
Evaluation of a Large-Scale Topology Discovery

Algorithm

Benoit Donnet12, Bradley Huffaker2, Timur Friedman1, and kc claffy2

1 Université Pierre & Marie Curie – Laboratoire LiP6/CNRS, UMR 7606, France
2

Caida – San Diego Supercomputer Center, USA

Abstract. In the past few years, the network measurement community
has been interested in the problem of internet topology discovery using
a large number (hundreds or thousands) of measurement monitors. The
standard way to obtain information about the internet topology is to
use the traceroute tool from a small number of monitors. Recent papers
have made the case that increasing the number of monitors will give a
more accurate view of the topology. However, scaling up the number of
monitors is not a trivial process. Duplication of effort close to the mon-
itors wastes time by reexploring well-known parts of the network, and
close to destinations might appear to be a distributed denial-of-service
(DDoS) attack as the probes converge from a set of sources towards a
given destination. In prior work, authors of this paper proposed Double-
tree, an algorithm for cooperative topology discovery, that reduces the
load on the network, i.e., router IP interfaces and end-hosts, while dis-
covering almost as many nodes and links as standard approaches based
on traceroute. This paper presents our open-source and freely download-
able implementation of Doubletree in a tool we call traceroute@home.
We evaluate the performance of our implementation on the PlanetLab
testbed and discuss a large-scale monitoring infrastructure that could
benefit of Doubletree.

1 Introduction

Today’s most extensive tracing system at the IP interface level, skitter [1],
uses 24 monitors, each targeting on the order of one million destinations. Authors
of this paper are responsible for skitter. In the fashion of skitter, scamper [2]
makes use of several monitors to traceroute IPv6 networks. Other well known
systems, such as Ripe NCC TTM [3] and Nlanr AMP [4], each employ a
larger set of monitors, on the order of one- to two-hundred, but they avoid
probing outside their own network. However, recent work has indicated the need
to increase the number of traceroute sources in order to obtain a more complete
topology measurement [5, 6]. Indeed, it has been shown that reliance upon a
relatively small number of monitors to generate a graph of the internet can
introduce unwanted biases.

One way of rapidly creating a large distributed monitor infrastructure would
be to deploy traceroute monitors in an easily downloadable and readily usable



piece of software, such as a screensaver. This was first proposed by Jörg Non-
nenmacher, as reported by Cheswick et al. [7]. Such a suggestion is in keeping
with the spirit of that have arisen in the past few years. The most famous one
is probably SETI@home [8]. SETI@home’s screensaver downloads and analyzes
radio-telescope data. The first publicly downloadable distributed route tracing
tool is Dimes [9], released as a daemon in September 2004. At the time of writing
this paper, Dimes counts more than 8,700 agents scattered over five continents.

However, building such a large structure leads to potential scaling issues: the
quantity of probes launched might consume undue network resources and the
probes sent from many vantage points might appear as a distributed denial-of-
service (DDoS) attack to end-hosts. These problems were quantified in our prior
work [10].

The Doubletree algorithm [10], proposed by two authors of this paper, is an
attempt to perform large-scale topology discovery efficiently and in a network
friendly manner. Doubletree acts to avoid retracing the same routes in the in-
ternet by taking advantage of the tree-like structure of routes fanning out from
a source or converging on a destination. The key to Doubletree is that monitors
share information regarding the paths that they have explored. If one monitor
has already probed a given path to a destination then another monitor should
avoid that path. Probing in this manner can significantly reduce load on routers
and destinations while maintaining high node and link coverage [10]. By avoiding
redundancy, not only is Doubletree able to reduce the load on the network but
it also allows one to probe the network more frequently. This makes it possible
to better capture network dynamic (routing changes, load balancing) compared
to standard approaches based on traceroute.

