
Implemen'ng	IPv6	Segment	
Rou'ng	in	the	Linux	Kernel	

David	Lebrun,	Olivier	Bonaventure	
ICTEAM,	UCLouvain	

Work	supported	by	ARC	grant	12/18-054	(ARC-SDN)	and	a	Cisco	grant	



Agenda	

•  IPv6	Segment	Rou'ng	
	

•  Implementa'on	in	the	Linux	kernel	
	

•  Performance	evalua'on	



Packet	along	
shortest	path	to	R5	

What	is	Segment	Rou'ng	?	

•  The	return	of	Source	Rou'ng	
– Each	packet	contains	a	loose	route	to	encode	any	
path	inside	the	network	

R1	

R2	

R3	 R5	

R7	

R6	

R5->R2->R6	

Packet	along	
shortest	path	to	R2	

R5->R2->R6	

Normal	IPv6	
forwarding	

Normal	IPv6	
forwarding	

R2->R6	

->R6	

Packet	along	
shortest	path	to	R6	

->R6	



IPv6	Segment	Rou'ng	

•  Basic	principles	
–  IGP	distributes	IPv6	prefixes	and	router	loopback	
addresses	
	

–  Loose	source	route	encoded	inside	IPv6	extension	
header	containing	a	list	of	segments	
	

– Main	types	of	segments	
•  Node	segment	(router's	loopback	address)	
•  Adjacency	segment	(router	outgoing	interface)	
•  Virtual	func'on	(operator	defined	func'on)	
	

h`ps://tools.iec.org/html/drad-iec-6man-segment-rou'ng-header-06	

h'p://www.segment-rou7ng.net	



The	IPv6	Segment	Rou'ng	Header	
Remaining	
segments	

Each	segment	is	
one	IPv6	address	Index	of	last	

segment	

Extensibility	



IPv6	Segment	Rou'ng	use	cases	

•  Paths	controlled	by	the	endhosts	

R1	

R2	

R3	 R5	

R7	

R6	

R5->R2->R6->D	

R5->R2->R6->D	

R5->R2->R6->D	

R5->R5->R6->D	
R5->R2->R6->D	

R5->R2->R6->D	

R5->R2->R6->D	

Source	adds	SRH	to	
all	packets	

Des'na'on	
removes	SRH	from	

all	packets	



Network	Func'on	Virtualisa'on	

•  Force	packets	to	pass	through	NFV	

R1	

R2	

R3	 R5	

R7	

R6	

R5->FCT->R6	

R5->FCT->D	

R5->FCT->R6	

R5->FCT->D	

FCT	performed	
on	R5	

R5->FCT->D	

FCT	



Encap	and	decap	

•  Routers	can	also	tunnel	SRH	packets	

R1	

R2	

R3	 R5	

R7	

R6	

->D	

R1->R5->R7->R6	[->D]	
->D	

Ingress	router	
encaps	to	R6	
	with	SRH	

R1->R5->R7->R6	[->D]	

Egress	router	
decaps	and	
removes	SRH	

R1->R5->R7->R6	[->D]	

R1->R5->R7->R6	[->D]	

R1->R5->R7->R6	[->D]	



Security:	Learning	from	the	past	

•  How	to	avoid	past	failures	of	source	rou'ng	?	



The	IPv6	SRH	HMAC	TLV	
Different	keys	and	
different	hash	

func'ons	can	be	used	



U'lisa'on	of	the	HMAC	TLV	

•  All	routers	are	configured	with	an	HMAC	key	
	
	
	
	
	

•  Clients	receive	SRH	with	HMAC	key	
– E.g.	from	SDN	controlled	

•  Trusted	servers	configured	with	HMAC	key	

R1	

R2	

R3	 R5	

R7	

R6	



Agenda	

•  IPv6	Segment	Rou'ng	
	

•  Implementa'on	in	the	Linux	kernel	
	

•  Performance	evalua'on	



Basics	of	Linux	packet	processing	

Packet	recvd	
for	local	
process	

Packet	sent	
by	local	
process	

Forwarded	packet	



Packet	forwarding	with	IPv6	SR	

•  Router	is	one	of	the	segments	in	the	list	

SRH	updated,	
Packet	

forwarded	to	
next	segment	



Packet	forwarding	with	IPv6	SR	

•  Egress	router	receiving	encapsulated	packet	

SRH	
processed	

encapsula'on	
removed	



How	to	configure	IPv6	SR	?	

