
Mickaël Hoerdt, Dept. of computer engineering
Université catholique de Louvain la neuve
mickael.hoerdt@uclouvain.be

In collaboration with :

N. Egi, P. Papadimitriou, L. Mathy (Lancaster Uni.)
M. Handley, A. Greenhalgh (UCL) F. Huici (NEC Europe)

 Implementing Software Virtual Routers
 on Multi-core PCs using Click

LANCASTERLANCASTER

UNIVERSITYUNIVERSITY

2

Background

•Traditionally, high performance networking devices:
-Built as custom hardware
-Made of various specialized “CPUs”
-Specialized multi-cores

•Software routers
- Familiar programming environment
- Easily extensible
- Cheap
- Generic packet processing capability
- Run on (slow ?) commodity hardware ?

3

Background

• But recent advances in commodity HW architectures

- Multi-core (With very high clock frequency)

- Buses (usual bottlenecks) are disappearing

• What about implementing virtual routers with all those
 available CPU cycles ?

4

Core 1 Core 2

L 1 L 1

L 2

Core 3 Core 4

L 1 L 1

L 2

Core 1

L 1
L 2

L 3

Core 2

L 1
L 2

Core 3

L 1
L 2

Core 4

L 1
L 2

Main Memory

MEM 1

- Memory closer to the CPU: fast and small
- Memory Further from the CPU: slow and big
- Huge memory latency difference between L1 and Main memory (up to a factor 100)

 CPU Cache hierarchies

Background

Front
Side
Bus

Memory controller

Core 1

L 1
L 2

L 3

Core 2

L 1
L 2

Core 3

L 1
L 2

Core 4

L 1
L 2

MEM 1

Memory controller

Processor to
Processor
Interconnect

Memory controller

Present PC architecture Future PC architecture

5

Background

Some numbers :

User Mode Linux
IPv4 performances (64 bytes)

 About 59 Kpps
Context switch

Kernel space – user space

Xen – Guest Domain
IPv4 performances (64 bytes)

 About 150 Kpps
Context switch

Hypervisor space – user space

Xen – Priviledged Domain
IPv4 performances (64 bytes)

 About 800 Kpps Single core cycles limitation

Linux - kernel
IPv4 performances (64 bytes)

 About 800 Kpps Single core cycles limitation

6 running cores
Raw performances (64 bytes)

 About 7.2 Mpps Memory latency

6 running cores
IPv4 performances (64 bytes)

 About 4.4 Mpps Memory latency

Setup Performances Bottleneck

6

Software Virtual Routers : Data plane

Hypervisor domain

Vrouter1's Domain Vrouter2's Domain Vrouter3's domain

Control
Plane

Control
Plane

Control
Plane

How is the control plane trafic sent/received to/from vrouters ?

Click Click Click

Legend

Forwarder domain

Packets

Physical NIC

Aim : To avoid memory domain switch per packet

Data planes are off-loaded
To a single memory domain

Single
Memory
Segment

7

Forwarder Domain Architecture : overview

INPUT

PROCESSING

ELEM
ENTS

OUTPUT

PROCESSING

ELEM
ENTS

Virtual Router 1

Virtual Router 2

Virtual Router 3

Virtual Router n

Legend

Single memory space

Static part of the
Forwarding engine

Dynamic part of the
Forwarding engine

Packets

Physical NIC

8

Forwarder Domain Architecture: input processing
Shared hardware queues
+ scales well with the number of supported virtual routers

- requires software classification: subject to unfairness

VRouter 2
66% priority

PollDevice Classifier

VRouter 1
33% priority

Bottleneck

Broadcast ethernet
Trafic is replicated
on all vrouters

9

Forwarder Domain Architecture: input processing
Shared hardware queues
+ scales well with the number of supported virtual routers

- requires software classification: subject to unfairness

Dedicated hardware queues
+ Can drop packets before they hit memory: achieve fairness

- Limited number of supported virtual routers

VRouter 2
66% priority

PollDevice Classifier

VRouter 1
33% priority

Bottleneck

VRouter 2
66% priority

PollDevice VRouter 1
33% priority

PollDevice

Bottleneck

10

Forwarder Domain Architecture: input processing
How can the CPUs core always be ready to poll everywhere ?

