
Available at: http://hdl.handle.net/2078.1/222917 [Downloaded 2020/05/25 at 11:24:41]

"Helping the Internet scale by leveraging path diversity"

Duchêne, Fabien

ABSTRACT

Since its inception in the 60's, the Internet has evolved from a nationwide network interconnecting
a handful of nodes, to a worldwide system interconnecting billion of devices. While the network has
dramatically expanded in size, it has also grown in term of adoption. In the age of the Internet of Things,
everything and everyone is heavily connected to the interconnected network. This growth came with a
cost for service providers: the user's expectation in terms of reliability and performances. To achieve
reliability and performance, network operators and engineers designed redundant systems and tried to
balance the load across the network's different paths. While adding redundant paths into the network was
already a challenge, a greater one awaited: efficiently using them. This thesis is a contribution to improve
different solutions and leverage the path diversity, especially in datacenters and enterprise networks. First,
we improve Multipath TCP to make it compatible with curre...

CITE THIS VERSION

Duchêne, Fabien. Helping the Internet scale by leveraging path diversity. Prom. : Bonaventure, Olivier http://
hdl.handle.net/2078.1/222917

Le dépôt institutionnel DIAL est destiné au dépôt
et à la diffusion de documents scientifiques
émanents des membres de l'UCLouvain. Toute
utilisation de ce document à des fin lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage à respecter les droits
d'auteur lié à ce document, principalement le
droit à l'intégrité de l'oeuvre et le droit à la
paternité. La politique complète de copyright est
disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy
is available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

Helping the Internet scale by
leveraging path diversity

Fabien Duchêne

�esis submi�ed in partial ful�llment of the requirements for
the Degree of Doctor in Applied Sciences

September 2019

ICTEAM

Louvain School of Engineering

Université catholique de Louvain

Louvain-la-Neuve

Belgium

�esis Committee:
Pr. Olivier Bonaventure (Advisor) UCLouvain/ICTEAM, Belgium

Pr. Laurent Mathy Université de Liège, Belgium

Pr. Charles Pecheur (Chair) UCLouvain/ICTEAM, Belgium

Pr. Ramin Sadre UCLouvain/ICTEAM, Belgium

Pr. Stefano Secci Conservatoire national

des arts et métiers, France

Helping the Internet scale by leveraging path diversity

by Fabien Duchêne

© Fabien Duchêne 2019

ICTEAM

Université catholique de Louvain

Place Sainte-Barbe, 2

1348 Louvain-la-Neuve

Belgium

�is work was partially supported by the ARC-SDN project funded by Com-

munauté française de Belgique and by grants from Google and Facebook.

Does the walker choose the path,
or the path the walker?

— Garth Nix,

Sabriel

Preamble

In 1934, Paul Otlet wrote :

On peut imaginer le télescope électrique, perme�ant de lire de
chez soi des livres exposés dans la salle teleg des grandes bibliothèques,
aux pages demandées d’avance. Ce sera le livre téléphoté.1

Ici, la Table de Travail n’est plus chargée d’aucun livre. À leur
place se dresse un écran et à portée un téléphone. Là-bas, au loin,
dans un édi�ce immense, sont tous les livres et tous les renseigne-
ments, avec tout l’espace que requiert leur enregistrement et leur
manutention, […] De là, on fait apparaı̂tre sur l’écran la page à lire
pour connaı̂tre la question posée par téléphone avec ou sans �l. Un
écran serait double, quadruple ou décuple s’il s’agissait de multi-
plier les textes et les documents à confronter simultanément ; il y
aurait un haut parleur si la vue devrait être aidée par une audition.
Une telle hypothèse, un Wells certes l’aimerait. Utopie aujourd’hui
parce qu’elle n’existe encore nulle part, mais elle pourrait bien de-
venir la réalité de demain pourvu que se perfectionnent encore nos
méthodes et notre instrumentation2

Less than century later, what Otlet envisioned as the “Radiated Library”, has

become ”the Internet”. Since it’s inception in the 60’s, the ”Advanced Research

Projects Agency Network” (ARPANET) has evolved from a nationwide net-

work interconnecting a handful of nodes, to a worldwide system intercon-

necting billion of devices.

While the network has dramatically grown in size, it has also grown in

adoption. In the age of the Internet of �ings, everything and everyone is

heavily connected to the interconnected network. From the light bulb to the

car, our environment and day-to-day life rely more and more on the Internet.
�is growth came with a cost for service providers: the user’s expectation in

1

Otlet Paul, Traité de documentation : le livre sur le livre, théorie et pratique, Bruxelles,

Editions Mundaneum, 1934, 431 p.238

2

Otlet Paul, Traité de documentation : le livre sur le livre, théorie et pratique, Bruxelles,

Editions Mundaneum, 1934, 431 p. 428

i

ii Preamble

terms of reliability and performance. A user would not accept that the light

does not instantly turn on when he asks his smart watch simply because ”the
Internet is broken”.

To achieve reliability and performance, network operators and engineers

design redundant systems and try to balance the load across di�erent net-

work paths. While adding redundant paths into the network was already a

challenge, a greater one awaited: e�ciently using these di�erent network

paths.

�is thesis is a contribution to explore and improve di�erent solutions to

leverage the path diversity, especially in datacenters and enterprise networks.

�e main contributions of this thesis are the following:

• A di�erent point of view on how Multipath TCP uses sub�ows

To this day, Multipath TCP [FRHB13] has been used to improve band-

width and resilience by leveraging di�erent network paths available.

In Chapter 2, we explore di�erent views on how these paths might be

used to improve performance, but more importantly give the applica-

tion more control over the selection process.

• Enabling in-network bytestream functions

With the advent of So�ware De�ned Networks (SDN) [KRV
+

15b], Net-

work Function Virtualisation (NFV) [LC15] or Service Function Chain-

ing (SFC) [BJSE16], network operators expect their networks to support

�exible services beyond the mere forwarding of packets.

IPv6 Segment Routing [FPG
+

18] provides enhanced tra�c engineer-

ing capabilities and is key to support Service Function Chaining (SFC).

With SFC, an end-to-end service is the composition of a series of in-

network services. Simple services such as NAT, accounting or stateless

�rewalls can be implemented on a per-packet basis. However, more

interesting services like transparent proxies, transparent compression

or encryption, transcoding, etc. require functions that operate on the

bytestream.

In Chapter 3, we extend the IPv6 implementation of Segment Routing

in the Linux kernel to enable network functions that operate on the

bytestream and not on a per-packet basis. Our solution enable network

architects to design end-to-end services as a series of in-network func-

tions.

• Steering transport protocols in Multipath networks

Preamble iii

Because of the way they were designed, current transport protocols

struggle to e�ciently use the di�erent available paths between a pair of

hosts. While solutions like Multipath TCP tried to tackle the problem at

the transport layer, TCP and UDP still depend on how routers forward

their packet through Equal Cost Multipath (ECMP).

In the �rst part of Chapter 4, we present FlowBender, a load balancing

mechanism that uses ECN and ECMP to dynamically reroute congested

�ows in Datacenters. �e author of this thesis had the opportunity

to contribute to this design while interning at Google and the lessons

learned from this design deeply a�ected the remainder of its thesis. In

the second part of Chapter 4, we use the lessons learned in the previous

chapters to propose a new architecture combining Segment Routing

and eBPF to allow transport protocols to bene�t from the path diversity.

• Allowing Multipath TCP to be used in datacenters by making it compati-
ble with current load-balancers and anycast

One of the major drawbacks of Multipath TCP is that it is not currently

compatible with stateless load balancers which rely on the �ve-tuple

for their forwarding decision. �is problem has been hindering the

deployment of Multipath TCP on servers since the beginning.

In Chapter 5, we describe the problem, and show that this limitation

can be circumvented with a small change to the handling of the initial

connection. Clients use this connection to discover the load-balanced

server and the additional Multipath TCP connections are terminated

at a unique address associated to each physical server. With this small

change, Multipath TCP becomes compatible with existing stateless load

balancers. Furthermore, we show that the same approach enables any-

cast Multipath TCP services, a major bene�t given the di�culty of de-

ploying anycast TCP services.

iv Preamble

Bibliographic notes

Conference publications

1. How hard can it be? Designing and implementing a deployable multipath
TCP. USENIX Symposium on Networked Systems Design and Implemen-
tation
C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, F. Duchêne and O.

Bonaventure. USENIX Symposium on Networked Systems Design and

Implementation, 2012.

2. Exploring mobile/WiFi handover with multipath TCP.
C. Paasch, G. Detal, F. Duchêne, C. Raicu and O. Bonaventure. CellNet,

2012.

3. Are TCP Extensions Middlebox-proof?
B. Hesmans, F. Duchêne, C. Paasch, G. Detal and O. Bonaventure. ACM

CoNEXT - HotMiddlebox, 2013.

4. Flowbender: Flow-level adaptive routing for improved latency and through-
put in datacenter networks.
A. Kabbani, B. Vamanan, H. Hasan and F. Duchêne. ACM CoNEXT,

2014.

5. Making multipath TCP friendlier to load balancers and anycast.
F. Duchêne and O. Bonaventure. IEEE 25th International Conference

on Network Protocols (ICNP), 2017.

6. SRv6Pipes: enabling in-network bytestream functions.
F. Duchêne, D. Lebrun and O. Bonaventure. IFIP Networking, 2018.

7. Leveraging eBPF for programmable network functions with IPv6 segment
routing.
M. Xhonneux, F. Duchêne and O. Bonaventure. ACM CoNEXT 2018,.

Posters and demos

1. Exploring various use cases for IPv6 Segment Routing
F. Duchêne, M. Jadin and O. Bonaventure. ACM SIGCOMM 2018 Con-

ference on Posters and Demos, 2018.

Journal publications

1. SRv6Pipes: enabling in-network bytestream functions (extended version).
F. Duchêne, D. Lebrun and O. Bonaventure. Computer Communica-

tions (COMCOM), 2019.

Preamble v

IETF contributions

1. Multipath TCP Address Advertisement
F. Duchene, O. Bonaventure .

IETF Internet-Dra� dra�-duchene-mptcp-add-addr-00, 2016

�is dra� has been merged in the RFC6824bis referenced below.

2. Multipath TCP MIB
F. Duchene, C. Paasch, O. Bonaventure.

IETF Internet-Dra� dra�-duchene-mptcp-mib-00, 2015.

3. Multipath TCP Load Balancing
F. Duchene, V. Olteanu et al..
IETF Internet-Dra� dra�-duchene-mptcp-load-balancing-01, 2017

�is dra� has been merged in the RFC6824bis referenced below.

4. RFC6824bis: TCP Extensions for Multipath Operation with Multiple Ad-
dresses
A. Ford, C. Raiciu et al..
IETF Internet-Dra� dra�-ietf-mptcp-rfc6824bis, 2019.

5. A socket API to control IPv6 Segment Routing
F. Duchene, O. Bonaventure.

IETF Internet-Dra� dra�-duchene-spring-srv6-socket-00, 2018.

6. A socket API to control Multipath TCP
B. Hesmans, O. Bonaventure, F. Duchene

IETF Internet-Dra� dra�-hesmans-mptcp-socket-03, 2018.

Reading IETF dra� names

All IETF dra� names begin with draft-name -wg -. �e wg part is the name

of the working group relevant for the dra�. When name is the last name of

the dra�’s main editor, it means that the dra� is in an early stage and not

yet adopted by its working group. Instead, if name is equal to ietf, then

the dra� is adopted by its working group and will likely be promoted to RFC

status once it reaches a su�cient level of maturity and stability.

Acknowledgments

First, I would like to thank my advisor, Prof. Olivier Bonaventure. By believ-

ing in me and giving me the opportunity to join his team, he gave me the

possibility to work on a broad range of exciting subjects. His guidance and

availability enabled me to move forward and challenge myself throughout

the years. I am sincerely grateful for the amount of time we spent discussing

to make sure I moved in the right direction. If Olivier’s unique perspective

allowed me to progress as a researcher, his wisdom helped me improve as a

person and for that I am forever grateful.

I would also like to thank my thesis jury, Laurent Mathy, Charles Pecheur,

Ramin Sadre, and Stefano Secci, for their insightful comments and the very

interesting discussions we had during my private defense.

�is thesis is the results of collaborations with other persons. I would like

to thank my co-authors, Sebastien Barré, �entin de Coninck, Gregory De-

tal, Alan Ford, Benjamin Hesmans, Michio Honda, David Lebrun, Christoph

Paasch, Costin Raiciu and Mathieu Xhonneux. I’m especially grateful to Ab-

dul Kabbani, Balajee Vamanan and Jahangir Hasan for giving me the oppor-

tunity to work with them on FlowBender. I am also grateful to Ashby Armis-

tead and Nandita Dukkipati for being my managers while I was interning at

Google.

I would like to thank my former colleagues of the IP Networking Lab and

the INGI department. Among them a special thanks go to David Lebrun

for being that sharp minded colleague that always has an exciting idea but

more importantly for being a true friend; Christoph Paasch for all the great

moments we spent together around the world working on Multipath TCP;

�entin De Coninck for his contribution to my work on Multipath TCP’s

scheduling and all the discussions we shared; Olivier Tilmans for its nu-

merous insights; Mathieu Jadin for always brightening the mood. I thank

also the colleagues I shared an o�ce with (Gregory Detal, Virginie Van den

vii

viii Acknowledgments

Schrieck, Sébastien Combé�s, Hoang Tran Viet, François Michel, Maxime Pi-

raux, Pierre Francois, Benjamin Hesmans,…) for all the discussions we had

and from which I learned a lot. I would like to thank the sta� from INGI:

Vanessa Maons, Sophie Renard, Chantal Poncin, Pierre Reinbold, Nicolas De-

tienne, Anthony Gégo, Ludovic Ta�n… for their availability that helped me

conduct my research in the best possible conditions.

I want to express my gratitude to my family that supported me and helped

me pursue my studies. I also owe a special thank you to my close friends

Geo�rey, François and Guillaume for their unbearable never-ending taunting

support throughout the years. Many thanks go as well to all the people that

have been close to me during these last years. �ey all contributed to this

thesis in their own way.

Finally, I wish to express a heartful thank you to my girlfriend Marie-Marie.

She came my way on a winter day and gave me the strength to achieve what I

sometimes thought was the unachievable. �is thesis would never have been

possible without her standing by my side.

