
A Declarative and Expressive Approach to

Control Forwarding in Carrier-Grade Networks

SIGCOMM

Stefano Vissicchio

18th August 2015

UCLouvain

Joint work with

R. Hartert, P. Schaus, O. Bonaventure (UCLouvain),

C. Filsfils, T. Thelkamp (Cisco) and P. Francois (IMDEA)

Two key features for SDN success

are declarativity and flexibility

centralized control-plane

human management plane

programmable data-plane

declarativity

flexibility

flexibility

SDN has been proven advantageous

in several settings, from data centers to WANs

path optimization
e.g., Hedera, B4, SWAN

controller-to-device interaction
OpenFlow

state of the art

per-flow policy languages

e.g., Frenetic, NetKAT

We study how to implement SDN

in carrier-grade networks

We study how to implement SDN

in carrier-grade networks

extreme scalability

•order of million destinations

•hundreds of geographically-distributed devices

We study how to implement SDN

in carrier-grade networks

strict robustness requirements

•fast failure recovery to comply with SLAs

Extreme robustness and scalability

comes with new challenges for SDN

state of the art

per-flow policies
may be too low-level

for carrier-grade networks

challenges

optimization even
more challenging

per-device configuration
degrades scalability

and robustness

path optimization
e.g., Hedera, B4, SWAN

controller-to-device interaction
OpenFlow

per-flow policy languages

e.g., Frenetic, NetKAT

We study a network architecture

including two control-planes

centralized control-plane
overwrites default paths

distributed control-plane
defines default paths

data-plane

human management plane

We use the distributed control-plane

to ensure network-wide connectivity

link-state IGP
(proven robustness)

routers
(scalability)

link-state IGP
(proven robustness)

routers
(scalability)

We design and implement DEFO,

that translates high-level goals into optimized paths

DEFO

link-state IGP
(proven robustness)

routers
(scalability)

DEFO

We evaluate Segment Routing and commercial

alternatives to realize optimized paths on routers

Segment Routing

DEFO interface is based on goals

expressing desired forwarding at high-level

DEFO interface is based on goals

expressing desired forwarding at high-level

flow aggregates called demands

DEFO interface is based on goals

expressing desired forwarding at high-level

constraints and objectives on demands,

expressed by forwarding functions

Forwarding functions map demands

to parameters associated to its forwarding paths

DEFO DSL
constructs

forwarding
function

max link load

max path delay

optimization overhead

demand.load

demand passThrough {sw1,sw2}node traversal

demand.latency

demand.deviations

sequencing

node avoidance

demand passThrough {sw1,sw2} then {fw}

demand avoid {sw1,sw2}

DEFO interface can intuitively express

classic traffic engineering goals

var maxLoad = max(load,topology.links)
val goal = new Goal(topology){
 minimize(maxLoad)}

DEFO interface can intuitively express

refined traffic engineering goals

var maxLoad = max(load,topology.links)
val goal = new Goal(topology){
 for(d <- LowDelayDemands)
 add(d.latency <= 10.ms)
 minimize(maxLoad)}

DEFO interface can intuitively express

service chaining constraints

var maxLoad = max(load,topology.links)
val goal = new Goal(topology){
 for(d <- LowDelayDemands)
 add(d.latency <= 10.ms)
 for(d <- ServiceDemands)
 add(d passThrough Set1 then Set2)
 minimize(maxLoad)}

DEFO returns the best solution that it finds

within a configurable amount of time

var maxLoad = max(load,topology.links)
val goal = new Goal(topology){
 for(d <- LowDelayDemands)
 add(d.latency <= 10.ms)
 for(d <- ServiceDemands)
 add(d passThrough Set1 then Set2)
 minimize(maxLoad)}
DEFO(goal).solve(30.sec)

Given an input goal, DEFO computes

optimized paths accommodating it

var maxLoad = max(load,topology.links)
val goal = new Goal(topology){
 minimize(maxLoad)}

already hard in practice

The computation of optimized paths

from high-level goals is challenging

DEFO implements a heuristic approach

to represent optimized paths

to compute optimized paths

limits the number of variables

supported by all routers for equal-cost multi-path

assumes even load balancing

adopts tailored heuristics

DEFO implements a heuristic approach

to represent optimized paths

to compute optimized paths

limits the number of variables

supported by all routers for equal-cost multi-path

assumes even load balancing

adopts tailored heuristics

DEFO builds optimized paths as

concatenations of default paths

M

S T

default path from S to T

DEFO representation: []

DEFO builds optimized paths as

concatenations of default paths

M

S T

list of middlepoints
(DEFO variable)

default paths
from S to M

default paths
from M to T

DEFO representation: [M]

DEFO implements a heuristic approach

to represent optimized paths

to compute optimized paths

limits the number of variables

supported by all routers for equal-cost multi-path

assumes even load balancing

adopts tailored heuristics

Consider an input network when only

default (IGP) paths are configured

M

demand size
(fraction of

link capacity)

1

0.5

0.5

default paths
(pre-optimization)

In the example, a link is overloaded

(all demands pass through it)