This paper goes beyond earlier theory and simulation to propose a Double-
tree implementation in tool called traceroute@home. traceroute@home is open-
source and freely available [11]3. The goal of this paper is neither to compare
Doubletree to standard probing (e.g., skitter) in a real environment, neither to
tell the story of the large-scale deployment of Doubletree. We aim to evaluate
our implementation of the algorithm and understand its behavior in a real, but
controlled, environment, i.e., PlanetLab [13]. This approach can be seen as a
first step towards a larger-scale deployment of the algorithm in an entirely ded-
icated measurement structure. We first implement and evaluate the core of the
measurement system, i.e., the probing engine, before building a more complex
infrastructure. Our implementation is modular, making future extensions and
reuse in a dedicated measurement structure easy. In this paper, we also discuss
a large-scale measurement infrastructure that could benefit of traceroute@home.

The remainder of this paper is organized as follows: Sec. 2 describes the
Doubletree algorithm; Sec. 3 describes traceroute@home; in Sec. 4, we discuss
the performance evaluation done on PlanetLab nodes; Sec. 5 discusses the usage
of traceroute@home in an entirely dedicated measurement infrastructure; finally,
Sec. 6 summarizes the principal contributions of this paper.

3 Interested readers might find an extended version of this paper in an arXiv technical
report [12].



2 Doubletree

Doubletree [10] is the key component of a coordinated probing system that
significantly reduces load on routers and end-hosts while discovering nearly the
same set of nodes and links as standard approaches based on traceroute. It takes
advantage of the tree-like structures of routes in the context of probing. Routes
leading out from a monitor towards multiple destinations form a tree-like struc-
ture rooted at the monitor. Similarly, routes converging towards a destination
from multiple monitors form a tree-like structure, but rooted at the destination.
A monitor probes hop by hop so long as it encounters previously unknown in-
terfaces. However, once it encounters a known interface, it stops, assuming that
it has touched a tree and the rest of the path to the root is also known. Using
these trees suggests two different probing schemes: backwards (monitor-rooted
tree) and forwards (destination-rooted tree).

For both backwards and forwards probing, Doubletree uses stop sets. The
one for backwards probing, called the local stop set, consists of all interfaces
already seen by that monitor. Forwards probing uses the global stop set of
(interface,destination) pairs accumulated from all monitors. A pair enters the
stop set if a monitor received a packet from the interface in reply to a probe sent
towards the destination address.

A monitor that implements Doubletree starts probing for a destination at
some number of hops h from itself. It will probe forwards at h + 1, h + 2,
etc., adding to the global stop set at each hop, until it encounters either the
destination or a member of the global stop set. It will then probe backwards at
h − 1, h − 2, etc., adding to both the local and global stop sets at each hop,
until it either has reached a distance of one hop or it encounters a member of
the local stop set. It then proceeds to probe for the next destination. When it
has completed probing for all destinations, the global stop set is communicated
to the next monitor.

Doubletree has one tunable parameter. The choice of initial probing distance
h is crucial. Too close, and duplication of effort will approach the high levels
seen by classic forwards probing techniques [10, Sec. 2]. Too far, and there will
be high risk of traffic looking like a DDoS attack for destinations. The choice
must be guided primarily by this latter consideration to avoid having probing
look like a DDoS attack.

While Doubletree largely limits redundancy on destinations once hop-by-
hop probing is underway, its global stop set cannot prevent the initial probe
from reaching a destination if h is set too high. Therefore, each monitor sets its
own value for h in terms of the probability p that a probe sent h hops towards a
randomly selected destination will actually hit that destination. Fig. 2 shows the
cumulative mass function for this probability for skitter monitor champagne. If
one considers as reasonable a 0.2 probability of hitting a responding destination
on the first probe, it must chose h ≤ 14.

Simulation results [10, Sec. 3.2] show for a range of p values that, compared to
classic probing, Doubletree is able to reduce measurement load by approximately
70% while maintaining interface and link coverage above 90%.



