT tool avoids retracing
paths by embedded a list of previously observed IP addresses
in the script that directs the measurements. A given monitor
stops probing when it reaches a part of the tree that has
already been mapped. Scriptroute thus can avoid inter-monitor
redundancy, as Doubletree does. However, as with Rocketfuel,
Scriptroute assumes a centralized controller, and so does
not consider how stopping information might be efficiently
coded for sharing between monitors. Nor does Scriptroute
consider monitor-rooted trees, or the possibility of backwards
probing in order to avoid intra-monitor redundancy. Without
the possibility of backwards probing, Scriptroute is not able
to trade off intra-monitor redundancy against inter-monitor
redundancy. Doubletree allows this tradeoff, and evaluates it.

A number of papers have examined the tradeoffs involved
in varying the number of monitors used for topological explo-
ration of the internet. Barford et al. [29] found a low marginal
utility for added monitors for the purpose of discovering
certain network characteristics, implying that a small number
of monitors should be sufficient. However, Lakhina et al. [10]
found that the marginal utility depends upon the parameters
under study, and that small numbers of monitors could lead
to biased estimates. These biases have been further studiedby
Clauset and Moore [30], Petermann and De Los Rios [31], and
Dall’Asta et al. [32]. Guillaume and Latapy [33] have extended
these studies to include the tradeoff between the number of
monitors and the number of destinations. This more recent
work implies that there may be real benefit to increasing the
number of monitors, though in the absence of knowledge of
the true topology of the internet, the scale of such benefit
remains to be determined.

VII. C ONCLUSION

In this paper, we quantify the amount of redundancy in
classic internet topology discovery approaches by taking into
account the perspective of a single monitor (intra-monitor)
and that of an entire system (inter-monitor). In the intra-
monitor case, we find that interfaces close to the monitor suffer
from a high number of repeat visits. Concerning inter-monitor
redundancy, we see that a large portion of interfaces are visited
by all monitors.

In order to scale up classic approaches such as skitter,
we have proposed Doubletree, an algorithm that significantly
reduces the duplication of effort while discovering nearlythe
same set of nodes and links. Doubletree simultaneously meets
the conflicting demands of reducing intra- and inter-monitor
redundancy. We describe how to tune a single parameter
for Doubletree in order to obtain an a trade-off between
redundancy and coverage, and we find operating points at
which it is possible to strongly reduce one while maintaining
the other.

For a range ofp values, Doubletree is able to reduce
measurement load by approximately 76% while maintaining
interface and link coverage above 90%.

We also describe a prototype Doubletree implementation
and present preliminary results from two runs on the PlanetLab
testbed. These initial results are consistent with the perfor-
mance expectations formed by the simulation results. Further
experiments are necessary, though difficult to carry out.

This paper represents the first step towards a highly dis-
tributed tracerouting system. Elsewhere [22], we have pro-
posed extensions to this work: reducing the communication
cost of sharing the global stop set through the use of Bloom
filters, and reducing the load on destinations via techniques we
call capping and clustering. In other work [34] we evaluate an
address prefix based stopping rule.

We show in this paper that Doubletree can save time by
avoiding duplication of effort between monitors. Therefore,
Doubletree should be able to probe the network more fre-
quently. We believe that this could make it possible to better
capture the network dynamics that result from routing changes
and load balancing. Future work might reveal the extent
to which Doubletree is helpful in capturing such network
changes.

We are also working on a BGP-guided topology discovery
tool. We think that a topology discovery algorithm at the
IP level may fruitfully make use of information from higher
levels, such as the AS-level.

Finally, we plan to work on an overlay or peer-to-peer
system for managing the interaction between Doubletree mon-
itors.

ACKNOWLEDGEMENTS

Without the skitter data provided by kc claffy and her team
at CAIDA , the simulations would not have been possible. In
addition, part of Mr. Donnet’s work was supported by an
internship at CAIDA , under the direction of Brad Huffaker.
Mr. Donnet’s work was partially funded by the network of
excellence E-NEXT through the SATIN grant. Marc Giusti and
his team at the Centre de Calcul MEDICIS, Laboratoire STIX,
Ecole Polytechnique, offered us access to their computing
cluster, allowing faster and easier simulations. Finally,we
are indebted to our colleagues in the Networks and Per-
formance Analysis group at LiP6, headed by Serge Fdida,
and to our partners in the traceroute@home project, José
Ignacio Alvarez-Hamelin, Alain Barrat, Matthieu Latapy, and
Alessandro Vespignani, for their support and advice.