Fabien

Contents

Preamble i

Acknowledgments vii

Table of Contents ix

1 Introduction 1
1.1 Internet Protocol (IP) . 1

1.2 Transmission Control Protocol (TCP) 2

1.2.1 Extending TCP: the TCP Options 3

1.3 Equal Cost Multipath (ECMP) 4

1.4 Multipath TCP . 4

1.4.1 General architecture 5

1.4.2 Using the TCP options 6

1.4.3 Establishment of the initial connection 6

1.4.4 Establishment of an additional sub�ow 7

1.4.5 Address advertisement 8

1.5 IPv6 Segment Routing (SRv6) 10

1.5.1 IPv6 Segment Routing 11

1.5.2 Processing by segments endpoints 13

1.5.3 Encapsulation . 13

2 Reconsidering how Multipath TCP handles sub�ows 15
2.1 Introduction . 15

2.2 Reconsidering How Multipath TCP Handles Backup Sub�ows 15

2.2.1 Di�erent types of sub�ows 15

2.2.2 �e case for packet expirations 16

2.2.3 Evaluation . 19

2.2.4 Methodology . 19

2.2.5 Related work . 26

2.2.6 Discussion . 27

2.3 Trusted resource pooling with Multipath TCP 27

ix

x Contents

2.3.1 Introduction . 27

2.3.2 (Un)Trusted network interfaces 28

2.3.3 Multipath TCP and SSL/TLS 33

2.3.4 Discussion . 36

3 SRv6Pipes: enabling in-network bytestream functions 39
3.1 Introduction . 39

3.2 Use Cases . 40

3.2.1 Application-level Firewalling 41

3.2.2 Multipath TCP Proxies 41

3.2.3 Load Balancing . 42

3.2.4 Multimedia transcoding 42

3.3 Architecture . 42

3.3.1 IPv6 Segment Routing 44

3.3.2 Transparent TCP Proxy 44

3.3.3 Encoding Functions and Parameters 45

3.3.4 SRv6 Controller . 46

3.3.5 Security Considerations 46

3.4 Implementation . 47

3.4.1 Transparent SR-Aware TCP Proxy 47

3.4.2 Kernel Extensions . 49

3.4.3 System Con�guration 49

3.4.4 Con�guration optimization 50

3.4.5 Modular Transformation Functions 51

3.4.6 Limitations of Transparent Proxies 52

3.4.7 Return Tra�c . 53

3.5 Evaluation . 53

3.5.1 Maximum throughput 54

3.5.2 Stability of the performances 55

3.5.3 Impact of packet losses and latency on the proxies . . 56

3.5.4 CPU-intensive Virtual Functions 58

3.5.5 Chaining middleboxes 59

3.5.6 Commodity hardware 60

3.6 Related Work . 64

3.7 Conclusion . 65

3.8 Future Work . 65

4 Steering transport �ows in Multipath networks 67
4.1 FlowBender: re-routing �ows using Equal Cost Multipath . . . 67

4.1.1 �e architecture of FlowBender 69

4.1.2 Evaluation . 72

4.1.3 Further optimizations 76

Contents xi

4.1.4 Conclusion . 78

4.2 Leveraging SRv6 and eBPF to e�ciently steer transport �ows . 79

4.2.1 Use cases . 79

4.2.2 Building blocks . 81

4.2.3 Architecture . 84

4.2.4 Evaluation . 88

4.2.5 Future Work . 92

4.2.6 Conclusion . 92

5 Making MPTCP friendlier to Load Balancers and Anycast 93
5.1 Introduction . 93

5.2 Background and motivation 94

5.2.1 Load balancing principles 95

5.3 Modi�cations to Multipath TCP 97

5.3.1 Restricting the initial sub�ow 97

5.3.2 Using unique addresses 98

5.3.3 Reliable ADD ADDR . 99

5.4 Use cases . 100

5.4.1 Beyond Direct Server Return 100

5.4.2 Supporting Anycast Services 102

5.5 Performance Evaluation . 103

5.5.1 Implementation in the Linux kernel 103

5.5.2 Layer-4 load balancers 105

5.5.3 Anycast . 110

5.6 Security Considerations . 113

5.7 Conclusion . 115

6 Conclusion 117

Chapter 1

Introduction

To cope with the Internet’s growth, several solutions have been proposed at

di�erent layers of the OSI model. In this section, we give a short description

of those that are relevant for this thesis.

1.1 Internet Protocol (IP)

�e Internet Protocol (IP) is the principal network protocol in today’s Inter-

net. IP is responsible for addressing host interfaces and provides an address-

ing system. IP is also responsible for the formating of datagrams across the

network between a source address and a destination address. Today, two ver-

sions of IP are widely deployed: IPv4 and IPv6.

Internet Protocol version 4 (IPv4) [Pos81a] is the fourth version of the

Internet Protocol, and the �rst to have been largely deployed. �e IPv4 header

is illustrated in Figure 1.1. �e relevant �elds for this thesis are:

• Time to Live this �eld represents the datagram’s lifetime and prevents

it from persisting too long inside a network. When a datagram reaches

a router, the router decrements the TTL �eld by 1. When the TTL �eld

reaches 0, the router drops the packet.

• ECN �ese two bits (ECN and ECT) are used by the Explicit Conges-

tion No�tication (ECN) [RFB01] that allows end-to-end noti�cation of

network congestion without dropping packets.

• Addresses are the addresses of the source and the destination of the

datagram.

1

2 Chapter 1. Introduction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL DSCP ECN Total Length

Identi�cation Flags Fragment O�set

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options (optional)

Data

…

Figure 1.1: Internet Protocol version 4 header (IPv4)

IPv4 address exhaustion As shown in Figure 1.1, IPv4 uses 32-bits ad-

dresses. While this was su�cient in the 1980s, the growth of the Internet has

since consumed most of the IPv4 addressing space [ICA11]. One of the solu-

tion used by network administrators to alleviate the e�ects of this exhaustion

is the deployment of Network Address Translation (NAT) [SE01]. NAT is a

method of remapping one IP address space into another by modifying the ad-

dress in the IP header when a datagram transits between two networks. One

of the limitations of this technique is that it breaks the end-to-end principle

for the hosts residing behind the NAT. Another solution to the IPv4 address

exhaustion is a new version of IP: IPv6.

Internet Protocol version 6 (IPv6) [DH98] is the sixth version of IP. Where

IPv4 uses 32-bits addresses, IPv6 uses 128-bits addresses and a simpli�ed header

compared to IPv4. �is increase in the address length is due to the growth of

the Internet and the IPv4 address exhaustion. While its deployment was still

pre�y slow in 2010 [CGKR10], many ISPs started to deploy IPv6 [Soc11] dur-

ing the last few years.

1.2 Transmission Control Protocol (TCP)

Developed in the early days of the Internet, the Transmission Control Proto-

col (TCP) [Pos81b] is still the most used transport protocol nowadays. TCP

allows to send an in-order and reliable byte-stream between two hosts. To

do so, TCP splits the bytestream sent by the application into segments. �ese

segments are transmi�ed over the underlying network protocol (IPv4/IPv6)

with the TCP header shown in Figure 1.3. To identify both endpoints of the

bytestream, TCP uses a 4-tuple: IP addresses (source/destination) and port

1.2. Transmission Control Protocol (TCP) 3

numbers (source/destination). To ensure an in-order delivery of the data, TCP

assigns a sequence number to each byte of the bytestream. �is sequence

number is incremented for each byte, allowing the receiver to put the seg-

ments back in order upon reception. �e reliability is handled by acknowl-

edgments. When a host transmits data, it expects the other end to acknowl-

edge it before a certain amount of time. If the data is not acknowledged a�er

that time, it is retransmi�ed. �is mechanism is known as the Retransmission

Timer (RTO). In the TCP header, the acknowledgement number is the number

of the next segment expected by the receiver. To initiate a new connection,

TCP perform a 3-way handshake. �is handshake is illustrated in Figure 1.2.

Client Server
SYN

Seq: 100

SYN+ACK

Seq: 200 Ack:101

ACK

Ack:201

Figure 1.2: TCP 3-way handshake

In this handshake, the client �rst starts the connection by sending a SYN

packet with its initial sequence number. If the server accepts the connection,

it replies with a SYN+ACK packet with its own sequence number and acknowl-

edges the initial sequence number of the client. �en the client sends an ACK

acknowledging the initial sequence number of the server. A�er the three-way

handshake, the connection is established and both hosts can exchange data

in an in-order and reliable way.

1.2.1 Extending TCP: the TCP Options

TCP has been designed to be an extensible protocol. To do so, Figure 1.3

show that TCP has provisioned up to 40 bytes for optional header �elds called

options.

Options are typically negotiated between hosts during the 3-way hand-

shake. During the 3-way handshake, the client sends a SYNwith the options it

would like to use during the connection. �e server answers with a SYN+ACK

containing the options that will e�ectively be used during the connection.

4 Chapter 1. Introduction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

O�set Res. C E U A P R S F Window

Checksum Urgent Pointer

Option

Data

…

Figure 1.3: Header of the Transmission Control Protocol (TCP)

Options are used to extend the protocol with features like Selective Acknowl-

edgment (SACK) [MMFR96] or Timestamps (MSS) [JBB92].

1.3 Equal Cost Multipath (ECMP)

Equal Cost Multipath (ECMP) is a network routing strategy that allows the

tra�c between two hosts to be transmi�ed across multiple paths of equal cost.

�is is typically used in datacenters using topologies like fat-trees [Lei85]

where switches have multiple uplinks but also in enterprise and ISP net-

works [ACO
+

06]. When forwarding a packet, the switch/router has to decide

which path to use to reach the next hop. A simple solution is a per-packet de-

cision. When a packet reaches the switch, it forwards this packet on one of

the possible paths. �is can be done using a round-robbin strategy. While this

solution is simple to implement, it presents the disadvantage of spreading the

packets belonging to a single �ow over multiple paths, increasing potential

reordering at the receiver’s side. To avoid reordering, ECMP is mostly used

with a per-�ow decision. To ensure that all the packets belonging to a �ow

use the same path ECMP usually uses a hashing technique that operates on

the packet header �elds that identify a �ow (typically the 5-tuple [cisco]).

1.4 Multipath TCP

To steer packets belonging to di�erent TCP connections through di�erent

paths of the network, several solutions have been envisioned at di�erent lev-

els of the ISO/OSI layer. Multipath TCP is a recent TCP extension that tries

to solve the problem at the transport layer.

1.4. Multipath TCP 5

1.4.1 General architecture

Multipath TCP [FRHB13] makes the assumption that to steer a packet along

a speci�c path, the IP address or the port number must change. As this would

prevent regular TCP from reconstructing the bytestream, Multipath TCP uses

several ”regular” TCP connections called ”sub�ows” and multiplexes the byte

stream over them. �e choice of using multiple ”regular” TCP sub�ows and

aggregating them comes from the idea that creating a brand new protocol

would make it more di�cult to deploy because of the ossi�cation of the In-

ternet [HNR
+

11]. Multipath TCP was designed [RPB
+

12] to be deployable
without modifying the existing applications or middleboxes.

�is design choice can be seen in Figure 1.4 illustrating Multipath TCP’s

architecture from an implementation viewpoint. To remain compatible with

existing applications, Multipath TCP has been implemented as a layer be-

tween the standard socket API and the TCP/IP stack. �is way, any applica-

tion that uses the standard socket API will use Multipath TCP without any

modi�cation. When the Multipath TCP layer receives a send call from the

application, its scheduler will select one of the sub�ows and use it to send the

data. When data comes back from the remote end, the stack will aggregate

them and pass them to the application.

Application
Layer Socket API

Transport
Layer

Network
Layer

Multipath TCP

TCP
Subflow

#1

TCP
Subflow

#2

TCP
Subflow

#3

Path Manager Scheduler

Figure 1.4: Multipath TCP’s Architecture

�ere are two important algorithms in a Multipath TCP implementation:

6 Chapter 1. Introduction

�e Path Manager

�e path manager shown in Figure 1.4 is the component used to create and

terminate sub�ows. �e default path manager, called ”full mesh” establishes

a sub�ow per available path. With this path manager, if a client and a server

both have two interfaces, 4 sub�ows will be established.

�e Scheduler

�e scheduler shown in Figure 1.4 is used to elect which sub�ow is going to

be used to send a speci�c piece of data. When a data is about to be sent, the

scheduler selects one of the established sub�ow based on a speci�c metric,

and transmits the data over that path. �e default scheduler uses the sub�ow

with the lowest RTT with an open send window to send a data.

1.4.2 Using the TCP options

During the design of Multipath TCP, a key question concerns how MPTCP

metadata should be encoded – embed it in the TCP payload, or use the more

traditional TCP options, with potentially problematic interactions with mid-

dleboxes [HNR
+

11]. Within the IETF, opinions were divided, with supporters

on both sides [Sch10]. In the end, careful analysis revealed that MPTCP needs

explicit connection level acknowledgments for �ow control; further, these ac-

knowledgments could cause deadlocks if encoded in the payload [RPB
+

12].

In reality, there was only one viable choice: using the TCP options.

For Multipath TCP, a new kind of option has been de�ned and registered

with the IANA. �e di�erent Multipath TCP options described in this the-

sis are actually embedded in the TCP options header �eld. To di�erentiate

between the di�erent types of Multipath TCP options, a subtype is de�ned.

1.4.3 Establishment of the initial connection

�e establishment of the initial Multipath TCP connection is an important

part of the protocol. During this stage, the hosts negotiate the utilization of

Multipath TCP by advertising the MP CAPABLE option.

To establish the initial connection, Multipath TCP performs a standard

three-way handshake. �is is shown in Figure 1.6. To determine if the other

host supports Multipath TCP, the client sends a SYN with the MP CAPABLE

option. If the server supports Multipath TCP, it answers with a SYN+ACK

containing the same option. Otherwise, it simply answers with a SYN+ACK

and the connection falls-back to regular TCP.

�e format of this option is shown in Figure 1.5. In RFC6824 [FRHB13],

the Kind and Length �elds are used by TCP to specify that this is a Multipath

1.4. Multipath TCP 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype Version A B C D E F G H

Options Sender’s Key (64 bits)

Options Receiver’s Key (64 bits)

(if option Length == 20)

Figure 1.5: Multipath Capable (MP CAPABLE) Option (RFC6824)

Client Server
SYN+MP CAPABLE

KA

SYN/ACK+MP CAPABLE

KB

ACK+MP CAPABLE
KA′KB

Figure 1.6: Multipath TCP initial connection Establishment

TCP option. �e Subtype �eld de�nes the kind of option, MP CAPABLE in this

case. �e �ags are de�ned as :

• A indicates whether a DSS checksum is required for this connection.

• B is an extensibility �ag and must be set to 0.

• C - H are reserved for crypto algorithm negotiation. In this version

only the rightmost bit, labeled ”H”, is assigned.

�e keys are used as a shared secret to authenticate the hosts during the

establishment of additional sub�ows.

1.4.4 Establishment of an additional sub�ow

To establish an additional sub�ow, Multipath TCP also performs a three-way

handshake, using the MP JOIN option. �is handshake is illustrated in Fig-

ure 1.7. To associate this sub�ow with an already established connection,

8 Chapter 1. Introduction

Multipath TCP must be able to identify that connection. �e intuitive solu-

tion would be the use the 5-tuple, but it can not be used as some on-path NAT

could modify it. To achieve this goal, Multipath TCP uses a locally unique to-

ken, shown as TokenB that has been generated from the key exchanged in

the MP CAPABLE. To prevent an a�acker from injecting tra�c into an already

established connection, a HMAC based on a nonceRA/B exchanged with the

MP JOIN and the keys exchanged in the initial connection establishment is

used.

Client Server
SYN+MP JOIN
TokenB ,RA

SYN/ACK+MP JOIN

HMACB,RB

ACK+MP JOIN

HMACA

Figure 1.7: Multipath TCP additional sub�ow establishment

�e format of the MP JOIN option used for the SYN is shown in Figure 1.8.

�e �elds speci�c to this option are :

• B indicates if the sender wishes this sub�ow to be used as a backup one.

Multipath TCP’s backup path system is described in Chapter 2.

• Address ID identi�es the source address of this packet and has signi�-

cance within a single connection. It allows address removal and is also

used for address management.

• Receiver’s token is used to identify the connection to join. It is the

connection identi�er in the remote host.

• Sender’s Random Number is used for HMAC generation.

1.4.5 Address advertisement

Another critical feature of Multipath TCP is its ability to learn and advertise

new addresses. While a client easily knows its own addresses, the addresses

of the remote host need to be learned in some way. Figure 1.9 illustrates a

1.4. Multipath TCP 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype B Address ID

Receiver’s token (32 bits)

Sender’s Random Number (32 bits)

Figure 1.8: Multipath Capable (MP JOIN) Option for the SYN (RFC6824)

simple scenario in which a smartphone connects to the publicly know IPv4

address of a server 1.1.1.1 (1). �e server being multi-homed, it also has an-

other IPv4 address: 2.2.2.2. At this point, the smartphone does not have any

knowledge of the server’s second interface and thus, cannot establish an ad-

ditional sub�ow. �e server could use its second interface to initiate a new

sub�ow to the smartphone, but this would most likely fail due to a NAT or a

�rewall.

IP: 1.1.1.1

IP: 2.2.2.2

1. MP_CAPABLE -> 1.1.1.1

2. ADD ADDRESS 2.2.2.2

3. MP_JOIN -> 2.2.2.2

Figure 1.9: Multipath TCP’s address advertisement

To circumvent this problem, Multipath TCP supports the possibility for a

host to advertise its other IP addresses to the other host. �is mechanism is

shown in Figure 1.9. As soon as the �rst connection has been established (1.)

the server sends an option to the smartphone (2.) to advertise its secondary

IP address 2.2.2.2. At this point, the smartphone knows that the server can

be reached via another address. Given that, the smartphone might elect to

establish a new sub�ow to join the connection (3.).