Fig. 1. Cumulative mass plot of path lengths from skitter monitor champagne

Doubletree assumes, in the context of probing, that the routes have a tree-
like structure. This is true in a large proportion, as suggested by Doubletree’s
coverage results (see [10, Sec. 3.2]), but this hypothesis implies a static view
of the network. When a Doubletree monitor stops probing towards the root
of a tree, it is making the bet that the rest of the path to the tree is both
know and unchanged since earlier probing. The existence of routes’ convergence
and divergence points, however, imply a dynamic view of the network, as some
parts of the network might change due to load balancing and routing. We are
currently working on improving Doubletree in order to take into account dynamic
behaviors of the network [14].

3 Implementation

In this section, we describe our implementation of the Doubletree algorithm
in a tool called traceroute@home. We first introduce our design choices (Sec. 3.1)
and, next, we give an overview of the system (Sec. 3.2).

3.1 Design Choices

We implemented traceroute@home in Java [15]. We choose Java as the devel-
opment language because of two reasons: the large quantity of available packages
and the possibility of abstracting ourselves from technical details. As a conse-
quence, the development time was strongly reduced. Unfortunately, Sun does
not provide any package for accessing packet headers and handling raw sock-
ets, which is necessary to implement traceroute. Instead of developing our own
raw sockets library, we used the open-source JSocket Wrench library [16]. We
modified the JSocket Wrench library in order to support multi-threading. Our
modifications are freely available [11].

We aimed for the design of traceroute@home to be easily extended in the
future by ourselves but also by the networking community. For instance, con-



Prober

Message

PLEstimator

Communication

Agent

StopSet

Data

StopSetBackward

Forward

Doubletree

Probe

config.xml

output.xml

(a) A traceroute@home monitor

Monitor 1

Monitor 2

Monitor 3

Monitor 4

Sliding Window 1

Sliding Window 2

S
lid

in
g

W
in

d
o
w

3

S
li
d
in

g
W

in
d
o
w

4

(b) Doubletree with sliding win-
dow

Fig. 2. The traceroute@home system

cerning the messages exchanged by monitors, we define a general framework for
messages, making creation and handling of new messages easier.

We designed our application by considering two levels: the microscopic level
and the macroscopic level.

From a macroscopic point of view, i.e., all the monitors together, the monitors
are organized in a ring, adopting a round robin process. At a given time, each
monitor focuses on its own part of the destination list. When it finishes probing
its part, it sends information to the next monitor and waits for data from the
previous one, if it was not yet received. Sec. 3.2 explains this macroscopic aspect
of traceroute@home.

From a microscopic point of view of our implementation, i.e., a single mon-
itor, a monitor is tuned with an XML configuration file loaded at its starting.
A traceroute@home monitor is composed of several modules that interact with
each other. Our implementation is thread-safe, as a monitor, conducted by the
Agent module, is able to send several probes (ICMP or UDP) and receive several
messages from other monitors at the same time. Further, topological informa-
tion collected by a monitor is regularly saved to XML files. Obviously, a trace-
route@home monitor implements a Doubletree module, as described in Sec. 2.
Fig. 2(a) illustrates a traceroute@home monitor. Going into deeper details within
a traceroute@home monitor is beyond the scope of this paper. Nevertheless, in-
terested readers might find a complete description of a traceroute@home monitor
in [12].

Our implementation is open-source and freely available [11].

3.2 System Overview

The simulations conducted in prior work [10] were based on a simple probing
system: each monitor in turn covers the destination list, adds to the global stop
set the (interface,destination) pairs that it encounters, and passes the set to the
subsequent monitor.



This simple scenario is not suitable in practice: it is too slow, as an iterative
approach allows only one monitor to probe the network at a given time. We want
all the monitors probing in parallel. However, how would one manage the global
stop set if it were being updated by all the monitors at the same time?

An easy way to parallelize is to deploy several sliding windows that slide
along the different portions of the destination list. At a given time, a given
monitor focuses on its own window, as shown in Fig. 2(b). There is no collision
between monitors, in the sense that each one is filling in its own part of the
global stop set. The entire system counts m different sliding windows, where m
is the number of Doubletree monitors. If there are n destinations, each window
is of size w = n/m. This is an upper-bound on the window size as the concept
still applies if they are smaller.

