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ABSTRACT
Very recent activities in the IETF and in the Routing Research
Group (RRG) of the IRTG focus on defining a new Internet ar-
chitecture, in order to solve scalability issues related to interdo-
main routing. The approach that is being explored is based on
the separation of the end-systems’ addressing space (the identi-
fiers) and the routing locators’ space. This separation is meant
to alleviate the routing burden of the Default Free Zone, but it
implies the need of distributing and storing mappings between
identifiers and locators on caches placed on routers. In this pa-
per we evaluate the cost of maintaining these caches when the
distribution mechanism is based on a pull model. Taking as a
reference the LISP protocol, we base our evaluation on real Net-
flow traces collected on the border router of our campus network.
We thoroughly analyze the impact of the locator/ID separation,
and related cost, showing that there is a trade-off between the
dynamism of the mapping distribution protocol, the demand in
terms of bandwidth, and the size of the caches.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Net-
work communications; C.2.6 [Internetworking]: Rout-
ers; C.4 [Performance of Systems]; I.6.6 [Simulation
and Modeling]: Simulation Output Analysis

General Terms
Measurement, Performance, Design.

Keywords
Locator/ID separation, LISP, Internet Architecture, Rout-
ing, Addressing.

1. INTRODUCTION
The ever-increasing growth of the Internet is raising

scalability issues mainly related to interdomain rout-
ing, creating an increasing concern on the scalability
of today’s Internet architecture [12, 17]. These issues
are mostly due to the use of a single numbering space,
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namely the IP addressing space, for both host transport
sessions identification and network routing [5, 12, 24].
In addition to the single numbering space, multihoming
and Traffic Engineering (TE) are making BGP’s routing
tables in the Default Free Zone (DFZ) to grow restlessly
to a level where manageability and performances start
to be critical [1, 12, 29].

Recently, both the IETF and the Routing Research
Group (RRG) of the IRTG have started to explore the
possibility to design a new Internet architecture, in or-
der to solve the above-mentioned issues [17]. In par-
ticular, there is a fairly amount of activity around the
approach based on the separation of the end-systems’
addressing space (the identifiers) and the routing loca-
tors’ space. This separation is perceived as the basic
component of the future Internet architecture [2, 18,
19, 20, 30]. The main benefits that are expected to be
obtained are the reduction of the routing tables size in
the DFZ and improved TE capabilities. Indeed, the use
of a separate numbering space for routing locators will
allow to assign Provider Independent (PI) addresses in
a topologically driven manner, improving aggregation
while reducing the number of globally announced pre-
fixes. Furthermore, it will also allow to perform both in-
bound and outbound flexible TE, by setting tunnels be-
tween different locators based on several different met-
rics or policies [23].

Even if it is generally accepted that locator/identifier
separation is the way to go, there is no clue insofar on its
cost and on the impact of this approach on the actual In-
ternet. Indeed, as a counterpart of the above-mentioned
benefits, there is the need to distribute and store map-
pings between identifiers and locators on caches placed
on border routers. In this paper, we try to fulfill this
lack by exploring and evaluating the cost of maintaining
these caches and the overhead, in both terms of lookup
queries and tunneling, introduced in the current Inter-
net by this locator/identifier separation. To the best of
our knowledge, this paper is the first one on the subject.

Taking as a reference the Locator/ID Separation Pro-
tocol (LISP [9]), we base our evaluation on real Net-
flow traces collected on the border router of our cam-
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pus network. We estimate the cost of maintaining the
locator/ID mapping caches, on border routers of stub
networks, when the distribution mechanism is based on
a PULL model. By PULL model we intend a model
where each time a mapping is necessary and not present
in the local cache, a query is sent to a particular map-
ping distribution service. Note that we do not refer to
any particular mapping distribution service, rather we
explore what is the load and the dynamism such a sys-
tem should bear with. The contributions of this paper
are, hence, three-fold:

• We completely characterize the behavior of the
cache locally storing locator/ID mapping for on-
going communications.

• We provide a deep analysis of the burden imposed
by lookups queries performed in order to retrieve
mappings.

• We analyze the characteristics of real traffic that
have an impact on the behavior of caches and lookup
mechanisms.

Our analysis shows that there is a trade-off between
the dynamism of the mapping distribution protocol, the
demand in terms of bandwidth, and the cache’s size.

The remainder of this paper is structured as follows.
In section 2, we describe the principles of the locator/ID
separation paradigm, describing at the same time the
LISP proposal and its variants. We illustrate how we
collected and analyzed Netflow traces in section 3. The
emulation of the LISP cache is described in section 4,
right before detailing the outcomes of our measurements
in section 5. The main results are then summarized in
section 6, which concludes the paper.

2. LOCATOR/ID SEPARATION: HOW DOES
IT WORK?

There are several works, which can be found in the
literature, that tackle the issue of separating end-host
identifiers from routing locators (e.g., [11, 16, 22, 28]).
Nevertheless, seldom the proposed approaches can be
incrementally deployed, since they have a disrupting
impact on the current Internet architecture, needing
the introduction of shim layers and/or heavy changes
in end-systems’ protocol stack.