It is important to specify that the address advertisement can work both

ways, but as said before, it is likely that if the smartphone had a second inter-

face, it would not be reachable from the server due to a NAT. �e advertised

10 Chapter 1. Introduction

IP address can be an IPv4 address or an IPv6 address, irregardless of the initial

sub�ow’s IP version.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype IPVer Address ID

Address (8 or 16 bytes)

Port (optional)

Figure 1.10: Add Address (ADD ADDR) Option (RFC6824)

�e option used to advertise IP addresses is called ADD ADDR and is illus-

trated in Figure 1.10. In this header, IPVer de�nes the version of IP (4 or 6),

Address ID represents the internal ID of this address inside to host adver-

tising it. �is is useful to remove addresses because this way, when a host

removes the address Address ID, the receiver just needs to close all connec-

tions using this ID. �is is necessary because of possible on-path NAT. �e

Address �eld is the address advertised, and the Port is the TCP port to use to

establish new connections to this address. It is important to highlight that this

ADD ADDR option is not transmi�ed reliably. If a packet carrying this option is

lost, the protocol does not specify any solution to inform the sender, resulting

in the de�nite loss of this information. In that case, the address would end up

not being advertised to the other end.

1.5 IPv6 Segment Routing (SRv6)

Segment Routing (SR) is a modern variant of the source routing paradigm.

Standardized within the IETF [FPG
+

18], Segment Routing’s main principle is

to allow the source of a packet to steer it along an arbitrary path in the net-

work. �is path is not necessarily a shortest path. Segment Routing has been

designed to be stateless; the path is encoded within the packet in the form of a

segment list and a current segment pointer. While Segment Routing has orig-

inally been designed to be used on top of the MPLS dataplane [FPG
+

18], us-

ing MPLS labels as segment, the newest �avor uses the IPv6 dataplane to steer

packets through an ordered list of segments [FDP
+

19]. �ere are two types of

segments: a node segment steers the packet through a particular node in the

network while an adjacency segment steers the packet through a particular

link in the network. In this thesis we use the word segment for both.

Figure 1.11 illustrates a network where multiple paths are available be-

tween the Source (S) and the Destination (D) of a �ow. In this �gure, hollow

nodes are segment endpoints, as opposed to routers that are not Segment

Routing-aware. It is important to note that in this network, S and D are not

1.5. IPv6 Segment Routing (SRv6) 11

S

A

B

C

D

Router
Endpoint

SR-steered path
Shortest IGP path

Figure 1.11: Tra�c steering between S and D through A, B and C

necessarily the nodes that respectively generated and will receive the pack-

ets. �ey can also be a part of a longest path, where the rest of the path is not

Segment Routing-aware. In that case, they act respectively as ingress node

and egress node. In this scenario, a packet egressing S will carry a segment

list of A, B, C, D with the current segment pointer set to A. As A is the �rst

segment, the packet follows the shortest path to A. Upon reaching A, the cur-

rent segment pointer advances to B and the packet takes the shortest path to

B. A�er going through C, the packet reaches D. As D is the last segment of the

segment list it removes the segment list and either consumes the packet (if D

was the original destination) or forwards it to the original destination. In this

con�guration, Segment Routing steered the packet over the path A, B, C,

D where in a non Segment Routing-aware network, the packet would have

followed the shortest IGP path.

1.5.1 IPv6 Segment Routing

IPv6 Segment Routing is the IPv6 �avor of Segment Routing. Instead of an

MPLS label, IPv6 Segment Routing uses an IPv6 extension header called the

Segment Routing Header (SRH). It is illustrated in Figure 1.12.

In this header, the Next Header �eld identi�es the protocol following the

SRH. �e Header Ext Len �eld contains the size of the SRH. �e Routing

type is always set to 4 (it identi�es the header as being IPv6 Segment Rout-

ing). �e Segments left �eld indicates the number of remaining segments.

It acts as a pointer in the list and allows to determine the next segment. �e

First Segment contains the index (zero based), in the Segment List, of the

last element of the Segment List. �e Flags are reserved but currently un-

used. �e Tag identi�es a packet as part of a class or group of packets, e.g.,

packets sharing the same set of properties. �e Segments List is a list of

segments identi�ed by 128 bits IPv6 addresses in reserve order. �e reverse

order is explained by Figure 1.13, illustrating the SRH has seen by S. In this

�gure, A being the �rst segment of the path, it is the last address of the list. D

being the �nal destination, it is at the �rst index of the list.

12 Chapter 1. Introduction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Next Header Hdr Ext Len Routing type Segments Le�

Last Entry Flags Tag

Segment List[0] (128 bits IPv6 address)

…

Segment List[n] (128 bits IPv6 address)

Optional Type Length Value objects (variable)

Figure 1.12: IPv6 Segment Routing Header (SRH)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Next Header Length: 8 Type: 4 Segments Le�: 3

Last Entry: 3 Flags: 0 Tag: 0

Segment List[0]: D’s IPv6 address

Segment List[1]: C’s IPv6 address

Segment List[2]: B’s IPv6 address

Segment List[3]: A’s IPv6 address

Figure 1.13: SRH representation of 1.11

1.5. IPv6 Segment Routing (SRv6) 13

�e Optional Type Length Value objects (TLV) shown in

Figure 1.12 are optional headers that can be de�ned for an SRH. �eir goal is

to provide meta-data for segment processing. Each TLV has its own length,

format and semantic. �e only TLVs de�ned in the speci�cation are HMAC and

PAD, used respectively to secure and align the SRH to a multiple of 8 bytes.

Additional TLVs can be created to suit speci�c uses cases, the basic format of

a TLV is illustrated in Figure 1.14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Length Variable length data

Figure 1.14: Format of a TLV

1.5.2 Processing by segments endpoints

�e basic mechanism of IPv6 Segment Routing consists in looking-up in the

SRH to determine the next segment and replace the IPv6 destination address

by the address of this segment. �is is illustrated in Figure 1.15. In this �gure,

a Client wants to send data to a Server using a path passing through A and

B. �us, the SRH contains (in traversal order) A, B and Server. It is important

to mention that it is mandatory to put the IP address of the server as the last

segment, otherwise this information would be lost.

Client ServerA B

IPv6
SRC: Client
DST: A

SRH
Server

B
A

IPv6
SRC: Client
DST: B

SRH
Server

B
A

IPv6
SRC: Client
DST: Server

SRH
Server

B
A

Figure 1.15: IPv6 Segment Routing processing

When a packet leaves the Client, its destination IP address is set to the

next segment endpoint A. When reaching A, the endpoint sets the IPv6 desti-

nation address to the address of the next node B and decrements the number

of Segments Left. �is process is repeated until the packet reaches its �nal

destination.

1.5.3 Encapsulation

In the previous sections, we described IPv6 Segment Routing in a scenario

where the host generating the packet is IPv6 Segment Routing-aware and di-

rectly inserts the SRH in-line between the IPv6 layer and the transport layer.

14 Chapter 1. Introduction

Another solution can be used by an ingress router to impose an SRH onto

packets: encapsulation. With encapsulation, the original packet is encapsu-

lated into an outer IPv6 header. In this thesis, we mostly insert the SRH in-line
because we assume that the origin of the packet supports IPv6 Segment Rout-

ing.

Chapter 2

Reconsidering how Multipath
TCP handles sub�ows

2.1 Introduction

In this chapter, we extend Multipath TCP by exploring new ways of using

its sub�ows. In Section 2.2, we reconsider how Multipath TCP handles the

backup sub�ows. In Section 2.3 we propose a trusted resource pooling using

Multipath TCP.

2.2 Reconsidering How Multipath TCP Handles
Backup Sub�ows

2.2.1 Di�erent types of sub�ows

�e Multipath TCP speci�cation [FRHB13] supports two types of sub�ows:

normal sub�ows and backup sub�ows. Once a normal sub�ow has been cre-

ated, it can be used to send and receive data. A backup sub�ow is signaled

by using either a �ag in the MP JOIN option or through the MP PRIO option

that can be sent at any time over an active sub�ow. Smartphones are a typical

use case for the backup sub�ows. Given that cellular usage is o�en metered,

smartphone users o�en prefer to use the WiFi interface and only use the cel-

lular interface when the WiFi is unavailable. �e Multipath TCP speci�ca-

tion considers the backup sub�ows as follows: path to use only in the event of
failure of other working sub�ows. Unfortunately, [FRHB13] does not clearly

specify how the failure of a working sub�ow is detected by a host. A simple

approach, that is used by the reference Multipath TCP implementation in the

Linux kernel [PB
+

] is to consider that a sub�ow has failed once the inter-

face used by the sub�ow fails. �is works well on �xed hosts that can react

15

16 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

quickly to the failure of one of their interfaces. However, if the failure lies in

the network, the host will wait for n expirations of the TCP retransmission

timer before considering the sub�ow as failed. In wireless networks, there

are many situations where a smartphone remains associated with an access

points (and thus is assigned to an IP address), but the link quality is so bad

that most packets are lost.

In this section, we reconsider how Multipath TCP handles backup sub-

�ows. �is problem is important for both smartphones and hybrid access

networks that are the two ongoing deployments of Multipath TCP [BBG
+

19].

�is section is organised as follows. We �rst introduce the active backup

scheduler in 2.2.2. In 2.2.3, we compare the performance of the active backup

scheduler with the default and default backup ones under di�erent types of

tra�c. We explore related works in Section 2.2.5 and �nally discuss our solu-

tion in 2.2.6.

2.2.2 �e case for packet expirations

�e packet scheduler [PFAB14] illustrated in Figure 1.4 is an important com-

ponent of any Multipath TCP implementation. When several sub�ows are ac-

tive, this algorithm decides the sub�ow that is used to send each data packet.

In the reference implementation of Multipath TCP in the Linux kernel [PB
+

],

the default scheduler operates as shown on Figure 2.1. �is scheduler prefers

the non-backup sub�ows having an open congestion window and the lowest

round-trip-time [BPB11,PFAB14]. It only uses the backup sub�ows for a spe-

ci�c packet once all the non-backup sub�ows failed to transmit that packet.

To improve the user experience, we modify this default scheduler by adding

an expiration time to each packet. Instead of waiting for a complete failure of

all active sub�ows to use the backup ones as speci�ed in [FRH
+

19], we agree

to use the backup sub�ows once packets have been delayed for a speci�ed

time in the Multipath TCP stack.

Our active backup scheduler o�ers a trade-o� between packet time deliv-

ery and the utilization of the backup interface. �is trade-o� is determined by

a new parameter associated to each Multipath TCP connection: the expiration
delay. To con�gure the expiration delay, we de�ne a new socket option called

MPTCP EXPIRATION. As shown by Figure 2.3, the delay can be con�gured by

using this new socket option when creating each Multipath TCP connection

inside an application or as a system-wide default.

We implement the active backup scheduler as an extension of the default

scheduler. A graphical representation of this scheduler is shown on Figure 2.2.

When the application pushes data to the kernel via the tcp sendmsg call, the

kernel records the timestamp of the call and associates it to the data. Once

the data reaches the scheduler, the scheduling function determines if the data

2.2. Reconsidering How Multipath TCP Handles Backup Sub�ows 17

SELECT_SUBFLOW:

list = GET_NON_BACKUP_SUBFLOWS()

/* Get the subflows not already used for

this packet from the list */

list = GET_UNUSED_SUBFLOWS(list, packet)

IF NOT EMPTY list

list = GET_OPEN_CWND_SUBFLOWS(list)

IF EMPTY list

return WAIT_AND_RETRY

ELSE

return BEST_RTT_SUBFLOW(list)

ELSE

list = GET_BACKUP_SUBFLOWS()

list = GET_UNUSED_SUBFLOWS(list, packet)

list = GET_OPEN_CWND_SUBFLOWS(list)

IF EMPTY list

RESET_USED_FLAGS()

return WAIT_AND_RETRY()

ELSE

return BEST_RTT_SUBFLOW(list)

Figure 2.1: Default scheduler algorithm to choose a sub�ow.

tcp_sendmsg()

Send queue

Adding the current
timestamp

Scheduler

If timestamp expired
 use backup (if backup's RTT is better)
else
 use best subflow that isn't a backup

Regular subflow #1

Regular subflow #2

Backup subflow #1

Figure 2.2: Graphical representation of the active backup scheduler.

i n t d e l a y = 4 0 ; / ∗ 40ms d e l a y ∗ /

s e t s o c k o p t (sock , SOL TCP ,

MPTCP EXPIRATION , &de lay , s i z e o f (i n t)) ;

Figure 2.3: Typical way of setting the expiration delay in an application.

spent too much time in the send-queue by computing the di�erence between

the current timestamp and the sum of the recorded timestamp stored with the

data and the expiration delay of the connection. While the non-expired data

is sent over the non-backup lowest RTT available sub�ow, the expired data

18 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

SELECT_SUBFLOW:

IF packet.ts + expiration > now

list = GET_ALL_SUBFLOWS()

list = GET_UNUSED_SUBFLOWS(list, packet)

list = GET_OPEN_CWND_SUBFLOWS(list)

IF NOT EMPTY list

return BEST_RTT_SUBFLOW(list)

ELSE

RESET_USED_FLAGS()

return WAIT_AND_RETRY()

ELSE

/* ... unmodified default code ... */

Figure 2.4: Active backup scheduler algorithm to choose a sub�ow.

is sent over the lowest-RTT available sub�ow, considering the backups links.

�is allows that, if some data is considered late by the user parameter, it will

always be sent on the fastest available link. If the user does not set any value

to MPTCP EXPIRATION or sets a value of 0, the scheduler behaves like the

default MPTCP scheduler. To avoid modifying applications, we implemented

a mptcp sched expiration sysctl with a default value of 0. By default, the

value of this sysctl will be used upon se�ing another value via setsockopt.

�e value of the MPTCP EXPIRATION parameter is local to the host where

the expiration has been set. �us, it controls the packets transmi�ed by this

host. In many situations, the host that sends the data is not the one that

wants to in�uence the utilization of the sub�ows. A typical example is when

a smartphone retrieves data from a server. �e smartphone typically wants

to consider the cellular interface as a backup one, using it only when the WiFi

interface has bad performance or is lost. �e server is usually single-homed.

For the server, sending data towards the smartphone’s cellular or WiFi in-

terfaces has the same cost. To meet the smartphone’s user expectations, the

server must be able to learn the smartphone’s expiration delay.

To achieve this goal, we de�ne a new MPTCP experimental option as spec-

i�ed in [FRH
+

19] and shown by Figure 2.5. �is option carries the value of

the expiration delay and is transmi�ed in a reliable way. Upon reception of

the option, the receiver will use the value as the MPTCP EXPIRATION for that

connection.

�e �rst 20 bits are used to de�ne a MPTCP option, its length and sub-

type (experimental). �e ’S’ and ’U’ bits are used to make the option reliable.

�e “Experiment ID“ is the experiment identi�er that will be assigned to the

MPTCP EXPIRATION option by the IANA. �e last 16 bits are used to carry the

expiration value in milliseconds.

2.2. Reconsidering How Multipath TCP Handles Backup Sub�ows 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype S U rsv Experiment

ID. Expiration value

Figure 2.5: Structure of the experimental option

Client Router Server

Path 1

Path 2

Path RS

Figure 2.6: Topology used in our tests. �e RS link does not introduce any
delay/bandwidth constraint.

2.2.3 Evaluation

First, we introduce our methodology used for our measurements. We then

explore the performance of the active backup scheduler �rst in emulated net-

works without losses, then with di�erent packet loss ratios and �nally in ran-

dom topologies.

2.2.4 Methodology

In the remaining of this section, we analyze the performance of the active

backup scheduler in a two-paths topology shown on Figure 2.6 where the

bo�om one is considered as the backup one. Unless speci�ed, the �rst path

is a 10 Mbps 30 ms RTT link (e.g. a WiFi network) and the second one is a

10 Mbps 20 ms RTT link (e.g. a LTE network). �e size of the router bu�ers

is equal to the bandwidth-delay product and they use a FIFO queuing policy.

We use three di�erent types of applications to generate tra�c. Our �rst

application is the wget HTTP client. We use it to mimic a 20 MB �le down-

load. Our second type of tra�c is an application rate-limited bulk down-

load using netcat [Gia13] and pipe viewer [ea15] for a �le of 20 MB.

Our third application is the loading of a complete web page emulated us-

ing epload [WBKW14]. We focus here our analysis on the loading of �ve

di�erent web pages, similar results can be observed on other pages given

by [WBKW14]. We ensure that their contents are stored in RAM on the server.

For each of these applications, we measure the duration of the scenario (data

transfer or loading time) and the percentage of bytes that are carried on the

20 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

second path in function of the expiration delay. In the wget and epload cases,

we use Apache [FK97] and HTTP1.1 to serve contents on the server. In our

experiments, we compare 3 con�gurations:

• Default: the default Multipath TCP scheduler with two links, none

of them con�gured as backup. In this con�guration the scheduler is

expected to use both links.