•  IPv6	SR	implementa'on	extends	iproute2	
– Commands	passed	through	rtnetlink	
– Example	

ip −6 route add fc42::/64  
encap seg6 mode encap
segs fc00::1,2001:db8::1,fc10::7 
dev eth0

Des'na'on	match	

SRv6	encap	

Segments	added	in	
the	encapsulated	

packet	



SRH	usage	by	applica'ons	

•  Endhosts	can	control	the	SRH	on	a	per	flow	
basis	through	the	socket	API	



HMAC	processing	

•  Three	modes	of	opera'ons	can	be	configured	
–  	Ignore	
•  All	packets	are	forwarded	independently	of	the	HMACs	

– Verify	
•  Packets	containing	an	HMAC	are	processed	if	HMAC	is	
valid	

•  Packets	without	HMAC	are	processed	
– Enforce	
•  Packets	containing	an	HMAC	are	processed	if	HMAC	is	
valid	

•  Packets	without	HMAC	are	processed	



Agenda	

•  IPv6	Segment	Rou'ng	
	

•  Implementa'on	in	the	Linux	kernel	
	

•  Performance	evalua'on	



Lab	measurements	

•  Lab	setup	
–  Intel	Xeon	X3440	processors	(4	cores	8	threads	at	2.53	GHz	
–  16	GB	of	RAM	
–  two	Intel	82599	10	Gbps	Ethernet	

•  One	queue	per	CPU,	one	IRQ	per	queue	
–  Linux	kernel		4.11-rc3,	TSO	and	GRO	disabled	

•  Traffic	generator	
–  Pktgen,	in-kernel	module	sending	UDP	packets	

10	Gbps	Ethernet	 10	Gbps	Ethernet	



First	measurements	with	one	CPU	

Why	this	gap	?	

Baseline	
Plain	IPv6	
forwarding	

No	difference	between	
SRH	forwarding	and	
encap+forwarding	



Performance	limita'ons		
of	the	first	implementa'on	

•  Route	lookup	
– Des'na'on	cache	was	implemented	for	locally	
generated	packets	but	not	forwarded	ones	
•  Fixed	with	a	dest	cache	

•  Issue	with	memory	alloca'on	
– Forced	free	to	take	a	slow	path	involving	spinlocks	
in	case	packet	was	processed	by	different	CPU	
than	NIC	IRQ	
•  Fixed	with	a	be`er	u'lisa'on	of	the	skb	



Improved	performance	on	one	CPU	

IPv6	SRH	forwarding	and	encap	
are	now	close	to	plain	IPv6		
packet	fowarding	performance	



Does	packet	size	affect	performance	?	

1000	bytes	 1000	bytes	

64	 64	



Cost	of	HMAC	

Pure	C	code	

Special	intel	
instruc'ons	



Leveraging	mul'ple	cores	

Performance	
scales	well	with	
the	number	of	
physical	CPUS	



Conclusion	

•  IPv6	Segment	Rou'ng	has	matured	
– Stable	specifica'on	
– Various	use	cases	

•  Implementa'on	in	the	Linux	kernel	4.11+	
– Endhost	func'ons	for	clients	and	servers	
– Router	func'ons	

•  Performance	evalua'on	
– Good	forwarding	and	encap/decap	performance	
– Unsurprisingly	HMAC	TLV	affects	performance	

h'p://www.segment-rou7ng.org	