A sliding window mechanism requires us to decide on a step size by which
to advance the window. We could use a step size of a single destination. After
probing that destination, a Doubletree monitor sends a small set of pairs cor-
responding to that destination to the next monitor, as its contribution to the
global stop set. It advances its window past this destination, and proceeds to
the next destination. Clearly, though, a step size of one will be costly in terms
of communication. Packet headers (see [12] for details about packet format) will
not be amortized over a large payload, and the payload itself, consisting of a
small set, will not be as susceptible to compression as a larger set would be.

On the other hand, a step size equal to the size of the window itself poses other
risks. Suppose a monitor has completed probing each destination in its window,
and has sent the resulting subset of the global stop set on to the following
monitor. It then might be in a situation where it must wait for the prior monitor
to terminate its window before it can do any further useful work.

A compromise must be reached, between lowering communications costs and
continuously supplying each monitor with useful work. This implies a step size
somewhere between 1 and w. For our implementation of Doubletree, we let the
user decide the step size. This is a part of the XML configuration file that each
Doubletree monitor loads at its start-up (see Fig. 2(a) and [12] ). Future work
might reveal information about how to tune the step size of a monitor.

4 Performance Evaluation

As described in prior work [10], security concerns are paramount in large-
scale active probing. It is important to not trigger alarms inside the network with
Doubletree probes. It is also important to avoid burdening the network and the
destination hosts. It follows from this that the deployment of a cooperative active
probing tool must be done carefully, proceeding step by step, from an initial
small size, up to larger-scales. Note that this behavior is strongly recommended
by PlanetLab [17, Pg. 5].

We tested traceroute@home on a set of ten PlanetLab nodes. These ten nodes
acted as traceroute@home monitors. We selected them based on their relatively
high stability (i.e., remaining up and connected), and their relatively low load.



Backwards Forwards

monitor loop gap stop set normal loop gap stop set normal h

Blast 0 0 99.5 0.5 2 17 50 31 7
Cornell 0 0 99 1 0 13.5 69.5 17 7
Ethz 1 0 98.5 0.5 2 10.5 52 35.5 11
Inria 1.5 0 97.5 1 1 4 67 28 15
Kaist 0 0 99 1 0.5 10.5 64.5 24.5 9
Nbgisp 0.5 4 95 0.5 3.5 30.5 22 44 7
LiP6 0 0 99.5 0.5 1 9.5 62.5 27 11
UCSD 0 0 99.5 0.5 0 10.5 60.5 29 7
Uoregon 0 0 99.5 0.5 0 7 74.5 18.5 6
Upc 0.5 0 99 0.5 1 14 57.5 27.5 15

mean 0.35 0.4 98.6 0.65 0.11 12.7 58 28.2 9

Table 1. Stopping reasons (in %) and h value per monitor

These traceroute@home monitors are scattered around the world: North America
(USA, Canada), Europe (France, Spain, Switzerland, Spain), and Asia (Japan,
Korea). Evaluating the performance of selected PlanetLab nodes is beyond the
scope of this paper. Interested readers might find further information about such
an evaluation in [12].

The destination list, i.e., the probe targets consists of n = 200 PlanetLab
nodes randomly chosen amongst the approximately 300 institutions that cur-
rently host PlanetLab nodes. Restricting ourselves to PlanetLab nodes desti-
nations was motivated by security concerns. By avoiding tracing outside the
PlanetLab network, we avoid disturbing end-systems that do not welcome probe
traffic. None of the ten PlanetLab monitors (or other nodes located at the same
place) belongs to this destination list. The sliding window size of w = n/m
consists of twenty destinations. We consider two step sizes by window, so each
step counts ten destinations. Each traceroute@home monitor was configured as
follows: the probability p was set to 0.05, no compression was required before
sending messages and a sliding window was composed of two step sizes.