On the contrary, the Locator/ID Separation Protocol
(LISP), proposed by Farinacci et al. [9], has the nice
property of being suitable for incremental deployment,
without any impact whatsoever on end-systems. In the
next section, we give a general overview of LISP. On
the one hand, this allows, through a simple example, to
clarify how the locator/ID separation paradigm works.
On the other hand, since we will use LISP as a reference
throughout the rest of the paper, this allows to explain
the basic mechanisms of the protocol. We will give fur-
ther details about LISP and its variants in section 2.2.
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Figure 1: Position of EIDs and RLOCs in the
global Internet.

2.1 LISP Overview
LISP is based on a simple IP-over-UDP tunneling ap-

proach, implemented typically on border routers, which
act as Routing LOCators (RLOCs) for the end-systems
of the local domain.1 End-systems still send and receive
packets using IP addresses, which in the LISP termi-
nology are called Endpoint IDentifiers (EIDs). Remark
that since in a local domain there may be several border
routers, EIDs can be associated to several RLOCs.

The basic idea of LISP is to tunnel packets in the core
Internet from the RLOC of the source EID to the RLOC
of the destination EID. During end-to-end packet ex-
change between two Internet hosts, the Ingress Tun-
nel Router (ITR) prepends a new LISP header to each
packet, while the Egress Tunnel Router (ETR) strips
this header before delivering the packet to its final des-
tination. In this way there is no need to announce local
EIDs in the core Internet, but only RLOCs, which are
necessary to correctly tunnel packets. As we demon-
strated in our previous work [23], this last point allows
to achieve the main objective of the locator/ID sepa-
ration paradigm: the reduction of the size of BGP’s
routing tables.

In order to understand the main behavior of LISP, let
us consider the topology depicted in Figure 1. For the
sake of simplicity, we use the same acronyms to indicate
both the name of the system and its IP address, i.e.,
EIDx as well as RLOC2

EIDy
indicates both a name and an

IP address. In this topology, the end-host EIDx is reach-
able through two border routers, hence it can be asso-
ciated to two RLOCs: RLOC

1
EIDx

and RLOC
2
EIDx

. Simi-

larly, EIDy has two locators: RLOC1
EIDy

and RLOC2
EIDy

.
Assuming that EIDx wants to open a connection to EIDy,

1Actually, LISP was defined as an IP-over-IP tunnel in the
first draft [8]. The IP-over-UDP approach has been intro-
duced only in the second draft [9] published the 29th of June
2007. By using UDP, an additional custom header is intro-
duced right after the UDP header and before the original IP
header. The purpose of this additional header is to add a
basic level of security against spoofing by the exchange of a
random value.
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Algorithm 1 LISP Cache outgoing packets processing
1: if ( ∃ EID-to-RLOC map in Cache for destination EID ) then
2: /* Cache Hit */
3: Update Timeout;
4: Select corresponding RLOC;
5: Return Selected RLOC;
6: else
7: /* Cache Miss */
8: Create New Entry;
9: Set Timeout;
10: end if

the following steps are performed:

1. EIDx issues a first IP packet, using its ID (EIDx)
as Source Address (SA) and using EIDy as Desti-
nation Address (DA). This packet is routed inside
ASx in the usual way in order to be delivered to
one of EIDx’s locators.

2. The ITR (e.g., RLOC1
EIDx

) receives the packet. Re-
mark that this is done in practice by intradomain
routing or TE policies, coherently to the local EID-
to-RLOC mapping. These policies can vary from
one AS to another. Nonetheless, the EID is reach-
able from the outside through all of its RLOCs.
Each RLOC is aware of local EID-to-RLOC map-
pings, which are stored in the local database.

3. RLOC1
EIDx

performs the EID-to-RLOC lookup in
its local cache, using Algorithm 1, to determine
the routing path to the locator of EIDy. Remark
that all the entries of the cache can time out due
inactivity. Note also that the creation of a new
entry may imply several operations, including the
transmission of a lookup query to a mapping dis-
tribution service. We will explain in the next sec-
tion, and in further details, all the possibilities.
By now, let us assume that the local cache lookup
operation returns RLOC2

EIDy
.

4. A new LISP header is prepended to the original
IP packet, having RLOC

1
EIDx

as SA and RLOC
2
EIDy

as DA. The packet is then routed at IP level in
the Internet. Remark that core Internet routers
do not need to have routes towards EIDy, in order
to correctly forward the packet, only routes for the
RLOCs are requested.

5. When the packet reaches RLOC2
EIDy

the outer LISP
header is stripped off. At the same time, a check
is done on the local cache following Algorithm 2.
This operation can result in the issue of some pack-
ets, as we will detail in the next section. The
packet is then normally forwarded inside ASy to
be delivered to EIDy.

Note that, after the first packet has gone through the
LISP tunnel, the caches on both endpoints have the ap-
propriate information to correctly forward all the sub-
sequent packets, i.e., all subsequent packets will always
give a cache hit.

