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Two key features for SDN success 

are declarativity and flexibility

centralized control-plane

human management plane

programmable data-plane

declarativity

flexibility

flexibility



SDN has been proven advantageous 

in several settings, from data centers to WANs

path optimization
e.g., Hedera, B4, SWAN

controller-to-device interaction
OpenFlow

state of the art

per-flow policy languages

e.g., Frenetic, NetKAT



We study how to implement SDN  

in carrier-grade networks



We study how to implement SDN  

in carrier-grade networks

extreme scalability

•order of million destinations 

•hundreds of geographically-distributed devices



We study how to implement SDN  

in carrier-grade networks

strict robustness requirements

•fast failure recovery to comply with SLAs



Extreme robustness and scalability 

comes with new challenges for SDN

state of the art

per-flow policies 
may be too low-level 

for carrier-grade networks

challenges

optimization even 
more challenging

per-device configuration 
degrades scalability 

and robustness

path optimization
e.g., Hedera, B4, SWAN

controller-to-device interaction
OpenFlow

per-flow policy languages

e.g., Frenetic, NetKAT



We study a network architecture 

including two control-planes

centralized control-plane 
overwrites default paths

distributed control-plane 
defines default paths

data-plane

human management plane



We use the distributed control-plane 

to ensure network-wide connectivity

link-state IGP 
(proven robustness)

routers 
(scalability)



link-state IGP 
(proven robustness)

routers 
(scalability)

We design and implement DEFO,  

that translates high-level goals into optimized paths

DEFO



link-state IGP 
(proven robustness)

routers 
(scalability)

DEFO

We evaluate Segment Routing and commercial 

alternatives to realize optimized paths on routers

Segment Routing



DEFO interface is based on goals 

expressing desired forwarding at high-level



DEFO interface is based on goals  

expressing desired forwarding at high-level

flow aggregates called demands



DEFO interface is based on goals  

expressing desired forwarding at high-level

constraints and objectives on demands, 

expressed by forwarding functions



Forwarding functions map demands 

to parameters associated to its forwarding paths

DEFO DSL 
constructs

forwarding 
function

max link load

max path delay

optimization overhead

demand.load

demand passThrough {sw1,sw2}node traversal

demand.latency

demand.deviations

sequencing

node avoidance

demand passThrough {sw1,sw2} then {fw}

demand avoid {sw1,sw2}



DEFO interface can intuitively express 

classic traffic engineering goals

var maxLoad = max(load,topology.links) 
val goal = new Goal(topology){ 
 minimize(maxLoad)}



DEFO interface can intuitively express 

refined traffic engineering goals

var maxLoad = max(load,topology.links) 
val goal = new Goal(topology){ 
 for(d <- LowDelayDemands) 
  add(d.latency <= 10.ms) 
 minimize(maxLoad)}



DEFO interface can intuitively express 

service chaining constraints

var maxLoad = max(load,topology.links) 
val goal = new Goal(topology){ 
 for(d <- LowDelayDemands) 
  add(d.latency <= 10.ms) 
 for(d <- ServiceDemands) 
  add(d passThrough Set1 then Set2) 
 minimize(maxLoad)}



DEFO returns the best solution that it finds 

within a configurable amount of time

var maxLoad = max(load,topology.links) 
val goal = new Goal(topology){ 
 for(d <- LowDelayDemands) 
  add(d.latency <= 10.ms) 
 for(d <- ServiceDemands) 
  add(d passThrough Set1 then Set2) 
 minimize(maxLoad)} 
DEFO(goal).solve(30.sec)



Given an input goal, DEFO computes 

optimized paths accommodating it



var maxLoad = max(load,topology.links) 
val goal = new Goal(topology){ 
 minimize(maxLoad)}

already hard in practice

The computation of optimized paths 

from high-level goals is challenging



DEFO implements a heuristic approach

to represent optimized paths

to compute optimized paths

limits the number of variables

supported by all routers for equal-cost multi-path

assumes even load balancing

adopts tailored heuristics



DEFO implements a heuristic approach

to represent optimized paths

to compute optimized paths

limits the number of variables

supported by all routers for equal-cost multi-path

assumes even load balancing

adopts tailored heuristics



DEFO builds optimized paths as 

concatenations of default paths

M

S T

default path from S to T

DEFO representation: []



DEFO builds optimized paths as 

concatenations of default paths

M

S T

list of middlepoints 
(DEFO variable)

default paths 
from S to M

default paths 
from M to T

DEFO representation: [M]



DEFO implements a heuristic approach

to represent optimized paths

to compute optimized paths

limits the number of variables

supported by all routers for equal-cost multi-path

assumes even load balancing

adopts tailored heuristics



Consider an input network when only 

default (IGP) paths are configured

M

demand size 
(fraction of 

link capacity)

1

0.5

0.5

default paths 
(pre-optimization)



In the example, a link is overloaded 

(all demands pass through it)