M

default paths
(pre-optimization)

congested link

DEFO heuristically optimizes forwarding,

taking one demand at the time

1. select the worst demand
for the objective function

M

DEFO locally optimizes every demand,

first trying to use default paths

M1. select the worst demand
for the objective function

2. redirect the demand
by iteratively

A. try the destination

DEFO locally optimizes every demand,

greedily selecting middlepoints

M1. select the worst demand
for the objective function

2. redirect the demand
by iteratively

A. try the destination
B. select the locally

 optimal middlepoint

DEFO locally optimizes every demand,

using default paths as much as possible

1. select the worst demand
for the objective function

2. redirect the demand
by iteratively

A. try the destination
B. select the locally

 optimal middlepoint

M

DEFO prunes search space during computation,

progressively removing unfeasible options

1. select the worst demand
for the objective function

2. redirect the demand
by iteratively

A. try the destination
B. select the locally

 optimal middlepoint

3. update the domain of all
variables

M

Iterating on all demands leads to a solution

(paths for all demands)

1. select the worst demand
for the objective function

2. redirect the demand
by iteratively

A. try the destination
B. select the locally

 optimal middlepoint

3. update the domain of all
variables

Until all demands are optimized

0.5

0.5

0.5

0.5 0.33

0.33

0.33

M

forwarding
solution

To avoid local minima,

DEFO partially resets the best solution

1. select the worst demand
for the objective function

2. redirect the demand
by iteratively

A. try the destination
B. select the locally

 optimal middlepoint

3. update the domain of all
variables

Until all demands are optimized

compare with previous
best solution

reset randomly-selected
paths in the current
best solution

We implemented this approach

in Constraint Programming (CP)

to implement our heuristics

inference algorithms for each input constraint

customized CP search

to store and modify middlepoints in polynomial time

ad-hoc data structures

to update variables’ domain

Consider bandwidth optimization

on real networks and traffic matrices

150-600 nodes
700-2,000 links

10k-115k demands

proportionally-inflated
real traffic matrices

initial loadtopology

121%

121%

120%

120%

ISP1

ISP2

ISP3

ISP4

We computed the theoretical optimum

with the multi-commodity flow Linear Program (LP)

fractional traffic splitting
(hardly supported)

ran out of memory
(too many variables)

initial loadtopology

121%

121%

120%

120%

81%

86%

89%

NA

theoretical
optimum

ISP1

ISP2

ISP3

ISP4

LP on a powerful server
(32-core, 96GB RAM)

DEFO computes excellent paths

for classic goals, like traffic engineering

DEFO with max
2 middlepoints

per demand

initial loadtopology

121%

121%

120%

120%

DEFO

81%

86%

89%

NA

90%

89%

94%

94%

theoretical
optimum

ISP1

ISP2

ISP3

ISP4

DEFO quickly computes excellent paths

for classic goals, like traffic engineering

initial loadtopology

121%

121%

120%

120%

DEFO

81%

86%

89%

NA

90%

89%

94%

94%

theoretical
optimum

several hours
on a powerful server
(32-core, 96GB RAM)

3 minutes
on this
laptop

ISP1

ISP2

ISP3

ISP4

DEFO quickly computes excellent paths

for classic goals, like traffic engineering

initial loadtopology

121%

121%

120%

120%

DEFO

81%

86%

89%

NA

90%

89%

94%

94%

theoretical
optimum

We obtained consistent results on inferred and synthetic topologies

(released at http://sites.uclouvain.be/defo/)

several hours
on a powerful server
(32-core, 96GB RAM)

3 minutes
on this
laptop

ISP1

ISP2

ISP3

ISP4

http://sites.uclouvain.be/defo/

Our evaluation shows that DEFO outperforms

state-of-the-art traffic engineering tools (Cisco MATE)

requiring much less demands to be optimized

from delay-respectful goals to service chaining

eases operation with respect to tunneling

supports a larger set of use cases

avoiding congestion when IGP-WO cannot

optimizes more than shortest-path routing

We evaluated commercial solutions

to implement DEFO paths

M

S T

default paths
from S to M

default paths
from M to T

DEFO representation: [M]

Consider again an optimized path

with one or more middlepoints

Segment Routing devices enrich packets

with instructions on nodes to be traversed

M

S T

packets for T

M

M

Segment Routing improves scalability

in terms of state to be kept on devices

M

S T

S is the only router
with additional state

We evaluated the scalability gain of

Segment Routing, in terms of forwarding entries

one tunnel per source-destination path

one entry per source-destination path per device

1.5-10x vs. end to end tunnelling

2-3 order of magnitude vs. hop by hop

one tunnel per path between middlepoints

1.5-5x vs. middlepoint to middlepoint tunnelling

We leave a question open:

Is an ad-hoc protocol (Segment Routing) strictly needed?

link-state IGP
(proven robustness)

routers
(scalability)

DEFO
(fast and scalable optimization) Segment Routing

(scalable path implementation)

A Declarative and Expressive Approach to

Control Forwarding in Carrier-Grade Networks