Algorithm 2 LISP Cache incoming packets processing
1: if ( ∃ EID-to-RLOC map in Cache for source EID ) then
2: /* Cache Hit */
3: Update Timeout;
4: else
5: /* Cache Miss */
6: Create New Entry;
7: Set Timeout;
8: end if

2.2 LISP Variants
LISP is defined in four different variants, depending

on the “routability” of EIDs in the core Internet and on
the type of mapping distribution protocol it is supposed
to work with. These variants are: LISP 1, LISP 1.5,
LISP 2, and LISP 3 [9]. They all work basically in
the same way as we described in the previous section,
except for the cache that can have a slightly different
behavior, depending on the variant. In the following
sections, we describe the peculiarities of each variant.

2.2.1 Lisp 1 and 1.5

LISP 1 and 1.5 both assume that EIDs are routable
IP addresses. The only difference is that LISP 1.5 as-
sumes that routing based on EIDs is done via a “sep-
arate topology”, however, in the draft, no details are
given on this topology.

The fact that EIDs are routable addresses means that
the mapping distribution protocol can be embedded
into LISP itself, in the following way. When a packet
arrives on the ITR, i.e., the RLOC of the source ad-
dress, and there is no corresponding cache entry, LISP
will still prepend a LISP header to the original packet.
Nevertheless, the DA of this LISP header is set to the
destination EID (since it is a routable address), while
the SA of the LISP header is set to the RLOC that
is performing the encapsulation. The packet is then
injected into the Internet. The information that a com-
munication has been initiated toward an EID for which
no mapping is known is kept in a particular queue for
pending mappings. Thus, in Algorithm 1, in the case
of a cache miss, step 8 is split in the followings steps.

Set DA in the LISP Header equal to destination EID;
Set SA in the LISP Header equal to me;
Put EID in Pending Mappings Queue;

At the other end of the tunnel, hence on the ETR, on
the reception of such a packet, two main actions are
performed. First, in the case that the received packet
causes a cache miss, the new entry is created right away.
Indeed, the SA of the LISP header is the RLOC of the
SA of the inner header, which is an EID, hence there is
a complete mapping information. Second, the ETR rec-
ognizes that the packet has been routed in the Internet
using the EID for which it is one of its RLOCs. As a
consequence, in order to announce that it is the RLOC
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for the destination EID (i.e., communicating the EID-
to-RLOC mapping), it sends a Map-Reply message (as
a UDP packet) back to the ITR, which is known since
it is the SA in the LISP header.

When the original ITR receives a Map-Reply packet
for a pending mapping request, it creates the new en-
try in the cache. At this point, both routing locators
have the complete mapping information. The steps de-
scribed above mean that in Algorithm 2, before step 1,
the following check is performed.

if ( DA of the incoming packet is an EID ) then
Retrieve complete mapping from Database;
Send Map-Reply packet to remote RLOC;

end if

The content of this Map-Reply packet is taken from the
local LISP database of the ETR. The LISP database
should not be confused with the LISP cache. While
the former contains local mappings for local EIDs (i.e.,
mappings concerning EIDs in the local domain), the lat-
ter temporarily contains mappings concerning remote
EIDs with which a communication is ongoing.

There is already a proposal, called NERD [14], to dis-
tribute mappings in order to fill local databases. NERD
assumes that there are one or more external authorities
(e.g., RIRs - Regional Internet Registries) that store
and distribute mappings all over the Internet. While it
is presumable that the LISP database will have a less
dynamic behavior, compared to the LISP cache, such
an approach is really static. The fact that external au-
thorities distribute local mappings does not allow any
type of intradomain TE (e.g., to perform tasks like fast
re-route or similar).

Note that NERD can be used as an EID-to-RLOC
distribution protocol, since it is basically a map dis-
tribution system based on a PUSH model. By PUSH
model we intend a mapping distribution protocol that
“pushes” all mappings to each routing locator, without
the need of explicit queries. This means that routers
would not have any LISP cache, but only a large database
containing all Internet-wide mappings, which, by the
way, risks to defeat the major goal of the locator/ID sep-
aration, i.e., reducing routing tables’ size. We will no
further explore this approach, since, as already stated,
here we focus on a PULL model and because the static
nature of NERD imposes several limitations (e.g., im-
possibility of dynamic TE).

2.2.2 Lisp 2 and 3

Both LISP 2 and LISP 3 assume that the mapping
distribution protocol is totally separated from the tun-
neling protocol (i.e., LISP itself) and that EIDs are ad-
dresses not routable anymore in the core Internet. This
means that, if not present in the cache, mappings need
to be retrieved through an explicit query. Both vari-
ants assume that queries consist in a LISP Map-Request

message at which the mapping distribution service must
reply with a LISP Map-Reply message (see Farinacci
et al. [9]). The difference between these two variants
lays on the mapping distribution protocol, and related
model, they assume will exist.

LISP 2 assumes a DNS (Domain Name System) based
mapping distribution system, i.e., a PULL model. This
means that in both Algorithms 1 and 2, a cache miss
and the consequent entry creation implies a lookup query
to a DNS server. The advantage of such an approach is
that the DNS can even be used in order to select inter-
domain paths (by choosing among the available RLOCs
of the EID) that have good performances [3].