11

REFERENCES

[1] V. Jacobsen et al., “traceroute,” UNIX,” man page, 1989, see source
code: ftp://ftp.ee.lbl.gov/traceroute.tar.gz, and NANOG traceroute source
code: ftp://ftp.login.com/pub/software/traceroute/.

[2] B. Huffaker, D. Plummer, D. Moore, and k. claffy, “Topologydiscovery
by active probing,” inProc. Symposium on Applications and the Internet,
Jan. 2002.

[3] WAND Network Research Group, “IPv6 scamper,” see http://www.
wand.net.nz/∼mjl12/ipv6-scamper/.

[4] F. Georgatos, F. Gruber, D. Karrenberg, M. Santcroos, A.Susanj,
H. Uijterwaal, and R. Wilhelm, “Providing active measurementsas a
regular service for ISPs,” inProc. Passive and Active Measurement
(PAM) Workshop, 2001, see http://www.ripe.net/test-traffic/.

[5] A. McGregor, H.-W. Braun, and J. Brown, “The NLANR network
analysis infrastructure,”IEEE Communications Magazine, vol. 38, no. 5,
pp. 122–128, May 2000, see http://watt.nlanr.net/.

[6] N. Spring, D. Wetherall, and T. Anderson, “Scriptroute:A public internet
measurement facility,” inProc. 4th USENIX Symposium on Internet
Technologies and Systems, Mar. 2003, see http://www.cs.washington.
edu/research/networking/scriptroute/.

[7] PlanetLab project. See http://www.planet-lab.org.
[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-

ships of the internet topology,” inProc. ACM SIGCOMM, Sept. 1999.
[9] J. J. Pansiot and D. Grad, “On routes and multicast trees inthe internet,”

ACM SIGCOMM Computer Communication Review, vol. 28, no. 1, pp.
41–50, Jan. 1998.

[10] A. Lakhina, J. Byers, M. Crovella, and P. Xie, “Sampling biases in IP
topology measurements,” inProc. IEEE INFOCOM, Apr. 2003.

[11] A. Clauset and C. Moore, “Traceroute sampling makes random graphs
appear to have power law degree distributions,” arXiv, cond-mat
0312674, Feb. 2004.

[12] P. Erd̈os and A. Ŕenyi, “On the evolution of random graphs,”Publ.
Math. Inst. Hung. Acad. Sci., vol. 5, pp. 17–61, 1960.

[13] B. Cheswick, H. Burch, and S. Branigan, “Mapping and visualizing the
internet,” in Proc. USENIX Annual Technical Conference, Jun. 2000.

[14] A. Schmitt et al., “La ḿet́eo du net,” ongoing service, see http://www.
grenouille.com/.

[15] C. R. Simpson, Jr. and G. F. Riley, “NETI@home: A distributed
approach to collecting end-to-end network performance measurements,”
in Proc. Passive and Active Measurment (PAM) Workshop, 2004, see
http://www.neti.gatech.edu/.

[16] Y. Shavitt and E. Shir, “DIMES: Let the internet measure itself,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 5, 2005, see
http://www.netdimes.org.

[17] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” inProc. ACM SIGMETRICS,
Jun. 2005, see http://trhome.sourceforge.net.

[18] A. Broido and k. claffy, “Internet topology: Connectivity of IP graphs,”
in Proc. SPIE International Symposium on Convergence of IT and
Communication, Aug. 2001.

[19] IANA, “Special-use IPv4 addresses,” Internet Engineering Task Force,
RFC 3330, Sep. 2002.

[20] R. K. Jain,The Art of Computer Systems Performance Analysis. John
Wiley, 1991.

[21] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” arXiv, cs.NI 0411013 v1,
Nov. 2004, see http://trhome.sourceforge.net.

[22] B. Donnet, T. Friedman, and M. Crovella, “Improved algorithms for
network topology discovery,” inProc. Passive and Active Measurement
(PAM) Workshop, Mar. 2005, see http://trhome.sourceforge.net.