The experiment was run on the PlanetLab nodes on Dec. 20th 2005. All the
traceroute@home monitors were started at the same time. The experiment was
finished when each monitor had probed the entire destination list.

A total of 2,703 links and 2,232 nodes were discovered. We also encoun-
tered 2,434 non-responding interfaces (routers and destinations). We recorded
36 invalid addresses. Invalid addresses are, for example, private addresses [10,
Sec. 2.1].

Table 1 shows the different reasons for stopping backwards and forwards
probing for each traceroute@home monitor. It further indicates the h value com-
puted by each monitor. The last row of the table indicates the mean for each
column. A loop occurs when a given node appears at two different hops. A gap

occurs when five successive nodes does not reply to probes. A stop set indicates
the application of a stopping rule based on the membership to a given stop



Fig. 3. Stopping distance for the Uoregon monitor

set (local stop set for backwards and global stop set for forwards), as defined
in Sec. 2). A normal stopping means hitting the first hop (backwards) or the
destination (forwards).

Looking first at the backwards stopping reasons, we see that the stop set rule
strongly dominates (98.6% on average). On average, normal stopping occurs only
0.65% of the time.

Fig. 3 shows the stopping distance (in terms of hops from the monitor), for
the Uoregon monitor, when probing backwards and forwards. The vertical line
indicates the h value computed by Uoregon. Results presented in Fig. 3 are
typical for the other traceroute@home monitors.

We see that more than 90% of the backwards stopping occurs at a distance
of 5, that is to say the distance corresponding to h − 1. In 2.5% of the cases,
the probing stops between hop 1 (normal stopping) and hop 4. Except for hop
1, the other stops might be caused by the stop set or by hitting a destination,
probably due to very short paths. This latter case illustrates a situation in which
the first probe sent with a TTL of h directly hits a destination.

Looking now at the forwards stopping reasons in Table 1, we see that the
gap rule plays a greater rule. We believe that these gaps occur when a destina-
tion does not respond to probes because of a restrictive firewall or because the
PlanetLab node is down.

On average, in 58% of the cases, the stop set rule applies, and in 28.2% of the
cases, the normal rule applies. The normal rule proportion might be seen as high
but we have to keep in mind that a Doubletree monitor starts with an empty
stop set. Therefore, during the first sliding window, the only thing that can stop
a monitor, aside from the gap rule, is an encounter with the destination.

Looking at the stopping distance in Fig. 3, we see that the distances are
more scattered for forwards probing than for backwards probing. Regarding the
forwards probing, a peak is reached at a distance of 10 (18.5% of the cases). In
7% of the cases, the monitor stops probing at a distance of 6, that is equal to the
value h. It could correspond to the stop set rule application or the normal rule, by
definition of p. Recall that p defines the probability of hitting a destination with



(a) running time (b) volume sent

Fig. 4. Load

the probe sent with a TTL equals to h. For our experiment, we set p = 0.05,
meaning that in 5% of the cases the first probe sent by a monitor will hit a
destination.

Fig. 4 shows, for each traceroute@home monitor, the load generated by our
prototype. This load is expressed in terms of the running time (Fig. 4(a)) and of
the total size of packets exchanged by monitors (Fig. 4(b)). Each figure has an
additional bar on the right of the plot that gives the mean over the ten monitors.

The size of packets takes into account the header (4 bytes) and the payload.
Interested readers might find further information about messages in [12]. The
messages exchanged by monitors are StopSet messages. A StopSet message is
sent by a monitor when it reaches a step size in the current sliding window and
contains stop set information for the next monitor in the ring (See Fig. 2(b)).
As we define for our experiment two step sizes per sliding window and as we
deploy our prototype on ten PlanetLab nodes, each monitor sent 20 StopSet

messages.
The monitors do not exchange their entire stop set. They only send an update

that contains the (interface,destination) pairs discovered during the current step
size probing.