LISP 3, instead, assumes a Distributed Hash Table
(DHT) based mapping distribution system. The DHT
approach can either consist of a PUSH model, where
all tunnel routers will have full knowledge of the map-
ping, or consist of a hybrid PULL/PUSH model, where
tunnel routers will perform queries (PULL part) to a
separate DHT system (PUSH part). In the hybrid ap-
proach, this means that, like for LISP 2, each time there
is a cache miss and a new entry needs to be created, a
lookup query is issued. Queries are sent to the DHT in-
frastructure, which is different from the DNS infrastruc-
ture. A first proposal of hybrid approach can be found
in the work of Brim et al. [4]. A full PUSH model, ei-
ther based on DHTs or on the simpler NERD approach,
is impossible to evaluate without detailed specification
on the mapping function and the mapping distribution
protocol. Furthermore, a DHT system implementing a
full PUSH model, raises some issues, e.g., on the locality
of the information, that are still unresolved.

Remark that it is out of the scope of this paper to pro-
pose any mapping function, distribution model, or pro-
tocol. Here we limit our study to a PULL model in the
context of a LISP-like approach. In particular looking
at the dynamics of the cache that would be present on
border routers of stub networks and temporarily storing
remote mappings, exploring under what kind of trade-
offs a PULL model can scale.

3. NETFLOW TRACES COLLECTION
During the end of May and the beginning of June

2007, we started to collect traces of the traffic from and
to our campus network, which counts almost ten thou-
sand active users/day. The network uses a class B /16
prefix block and is connected to the Internet through
a border router that has a 1 Gigabit link toward the
Belgian National Research Network (Belnet).

To collect the traffic, we rely on the Netflow [6] mea-
surement facility supported by our border router. Net-
flow provides a record for each flow, containing informa-
tion like the timestamp of the connection establishment,
the duration, the number of packets, and the amount of
bytes transmitted. The advantage of Netflow is that the
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traffic is collected and stored in a very compact way, al-
lowing to easily collect daylong traces. The drawback of
Netflow is that traces have the granularity of flows, thus
hiding characteristics like the burstiness of the traffic,
however, this does not represent an issue in the present
paper. Furthermore, note that it is not worth here to
analyze in details what kind of traffic dominates (e.g.,
http, ftp, P2P, etc), since what matters in our context
are flows, which can trigger a mapping lookup in case
of a cache miss.

To collect Netflow traces, we used the default config-
uration of our border router: a Cisco Catalyst 6509.
In order to identify a flow, Netflow groups together
all packets having the same source/destination IP ad-
dresses, source/destination ports, protocol interface, and
class of service. Furthermore, there are three main con-
figuration parameters that are used to shape flows (e.g.,
to decide when a flow ends), but also to keep the Net-
flow table to an acceptable size. These parameters are:

normal aging - If no packets are received on a flow
within the duration of the timeout set by this pa-
rameter the flow entry is deleted from the table,
i.e., it is considered as ended. In our case it was
by default set to 300 seconds.

fast aging - The fast aging parameter uses a timeout
value to check if at least a threshold value of pack-
ets have been switched for each flow. If a flow has
not switched the threshold number of packets dur-
ing the time interval, then the entry is aged out.
Typical flows that are aged out by this parameter
are short-lived DNS flows. In our case the default
values were 60 seconds for the timeout and 100
packets for the threshold.

long aging - Long aging is used to prevent counter
wraparound, which can cause inaccurate statistics.
If a flow has a duration longer than the timeout
set by this parameter (1920 seconds was the de-
fault value in our case), then it is aged out even if
still in use.

In order to analyze the traces we collected we use
a two-step post-processing method. In a first step we
analyze traces using the flow-tools [10], then, in a second
step, we use our own emulation software to refine the
results.

4. LISP CACHE EMULATION
As explained in section 2, under a PULL model all

variants of LISP store mapping information concerning
remote EIDs in a cache. We coded a small software
able to emulate the behavior of such a cache, which
can be fed with the Netflow traces we collected. This
allows us to evaluate various parameters (e.g., size, hits,
misses, timeouts, etc) of the cache itself, but also to
make some estimations on the lookup traffic. The LISP

cache emulator we implemented basically performs the
two algorithms described in section 2.1 (i.e., Algorithms
1 and 2). For each flow record, in order to apply the
correct algorithm, the emulator looks at its direction
(i.e., if the flow is incoming or outgoing) and selects the
correct prefix to look at. Then it performs the correct
algorithm.

Note that Netflow is not able to recognize bidirec-
tional sessions, like for instance TCP sessions, and con-
siders all flows as unidirectional. This means that all
bidirectional sessions are split and stored as two distinct
flows in opposite direction. In the context of our emu-
lation, however, there is no reason to rebuild sessions.
Indeed, among the two unidirectional flows forming a
session, the one starting earlier (session initiator) will
create the entry in the cache (if it is not already ex-
isting), while the flow that will close the session, thus
ending later, will set up the entry timestamp value used
for the expiration timeout. Even more, the direction of
the flow that initiate the session is not important for
the cache itself, since in both cases LISP assumes that
a mapping for the remote EID needs to be inserted in
the cache. The only difference is that if an outgoing
flow creates an entry in the cache, then a lookup op-
eration may be necessary, depending of the variant of
LISP (see section 2.2).