• Default with backup: the default Multipath TCP scheduler with two

links with the second path (LTE), con�gured as a backup path. In this

con�guration the scheduler is expected to use the backup path only

when the �rst path fails.

• Active backup: our modi�ed Multipath TCP scheduler with two links

with the second path (LTE), con�gured as a backup path. In this con-

�guration, the scheduler is expected to use the backup path when the

expiration timer expires.

We run our tests in mininet environments [LHM10] under Ubuntu 14.04

on a server with Intel(R) Xeon(R) X5472 @ 3.00GHz and 32 GB of RAM. Each

test (except those with random topologies) is repeated at least 5 times.

Non-lossy networks

In this subsection, we observe how the active backup scheduler behaves in

networks where there are no random packet losses. �is will help us to get a

basic understanding of its mechanisms.

Figure 2.7 shows that for a bulk transfer, the active backup scheduler ex-

hibits similar characteristics as the default scheduler without backup link,

especially when expiration delay values are low. �is is expected since the

application pushes data as fast as possible and is thus limited by the network.

If the congestion window of the non-backup path is full, the data is back-

logged in the MPTCP stack and will sooner or later expire, triggering the

utilization of the backup path.

�is intuition can be veri�ed by controlling the rate of the bulk transfer.

Figure 2.8 shows that the utilization of the backup link grows with the data

rate. Since the second path is the lowest RTT one, it is expected to observe

most of the tra�c on that path when the rate is low, whereas all tra�c could

be sent on the main path without using the backup one (using here an expi-

ration delay of 35 ms). It is also interesting to see that under a 5 Mbps data

rate, the default scheduler balances nearly equally the tra�c over both paths

while the percentage of bytes on the backup path using the active backup

scheduler remains low. When the sending congestion window of one path

2.2. Reconsidering How Multipath TCP Handles Backup Sub�ows 21

Figure 2.7: Bulk transfer with wget. �e dots show the median of results for
a given expiration delay. �e vertical bars shown the minimal and maximal
values. Only median values are shown for default and default backup.

Figure 2.8: Rate-limited bulk tra�c with expiration delay of 35ms. Similar
trends are observed with other expiration delay values.

22 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

Figure 2.9: Loading pinterest.com using epload.

is full, the default scheduler directly uses the second path while the active

backup scheduler waits until the data has expired before doing so with the

backup path. �e active backup scheduler is therefore useful to ensure that

connections that consume a low average bandwidth will only use the main

sub�ow and the backup sub�ow will only be used for heavier connections

whose average bandwidth is close or larger than the capacity of the primary

link.

Web page loading times are more interesting because they involve di�er-

ent MPTCP connections with di�erent sizes and durations. Figure 2.9 shows

that increasing the expiration delay helps to reduce the usage of the backup

link. In terms of page loading time for

pinterest.com, the performance of the active backup scheduler lies be-

tween the default and the default backup. When the expiration delay grows,

the page loading time converges to the one of the default backup. �e time

performance can be di�erent depending on the web page loaded. Indeed, if

the page loading only triggers short connections carrying a small amount of

bytes, the backup sub�ow does not have the time to be used, typically be-

cause the data transfer is over before the sub�ow is fully established. In such

cases, changing the scheduler (default, default backup, active backup) does

not change anything to results. By looking closely into Figures 2.7 and 2.9,

one could expect the LTE link usage for the default scheduler to be a li�le bit

higher than 50% given the con�guration of the links. Our analysis shows that

this is caused by the fact that the LTE sub�ow is established a�er the primary

sub�ow. During the establishment of the LTE sub�ow, the primary sub�ow

2.2. Reconsidering How Multipath TCP Handles Backup Sub�ows 23

Con�g. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Path 1 0 0 0 0 0 0 0 0.1 0.3 0.5 1 1.5 2 0.1 0.3 0.5

Path 2 0 0.1 0.3 0.5 1 1.5 2 0 0 0 0 0 0 1.1 1.3 1.5

Table 2.1: Random loss percentage applied on paths.

5 10 15 20 25 30 35 40 45 50 100 150 200 250 300 350 400 450 500

Expiration delay [ms]

−2

−1

0

1

2

T
im

e
 C

o
e
ff

ic
ie

n
t

Aggregated results of epload

Figure 2.10: Time coe�cient of epload with random losses (10 Mbps 30 ms
RTT - 10 Mbps 20 ms RTT).

is already exchanging data, increasing it’s contribution to the total amount

of data exchanged. �is di�erence will thus decrease by being amortized as

the transfer size increases. �is can be observed in Figure 2.9 that represents

a total transfer size of 1.6MB and Figure 2.7, that represents a total transfer

size of 20MB. In the �rst case, the usage of the LTE link represents 42.5% in

the second case, it represents 47.5%.

Impact of random losses

�e above measurements have considered a perfect network without any loss.

We now explore the performance of the active backup scheduler when ran-

dom losses occur on paths. �is can give an idea of how it will behaves in

wireless environments. We take the same topology as before (same delays and

bandwidths) and explore 16 loss con�gurations described on Tab. 2.1 leading

to around 10,000 tests.

To analyze those aggregated measurements, we rely on two metrics that

characterize at a high level the page loading time and the usage of the backup

sub�ow. Let T 50
def and T 50

bk be the median times to load a given web page

24 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

5 10 15 20 25 30 35 40 45 50 100 150 200 250 300 350 400 450 500

Expiration delay [ms]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

B
a
ck

u
p
 U

sa
g
e

Aggregated results of epload

Figure 2.11: Backup usage of eploadwith random losses (10Mbps 30ms RTT
- 10 Mbps 20 ms RTT).

with a given topology using the default and the default backup schedulers,

respectively. �e time coe�cient TC for a test that loaded the web page in

time t using the active backup scheduler is given by

TC =
t−min(T 50

def , T
50
bk)

max(|T 50
bk − T 50

def |, 10−3)
. (2.1)

A TC value of 0 (resp. 1) shows that the active backup scheduler loaded the

web page in the same time as the quickest scheduler — typically the default

one — (resp. the slowest scheduler — typically the default backup one —). In

this equation, 10−3
is used to avoid a division by zero.

A similar metric can be de�ned to measure the usage of the backup sub-

�ow. Let P 50
def and P 50

bk be the median percentages of bytes transmi�ed on

the backup path for a given web page and a given topology using the default

and the default backup schedulers, respectively. �e backup usage BU for

a test where p% of bytes went on the backup path using the active backup

scheduler is given by

BU =
p− P 50

bk

max(P 50
def − P 50

bk , 10
−3)

. (2.2)

ABU value of 0 (resp. 1) indicates that the active backup scheduler sends the

same percentage of bytes on the backup interface as the default backup (resp.

default) scheduler.

2.2. Reconsidering How Multipath TCP Handles Backup Sub�ows 25

Characteristic Min Max

Bandwidth (Mbps) 0.1 100

Round-trip-time (ms) 0 400

Loss (%) 0.0 2.0

Table 2.2: Value ranges for random topologies.

�e results for the time coe�cient and the backup usage are shown on

Figure 2.10 and 2.11, respectively. As expected, when the expiration delay

increases, the page loading time increases and the backup usage decreases.

In median cases, the performances stay between the default and the default

backup schedulers. �is con�rms the intuition that the default and default

backup schedulers are extreme cases of the active backup scheduler, with ex-

piration delays set at 0 ms and∞ ms, respectively. In particular, using 50 ms

as expiration delay provides a good trade-o� for web tra�c between loading

time (in the middle between the default and the default backup) and backup

usage (median decrease of 60% compared to the default). In these �gures, the

outliers are linked to the randomness of the losses. For instance, a loss on the

SYN packet of the backup connection as a higher impact on the performances

than a loss on a data packet.

Random topologies

So far, we considered the same topology with the same bandwidth and delay

pro�les. To see how the active backup scheduler behaves in a broader set of

networks, we perform a space exploration by generating random two-paths

topologies. Table 2.2 shows the range of values for the path characteristics,

chosen under a uniform distribution. Notice that the bu�er sizes are still equal

to the bandwidth-product of their link. We run our epload tests on 20 two-

paths topologies by considering both cases where either connection starts on

path 1 and path 2 is the backup one or connection starts on path 2 and path 1

is the backup one.

Figure 2.12 shows the values of the backup usage as de�ned in Eq. (2.2)

obtained by running more than 4,000 tests. Despite the variability of the re-

sults mainly due to the random losses, we see that the backup usage is close

to 1 when the expiration delay is low and tends to 0 with the expiration delay

increase, as expected. �is tendency is clearer when the main path is the one

having the lowest RTT. In terms of time performance, the results do not show

a clear tendency, but the active backup scheduler is close of the performance

of the best scheduler between the default and the default backup (depending

on path characteristics), especially if the main path is the lowest RTT one.

26 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

5 10 15 20 25 30 35 40 45 50 100 150 200 250 300 350 400 450 500

Expiration delay [ms]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

B
a
ck

u
p
 U

sa
g
e

Aggregated results of epload

Figure 2.12: Backup usage of epload with random topologies.

2.2.5 Related work

Various Multipath TCP have analyzed the performance of Multipath TCP on

smartphones[CT14, CLG
+

13, CBHB16, DNSB14]. In one of the �rst experi-

mental Multipath TCP on Multipath TCP [RNBH11], Raiciu et al. explored

the behavior of Multipath TCP over WiFi and 3G interfaces with bandwidth

pooling, but they did not analyze the utilization of backup sub�ows. Later,

Paasch et al. explored in [PDD
+

12] the behavior of Multipath TCP using

the backup mode for one interface with the cellular path being used only

when the WiFi sub�ow fails. �is was the �rst experimental demonstration

of the utilization of backup sub�ows. Our contribution shows that thanks

to the expiration delay, it is possible to have a continuum of behaviors be-

tween bandwidth pooling and fail-over. De Coninck et al. [DCBHB16] shows

in smartphone environment that backup sub�ows are o�en unused. From an

energy consumption point of view, our argument in favor of the usage of the

LTE sub�ows in backup mode to transmit data relies on [DNSB14], where

Deng et al. showed that the ”Tail Energy” phenomenon considerably limits

the energy saving when using cellular as a backup interface.

Regarding the scheduling algorithms, Paasch et al. [PFAB14] designed

and evaluated a Round-Robin scheduler and two variants of the default (Low-

est RTT) scheduler and used experimental design to demonstrate the e�ects

caused by bad scheduling decisions. Ferlin et al. proposed BLEST [FAMB16],

a scheduler aimed at mitigating the e�ects of Head-Of-line blocking while

using heterogeneous paths. In [OL15], Oh et al. proposed another scheduler

2.3. Trusted resource pooling with Multipath TCP 27

that tackles the same problem. Arzani [AGC
+

14a] showed that the choice of

the scheduling policy also depends on path characteristics. �e Socket intent

approach[SEKF13] allows the application to inform the network stack about

several informations (how the tra�c may look like, the tolerance of the ap-

plication…) about its communication pa�ern.

2.2.6 Discussion

In this section, we have proposed and implemented a new way of handling

backup sub�ows in Multipath TCP. Our solution provides a trade-o� between

packet time delivery and the utilization of the backup interface. Instead of

transmi�ing over the backup sub�ows only when the primary ones fail, we

measure the time spent by the data in the Multipath TCP stack and use the

backup sub�ow as soon as the data has been delayed by more than a con�g-

ured time. We implement this as an extension of the Multipath TCP sched-

uler that is con�gured with an expiration delay on a per-connection basis.

Our measurements show that this keeps most of the tra�c on the primary

sub�ows for interactive applications such as web browsing.

Our solution could be part of a higher level API such as the one proposed

for socket intents [SEKF13] where the application speci�es its high level ex-

pectations and the planned utilization of the connection to allow the stack to

automatically con�gure parameters such as our expiration delay to match the

user’s needs.

2.3 Trusted resource pooling with Multipath TCP

2.3.1 Introduction

Smartphones and tablets are becoming one of the most widely used devices to

access the Internet. Today’s smartphones are equipped with several wireless

interfaces (WiFi, 4G, Bluetooth, . . .). Faced with a huge growth of the data

tra�c [ER13, HQG
+

13], mobile network operators are exploring alternatives

to 4G to provide Internet connectivity.

Researchers have explored the interactions between WiFi and 4G in the

past. Several studies have demonstrated that there are performance and cost

bene�ts in o�oading data tra�c to the WiFi network [LLY
+

13]. �ese �nd-

ings encouraged network operators to roll out large WiFi networks.

From a pure cost viewpoint, users and network operators could wish to

o�oad their tra�c onto WiFi networks. However, WiFi networks also have

some drawbacks. First, a WiFi network may be much slower than 4G, in par-

ticular when many users are a�ached to a low bandwidth broadband link.

Second, using WiFi may expose the users to more types of a�acks and secu-

28 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

rity problems than 4G networks. Cellular networks are typically controlled

by the network operators and it is di�cult for a�ackers to capture or inject

packets inside these networks. On the other hand, WiFi started as a com-

pletely open technology and there are still many open access points where

all data packets can be easily eavesdropped. Users a�ached to open WiFi

networks are vulnerable to a wide range of a�acks such as the Firesheep
1

Firefox extension that allows to hijack HTTP sessions. Furthermore, many

ADSL/cable routers that provide WiFi access have o�en been the target of

a�acks, some having compromised hundreds of thousands of routers (see e.g.

[MSM13, Goo13]). Once compromised, such a WiFi router can easily mount

various types of man in the middle a�acks.

Multipath TCP was designed with resource pooling in mind [WHB08] and

aims at distributing data fairly over di�erent interfaces. In this section, we

show that equally distributing data over di�erent networks is not su�cient

when these networks have di�erent properties from a security viewpoint. We

extend Multipath TCP to take into account the trust level of each network

interface and evaluate the performance of our implementation.

�is section is organized as follows. In Section 2.3.2, we explain how

Multipath TCP and our Linux implementation can be extended to take this

level of trust into account. Section 2.3.3 explains how Multipath TCP can

bene�t from the secure handshake used by protocols such as SSL or TLS.

Finally, we discuss our �ndings in Section 2.3.4.

2.3.2 (Un)Trusted network interfaces

Multipath TCP was designed to be no less secure that regular TCP [BPG
+

14].

In contrast with TCP extensions such as TCPCrypt [BHH
+

10],

TCP-AO [TMB10] or QUIC [IT19], Multipath TCP does not encrypt or au-

thenticate the segments that it sends. �e only “secure” mechanism used in

Multipath TCP is the authentication of the sub�ows. As explained in Sec-

tion 1.4.3, the client and the server exchange 64 bits keys in clear during the

initial three-way handshake. �ese keys are then used later to authenticate

the additional sub�ows with an HMAC computation.

If an a�acker can eavesdrop a key exchanged during the initial three-

way handshake, he/she can easily add a new sub�ow to an existing Multipath

TCP connection and mount some a�acks by injecting or collecting data. �e

Multipath TCP speci�cation [FRHB13] and the current implementation in the

Linux kernel [RPB
+

12] does not propose a solution to this problem. Adding

a strong key exchange scheme in Multipath TCP as de�ned in [FRHB13] ap-

pears impossible given the limited space available in the TCP options
2
.

1

See http://codebutler.github.io/firesheep/
2

TCP options cannot be longer than 40 bytes and the option space in the initial SYN seg-

2.3. Trusted resource pooling with Multipath TCP 29

Given that usually the user can trust its mobile network operator (and

3G/4G includes protocols to verify the mobile network), we propose to extend

Multipath TCP by distinguishing two types of network interfaces :

• Trusted interface. An interface is considered to be trusted when the

user can expect that passive and active eavesdropping will be impossi-

ble on this interface given its nature (e.g. physical wire) or due to the

utilization of encryption techniques (e.g IPSec).

• Untrusted interface. An interface is consider to be untrusted if at-

tacker can easily eavesdrop packets.

In our implementation, we extend the interfaces table in the Linux kernel

with one bit per interface that indicates its trust level. �is trust level will typ-

ically be automatically con�gured by the connection manager, that controls

the utilization of the network interfaces. We expect that wired interfaces such

as Ethernet could be considered as trusted by default. However, some compa-

nies could prefer to consider that only the company’s Ethernet is trusted and

rely on 802.1x to verify that the device is a�ached to the company network.