[23] B. Donnet, “Doubletree prototype code,” Nov. 2005, seehttp://trhome.
sourceforge.net.

[24] B. Donnet, B. Huffaker, T. Friedman, and k. claffy, “Implementation
and deployment of a distributed network topology discovery algorithm,”
arXiv, cs.NI 0603062, Mar. 2006, see http://trhome.sourceforge.net.

[25] L. Peterson, V. Pai, N. Spring, and A. Bavier, “Using PlanetLab
for network research: Myths, realities, and best practices,” PlanetLab,
Design Note 05-028, Jun. 2005.

[26] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and faults
in IP networks,” inProc. IEEE INFOCOM, Apr. 2003.

[27] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map
discovery,” inProc. IEEE INFOCOM, Mar. 2000.

[28] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISPtopologies
with Rocketfuel,” inProc. ACM SIGCOMM, Aug. 2002.

[29] P. Barford, A. Bestavros, J. Byers, and M. Crovella, “Onthe marginal
utility of network topology measurements,” inProc. ACM SIGCOMM
Internet Measurement Workshop (IMW), Nov. 2001.

[30] A. Clauset and C. Moore, “Why mapping the internet is hard,” arXiv,
cond-mat 0407339 v1, Jul. 2004.

[31] T. Petermann and P. De Los Rios, “Exploration of scale-free networks,”
The European Physical Journal B, vol. 38, p. 201, 2004.

[32] L. Dall’Asta, I. Alvarez-Hamelin, A. Barrat, A. V̀azquez, and A. Vespig-
nani, “A statistical approach to the traceroute-like exploration of net-
works: theory and simulations,” inProc. Workshop on Combinatorial
and Algorithmic Aspects of Networking (CAAN), Aug. 2004.

[33] J.-L. Guillaume and M. Latapy, “Relevance of massively distributed
explorations of the internet topology: Simulation results,” in Proc. IEEE
INFOCOM, Mar. 2005.

[34] B. Donnet and T. Friedman, “Topology discovery using an address prefix
based stopping rule,” inProc. EUNICE Workshop, Jul. 2005, see http:
//trhome.sourceforge.net.

Benoit Donnet received a degree in Economics
from the Facult́es des Sciences Economiques et de
Gestion of the Facultés Universitaires Notre Dame
De La Paix (Belgium) in 2000. He received a
master degree in computer science from the Institut
d’Informatique of the Facultés Universitaires Notre
Dame De La Paix (Namur - Belgium) in 2003.
He is currently research assistant at the Université
Pierre & Marie Curie. His research interests are
in Internet measurements, focusing on large-scale
topology discovery algorithms. In the context of the

traceroute@home project, Mr. Donnet received in 2004 the SATIN grant
provided by the E-Next Network of Excellence.

Philippe Raoult received his Bachelor’s degree
of Computer Science from the Ecole Normale in
Lyon in 2003 and a Master’s degree of Distributed
and Parallel Computing from the Université Pierre
& Marie Curie in 2005. After working on high-
performance network proxies, he joined N2NSoft
where he is responsible for software development on
the company’s leading product, a scalable network
simulation package.

Timur Friedman (S’96–A’02–M’04) received the
A.B. degree in philosophy from Harvard University
and the M.S. degree in management from Stevens
Institute of Technology. He received the M.S. and
Ph.D. degrees in computer science from the Univer-
sity of Massachusetts Amherst, in 1995 and 2001,
respectively. He is currently a Maı̂tre de Conf́erences
(assistant professor) of computer science at the
Universit́e Pierre & Marie Curie in Paris, and a
researcher at the Laboratoire d’Informatique de Paris
6 (LIP6). His research interests include large scale

network measurement systems and disruption tolerant networking.



12

Mark Crovella (M’94/ACM’94) is Professor of
Computer Science at Boston University. During
2003-2004 he was Visiting Associate Professor at
the Laboratoire d’Informatique de Paris VI (LIP6).
His research interests are in performance evalua-
tion, focusing on parallel and networked computer
systems. In the networking arena, he has worked
on characterizing the Internet and the World Wide
Web; on analysis of Internet measurements, includ-
ing traffic and topology measurements; and on the
implications of measured Internet properties for the

design of protocols and systems. He is co-author of “Internetmeasurement:
Infrastructure, Traffic and Applications” (Wiley, 2006).