In our analysis, we assume that the granularity of the
EID-to-RLOC mapping is the prefix blocks assigned by
RIRs. We call it /BGP granularity. In particular, we
used the list of prefixes made available by the iPlane
Project [15], containing around 240,000 entries. Using
/BGP granularity means that each EID is first mapped
on a /BGP prefix. The cache will thus contain /BGP
to RLOC mappings.2 This is a natural choice, since
routing locators are supposed to be border routers.

The /BGP granularity allows to reduce the BGP’s
routing table size, by avoiding to have to advertise pre-
fixes of stub networks (like our campus network) in the
DFZ. Indeed, in our case, with this granularity, the
LISP database will contain a single entry, mapping all
addresses in our class B /16 prefix block to our border
router, which becomes the routing locator (RLOC) of
all EIDs of our stub network. Meaning that there is
no need to advertise our /16 prefix. What is important
is that the mapping distribution system is able to an-
nounce that all the EIDs in our /16 block are reachable
through our RLOC (i.e., our border router). Globally,
this means that the prefixes of all stub networks do not
need anymore to be announced in BGP’s updates. We
do not explore further this issue, since it is not in the
scope of this paper, however, it is important to remark
how the granularity of the mapping has a deep impact
on BGP’s routing table size. In particular, the more

2Note that both EIDs and RLOCs still remain full /32 IP
addresses.
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Figure 2: One week report of the number of
correspondent prefixes contacted per hour.

aggregation is performed on EIDs, (i.e., the coarser is
the granularity), the more the size of BGP routing table
can be reduced [23]. It is important to recall that the
reduction of the size of BGP’s tables is the main target
of the locator/ID separation paradigm [17].

5. MEASUREMENTS RESULTS
In the following sections we present the main results

we obtained from our analysis, by showing various mea-
surements we performed on the traffic itself and on the
outcome of our LISP cache emulator.

5.1 Correspondent Prefixes
Since we use /BGP as a granularity for EID-to-RLOC

mappings, we first characterize the traffic we analyzed
by exploring the features of incoming and outgoing flows
using the number of correspondent prefixes as a met-
ric. Figure 2 shows a one weeklong plot of the num-
ber of correspondent prefixes/hour, for both incoming
and outgoing flows. As can be observed from the fig-
ure, the number of correspondent prefixes is more or
less the same for both incoming and outgoing traffic.
Nonetheless, this should not be interpreted as the fact
that almost all flows are bidirectional. Indeed, in the
same figure there is the plot of the total number of cor-
respondent prefixes, obtained as:

TotPfxs =
∣

∣

∣
PfxsIn

⋃

PfxsOut

∣

∣

∣
. (1)

Where TotPfxs represents the total number of corre-
spondent prefixes, while PfxsIn and PfxsOut repre-
sent the sets of correspondent prefixes, respectively, for
incoming and outgoing traffic. The union operation
avoids counting twice prefixes toward/from which there
are bidirectional flows. As it can be observed, there
is a difference of roughly 20%. Thus, there is a non-
negligible amount of prefixes toward or from which there
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Figure 3: One day report of the number of cor-
respondent prefixes contacted per minute.

are unidirectional flows. It is useful to mention that the
number of correspondent prefixes follows a night/day
regular cycle, as the amount of traffic, with day peaks
that can reach around 55,000 distinct prefixes in one
hour, while during the night it can drop down to 25,000
prefixes/hour. Night/day cycles are an essential char-
acteristic of stub networks traffic [26].

A more detailed plot of the correspondent prefixes
can be found in Figure 3, where we show a one day-
long plot of the same measurements with a per minute
granularity. As it can be observed, the number of cor-
respondent prefixes drops when we use such a granu-
larity, which is not surprising. Nevertheless, the 20%
difference is roughly preserved. This second picture al-
lows us to highlight that, during daytime, the number
of prefixes does not have such a smooth distribution as
Figure 2 suggests. On the contrary, there are lots of
spikes, due to the inherently “spikily” distribution of
contacted prefixes, when observed at this granularity,
caused by the important topological variability of the
large majority of the interdomain traffic ([13, 26, 27]).

As already mentioned in section 4, LISP creates an
entry in its cache no matter the direction of the flow
and whether it is uni- or bi-directional. This means
that when the timeout of the entries is set to a value
larger than one minute, the total number of correspon-
dent prefixes, shown in Figure 3, represents the lower
bound of the size of LISP’s cache. Hence, representing
the minimum number of entries that are present. This
observation is confirmed by the results presented in the
next section.

5.2 LISP Cache Emulation
In section 4 we have described the LISP cache emu-

lator. What we have not mentioned there is the value
of the timeout associated to each entry. Indeed, if an
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Figure 4: One day report of the behavior of LISP cache.

entry is not used for at least the time set in the time-
out, the entry is considered expired and it is purged.
We performed LISP cache emulations using three dif-
ferent values for the timeout, namely three, thirty, and
three hundred minutes. The general behavior of the
LISP cache for the different values of the timeout is pre-
sented in Figure 4. In particular, the figure shows the
emulation, over one day, of the main parameters char-
acterizing the cache, i.e., size, number of hits, number
of misses, and number of expired timeouts.