Virtual Private Network solutions built with IPSec, SSL/TLS or DTLS usu-

ally provide a virtual network interface. Such interfaces will be considered

as trusted by the connection manager. For wireless networks, we expect that

3G and 4G networks will be considered to be trusted given the utilization of

link layer encryption to secure the wireless channel. Mobile network opera-

tors o�en install tailored connection managers on the smartphones that they

sell. �is connection manager could easily recognize the operator’s networks

and consider them to be trusted. For WiFi networks, the level of trust could

depend on the use of link-layer encryption (e.g. WPA2 could be considered

trusted while WEP would not be) and also on the utilization of 802.1x (e.g. a

corporate WiFi network using EAP-TTLS would be considered to be trusted

once the network certi�cate has been validated).

Protecting the initial handshake

With the level of trust of each interface in mind, we need to reconsider how

the TCP/IP stack uses the available interfaces. In the existing Linux TCP/IP

implementation, one interface is considered to be preferred. On smartphones,

this is usually the WiFi interface when active given that WiFi usually
3

pro-

vides a lower delay and higher throughput than cellular networks.

Our �rst modi�cation to the Multipath TCP implementation is to take

the trust level of the interfaces into account when creating a Multipath TCP

ment is already almost full.

3

�is might change in cellular networks supporting 4G/LTE that provide lower delays

[HQG
+

13].

30 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

Generate RA

Verify HmacB

Compute HmacA

K := KB ||KA

HmacA :=HmacK(RB ||RA||T)

Lookup tokenB

Generate RB

Compute HmacB

K := KA||KB

HmacB :=HmacK(RA||RB ||T)

Verify HmacA

SYN/ACK + MP JOIN
HmacB , RB , T=1

Client Server

ACK + MP JOIN
HmacA, T=1

SYN + MP JOIN
tokenB , RA, T=1

Figure 2.13: Modi�ed sub�ow establishment.

connection. When a client opens a Multipath TCP connection, our imple-

mentation forces the transmission of the �rst SYN packet over a trusted in-

terface. �is protects the random keys that are included in the MP CAPABLE

option against passive eavesdroppers. Once the initial sub�ow has been cre-

ated over a trusted interface, additional sub�ows can be established over the

other available interfaces.

Con�guring the trust level of each interface on the client is necessary

but unfortunately not su�cient. Since both the client and the server will ex-

change data, there must be a way for the client to reliably inform the server

about the trust level of the di�erent sub�ows. We �rst assume that the initial

sub�ow is always established over a trusted interface. We further assume that

the server only uses trusted interfaces. �e second sub�ow could be estab-

lished over a trusted or an untrusted interface. To convey the trust level of

the interface used on the client to create the sub�ow, we extend the MP JOIN

option with the T bit. When set, this bit indicates that the sub�ow is created

on an trusted interface on the client. Otherwise the interface (and thus the

sub�ow) is considered to be untrusted. To prevent active a�acks from e.g.

a rogue WiFi access point, the value of the T bit is included in the HMAC

computation used to authenticate the sub�ow.

Protecting the data

Protecting the initial handshake does not protect the data. �is is particularly

important with plain text protocols such as HTTP, FTP, NFS or SMTP.

On smartphones, HTTP/HTTPS remains the most widely used applica-

tion [ER13, HQG
+

13, FLM
+

10]. In the recent years, the usage of HTTP has

declined in favor of HTTPS. However, HTTP is surprisingly still largely used

[FBK
+

17, Gro19]. Multipath TCP cannot encrypt the data to protect it, but

applications can decide to send sensitive data only over trusted interfaces.

For HTTP, we need to distinguish between the HTTP headers (request and

response) and the web objects that are exchanged. �e HTTP headers o�en

2.3. Trusted resource pooling with Multipath TCP 31

...

/*This message must be sent on a trusted interface*/

msg.msg_iov->iov_base = secure_content;

msg.msg_iov->iov_len = length_of_secure_content;

sendmsg(sockfd,&msg,MPTCP_TRUSTED);

/*This message may be sent on any interface*/

msg.msg_iov->iov_base = unsecure_content;

msg.msg_iov->iov_len = length_of_unsecure_content;

sendmsg(sockfd,&msg,0);

...

Figure 2.14: Using sendmsg to force the utilization of trusted sub�ows

contain sensitive data such as cookies or other forms of session identi�ers

[VB10].

To enable applications to request the transmission of sensitive data only

over trusted interfaces, we extend the Multipath TCP implementation by over-

loading the sendmsg system call. �is system call allows to transmit data on

a socket while supporting sca�er-gather function. �is system call allows the

application to specify some �ags when sending data. Our implementation de-

�nes the new MPTCP TRUSTED �ag. When this �ag is set, the bu�er passed

through the sendmsg system call must only be transmi�ed over trusted in-

terfaces. �e send and sendto system calls can be modi�ed in a similar way

to support the MPTCP TRUSTED �ag.

When an application calls sendmsg and requires the transmission of data

over a trusted interface, the stack iterates over the available sub�ows to �nd

one that is trusted and has enough space in its congestion window to send the

data. If necessary, the transmission of the data is delayed until a trusted sub-

�ow becomes available. Although our implementation forces the data sent

with the modi�ed sendmsg system call to be transmi�ed over a trusted sub-

�ow, it does not force this data to be transmi�ed in a (sequence of) indepen-

dent packet(s). Other data may be a�ached before or a�er these packets.

Performance evaluation

In this section, we experimentally evaluate the performance impact of forcing

Multipath TCP to send the HTTP headers and responses only over a trusted

interface. We use a simple network composed of one client, one router and

one server. �e client is a standard Linux server because it is easier to auto-

mate measurements on such a server than on a smartphone, but our imple-

mentation also works on Android smartphones. �e router is also a Linux PC

that uses the tc so�ware to emulate bandwidth and delays. For our evalua-

tion, the bandwidth is set to 5, 10, 20 and 50 Mbps on the untrusted interface,

emulating a WiFi access point, and 1, 5, 10, 20 Mbps on the trusted interface,

32 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

1KB 10KB 100KB 200KB 500KB 1000KB
HTTP request size

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

No
rm

al
iz

ed
 p

ag
e

lo
ad

 ti
m

e

Figure 2.15: Boxplots show the ratio of page-load time between trusted and
regular Multipath TCP. It can be seen that there is no signi�cant di�erence
between both.

representing a cellular interface. We set delays of 10, 100 and 200 msec on the

trusted and untrusted interface. Our measurement scripts then iterate over

all possible combinations of bandwidth and delays for the cellular and WiFi

paths. Iterating over multiple conditions allows us to have a be�er view of

the performance of Multipath TCP. In some combinations, WiFi is faster than

cellular, in others this is the opposite. �is re�ects real-world deployments

where both situations could happen.

We consider HTTP requests for objects of 1, 10, 100, 200, 500 and 1000

Kbytes. Each HTTP measurement is repeated ten times and for each band-

width/delay combination we measure the average HTTP page load time. �e

client and the server use sendmsg to always send the HTTP headers over

the trusted, “cellular” interface. Figure 2.15 compares the download times be-

tween Multipath TCP with a trusted interface and regular Multipath TCP. We

divide the page-load time of the former by the page-load time of the la�er.

It is apparent in the graph that indeed, within our large range of environ-

ments, the di�erence between both is negligible as the boxplots are centered

around 1. �ere is no signi�cant performance decrease due to the utilization

of trusted interfaces. With larger �lesizes the spread of the page-load times

is a bit larger and thus a minor variance can be seen. Increasing the number

of repetitions would reduce this variance.

2.3. Trusted resource pooling with Multipath TCP 33

Client Server

SYN + MP CAPABLE
RA, tokenA, B=1

SYN/ACK + MP CAPABLE
RB , tokenB , B=1

ACK + MP CAPABLE
RA, tokenA,

RB , tokenB , B=1

Generate RA and tokenA

Generate RB and tokenB

Store tokenB

Compute IDSNA, IDSNB

Store tokenA

Compute IDSNA, IDSNB

(a) Initial sub�ow establishment.

Generate RA

Verify HmacA

SYN + MP JOIN
tokenB , RA

SYN/ACK + MP JOIN
HmacB , RB

ACK + MP JOIN
HmacA

Verify HmacB

Compute HmacA

Lookup tokenB

Generate RB

Compute HmacB

Client Server

(b) Additional sub�ows establishment.

Figure 2.16: MPTCP external keys: MPTCP’s initial handshake is simpli�ed,
the B-bit is set to 1. To establish additional sub�ows, a similar securitymech-
anism as standard Multipath TCP is used.

2.3.3 Multipath TCP and SSL/TLS

Security-critical tra�c is o�en encrypted by using protocols like SSL/TLS.

�ere is a growing motivation to use secure protocols like SSL to transfer data

as demonstrated by the ”Always on SSL”-call from the Online Trust Alliance
(OTA)

4
or [JB08].

If SSL/TLS is used, we can also prevent hijacking a�acks, as the a�acker

needs to know the shared secret of the SSL-session in order to inject tra�c.

SSL secures each record with a Message Authentication Code (MAC), using

the shared secret of the SSL-session. If the MAC of a received record is incor-

rect, SSL destroys the connection with an error alert (bad record mac) [Res01].

�is prevents the a�acker from injecting data inside an SSL session, but a

successful packet injection would cause a denial of service given the release

4https://otalliance.org/resources/AOSSL/index.html

34 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

of the TCP connection and the SSL session. With Multipath TCP, an a�acker

that has eavesdropped the initial handshake but cannot send spoofed pack-

ets is able to create a new sub�ow and inject data that will be delivered by

Multipath TCP to the SSL layer.

To prevent this a�ack, we propose to extend the Multipath TCP hand-

shake to derivate the Multipath TCP keys from the shared secret that has

been securely negotiated by SSL to authenticate the additional sub�ows. As

the shared secret is not sent in plaintext over the network, an a�acker is pre-

vented from creating new sub�ows and authenticating himself.

We extend the Multipath TCP protocol and its Linux kernel implemen-

tation to enable the SSL library to securely negotiate the authentication key

used by Multipath TCP.

When an application opens a new socket it informs Multipath TCP that a

key for authenticating new sub�ows will be provided by the application. For

this, we de�ne a new socket option: MPTCP ENABLE APP KEY. When sending

the Mp Capable option, the B-bit is set to 1, (see [FRHB13] for more details

about the reserved �ags in the Mp Capable option), to signal to the peer that

external keys will be used for the additional sub�ows. �e initial sub�ow’s

handshake can thus be simpli�ed. Since the keys are computed by SSL they

do not need to be included in clear in the Mp Capable option. Still, a random

number and the token to identify the Multipath TCP session as well as gener-

ate the initial Data Sequence Number (IDSN) are included in theMp Capable.

We refer the interested reader to [PB12] for more details on the format of the

Mp Capable option.

�e secure handshake used by SSL and TLS concludes with a Master-

Secret. SSL and TLS use a Key Derivation Function (KDF) to derive the en-

cryption and authentication keys that are used to protect the data exchanged

over the SSL session. �is KDF is extended to derive two new keys that will be

used by Multipath TCP. One key is used on the client to authenticate the sub-

�ows that it initiates and the other key is used by the server. Since Multipath

TCP is implemented in the kernel and SSL resides in a library in userspace

the library must provide the keys to the kernel. For this, we extend the Mul-

tipath TCP implementation in the Linux kernel with a new socket option :

MPTCP KEY. �is option enables the application to pass the client and server

keys to Multipath TCP in the kernel.

Our modi�ed handshake [PB12] for the new sub�ows is described in Fig-

ure 2.16. �ere may of course be situations, where the client is using the B-bit,

but the server not. In this case, the server does not respond with the B-bit set.

Upon reception of the Syn/Ack, it is up to the client’s policy to decide on how

to react. It can either fallback to regular Multipath TCP, fallback to regular

TCP or reset the connection and start from scratch a regular TCP connection,

etc.

2.3. Trusted resource pooling with Multipath TCP 35

Performance evaluation

We implemented the proposed solution in the Linux kernel and measured how

long it takes to establish a second sub�ow, compared to standard Multipath

TCP. For this, we slightly modi�ed OpenSSL. A similar modi�cation could be

performed on any other application-level protocol that negotiates a shared

secret such as SSH.

�e current Multipath TCP implementation in the Linux kernel opens

a second sub�ow a�er 2 round-trip-times. �is delay is mandatory to verify

that there are no middleboxes on the path that remove TCP options [RPB
+

12].

With external keys, an additional sub�ow can only be established a�er the

end of the SSL/TLS handshake.

Type Data Center Internet-like

Delay Delay

Standard MPTCP 352 ± 2 µs 40.372 ± 0.002 ms

MPTCP ext. keys 1910 ± 13 µs 61.934 ± 0.02 ms

Table 2.3: Using the external keys delays the establishment of an additional
sub�ow by one RTT in the realistic Internet-like-scenario.

We evaluate this in our lab testbed with two di�erent scenarios (Table 2.3).

We �rst consider that the servers are directly connected to the same switch.

In this environment, the second sub�ow is established within 352 ± 2 µs by

the standard Multipath TCP implementation. When external keys are used

with OpenSSL, the delay grows to 1910 ± 13 µs. Note that this includes the

secure handshake and the derivation of the keys. �is environment is a worst

case scenario since all server interfaces are usually trusted and external keys

are not required inside a datacenter.

We then consider an Internet like scenario and emulate a 20 ms delay be-

tween the hosts. In this case, it becomes apparent, that standard Multipath

TCP consumes two round-trip-times before establishing the second sub�ow.

With external keys, the delay increases to three round-trip-times. We argue

that this additional delay is not of a big concern. In Internet-like scenarios, the

second sub�ow is delayed by only one round-trip-time. Moreover, with SSL

no data is sent until the shared secrets have been exchanged by SSL. �e sec-

ond sub�ow can be established as soon as SSL starts sending the application’s

data.

Using trusted interfaces

SSL and TLS are much more secure than plaintext protocols, but they are far

from perfect and there are situations where the Multipath TCP extensions

36 Chapter 2. Reconsidering how Multipath TCP handles sub�ows

discussed in the previous section could also be applied with SSL/TLS. SSL

and TLS rely on server certi�cates to authenticate the servers. �e validation

of these certi�cates has always been a weak point in client implementations

and has enabled researchers to implement so�ware that can be used on WiFi

access points to intercept, modify, replay and save tra�c presumably secured

by SSL/TLS
5
. In 2014, several bugs in the certi�cate validation logic of popular

SSL/TLS implementations (GnuTLS and Apple) have been identi�ed and ex-

ploited by such interception so�ware. Given the importance of the SSL/TLS

certi�cates, some smartphone users might want to always use trusted inter-

faces for the initial TLS/SSL handshake and the certi�cate exchange.

�e handshake is not the only vulnerable part in the SSL/TLS protocol

from a cryptographic viewpoint. TLS/SSL supports di�erent combinations

of encryption and authentication algorithms. Some are known to be weaker

than others, e.g. due to the length of the encryption keys that are used. While

RC4 was one of the most widely used encryption algorithms on web servers

in 2015, it is unfortunately still used by some servers. A recent survey
6

reveals

that among 139,154 analyzed web servers supporting SSL/TLS, 13% of them

still support RC4. �is is despite serious concerns from the cryptography

community that considers RC4 to be broken [ABP13]. In particular, [ABP13]

showed that the �rst hundred bytes of the encrypted stream are more vul-

nerable to cryptanalysis than the remaining bytes. If a client still needs to

interact with an SSL/TLS server that uses RC4, it could force the utilization

of trusted interfaces for the SSL/TLS handshake and the vulnerable bytes in

the beginning of the stream.

2.3.4 Discussion

In this section, we have shown that tra�c o�oad solutions need to also con-

sider the trustiness of the networks when o�oading tra�c. Cellular network

vendors have proposed IPSec-based solutions to deal with this security issue

[San12, dlOBC
+

11]. With Multipath TCP, a di�erent approach is possible.

We have �rst proposed to encode the trust level of each network in the

interfaces table and implemented this extension in the Linux kernel. �en,

we have analyzed how Multipath TCP should deal with trusted and untrusted

interfaces when used with both plaintext and secure protocols.

With plaintext protocols such as HTTP, that are unfortunately still used,

our solution is to force Multipath TCP to always use a trusted interface to es-

tablish the connection (where the authentication keys are exchanged in clear)

and then establish sub�ows over untrusted interfaces. We have also extended

the sendmsg system call to allow an application to force the transmission of

5

See e.g. http://mitmproxy.org.