PollDevice

PollDevice

VRouter 1

VRouter 2

Core 1

Core 2

11

Forwarder Domain Architecture: input processing

How can the CPUs core always ready to poll everywhere ?

By exploiting NICs with multiple hardware queues :

PollDevice

PollDevice

PollDevice

PollDevice

VRouter 1

VRouter 2

VRouter 1

VRouter 2

Core 1

Core 2

PollDevice

PollDevice

VRouter 1

VRouter 2

Core 1

Core 2

12

Round
Robin

Scheduler

Forwarder Domain Architecture: output processing

VRouter 1

VRouter 2

ToDevice

A Single ToDevice per hardware queue

Core 1

+ Avoid costly cache misses

- Limited to a single core

Round
Robin

Scheduler

VRouter 1

VRouter 2

ToDeviceCore 1

13
ToDevice

ToDevice

Forwarder Domain Architecture: output processing
A Single ToDevice per hardware queue

VRouter 1

VRouter 2
spinlock

Core 1

Core 2

+ Avoid costly cache misses

- Limited to a single core

Several ToDevice per hardware queue
+ Can exploits all the cores cycles

- Spinlock can trigger cache misses

Round
Robin

Scheduler

VRouter 1

VRouter 2

ToDeviceCore 1

2 cores

4 cores

6 cores

-15%

-33%

-45%

Spinlock Perf loss

14

ToDevice

ToDevice

Forwarder Domain Architecture: output processing
Exploiting several hardware queues

VRouter 1

VRouter 2

Core 1

Core 2

+ Can exploit all the cores cycles

- Limited number of supported vrouters.

15

Forwarder Domain Architecture: output processing
Exploiting several hardware queues

Number of ToDevices

16

Forwarder Domain Architecture: output processing
Exploiting several hardware queues

Number of ToDevices

Very significant
Performance impact

17

Forwarder Domain Architecture: output processing
Exploiting several hardware queues

Number of ToDevices

Cache hierarchy effect!

18

Forwarder Domain Architecture: switching

• We don't know
On which outgoing interface a packet will

 be switched.
• But we want

To always keep packets on the same cache
hierarchy.

• Solution
Software Tree based scheduling.

PollDevice

PollDevice

VRouter 1

VRouter 2

ToDevice

ToDevice

ToDevice

ToDevice

L 1 L 1

L 2

L 1 L 1

L 2

Input
processing output processing

19

Forwarder Domain Architecture: switching

• Software Tree based scheduling requires elements replication

PollDevice0 PollDevice1

Strip

CheckIPHeader

RadixIPLookup

Unstrip0 Unstrip1

Queue1Queue0

Todevice1Todevice0

PollDevice0

Strip0

CheckIPHeader0

RadixIPLookup0

Unstrip00 Unstrip01

Queue01Queue00

Todevice01Todevice00

PollDevice1

Strip1

CheckIPHeader1

RadixIPLookup1

Unstrip10 Unstrip11

Queue11Queue10

Todevice11Todevice10

20

Forwarder Domain Architecture: switching

• Software Tree based scheduling requires elements replication

PollDevice0 PollDevice1

Strip

CheckIPHeader

RadixIPLookup

Unstrip0 Unstrip1

Queue1Queue0

Todevice1Todevice0

PollDevice0

Strip0

CheckIPHeader0

RadixIPLookup0

Unstrip00 Unstrip01

Queue01Queue00

Todevice01Todevice00

PollDevice1

Strip1

CheckIPHeader1

RadixIPLookup1

Unstrip10 Unstrip11

Queue11Queue10

Todevice11Todevice10

And element data replication too!

21

Forwarder Domain Architecture: Summary

Building a shared forwarding path for vrouters is a trade-off
Between the desired:

• Desired Scalability depends on
- Level of fairness and performances

•Fairness is obtained by:
- Assigning tickets wisely to the Click scheduler

•Performances is obtained by :
- Distributing the computation among CPU cores to maximize
 the number of available CPU cycles
- Keeping packets as deep as possible inside the cache
 hierarchy to minimize memory latency

Performances

Fairn
ess S

calability

22

Forwarder Domain Architecture : Merging

 Virtual Router 1

Virtual Router 2

OUTPUT

PROCESSING

ELEM
ENTS

INPUT

PROCESSING

ELEM
ENTS

So far we talked about input processing, output processing
and switching.