In Fig. 4(b), we can see that a monitor sends a total of between 7.41 KB and
12.84 KB to the subsequent monitor. On average, a monitor sends 10.39 KB of
stop set information into the network.

During our experimentation, the traceroute@home application did not flood
the network with StopSet messages. However, our prior work [18] has shown,
on a larger destination list, that it can grow to excessive sizes. In this case,
our prior work suggests to implement the global stop set as a Bloom filter [18]
instead of a list of (interface,destination) pairs. This implementation is provided
in our prototype. Our prototype is easily tunable, due to the use of an XML
configuration file. The user must specify in this file which type of implementation
the prototype has to use. For our experiments, we choose to consider the standard
implementation of the global stop set, i.e., the list.



probing

end

waiting

end probing

step size ∧ ¬received
timer expired ∧ ¬received

timer expired ∧ received

timer expired ∧ wait too long

¬step size

step size ∧ received

Fig. 5. Probing/waiting state interactions

Looking now at the running time (Fig. 4(a)), we see that it is expressed
as a combination of probing (gray bars) and waiting periods (black bars). The
waiting period occurs when a monitor has finished its sliding window or a step
size in a given sliding window and is waiting for the global stop set that should be
sent by the previous monitor in the round-robin topology. We see that nearly all
monitors have to wait. A waiting period, in our implementation, lasts 30 seconds.
When the timer expires, the monitor checks if it received a new message. If so,
the waiting period ends and a new probing period begins. Otherwise, it sleeps
during 30 seconds. To avoid infinite waiting, if after 40 sleeping periods (i.e., 20
minutes), nothing was received, the monitor quits with an error message. Fig. 5
illustrates the interactions between the probing state and the waiting state.

We believe that these long waiting periods are due to a characteristic of the
PlanetLab IP stack. It seems that when ICMP replies are by the stack, the
socket reader function does not read them immediately. As the timer set on
the listening socket never expires in this case, we think that the socket reader
function is waiting for the permission to access the IP stack. It looks like the
resource is owned (or locked) by another process on the PlanetLab node. Note
that this behavior was also noticed by other Planet-Lab users [19].

5 Measurement Infrastructures

The recent NSF-sponsored CONMI Workshop [20] (in which two of the
present authors participated) urged a comprehensive approach to distributed
probing, with a shared infrastructure that respects the many security concerns
that active measurements raise. We echo this call and believe that Doubletree
falls within the scope of the trade-off between probing load and the information
gleaned from such probing. In this section, we discuss a brand new infrastruc-
tures that could take advantage of Doubletree and, thus, traceroute@home.

OneLab [21] is a European project, due to start in September 2006, that
assembles some of the most highly respected network research teams from uni-
versity and industry labs in Europe. OneLab aims to extend PlanetLab into
new environments beyond the traditional wired internet, to deepen PlanetLab’s
monitor capabilities, and to provide a European administration for PlanetLab
nodes in Europe.



OneLab’s monitoring component is mainly motivated by the fact that many
applications, such as those that take advantage of multihoming, could benefit
from a better vision of the characteristics of the underlying network. Some objec-
tives of the monitoring component are designing and implementing a prototype
measurement infrastructure providing router and AS-level path information. The
project also intends to submit the definition of a standard API for the measure-
ment platform to the IETF (or IRTF).

This infrastructure has the potential to perform large-scale measurements.
That is why we believe that Doubletree and, by extension, traceroute@home
would perfectly fit into these plans. Further, we designed our implementation
while keeping in mind extensibility. Changes or extensions needed when incor-
porating our prototype within the active measurement monitoring component of
OneLab will be easy to achieve. In addition, due to the use of XML, the proto-
type is easy to tune and the resulting topological information might be quickly
changed in an other format than XML if needed.

6 Conclusion

In this paper, we were interested in large-scale topology discovery at IP
level. We focused on Doubletree, an efficient and cooperative topology discovery
algorithm.

We put Doubletree one step further than its initial description by proposing
a Java implementation. The application that implements Doubletree is called
traceroute@home, is easily extensible, is open-source and freely available.