6

See https://www.ssllabs.com/ssl-pulse/

2.3. Trusted resource pooling with Multipath TCP 37

sensitive data only over trusted interfaces. �ese two extensions have been

implemented in the Linux kernel and our measurements indicate that they

have a very small impact on the raw performance of Multipath TCP.

With secure protocols such as TLS/SSL, the situation is di�erent. �e

cryptographic techniques used by such protocols can protect the data. How-

ever, exchanging the keys that Multipath TCP uses to authenticate the sub-

�ows in clear during the initial handshake could open a new form of denial of

service a�ack. Such a�acks can be prevented by deriving the Multipath TCP

key from the secure SSL/TLS handshake. We extended our Multipath TCP im-

plementation in the Linux kernel to support this new feature and evaluate its

performance. SSL/TLS sometimes uses less secure cryptographic algorithms

such as RC4. In this case forcing the utilization of a trusted network for the

beginning of the encrypted data stream could be a good countermeasure.

Although our solution has been applied for Multipath TCP, it could also

be useful for other protocols. �e Domain Name System (DNS) is another ex-

ample of a protocol that is sensitive from both security and privacy viewpoint

[ZHH
+

15]. �e DNS resolver on smartphones could be extended to only use

trusted interfaces when sending DNS queries.

Chapter 3

SRv6Pipes: enabling
in-network bytestream
functions

3.1 Introduction

Middleboxes play an important role in today’s enterprise and datacenter net-

works. In addition to the traditional switches and routers, enterprise net-

works contain other devices that forward, inspect, modify or control packets.

�ere is a wide variety of middleboxes [CB02], ranging from simple NAT, IP

�rewalls, various forms of Deep Packet Inspection, TCP Performance Enhanc-

ing Proxies (PEP), load balancers, Application Level Gateways (ALG), prox-

ies, caches, edge servers, etc. Measurement studies have shown that some

networks have deployed as many middleboxes as the number of traditional

routers [SHS
+

12].

�ose middleboxes were not part of the original TCP/IP architecture. �ey

are typically deployed by either placing the middleboxes on the path of the

tra�c that needs to be handled, e.g., on the link between two adjacent routers,

or by using speci�c routing con�gurations to force some packets to pass

through a particular middlebox. �ese two deployment approaches are fragile

and can cause failures that are hard to diagnose and correct in large networks.

Pothraju and Jain have shown in [PJ13] that middlebox failures are signi�cant

and that many of them belong to a grey zone, i.e., they cause link �apping or

connectivity errors that are di�cult to debug and impact the end-to-end traf-

�c. Researchers and vendors have proposed Network Function Virtualization

(NFV) [JB16] and Service Function Chaining (SFC) [HP15] to solve some of

the problems caused by middleboxes.

In a nutshell, the NFV paradigm argues that all network functions should

39

40 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

be virtualised and executed on commodity hardware instead of requiring spe-

ci�c devices. On the other hand, SFC [HP15] proposes to support chains of

network functions which can be applied to the packets exchanged between

communicating hosts. Several realisations for SFC are being discussed within

the IETF. �e SFC working group is developing the Network Service Header

[QEP17]. �is new header can be used to implement service chains and re-

places already deployed proprietary solutions. Another approach is to lever-

age the extensibility of IPv6. Given the global deployment of IPv6 [NG16],

several large enterprises have already announced plans to migrate their in-

ternal network or their datacenters to IPv6-only to avoid the burden of man-

aging two di�erent networking stacks [For17]. In addition to having a larger

addressing space than IPv4, IPv6 provides several interesting features to sup-

port middleboxes in enterprise and datacenter networks. One of these is the

native support for Segment Routing [FNP
+

15, FDP
+

19].

In this chapter, we demonstrate the bene�ts that the IPv6 Segment Rout-

ing (SRv6) architecture can bring to support middleboxes in enterprise and

datacenter networks. With SRv6, middleboxes can be exposed in the architec-

ture and visible end-to-end. �is signi�cantly improves the manageability of

the network and the detection of failures while enabling new use cases where

applications can select to use speci�c middleboxes for some end-to-end �ows.

�is chapter is organized as follows. In Section 3.2, we describe some use

cases that can bene�t from middleboxes. In Section 3.3, we present SRv6Pipes,
a modular SRv6-based architecture to support arbitrary in-network Virtual

Functions, that can be applied on bytestreams and chained together. In Sec-

tion 3.4, we detail a prototype implementation of our architecture, running on

Linux. In Section 3.5, we demonstrate the feasibility of our approach and eval-

uate the performance of our prototype through various tests and microbench-

marks. Finally, we cover some related work in Section 3.6 and conclude in

Section 3.7. Future work is discussed in Section 3.8.

3.2 Use Cases

Middleboxes can perform two di�erent types of network functions: per-packet
and per-bytestream. �e per-packet functions operate on a per-packet basis.

�ey include Network Address Translation and simple �rewalls. �ese func-

tions typically operate on the network and sometimes transport headers. �e

per-bytestream functions are more complex, but also more useful. �ese func-

tions operate on the payload of the TCP packets. For example, �rewalls and

Intrusion Detection Systems (IDS) need to match pa�erns in the packet pay-

load while transparent compression and/or encryption need to modify the

payload of TCP packets. Such functions need to at least reorder the received

3.2. Use Cases 41

TCP packets but o�en need to include an almost complete TCP implementa-

tion. We describe some of these per-bytestream functions in more details in

this section.

3.2.1 Application-level Firewalling

To cope with various forms of packet reordering, application-level �rewalls

and Intrusion Detection/Prevention Systems need to at least normalize the

received packets [KHP01] before processing them. Another approach is to

use a transparent TCP proxy on the �rewall to terminate the TCP connec-

tion and let the �rewall/IDS process the reassembled payload. An end-to-end

connection would thus be composed of two sub-connections: one between

the client and the middlebox and another one between the middlebox and the

server. Network operators o�en con�gure access lists to associate IP pre�xes

to some security checks performed by the IDS. For example, in a University

network, student laptops would be subject to di�erent policies than servers.

3.2.2 Multipath TCP Proxies

Presentend in Chapter 1.4, Multipath TCP [FRHB13] (MPTCP) enables hosts

to send packets belonging to one connection over di�erent paths. One of the

bene�ts of MPTCP is that it allows to aggregate the bandwidth of multiple

connections. �is enables, e.g., network operators to bond xDSL and LTE

networks to be�er serve rural areas [BS16]. However, MPTCP being an end-

to-end protocol, the client and the server require MPTCP-enabled kernels.

To leverage the bene�ts of MPTCP without modifying the client or server

network stacks, operators started developing MPTCP-aware proxies [BS16,

BBG
+

19] to convert regular TCP to MPTCP and conversely.

To allow the bundling of xDSL and LTE, an NFV deployment could be

leveraged to implement the same behavior, by placing a proxy in the CPE to

convert regular TCP to MPTCP and a second proxy in the operator’s network

to convert MPTCP to regular TCP. �is would allow non-MPTCP clients and

servers to use di�erent networks simultaneously.

In practice, network operators could want to support di�erent services

on the same proxy, e.g. (i) a business proxy that always maximizes band-

width for business customers, (ii) a low-cost proxy that only uses the LTE

network when the xDSL network is fully utilized or (iii) a gaming proxy that

always uses the network that provides the lowest delay. Such proxies can be

deployed by tuning the packet scheduler and the path manager of Multipath

TCP implementations.

42 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

3.2.3 Load Balancing

Load balancing is a fundamental requirement of many networks. Two main

variants are possible. �e �rst variant is in the presence of multiple physical

servers providing a single service. �e downstream proxy of the segmented

path could be con�gured to perform load balancing amongst these servers.

To select the server, the proxy would act in an LVS-like fashion [LVS] and se-

lect one of the servers using, e.g., a De�cit Weighted Round Robin algorithm.

�e transport-layer load balancing can easily be upgraded to an application-

layer load-balancing, by using some parameters received by the proxy, or by

inspecting the content of the payload to select the backend server that �ts the

application protocol.

�e second variant consists in balancing the load across several proxies.

If one of the Virtual Functions is performing computationally intensive op-

erations, it can rapidly become a bo�leneck. To prevent this, an upstream

function can load-balance the connections across multiple identical Virtual

Functions residing on di�erent proxies. A simple implementation of this vari-

ant can be achieved by statically con�guring the load-balancing proxy with

the available proxies for a given function or to use con�guration parameters

received by the proxy. Another option is to leverage an Opaque Container

TLV [FDP
+

19], however the speci�cations discourage the usage of TLVs for

intermediate nodes.

3.2.4 Multimedia transcoding

Multimedia transcoding has been a research topic for a long time [AMK98,

XLS05]. Since, it has been widely deployed by companies like Amazon [ama-

zontranscode]. In this context, a proxy placed between the client and the

server that hosts the multimedia �le can be used to transcode the multimedia

�le hosted on the server into a format compatible with the client. �is allows

to distribute the computation intensive task of transcoding the content over

several proxies, while the server simply hosts the original �les. In this setup,

parameters could be passed to the proxy to specify for instance the maximum

bitrate that a client is entitled to (based on technical or subscription limita-

tions), the maximum number of streams allowed for this client or the type of

content authorized for this client.

3.3 Architecture

Middleboxes and other in-network functions are installed, con�gured, and

managed by network administrators according to business (e.g. security regu-

lations impose the utilisation �rewalls) and technical (e.g. performance issues

3.3. Architecture 43

force the utilisation of performance enhancing proxies, or addressing issues

force the utilisation of NAT) needs. Usually, network administrators impose

the utilisation of speci�c network functions by con�guring routing policies

or placing physical boxes on links that carry speci�c tra�c (e.g. �rewalls are

o�en a�ached to egress links). �is is both cumbersome and costly since all

possible links must be covered by each intended network function.

Like NFV, our architecture assumes that network functions are so�ware

modules which can be executed anywhere in the network. A �rewall function

that only needs to process the external �ows does not need to be installed on

the egress router, it can be executed on any server or router inside an enter-

prise network. Each network function is identi�ed by an IPv6 pre�x which

is advertised by the equipment hosting the function (see Section 3.3.3). For

redundancy or load-balancing, the same function can be hosted on di�erent

equipments in the network.

To understand the di�erent elements of our architecture, let us consider

a simple scenario. A client host needs to open a TCP connection towards a

remote server. �e network administrator has decided that the packets be-

longing to such a connection must be processed by two network functions:

(i) a stateless �rewall which blocks prohibited ports and (ii) a DPI which in-

spects all external TCP connections. �ree elements of our architecture are

used to support this sequence of network functions in enterprise networks.

�e �rst element is IPv6 Segment Routing (SRv6) [FPG
+

18]. Our archi-

tecture uses the SRv6 header (SRH) to enforce an end-to-end path between

the client and the server which passes through the two equipments hosting

the mandatory networking functions. We describe SRv6 in more details in

Section 3.3.1.

�e second element of our architecture is how the client learns the SRH

suitable to reach a given destination. For this, we modify the enterprise DNS

resolver. Instead of simply resolving names into addresses, our DNS resolver

acts as a controller [Leb17, LJC
+

18] which has been con�gured by the net-

work administrator with various network policies. When a client sends a

DNS request to the resolver, it replies with the intended response and addi-

tional records which contain the SRH that the client has to apply to reach the

speci�ed addresses.

�anks to the SRH which is a�ached by the client, all the packets belong-

ing to the TCP connection will pass through the stateless �rewall and the

DPI. Consider now what happens if some packets are lost and need to be

retransmi�ed. �e stateless �rewall is not a�ected since it only processes

the network and transport headers that are present in each packet. On the

other hand, the DPI function needs to include a TCP implementation to be

able to detect out-of-order packets or other TCP artifacts. Instead of requir-

ing each network function to include a TCP implementation, our architec-

44 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

C

P1 P2

S

Router
Endpoint

SR-steered path
Shortest IGP path

Figure 3.1: Tra�c steering through two o�-path network functions P1 and
P2 (e.g., �rewall and IDS).

ture leverages the TCP stack that is already present in the Linux kernel. Each

equipment that hosts a network function uses a transparent TCP proxy that

transparently terminates the TCP connections and exposes bytestreams to the

network functions as in FlowOS [BAM13]. �is greatly simpli�es the imple-

mentation of per-bytestream network functions

3.3.1 IPv6 Segment Routing

In SRv6Pipes, we leverage the ability of the IPv6 Segment Routing architec-

ture described in Chapter 1.5 to steer packets through arbitrary network path

to steer TCP �ows through arbitrary network functions. In this architecture,

a Segment Routing endpoint becomes a node that performs an operation on

the bytestream. See Figure 3.1 for an illustration. Consider that client C es-

tablishes a connection to server S, with two intermediate network functions

at P1 and P2. To realise that, the client a�aches a SRH to its packets, con-

taining three segments. �e �rst two segments represent the functions to be

executed at resp. P1 and P2. �e third segment is the address of S. When

the packets are transiting between C and P1, and between P1 and P2, their

IPv6 destination address is thus the address of the function to execute at the

corresponding proxy. Between P2 and S, the segment pointer is decremented

to zero and the IPv6 destination address of the packets is the address of S.

3.3.2 Transparent TCP Proxy

�e proxy is the core component of our architecture to support per-bytestream

network functions. It is transparent at the network layer, meaning that even

if the proxy actually terminates the TCP connection with the client, the des-

tination server will receive packets coming from the client’s IP address, and

not from the proxy’s IP address. �e transparent proxy is placed on the path

thanks to the IPv6 Segment Routing Header (SRH) [FDP
+

19]. It intercepts

each new connection that matches a given pa�ern (e.g., a destination port)

3.3. Architecture 45

2001:0123:4567:8901:2345:AAAA:BCDE:FFFF
Proxy range Function Parameters

Figure 3.2: IPv6 address encoding.

and terminates it. �en, the proxy establishes a downstream connection to

the next segment speci�ed in the SRH of the inbound connection. When the

proxy receives data from the client, it applies a transformation function (i.e.,
the Virtual Function) to the received data and forwards the result on its out-

bound connection to the next segment of the path. �is process is then re-

peated until reaching the �nal destination of the path. A consequence of this

architecture is that the proxy must be able to process a clear-text stream. If

the stream is encrypted, the proxy will not be able to apply meaningful trans-

formation functions. In this chapter, we consider that the end-to-end stream

from the client to the �nal server is not encrypted. As future work, one could

explore encrypted end-to-end streams with the proxies acting as TLS termi-

nation points. Additionally, we do not consider the QUIC [IT19] protocol, as

it leverages UDP rather than TCP.

3.3.3 Encoding Functions and Parameters

As shown in Section 3.2, some parameters can be passed to the per-bytestream

function. Such parameters are usually speci�ed in the proxy con�guration

�les. However, such con�gurations can be large and complex if some param-

eters can change on a per connection basis. Consider for example a �rst proxy

that encrypts the payload and a second that decrypts it. �ose encryption/de-

cryption proxies would have to be con�gured with the encryption/decryption

keys for each �ow. A possible approach would be to de�ne one key per host

or set of hosts. A be�er approach is to con�gure a set of keys on the proxies

and associate each key with a unique identi�er. When a connection starts, the

encryption proxy selects a random key and places the identi�er of the chosen

key in the SRH towards the decryption proxy.

To enable such a granularity in the choice of transformation functions and

parameters, we leverage the large addressing space available in IPv6. Each

proxy announces one or more IPv6 pre�xes that correspond to the Virtual

Functions it hosts. Within the host part of the pre�xes, we allocate a given

amount of bits to encode the identi�er of the function to apply as proposed in

[FGL
+

19]. �e remaining low order bits are used to specify parameters of the

virtual function such as the decryption key in the above example. Consider

Figure 3.2 for an illustration. �e proxies announce /80 pre�xes. �e �rst 80

bits of the address thus specify the proxy to traverse. �e 16 following bits

identify the function to apply to the payload, and the low-order 32 bits contain

46 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

the parameters of these functions. �e SRH then contains a list of proxies with

their respective functions and parameters. �is approach allows clients to use

any combination of function/parameter available in the network.