M

default paths 
(pre-optimization)

congested link



DEFO heuristically optimizes forwarding, 

taking one demand at the time

1. select the worst demand 
for the objective function

M



DEFO locally optimizes every demand, 

first trying to use default paths

M1. select the worst demand 
for the objective function

2. redirect the demand 
by iteratively 

A. try the destination 



DEFO locally optimizes every demand, 

greedily selecting middlepoints

M1. select the worst demand 
for the objective function

2. redirect the demand 
by iteratively 

A. try the destination 
B. select the locally 

      optimal middlepoint



DEFO locally optimizes every demand, 

using default paths as much as possible

1. select the worst demand 
for the objective function

2. redirect the demand 
by iteratively 

A. try the destination 
B. select the locally 

      optimal middlepoint

M



DEFO prunes search space during computation, 

progressively removing unfeasible options

1. select the worst demand 
for the objective function

2. redirect the demand 
by iteratively 

A. try the destination 
B. select the locally 

      optimal middlepoint

3. update the domain of all 
variables

M



Iterating on all demands leads to a solution 

(paths for all demands)

1. select the worst demand 
for the objective function

2. redirect the demand 
by iteratively 

A. try the destination 
B. select the locally 

      optimal middlepoint

3. update the domain of all 
variables

Until all demands are optimized

0.5

0.5

0.5

0.5 0.33

0.33

0.33

M



forwarding 
solution

To avoid local minima, 

DEFO partially resets the best solution

1. select the worst demand 
for the objective function

2. redirect the demand 
by iteratively 

A. try the destination 
B. select the locally 

      optimal middlepoint

3. update the domain of all 
variables

Until all demands are optimized

compare with previous 
best solution

reset randomly-selected 
paths in the current 
best solution



We implemented this approach 

in Constraint Programming (CP)

to implement our heuristics

inference algorithms for each input constraint

customized CP search

to store and modify middlepoints in polynomial time

ad-hoc data structures

to update variables’ domain



Consider bandwidth optimization 

on real networks and traffic matrices

150-600 nodes 
700-2,000 links 

10k-115k demands

proportionally-inflated 
real traffic matrices

initial loadtopology

121%

121%

120%

120%

ISP1

ISP2

ISP3

ISP4



We computed the theoretical optimum 

with the multi-commodity flow Linear Program (LP)

fractional traffic splitting 
(hardly supported)

ran out of memory 
(too many variables) 

initial loadtopology

121%

121%

120%

120%

81%

86%

89%

NA

theoretical 
optimum

ISP1

ISP2

ISP3

ISP4

LP on a powerful server 
(32-core, 96GB RAM)



DEFO computes excellent paths 

for classic goals, like traffic engineering

DEFO with max 
2 middlepoints 

per demand

initial loadtopology

121%

121%

120%

120%

DEFO

81%

86%

89%

NA

90%

89%

94%

94%

theoretical 
optimum

ISP1

ISP2

ISP3

ISP4



DEFO quickly computes excellent paths 

for classic goals, like traffic engineering

initial loadtopology

121%

121%

120%

120%

DEFO

81%

86%

89%

NA

90%

89%

94%

94%

theoretical 
optimum

several hours 
on a powerful server 
(32-core, 96GB RAM)

3 minutes 
on this 
laptop

ISP1

ISP2

ISP3

ISP4



DEFO quickly computes excellent paths 

for classic goals, like traffic engineering

initial loadtopology

121%

121%

120%

120%

DEFO

81%

86%

89%

NA

90%

89%

94%

94%

theoretical 
optimum

We obtained consistent results on inferred and synthetic topologies 

(released at http://sites.uclouvain.be/defo/)

several hours 
on a powerful server 
(32-core, 96GB RAM)

3 minutes 
on this 
laptop

ISP1

ISP2

ISP3

ISP4

http://sites.uclouvain.be/defo/


Our evaluation shows that DEFO outperforms  

state-of-the-art traffic engineering tools (Cisco MATE)

requiring much less demands to be optimized 

from delay-respectful goals to service chaining

eases operation with respect to tunneling

supports a larger set of use cases

avoiding congestion when IGP-WO cannot 

optimizes more than shortest-path routing



We evaluated commercial solutions 

to implement DEFO paths



M

S T

default paths 
from S to M

default paths 
from M to T

DEFO representation: [M]

Consider again an optimized path 

with one or more middlepoints



Segment Routing devices enrich packets 

with instructions on nodes to be traversed

M

S T

packets for T

M

M



Segment Routing improves scalability 

in terms of state to be kept on devices

M

S T

S is the only router 
with additional state



We evaluated the scalability gain of 

Segment Routing, in terms of forwarding entries

one tunnel per source-destination path

one entry per source-destination path per device

1.5-10x vs. end to end tunnelling

2-3 order of magnitude vs. hop by hop

one tunnel per path between middlepoints

1.5-5x vs. middlepoint to middlepoint tunnelling



We leave a question open: 

Is an ad-hoc protocol (Segment Routing) strictly needed?



link-state IGP 
(proven robustness)

routers 
(scalability)

DEFO 
(fast and scalable optimization) Segment Routing 

(scalable path implementation)

A Declarative and Expressive Approach to 

Control Forwarding in Carrier-Grade Networks