23

Forwarder Domain Architecture : Merging

 Virtual Router 1

Virtual Router 2

OUTPUT

PROCESSING

ELEM
ENTS

INPUT

PROCESSING

ELEM
ENTS

But what about the syntactic glue between
Input/ouput processing elements
And the vrouters ?

So far we talked about input processing, output processing
and switching.

Goal : From Virtual Routers Click configuration designers
 perpective, the forwarder Domain architecture stays opaque.

24

Forwarder Domain Architecture : Merging

Vrouters click configurations are the same as routers config
Anything between Poll/From-Device and ToDevice

PollDevice
ToDevice

ToDevice

25

Forwarder Domain Architecture : Merging

Classifier PollDeviceor

PollDevice
ToDevice

ToDevice

Vrouters click configurations are the same as routers config
anything between Poll/From-Device and ToDevice

Input processing elements are all ending by a “push”
connection.

26

Forwarder Domain Architecture : Merging

Classifier PollDeviceor

PollDevice
ToDevice

ToDevice

Vrouters click configurations are the same as routers config
anything between Poll/From-Device and ToDevice

Input processing elements are all ending by a “push”
connection.

Output processing elements are all starting by a “pull”
connexion.

ToDevice

27

Forwarder Domain Architecture : Merging

1. Suppress PollDevice/Todevice from the config

PollDevice
ToDevice

ToDevice

28

Forwarder Domain Architecture : Merging

PollDevice
ToDevice

ToDevice

vrouter-foo

1. Suppress PollDevice/Todevice from the config

2. Prefix all the elements names with the Vrouter ID.

29

Forwarder Domain Architecture : Merging

ClassifierPollDevice

PollDevice
ToDevice

ToDevice

ToDevice

ToDevice

vrouter-foo

vrouter-fooInput processing
Output processing

1. Suppress PollDevice/Todevice from the config

2. Prefix all the elements names with the Vrouter ID.

3. Find free slots and plug the config in the forwarder domain

30

Forwarder Domain Architecture : Merging

 All the vrouter handlers are stored under the
 assigned prefix directory within the click-fs.

 This directory is then exported to the virtual router
 address space

Ex: /click/vrouterfoo/counter/count
 /click/vrouterfoo/counter/reset
 /click/vrouterfoo/counter/bit_rate

31

Forwarder Domain Architecture : Merging

ClassifierPollDevice

ToDevice

ToDevice

vrouter-fooInput processing
Output processing

Ex: /click/vrouterfoo/counter/count
 /click/vrouterfoo/counter/reset
 /click/vrouterfoo/counter/bit_rate

 All the vrouter handlers are stored under the
 assigned prefix directory within the click-fs.

 This directory is then exported to the virtual router
 domain

 To delete/update the vrouter config, all the elements
 prefixed with the vrouter-id are deleted from the Click config

32

How is the control plane trafic sent/received to/from vrouters ?

Hypervisor space

Vrouter1's Domain Vrouter2's Domain Vrouter3's domain

Control
Plane

Control
Plane

Control
Plane

How is the control plane trafic sent/received to/from vrouters ?

Click Click Click

Legend

Backends VNIC

Frontends VNIC

Physical NIC

Forwarder domain

Control plane
traffic

Software Virtual Routers : Control plane connection

33

Forwarder Domain Architecture : Control plane

For the trafic coming from the vrouter control plane

- A mapping file that associates backends with
 the physical NICs help us to build the Click
 plumbing.

For the trafic going to the vrouter control plane

- Vrouter's use the equivalent of the “ToHost”
 element to indicate a interest in receiving trafic

c

34

Forwarder Domain Architecture : Future work

- Platform software packaging.

- Vrouter management.

- Automatic ressource allocation
 and scheduling of concurrents
 vrouters

- performances requirements to
 physical ressources mapping.

	Tales of the Virtual Router Project
	Background
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