Consider the network described in Figure 3.1. In this network, the client

might require to encrypt the tra�c between P1 and P2. In our architecture,

the client will use the function bits of the address of P1 to specify the iden-

ti�er of the encrypt function, and the parameters bits to specify the identi-

�er of an encryption key. �e same will be done in the address of P2 with the

decrypt function. �is allows to have di�erent encryption keys for di�erent

connections without having to store a con�guration for each connection in

the proxy. �e processing of the return tra�c is discussed in Section 3.4.7.

3.3.4 SRv6 Controller

In our architecture, a TCP client is able to specify arbitrary functions to ap-

ply to its tra�c. However, keeping track of all the functions, parameters, and

proxies addresses represents a signi�cant amount of complexity. �is com-

plexity can be abstracted by a central SDN-like controller. We leverage the

SDN Resolver, which is a DNS-based, SRv6 controller introduced in [Leb17,

LJC
+

18]. Before establishing a connection, the client sends a request to the

controller with the address of the server and a list of functions to apply to

the tra�c. �e controller then computes a path that matches the request and

returns an SRH to the client. A key element of this controller is that the SRH

returned to the client does not contain the full list of segments. Instead, it

contains only one segment, called the binding segment. �e access router of

the client is con�gured by the controller to translate this binding segment into

the full list of segments. �is abstraction enables the clients to be oblivious

to changes in the SRH induced by, e.g., a network failure. �e architectural

and implementation details of SDN Resolver are available in [Leb17, LJC
+

18].

Note that the DNS protocol serves as an example, that can be replaced by any

ad-hoc application-facing protocol.

3.3.5 Security Considerations

�e ability to execute and chain arbitrary functions in the network has obvi-

ous security implications. To restrict the privilege of using SRv6Pipes proxies,

we can leverage the central controller presented in the previous section, as

well as its binding segment mechanism. By con�guring all access routers to

accept only SRHs with known binding segments, we can e�ectively prevent

an uncontrolled usage of network functions. �e decision to accept or deny

the use of a given set of functions is made by the controller, which can identify

clients through independent channels [Leb17].

3.4. Implementation 47

(a) Traversal of a SYN packet

through the proxy. �e SRH is

recorded for the 5-tuple.

(b) Traversal of data packets.

(c) Traversal of return packets.

Figure 3.3: Overview of possible data paths within SRv6Pipes.

3.4 Implementation

To demonstrate the feasibility of our approach, we implemented a prototype

of our solution by extending the implementation of IPv6 Segment Routing

in the Linux kernel [LB17]. �e main new component of our prototype is a

transparent, SR-aware, TCP proxy. For this, we extended the kernel imple-

mentation of SRv6 with a new type of function. An overview of the various

data paths in our prototype is shown in Figure 3.3.

To ensure that our proof of concept could easily be used to reproduce our

results on any o�-the-shelf hardware, we implemented it using the regular

Linux mechanisms. Alternatives solutions are discussed in Section 3.8.

3.4.1 Transparent SR-Aware TCP Proxy

�e core objective of our proxy is to process and relay TCP streams between

two segments of a segment routed path. To achieve this, the proxy must

(i) intercept and terminate incoming TCP �ows, (ii) optionally apply trans-

formation functions to the bytestreams, and (iii) initiate and maintain the

corresponding TCP �ows to the next segment of the path.

To intercept TCP �ows, the proxy must accept connections towards pairs

of IP/port that are not local to the machine, which is not possible by default.

48 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

�e Linux kernel provides the TPROXY iptables extensions, enabling such in-

terceptions. It works by redirecting all packets matching an iptables rule to-

wards a local IP/port pair. �e proxy is then able to intercept the correspond-

ing TCP �ows by listening to this local pair.

Once a TCP �ow is intercepted and terminated, the proxy needs to re-

trieve the associated SRH, decrement its segment pointer, and install it on the

corresponding outbound socket. �e IPV6 RECVRTHDR socket option could

be used to fetch any a�ached Routing Header (RH) as ancillary data, using

the recvmsg() system call. However, this feature is only implemented for

datagram protocols such as UDP, where a single RH is associated to each

datagram. In bytestream protocols such as TCP, packets can be merged and

the 1 : 1mapping to RHs is lost. In our prototype, we rely on the SRH included

in the SYN packet of a given TCP �ow. As the kernel does not expose Routing

Headers for TCP �ows, we leverage the NFQUEUE iptables extension to cap-

ture SYN packets in user space. �e proxy opens a netlink channel with the

kernel and receives through it all SYN packets matching the corresponding

iptables rule. �en, the proxy extracts the 5-tuple and the SRH from the SYN

packet and stores them in a flows SRH map. Finally, the packet is reinjected

into the kernel. Following its normal data path, the SYN packet will trigger

a connection request to the proxy. Using the 5-tuple, the proxy is then able

to retrieve the SRH previously stored in the flows SRH map. While capturing

every packet in user space can severely degrade the performances, our solu-

tion does not su�er from such degradation as we only capture the �rst packet

of each �ow.

A�er having intercepted a TCP �ow and extracted its SRH, the proxy must

establish the corresponding TCP �ow to the next node of the path. To achieve

this, the proxy creates the outbound socket and a�aches the corresponding

SRH. Additionally, the connection must appear as originating from the actual

source of the �ow. Using the IP FREEBIND socket option, the proxy is able

to bind to a non-local IP/port pair. Finally, the connection is established and

data can be exchanged.

Once both connections (inbound and outbound) are established, the proxy

only needs to forward data coming from one socket to the other one, a�er

going through an optional transformation function. In our prototype, we use

an application-level bu�er to transfer data from one connection to the other.

Another possible solution would be to use the splice() system call to let the

kernel directly move data between �le descriptors. However, this solution

prevents the proxy from actually modifying the data. Our approach allows

the implementation of arbitrary transformation functions. �e termination

of connections is straightforward. Once one socket is closed, any in-�ight

data is �ushed and the other socket is also closed.

We implemented a multi-threaded architecture, enabling the proxy to

3.4. Implementation 49

scale with the load. One dedicated thread handles the NFQUEUE channel, re-

ceives the SYN packets, and populates the flows SRH map accordingly. A

con�gurable number of threads (typically one per CPU thread) accept incom-

ing connections, establish the outbound connection, and process the data ex-

changed between them. Each of these threads leverages the SO REUSEPORT

socket option, enabling them to simultaneously listen to the same local IP/-

port. �e result is that the kernel maintains distinct accept queues for each

thread. Consequently, incoming connections are equally load-balanced across

the running threads. To minimize the size of the stack space used in the func-

tion handling the data, each thread allocates its own copy bu�er.

3.4.2 Kernel Extensions

When a packet to be processed by the proxy enters the kernel, its IPv6 des-

tination address corresponds to the local proxy function. However, the TCP

checksum was originally computed for the actual destination of the packet.

As such, it is transiently incorrect, due to the SR-triggered change of destina-

tion address. Additionally, the packet will be associated to the proxy’s local

socket by the TPROXY module, and subsequently injected in the local stack.

However, the segment pointer of the associated SRH is non-zero. �e packet

will thus enter the SRH processing and the kernel will a�empt to forward it

to the next segment, bypassing the local TCP processing [LB17].

To address those two issues, we extend the SRv6 kernel implementation

available in Linux 4.14 and add a new type of function called End.VNF. �is

function takes one parameter (an egress interface) and performs the follow-

ing actions. First, it updates the destination address of the packet to its �-

nal destination. �en, it sets the segment pointer to zero
1
. Finally, it injects

the resulting packet into the speci�ed egress interface using netif rx(). In

our prototype, we leverage a virtual dummy interface (nfv0). As a result, all

packets to be intercepted by the proxy are received through this particular

interface and are thus easily distinguished from background tra�c.

3.4.3 System Con�guration

To instantiate the proxy, a non-trivial con�guration of iptables and routing

tables is required. An example of this con�guration is shown in Figure 3.4.

�e �rst two lines create the nfv0 interface to receive all packets to be in-

tercepted by the proxy. Lines 3 − 5 create a DIVERT iptable chain that sets

the mark 1 on packets and accepts them. Line 6 creates an NFQUEUE rule

that matches all SYN packets whose destination address corresponds to the

1

As the SRH of the SYN packet was previously extracted by the proxy, this information is

not lost.

50 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

1: ip link add nfv0 type dummy

2: ifconfig nfv0 up

3: ip6tables -t mangle -N DIVERT

4: ip6tables -t mangle -A DIVERT -j MARK --set-mark 1

5: ip6tables -t mangle -A DIVERT -j ACCEPT

6: ip6tables -t mangle -A PREROUTING -d \$PROXY_FUNC_ADDR -p tcp --syn

-j NFQUEUE --queue-num 0

7: ip6tables -t mangle -A PREROUTING -i nfv0 -p tcp -j TPROXY

--tproxy-mark 0x1/0x1 --on-port \$PROXY_LOCAL_PORT

8: ip6tables -t mangle -A PREROUTING -p tcp -m socket -j DIVERT

9: ip -6 rule add fwmark 1 table 100

10: ip -6 route add local ::/0 dev lo table 100

11: ip -6 route add \$PROXY_FUNC_ADDR/128 encap seg6local action End.VNF

oif nfv0 dev eth0

12: sysctl net.ipv6.conf.nfv0.seg6_enabled=1

Figure 3.4: System con�guration for the proxy.

local proxy (PROXY FUNC ADDR) and sends them to queue number 0. Line 7
matches all TCP packets received on interface nfv0 and sends them to the

TPROXY target. �e la�er sets the mark 1 on those packets and associates

them to a socket bound on a local PROXY LOCAL PORT port. Line 8 matches

all TCP packets that can be associated to an open socket and sends them to

the previously con�gured DIVERT chain. In practice, this rule catches the in-

bound return packets that are not caught by the two previous rules. Line 9
creates a routing rule instructing the kernel to lookup table 100 for all pack-

ets having mark 1. Line 10 creates a single routing entry into table 100 that

matches all packets and sends them in the local stack (instead of forward-

ing them). Line 11 creates an SRv6 routing entry that matches all packets

towards PROXY FUNC ADDR and applies the End.VNF function, using nfv0 as

the egress interface
2
. Finally, line 12 enables the processing of SRv6 packets

on interface nfv0.

3.4.4 Con�guration optimization

To cope with high bandwidth links, several optimizations can be applied to

the system’s con�guration. During our measurements, we �ne-tuned some

of these parameters to optimize the behavior of the proxy. While the exact

value of these parameters depends on the system (CPU, amount of RAM, NIC

model, etc), some of the parameters worth considering are:

• net.core.rmem * : size of the socket receive bu�er

2

While this interface is considered egress from the point of view of End.VNF, packets are

actually received on that interface and it is thus considered ingress for the next components

in the datapath.

3.4. Implementation 51

• net.core.wmem * : size of the socket send bu�er

• net.core.optmem max : ancillary bu�er size per socket

• net.core.netdev max backlog : maximum number of packets al-

lowed to be queued on a particular interface

• net.ipv4.tcp rmem : size of the TCP receive bu�er

• net.ipv4.tcp wmem : size of the TCP send bu�er

• net.ipv4.tcp mem : size of the memory for all TCP applications

As described in 3.4.1 we implemented a multi-threaded architecture for

our proxy. Typically, one thread per CPU thread, but we recommend to ex-

periment with di�erent se�ings, based on the architecture. Another se�ing

is the receive �ow steering. By se�ing the IRQ a�nity, it is possible to as-

sign the TX/RX queues of the network card to a speci�c CPU core. In this

con�guration, we recommend to assign each interface’s TX/RX queue to a

di�erent CPU, which is the default behavior when using Receive Side Scaling

(RSS) [RSS].

3.4.5 Modular Transformation Functions

To support transformation functions in a modular way, our SRv6Pipes proxy

leverages Linux dynamic libraries. Functions can be compiled in .so (shared

object) �les. �ose �les are independent modules that can be loaded and un-

loaded at run-time by the proxy. Each module exports an all funcs symbol.

�is symbol refers to an array of func desc structures. Each of those struc-

tures describes a single transformation function, through the following sym-

bols. �e func init() symbol is called once, on module load. It registers the

function with a given function identi�er, which is passed in the IPv6 destina-

tion addresses (see Section 3.3.3). �e func spawn() symbol is called each

time a new intercepted TCP �ow matches the function identi�er. Any param-

eter passed in the low-order bits of the IPv6 destination address is passed as

argument. �e role of this symbol is to initialize per-connection data. �e

func process() symbol is the actual transformation function. It reads data

from an input bu�er and writes the transformed data in an output bu�er. �e

func despawn() symbol is called at connection termination and it frees pre-

viously allocated per-connection data. Finally, the func deinit() symbol is

called at module unload and de-registers function identi�ers.

Such an architecture enables to easily add, modify, and remove transfor-

mation functions, without updating or restarting the proxy’s binary.

52 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

3.4.6 Limitations of Transparent Proxies

During our tests, we initially measured poor results such as requests timing

out and unexplainable high latency for some requests. �ese �gures appeared

only for benchmarks with multiple concurrent connections. A�er some trou-

bleshooting, the cause was determined as follows: lines 7 and 8 in Figure 3.4

were initially swapped. As a result all packets received on nfv0 and associ-

ated to an open socket would match the DIVERT rule and be directly injected

in the local stack without processing by TPROXY. �is would not be an is-

sue when either no open socket is found (new connection), or when the open

socket actually matches packets (regular data transfer). However, when many

connections are created, the same source port may be reused from a previous

connection. As the source and destination addresses and port are the same,

the connection reusing the source port will have the same 5-tuple. While the

previous connection may be terminated on the client side, the proxy’s ker-

nel still maintains a TIME WAIT state, to deliver potentially lost acknowledg-

ments. When the client sends a SYN packet with the same 5-tuple as an old

connection in a TIME WAIT state, the kernel wrongly associates it with the

stale socket and the DIVERT rule matches. Usually, when the Linux kernel

receives a SYN packet matching a TIME WAIT socket while there is an active

listener on the destination IP/port, it destroys the stale socket and properly

redirects the SYN to the listener. However, in our case, there is no matching

active listener. Indeed, the proxy listens to a di�erent IP/port, and it is the role

of TPROXY to redirect the packets to the proxy. As a result, the kernel replies

with an acknowledgment that does not correspond to the new connection.

�e client rejects it and replies with a RST, prompting the proxy’s kernel to

destroy the stale TIME WAIT socket. However, from the client perspective, no

valid response was received for the SYN packet and it must be retransmit-

ted. �is accounts for the high latency and timeouts measured for some of

the requests. �e second SYN packet will always succeed, as the stale socket

was destroyed by the RST
3
. �e TPROXY module includes a workaround that

immediately destroys any TIME WAIT socket and correctly redirects the SYN

packet to the listener. We �xed this issue by applying the TPROXY rule before

the DIVERT rule, as shown in Figure 3.4.

It might happen that legitimate tra�c with identical 5-tuples is sent to

the proxy’s kernel for regular forwarding instead of local processing. For

instance, a client establishing numerous short-lived connections might end

up reusing the same source port, resulting in the same 5-tuple. If this tra�c

is not distinguished from inbound return tra�c, this might result in transient

tra�c blackholing. �e fact that, we discriminate between background tra�c

and inbound return tra�c and send the inbound return tra�c through the

3

�is behavior is con�gurable through the sysctl net.ipv4.tcp rfc1337.

3.5. Evaluation 53

nfv0 interface prevents this problem.

3.4.7 Return Tra�c

�e previous sections detailed the processing of the upstream tra�c (from

client to server). However, if the middleboxes are not located on-path, the

downstream tra�c (from the server to client) must also be augmented with

an SRH. �is is also necessary to enable asymmetrical processing functions,

i.e., using di�erent transformation functions depending on the direction of

the tra�c. To achieve this, di�erent options exist.

�e straightforward option is to simply ”reverse” the SRH received from

the client or from the previous proxy. Each proxy can simply apply the seg-

ments of the initial SRH in reverse order. While this solution is simple and

does not incur a signi�cant overhead, it as a major limitation: the segments

must necessarily be symmetrical, making asymmetrical processing functions

impossible.

To enable asymmetrical processing functions, another option is to embed

the return SRH in a TLV extension of the initial SRH. With this solution, a�er

inserting the SRH, the client inserts a TLV to the socket before establishing

the connection. �en, each proxy and the server extract the SRH to be used

on the return path from the TLV received in the initial packet (SYN). �e

TLV could also be transmi�ed with every upstream packet, but this would

increase the overhead. With this TLV, it is important to note that the return

path must include every proxy that is present in the upstream path, but that

others segments, e.g. corresponding to speci�c paths or routers, can be added

or suppressed.