The size of the cache is expressed in number of entries
and follows the day/night cycle of the traffic. The range
of this cycle for the cache size depends on the timeout
value. When using a three minutes timeout, the number
of entries ranges from around 7,500 during the night, up
to around 18,000 during the day. This means that the
size of the cache has an increase of 140% between night
and day. In the case of a thirty minutes timeout, the
number of entries ranges from roughly 22,500 during the
night, up to around 43,500 during the day. It can be
observed that, as expected since entries live longer, the
average size of the cache is larger, while the size during
the day is almost the double (93% actually) compared
to the night period. This is not the case when using a
three hundred minutes timeout. Indeed, the number of
entries ranges from 62,000 up to 103,000, meaning an
increase of around 60%. Thus, the longer the timeout
value, the larger the average cache size and the smaller
is the percentage of variation between night and day.

As explained in section 2, due to multihoming, an
EID (or a /BGP prefix as in our case) can be associated
to more than one RLOC. We can assume that each set
of EIDs (/BGP prefix) can be represented by 5 bytes,
i.e. IP prefix and prefix length. Concerning RLOCs,
we can consider that they have a size of 6 bytes. This
because LISP associates to each RLOC (4 bytes IP ad-
dress) two values: its Priority (one byte) and its Weight
(one byte) [9]. These parameters are supposed to be
used for traffic engineering purposes. With these values
we can estimate the size of the cache as follows:

S = E × (5 + N × 6 + C) . (2)

Timeout Period 1 RLOC 2 RLOCs 3 RLOCs
3 Min. Night 139 183 227

Day 334 440 545
30 Min. Night 417 550 681

Day 807 1062 1317
300 Min. Night 1132 1490 1847

Day 1917 2522 3127

Table 1: LISP cache size estimation (in KBytes).

Where S is the size of the cache expressed in bytes, E

is the number of entries, N the number of RLOCs per
EID, and C represents the overhead in terms of bytes
necessary to build the cache data structure. Assuming
the cache is organized as a tree, C can be set to 8 bytes,
just the size of a pair of pointers. In Table 1, we provide
an estimation, for both day and night periods and for
all the three timeout values, of the size of the cache,
expressed in KBytes, when for each /BGP prefix there
are up to three RLOCs. Depending on the timeout
value, the size of the cache can range from a bit more
than a hundred KBytes, up to few MBytes.

Still from Figure 4, it can be observed that the large
majority of the flows already find a mapping in the
cache when they start. The number of hits ranging
from around 20,000 hits/minute during the night, up
to more than 70,000 hits/minute during the day, with
spikes that reach 90,000 hits/minute. The value of the
timeout does not have a large impact on the number of
hits. Indeed, the corresponding curve remains almost
unchanged in all the three cases. It is important to re-
mark that in our analysis, the number of hits is slightly
overestimated. As we explained in section 3, long last-
ing flows are divided in smaller flows that last at most
long aging time. This split has no impact on the number
of entries in the cache, since the first chunk will create
the entry (if necessary) and all subsequent chunks will
not. Nonetheless, the number of hits results biased. In-
deed, all subsequent chunks will generate a hit, which
is not conform to reality. However, the number of flows
that last more than 32 minutes (this is the value the
long aging parameter was set) are very few, thus the
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Figure 5: Cumulative Distribution Function of
the cache entries lifetime.

Timeout Min (Night) Max (Day)
3 Min. 1250 4300

30 Min. 250 1100
300 Min. 30 320

Table 2: Expired timeouts per minute.

resulting overestimation is negligible.
Differently from the number of hits, the number of

misses and expired timeouts has a deep change when
changing timeout value. We plotted these two curve
only in Figure 4(a), where are still visible. We did not
plot them in Figure 4(b) and 4(c) since they become
practically invisible due to the range of the vertical axis.
Clearly, they also have a night/day cycle, with mini-
mum during the night and maximum during the day,
which we summarize in Table 2 and 3.

In order to better understand the dynamics of the
LISP cache, we plot in Figure 5 the Cumulative Distri-
bution Function (CDF) of the entries’ lifetime. Obvi-
ously the distribution is lower bounded by the timeout
value, as it can be seen in the figure. What is interest-
ing to remark is that the large majority of the entries
have a lifetime slightly higher than the timeout value.
This means that the large majority of the flows have
a very small duration and are directed or come from
prefixes that are not contacted so often. On the other
hand, the distribution shows also that a small number
of entries can have a lifetime as long as the whole period
of observation, i.e., 24 hours. This does not mean that
there are flows of such a length, but that there are a
small number of prefixes that are contacted as often as
the size of the timeout. This observation is also corrob-
orated by the fact that, as it can be seen in the figure,
the larger the timeout, the lower is the “knee” of the
CDF. Meaning that more and more flows help to keep
alive a larger number of cache entries.

We also evaluated the CDF of the amount of bytes
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Figure 6: Cumulative Distribution Function of
the volume of traffic per cache entry.