We discussed our implementation by explaining our design choices and by
presenting the global functioning of the system. We next evaluated the perfor-
mance of traceroute@home and described its behavior in a real environment.
We finally discussed a monitoring infrastructure that could benefit of trace-
route@home.

traceroute@home is an on-going project. We aim to improve our tool. In the
near future, we would like to develop IPv6 libraries in order to permit IPv6
networks probing. Further, we are currently developing a peer-to-peer (or an
overlay) system for managing the probing monitors and the entire structure.
This new architecture is based on the prototype discussed in this paper.

Acknowledgements

Mr. Donnet’s work was supported by a SATIN European Doctoral Research
Foundation grant and by an internship at CAIDA.

References

1. Huffaker, B., Plummer, D., Moore, D., claffy, k.: Topology discovery by active
probing. In: Proc. Symposium on Applications and the Internet. (2002)



2. Luckie, M.: IPv6 scamper (2005) WAND Network Research Group.
3. Georgatos, F., Gruber, F., Karrenberg, D., Santcroos, M., Susanj, A., Uijterwaal,

H., Wilhelm, R.: Providing active measurements as a regular service for ISPs. In:
Proc. Passive and Active Measurement (PAM) Workshop. (2001)

4. McGregor, A., Braun, H.W., Brown, J.: The NLANR network analysis infrastruc-
ture. IEEE Communications Magazine 38 (2000)

5. Lakhina, A., Byers, J., Crovella, M., Xie, P.: Sampling biases in IP topology
measurements. In: Proc. IEEE INFOCOM. (2003)

6. Clauset, A., Moore, C.: Traceroute sampling makes random graphs appear to have
power law degree distributions. cond-mat 0312674, arXiv (2004)

7. Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In:
Proc. USENIX Annual Technical Conference. (2000)

8. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
An experiment in public-resource computing. Communications of the ACM 45

(2002)
9. Shavitt, Y., Shir, E.: DIMES: Let the internet measure itself. ACM SIGCOMM

Computer Communication Review 35 (2005)
10. Donnet, B., Raoult, P., Friedman, T., Crovella, M.: Efficient algorithms for large-

scale topology discovery. In: Proc. ACM SIGMETRICS. (2005)
11. Donnet, B.: traceroute@home 1.0 (2006) See http://trhome.sourceforge.net.
12. Donnet, B., Huffaker, B., Friedman, T., claffy, k.: Implementation and deployment

of a distributed network topology discovery algorithm. cs.NI 0603062, arXiv (2006)
13. PlanetLab Consortium: PlanetLab project (2002) See http://www.planet-lab.

org.
14. Donnet, B., Huffaker, B., Friedman, T., claffy, k.: Increasing the coverage of a

cooperative internet topology discovery algorithm (2006) Under review.
15. Microsystems, J.S.: JDK 1.4.2 (1994) http://java.sun.com.
16. JSocket Wrench: Release R04 (2004) See http://jswrench.sourceforge.net/.
17. Peterson, L., Pai, V., Spring, N., Bavier, A.: Using PlanetLab for network re-

search: Myths, realities, and best practices. Design Note PDN–05–028, PlanetLab
Consortium (2005)

18. Donnet, B., Friedman, T., Crovella, M.: Improved algorithms for network topology
discovery. In: Proc. Passive and Active Measurement (PAM) Workshop. (2005)

19. Planet-Lab users mailing-list: Very high ping/traceroute latencies on planet-
lab nodes (2006) http://lists.planet-lab.org/pipermail/users/2006-March/
001892.html.

20. claffy, k., Crovella, M., Friedman, T., Shannon, C., Spring, N.: Community-oriented
network measurement infrastructure (CONMI) (2005) Workshop Report. Available
from http://www.caida.org/publications/papers/2005/conmi.

21. OneLab consortium headed by Université Pierre & Marie Curie: The onelab project
(2006) See http://www.one-lab.org.