Timeout Min (Night) Max (Day)
3 Min. 1300 4050

30 Min. 260 1200
300 Min. 20 330

Table 3: Number of cache misses per minute.

that are forwarded using each particular cache entry.
The result is shown in Figure 6. Obviously, the longer
an entry lasts in the cache, the higher the probability
to be used. This explains why the higher the timeout
value, the higher the ratio of entries that are used to
forward a large volume of traffic. For instance, when
using a three minutes timeout, 99.5% of the entries are
used to forward less than 1 MBytes of traffic, while
when using a three hundred minutes timeout, this per-
centage drops to 95.5%. On the other hand, for the
three values of timeout, there are entries that are used
to forward several GBytes of traffic. These results need
to be interpreted carefully. It is known that there exist
several different classes of flows [25]. It is also known
that flows are very volatile in terms of volume, changing
their behavior on the flight [21]. Due to the granular-
ity of Netflow traces, we are not able to explore these
issues, however, as far as the locator/ID mapping is con-
cerned, the present analysis provide sufficient insight on
the topic.

5.3 Mapping Lookups
The measurements described in the previous section

concern parameters related to the LISP cache itself.
Nevertheless, they can be used to estimate other pa-
rameters related more generally to the locator/ID sep-
aration and the different variants of LISP.

Assuming a PULL model for mapping information
distribution, like for example in LISP 2, which assumes
a DNS-based solution, we are able to estimate the num-
ber of lookups/minute our border router would issue.
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(c) 300 minutes timeout.

Figure 7: Number of lookup queries per minute in the context of a PULL model.

Timeout Period 1 RLOC 2 RLOCs 3 RLOCs
3 Min. Night 4 4.9 5.7

Day 24.4 29.2 34
30 Min. Night 0.814 0.974 1.14

Day 8.2 9.7 11.3
300 Min. Night 0.041 0.049 0.057

Day 2.36 2.82 3.29

Table 4: Incoming volume of traffic concerning
Map-Reply messages (in Kbit/sec).

Remark that in the context of LISP 2, a mapping lookup
means to send a Map-Request message and to receive
a Map-Reply message. A lookup query to the map-
ping distribution system is issued whenever there is an
outgoing flow for which there is no corresponding en-
try in the cache, i.e., there is no EID-to-RLOC map
present for the destination prefix. Thus, counting the
number of cache miss for outgoing flows gives us the
estimation we look for. Figure 7 shows the result of
this counting for a daylong period for all the three val-
ues of timeout we used for the emulation. We find
again a night/day cycle, with minimum values that can
drop to 30 queries/minute when using a three hun-
dred minute timeout, growing to a maximum of 3,000
queries/minute when using a three minute timeout. Ta-
ble 4 shows the corresponding volume of incoming traffic
generated by the lookup replies (i.e., LISP Map-Reply

messages), when, for each EID, up to three RLOC are
returned. As it can be remarked, the volume never
grows over few tens of Kbit/sec.

Note that, insofar, we did not take into account in-
coming flows that generate a cache miss, since, in the
context of LISP, there is no lookup query generated.
Indeed, the mapping can be retrieved by looking at the
source address of the outer LISP header and the source
address of the inner IP header. This, however, brings to
light a limitation of the LISP proposal. Indeed, we are
emulating a cache that has a /BGP granularity, while
from incoming packet it can be retrieved only a single
/32 EID-to-RLOC map. In order to populate the cache
with the correct entries there are two possible solutions.

The first solution is to make LISP have a local copy
of all announced prefixes. In this way, when the first
packet of a new incoming flow arrives, the source ad-
dress of the inner header is mapped on the correspond-
ing announced prefix and an entry is then created in
the cache. This solution, while advantageous in terms
of latency and bandwidth, since an entry can be created
after a simple local lookup, has the drawback of need-
ing to store the whole list of /BGP prefixes. This in
turns raises issues related to how to keep the list up to
date and what amount of space this list will consume.
In today’s Internet, we have more 240,000 prefixes [12],
that need some few Mbytes of storing space, which is far
larger of the size of the cache when using a three minute
timeout. Remark that this approach is somehow sim-
ilar to the NERD solution. However, differently from
NERD, here there is only a database containing all pos-
sible EIDs’ sets, while the association to RLOCs is done
dynamically, thus enabling dynamic TE.

The second solution is to issue a lookup also for in-
coming flows, thus enforcing a full PULL model for
mapping distribution. This solution is not storing space
consuming, and has no problem related to the fresh-
ness of information. Nevertheless, this roughly means
to have an increase of 150% in the number of queries
during night period and to have spikes 30% higher dur-
ing the day, in the case of a three minutes timeout, as
shown in Figure 8. The increase is less important when
using the other values of the timeout, as can also be seen
in Table 5, which summarizes the volume of incoming
reply traffic in this case.

As already explained in section 2.2.1, in the most
simple LISP variants, namely LISP 1 and LISP 1.5, for
each new incoming flow that has not a corresponding
entry in the cache, a Map-Reply packet is sent back
to the RLOC of the source EID in order to commu-
nicate the mapping to use. Similarly, for each out-
going flow that creates a new entry in the cache, a
Map-Reply packet, containing the mapping of the desti-
nation EID, will be received. Figure 9 shows the number
of incoming and outgoing Map-Reply/minute, for the
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Figure 8: Number of lookup queries per minute in the context of a full PULL model.

Timeout Period 1 RLOC 2 RLOCs 3 RLOCs
3 Min. Night 10.17 12.17 14.17

Day 34.97 41.85 48.74
30 Min. Night 2.04 2.44 2.84

Day 8.95 10.71 12.47
300 Min. Night 0.163 0.195 0.227

Day 2.68 3.21 3.74

Table 5: Incoming volume of traffic concerning
Map-Reply messages in the context of a full PULL
model (in Kbit/sec).

three different timeout values. As it can be observed,
the larger the timeout value, the lower the amount of
packet that are sent/received. The number of incoming
Map-Reply/minute is always higher and spikier than the
corresponding number of outgoing Map-Reply/minute,
no matter the timeout value used. This suggests that
the entries in the LISP cache are more often created by
local outgoing traffic.

Insofar, we thoroughly analyzed the traffic load gen-
erated by mapping lookup in both a PULL model, as
suggested by LISP, and a (more general) full PULL
model. In the PULL model, the mapping for incom-
ing flows is retrieved from the flow itself. In the full
PULL model mappings for both incoming and outgo-
ing flows are retrieved by sending a query to a mapping
distribution service. Nevertheless, it is important to
be able to estimate the real value of the measurements
we presented. For this purpose, and in order to have
a reference toward which we can compare to, we mea-
sured the DNS traffic outgoing from our campus net-
work, which is depicted in Figure 10. The figure shows
a daylong report of the number of DNS packets (actu-
ally UDP packets destined to port 53) sent each minute.
As it can be observed, the number of packets/minute
ranges from levels as low as 1,800 packets/minute, up
to 15,000 packets/minute. This range is higher than
the range of values for lookups/minute sent when us-
ing the short three minutes timeout (cf. to Figure 8).
This is not sufficient to let us state that an extension in
the DNS service, in order to distribute mappings, could
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Figure 10: Measured number of DNS queries
per minute.

be implemented, since, even if smaller than the existing
DNS load, it is however not negligible. Nevertheless,
it proves that a mapping distribution system based on
the existing DNS protocol (not the DNS service), or a
similar system [7], can easily perform the task, at least
in the static case.3

5.4 Traffic Volume overhead
The locator/ID separation paradigm is based on tun-

nels set up between RLOCs, which introduce an over-
head in terms of traffic volume. As a final evaluation,
we measured this overhead, for both incoming and out-
going traffic, when LISP is used. Remark that the size
of the prepended LISP header is the same for all the
variants. Figure 11 shows a one daylong report of the
volume of traffic expressed in Mbit/sec. Positive values
are for outgoing traffic, while negative values for incom-
ing traffic. As the figure shows, the overhead introduced

3This may not hold anymore if locator/ID separation will be
also used to manage mobility, as suggested in some discus-
sions in the IRTG. Nevertheless, the case when EIDs move
is out of the scope of this paper.
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Figure 9: Number of Map-Reply messages per minute (negative values express incoming packets).
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Figure 11: Traffic and correspondig tunneling
overhead in a one daylong report (negative val-
ues express incoming traffic).

by the tunneling approach consists in few Mbit/sec. For
outgoing traffic this means an overhead ranging from
15% during the night down to 4% during the day. For
incoming traffic this means an overhead ranging from
10% during the night down to 2% during the day. Note
that this overhead does not depend on the mapping
function or the mapping distribution protocol.

6. CONCLUSIONS
Recent research activities focus on separating the ex-

isting IP addressing space, in order to mark the dis-
tinction between end-systems’ identifiers and routing
locators. This approach is meant to overcome the scal-
ing issues that the actual Internet architecture is facing.

Nevertheless, there is still no clear indication of the cost
that this approach will have in terms of bandwidth and
size of data structures. Furthermore, there is no hint
on the level of dynamism that will have the protocol
distributing the mappings of the end-systems’ identifier
space into the routing locators’ space. In this paper we
provided an initial evaluation of these open questions
from the viewpoint of a stub network.

We based our analysis on real Netflow traces col-
lected from our campus network.4 We fed the traces
to our custom software emulating the behavior of the
LISP cache. The analysis is done in the context of a
PULL model, as suggested by LISP, but we extended
it to a more general full PULL model. It allows us to
conclude that in order to avoid the same scaling issues
of BGP routing tables, the size of LISP cache can be
maintained the relatively small by setting a small time-
out for stale entries. This gain comes with the cost of
introducing a not negligible amount of traffic in order
to perform mapping lookups: the smaller the cache, the
higher the bandwidth needed for lookups. Nevertheless,
as we showed, this traffic is smaller than existing DNS
lookup traffic, which leads to two main conclusions: i)
this demonstrate that, like the DNS, the LISP lookup
mechanism can scale; ii) the mapping lookup has a dy-
namism comparable to the DNS, thus a mapping dis-
tribution system inspired to the DNS protocol is likely
to scale and perform sufficiently well. Our analysis al-
lows also to conclude that the overhead introduced by
the tunneling approach, on which the locator/ID sep-
aration paradigm is based, does not pose any relevant
problem.
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