In our prototype, we implemented the second solution by modifying the

Linux kernel to add support for such a TLV. When a new TCP socket is created

a�er receiving an SR-enabled SYN packet containing the return-path TLV,

this return path is extracted and installed as an outbound SRH for the newly

created socket. If the proxies are located in-path, our prototype can also work

without an SRH on the return path. �is is realized using the DIVERT rules

shown in Figure 3.4. In Section 3.5, we evaluate this on-path mode.

3.5 Evaluation

In this section, we use microbenchmarks to evaluate the performance of our

prototype in a lab. For this evaluation, we use three Linux PCs connected

with 10Gbps interfaces as shown in Figure 3.5.

�e client is a 2,53Ghz Intel Xeon X3440 with 16 GB of RAM. M1 and the

server use the same hardware con�guration but with only 8 GB of RAM. �ey

are all equipped with Intel 82599 10 Gbps Ethernet adapters and use 9000 bytes

54 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

Client ServerM1 10Gbps10Gbps

Figure 3.5: Lab setup. M1 can be con�gured as router or proxy.

MTU. �ey all use our modi�ed version of the latest IPv6 Segment Routing

kernel based on the Linux kernel version 4.14. �e server runs lighttpd

version 1.4.35. �e client uses wrk [wrk] 4.0.2-5 to load the server with HTTP

1.1 requests. We slightly modi�ed wrk to add an IPv6 SRH as a socket option

when creating TCP connections. M1 can be con�gured either as a router or

with our transparent proxy. When used as a router, we con�gure static routes

and use the standard Linux IPv6 forwarding.

3.5.1 Maximum throughput

First, we compare the performance of one of our proxies against the per-

formance of a Linux router running on the same platform. In this setup, our

client uses wrk [wrk] to simulate 200 web client downloading static web pages

of given sizes during 120 seconds. It uses 8 threads with 25 connections per

thread. �e proxy was con�gured with a virtual function that directly copies

that bytestream without any processing.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

0

2000

4000

6000

8000

10000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0% loss and 0.0ms delay

Router

Proxy

Figure 3.6: Raw throughput.

3.5. Evaluation 55

Figure 3.6 shows the total transfer rate when the client is downloading

web pages. �is �gure shows that there is no signi�cant di�erence in transfer

rates between our proxy and the router. With 10 MB �les, our proxy reaches a

throughput of 9841 Mb/s where the router achieves 9838 Mb/s. A closer look

at the small page sizes in Figure 3.6, shows that our proxy slightly underper-

forms the router. With 1KB �les, our proxy achieves a rate of 253 Mb/s, while

the router achieves a rate of 272 Mb/s. �is is con�rmed by Figure 3.7 that

shows the number of requests per second.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

0

5000

10000

15000

20000

25000

30000

Re
qu

es
ts

 p
er

 se
co

nd
s

Requests per second with 0% loss and 0.0ms delay
Router
Proxy

Figure 3.7: Number of requests per second in a simple setup.

In term of requests per second, for 1 KB �les, our proxy completes 26634

requests per second, while the router completes 28613 requests per second.

�is di�erence in performance between large and small �les can be explained

by the fact that when our proxy receives a new connection from the client, it

needs to establish a new connection to the server before starting to forward

packets. With smaller �les, there are signi�cantly more three-way hand-

shakes to perform, making this overhead more important while this cost is

amortized for larger �les. With 100 KB �les, the number of requests per sec-

ond is already on par at ≈11945 requests per second for both the proxy and

the router.

3.5.2 Stability of the performances

To examine the stability of the proxy’s performances, we ran the experiments

several times to compare the results of di�erent runs. �is con�rmed that our

56 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

1K
B

10
KB

10
0K

B
50

0K
B

1M
B

5M
B

10
MB

0

10000

20000

30000
Proxy requests per second

1K
B

10
KB

10
0K

B
50

0K
B

1M
B

5M
B

10
MB

0

10000

20000

30000
Router requests per second

Performances stability comparison

Figure 3.8: Performances stability comparison between the proxy and the
router in term of requests per second.

results were as stable as the results with the router. �e only signi�cant devi-

ation observed is the proxy being ≈3% faster for the �rst 1KB run compared

to all other runs for 1KB �les. �is di�erence only applies to this speci�c run.

Figure 3.8 shows the stability of the performances of our proxy and compares

it to the router. As discussed previously, this �gure clearly shows that for

1KB �les, our proxy slighlty underperforms the router. Overall, in terms of

stability, our results are comparabale to the router results, with a notable ex-

ception for 1KB �le sizes, where we observe an outlier that represents a ≈3%

deviation compared to the mean of the measurements.

3.5.3 Impact of packet losses and latency on the proxies

�e previous section explored the maximum rate that our proxies can sustain.

In those measurements, the TCP stack running on M1 did not have to bu�er

packets or handle retransmissions. As those operations can a�ect its perfor-

mance, we added netem to simulate di�erent delays and di�erent packet loss

ratios.

3.5. Evaluation 57

We start by adding a 1% loss and a 25ms delay on the four links of Fig-

ure 3.5. �is corresponds to an end-to-end loss of ≈4%, and an end-to-end

latency of 100 ms. �e results of this measurement are shown on Figure 3.9.

Under such circumstances, our proxy outperforms the router. �is is not sur-

prising since in this setup, our proxy acts as a Performance Enhancing Proxy

(PEP). While Figure 3.9 clearly shows a large improvement for large �le sizes,

our measurements indicated that this is also true for small �le sizes. �is can

be explained by the fact that when M1 is con�gured as a router all packet

losses need to be recovered end-to-end. When a packet is lost on the same

link with our proxy, the retransmission is done by the proxy. �e minimum

Round Trip Time (RTT) between the client and the server being 100 ms while

the minimum RTT between the client and the proxy is 50 ms, it is faster to

retransmit from the proxy. Our proxy brings the data ”closer” to the client,

and minimizes the impact of losses.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

0

500

1000

1500

2000

2500

3000

3500

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 1% loss per link and 25.0ms delay per link

Router

Proxy

Figure 3.9: Transfer rate with 1% of loss and 25ms of latency per link.

To con�rm our �ndings, we run the same measurement, but adding la-

tency and loss only on the link between the server and the proxy, the objec-

tive being to mimic a network where the loss would happen only on the link

between the proxy and the server. To replicate our previous con�guration, we

add 2% of loss per link, to get an end-to-end loss of≈4%, and 50ms of latency

per link to get an end-to-end latency of 100ms. As shown in Figure 3.10, under

such conditions, the proxy and the router are both signi�cantly a�ected by

the performance degradation in the same fashion, con�rming our �ndings.

58 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

1200

1400
R

at
e

(M
bi

ts
/s

ec
)

Transfer rates with 2% loss and 50.0ms delay on server links

Router

Proxy

Figure 3.10: Transfer rate with 2% of loss per link and 50ms of latency per
link between the proxy and the server.

3.5.4 CPU-intensive Virtual Functions

With our architecture, various types of Virtual Functions can be implemented.

Some like a PEP simply proxy the connections and do not need to process the

payload. Others like DPIs, transparent compression or transparent encryp-

tion need to process the payload and thus consume CPU cycles. To mea-

sure the impact of the Virtual Function on the performance of our proxy,

we developed a simple microbenchmark that performs 2× n passes over the

bytestream and XORs each byte with a key at each pass. �is VF leaves the

bytestream unmodi�ed, but consumes both CPU and accesses memory.

�e results with this microbenchmark are shown in Figure 3.11. When

our VF performs two passes on the bytestream, the maximum throughput is

similar to the one we obtained without bytestream modi�cation in Figure 3.6.

When the VF performs four passes on the

bytestream, the maximum throughput with pages larger than 100KB is di-

vided by 2. �is throughput continues to drop with the CPU load on the

VF. To con�rm that the reduction in throughput was due to the CPU inten-

sive computations, we ran perf [perf] that yielded 96% of cycles spent in the

XOR function.

3.5. Evaluation 59

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

0

2000

4000

6000

8000

10000
R

at
e

(M
bi

ts
/s

ec
)

Transfer rates with different XOR executions
1 execution

2 executions

4 executions

8 executions

16 executions

Figure 3.11: Maximum throughput with Virtual Functions performing n
passes over the bytestream.

3.5.5 Chaining middleboxes

In this section, we chain two proxies to demonstrate the feasibility of our

architecture. Figure 3.12 describes the con�guration of the lab that we used

for this evaluation.

Client ServerP1
1Gbps1Gbps

P2
1Gbps

Figure 3.12: Middleboxes chaining evaluation setup with P1 and P2 acting as
proxy.

With our architecture, middleboxes can be used in chains where one mid-

dlebox performs the opposite function of the previous one. Typical examples

include transparent compression/decompression or transparent encryption.

To demonstrate this use case, we implemented a VF that simply XORs each

byte of the bytestream with a constant.

In this con�guration, the client is connected to the server through two

middleboxes that will be used as proxies or routers. Due the limitations of

our lab, these measurements had to be run with 1 Gbps links instead of the

10 Gbps links as we only have 3 servers with 10 Gbps network cards. While

this is unfortunate, we argue that 10 Gbps links were essential to measure the

60 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

overhead of the proxy under heavy load, but are less important to demon-

strate the feasibility of middleboxes chaining. In this con�guration, the client

is a 2 Ghz AMD Opteron 6128 with 16 GB of RAM, P1 is using the server used

by the client in the previous sections, P2 and the server are using the same

machines. When two such middleboxes are used in sequence, the bytestream

output of the downstream one is the same of the input of the upstream one.

�is is illustrated in Figure 3.13.

Client ServerP1 P2
10101010 01011010 10101010

00110011 11000011 00110011

XOR 11110000 XOR 11110000

Figure 3.13: Demonstration of middlebox chaining with simple XOR trans-
formations.

Figure 3.14 shows that with the two chained middleboxes, the maximum

throughput was the same as when passing through two routers. �is is ex-

pected given the results of Figure 3.11 with 10Gbps interfaces.

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

300

400

500

600

700

800

900

1000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0% loss and 0.0ms delay at 1Gbps

Router

Proxy

Figure 3.14: Transfer rate of wrk with 2 proxies applying a XOR.

3.5.6 Commodity hardware

One of the advantage of our solution is that it is deployable on o�-the-shelf

hardware. We demonstrate this by evaluating the performances on a home

3.5. Evaluation 61

router running an open-source �rmware.

OpenWRT

OpenWRT [openwrt] is the most frequently used open source embedded op-

erating system based on Linux. It supports 50 di�erent platforms and about

3500 optional so�ware packages. We modi�ed the latest snapshot (r7846) to

include our kernel and iproute patches. �en, we modi�ed our proxy to inte-

grate it into a standard OpenWRT package [howtopackage], that can easily

be installed on any device running OpenWRT.

Turris Omnia

Developed by cz.nic[cznic], the Turris Omnia [turris] is an open-source router

targeting the small o�ce/home o�ce market. It uses a 1.6 GHz dual-core

Marvell Armada 385 ARM CPU with 1GB (extensible to 2GB) of RAM and

features 5 GBit LAN ports and 1 WAN port. While the Turris Omnia normaly

runs TurrisOS, a fork of OpenWRT, it supports the original OpenWRT. Given

its modern hardware and the fact that some of the use cases described in 3.2

also target the small o�ce/home o�ce market, we think that using this router

is a realistic option to run our evaluations on.

As shown in Figure 3.15, to evaluate our proxy, we use a Turris Omnia

with 1 GB of RAM and 2 Linux PCs.

Client Server
1Gbps1Gbps

Omnia
LAN port WAN port

Figure 3.15: Turris Omnia setup. �e Turris Omnia can be used as router or
proxy.

We use our modi�ed version of wrk again to simulate 200 web clients

downloading static web pages of given size during 30 seconds. In this setup,

wrk uses 8 threads with 25 connections per thread. On the Turris Omnia, the

proxy uses 4 threads and does not apply any modi�cation to the payload.

Figure 3.16 shows the total transfer rate reported by the client when down-

loading web pages. �is shows that for �les between 100 KB and 10 MB, there

is no signi�cant di�erence in terms of throughput between our proxy and the

router. For 10 MB �les, both the proxy and the router achieves a throughput

of 988 Mb/s. For smaller �les however (1 KB and 10 KB), we observe that

the proxy achieves a lower throughput of 194 Mb/s while the router achieves

237 Mb/s.

62 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

1KB 10KB 100KB 500KB 1MB 5MB 10MB
Page size

200

300

400

500

600

700

800

900

1000
R

at
e

(M
bi

ts
/s

ec
)

Transfer rates with the Turris Omnia (4 threads)

Router

Proxy

Figure 3.16: �roughput reported by the client when using the Turris Omnia.

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

5000

10000

15000

20000

25000

R
eq

ue
st

s
p

er
se

co
nd

s

Requests per second with on the Turris Omnia (4 threads)

Router

Proxy

Figure 3.17: Number of requests per second with the Turris Omnia.

�is di�erence is more visible on Figure 3.17, showing the number of re-

quests per second during the same benchmark. We already observed such a

di�erence in Section 3.5.1, on a smaller scale. In that section, we explained the

di�erence by the fact that there are signi�cantly more three-way-handshakes

3.5. Evaluation 63

for smaller �le sizes, making the overhead more important while this cost is

amortized for larger �les. Given the fact that the three-way-handsakes are

more CPU intensive than forwarding data when the connection is established,

the di�erence is more important here because the CPU is less powerful than

the Xeon X3440 we used before.

1K
B

10
K

B

10
0K

B

50
0K

B
1M

B
5M

B

10
M

B

0

5000

10000

15000

20000

25000

Proxy requests per second

1K
B

10
K

B

10
0K

B

50
0K

B
1M

B
5M

B

10
M

B

0

5000

10000

15000

20000

25000

Router requests per second

Performances stability comparison (Turris Omnia - 4 threads)

Figure 3.18: Performance stability comparison between the proxy (with 4
threads) and the router in term of requests per second.

We compared the variability of the results over multiple executions of

the same benchmark on both the proxy and the router. Figure 3.18 shows

that there are no signi�cant di�erences between the router and the proxy in

terms of variability.

In Section 3.4.4 we highlighted the importance of con�guring the number

of threads used by the proxy to accept connections. Figure 3.19 demonstrates

this by showing the performance of our proxy running on the Turris Omnia

while using only one thread to accept connections (another thread is always

used for the NFQUEUE).

�e Marvell Armada 385 being a dual-core CPU, one could expect that us-

ing one core to accept connections while the other one is used for the NFQUEUE

64 Chapter 3. SRv6Pipes: enabling in-network bytestream functions

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

5000

10000

15000

20000

25000

R
eq

ue
st

s
p

er
se

co
nd

s
Requests per second on the Turris Omnia (1 thread)

Figure 3.19: Requests per second with the Turris Omnia using 1 thread to
accept connections.

thread would be the best se�ing. However, as shown by Figure 3.19, with this

con�guration, we see an important drop in performances for 1 KB �les and an

increased variability of the results. During our experiments, we found that 4

threads to accept connections is a good se�ing on the Turris Omnia, resulting

in 2 threads per-CPU core. For the Xeon X3440 machines used previously, we

found that 1 thread per-CPU thread was a good se�ing, however this CPU

uses hyper-threading, resulting in roughly 2 threads per-CPU core.

3.6 Related Work

AbdelSalam et al. propose in [ACF
+

17] to use IPv6 Segment Routing to sup-

port Virtual Network Function Chaining and implement a prototype as a

Linux kernel module. �ey leverage namespaces to support virtual network

functions but only support packet-based functions while our solution lever-

ages the Linux TCP stack to provide a bytestream abstraction to the net-

work functions. In FlowOS, Bezahaf et al. [BAM13] proposed a Linux ker-

nel module that exposes a bytestream abstraction to network functions but

they do not describe how �ows are routed through the network functions.

NetVM [HRW14] leverages virtualization techniques and a user-space packet

processing platform to provide fast, chainable network functions in virtual

machines. �eir work focuses on packet processing and does not consider

bytestream functions. Other solutions such as XOMB [ABK
+

12] focus on

3.7. Conclusion 65

the system aspects of implementing virtual functions to support middleboxes

through a �exible programming model. Our architecture leverages IPv6 Seg-

ment Routing to forward the packets to the middleboxes. Another related

work is /dev/stdpkt proposed by Utsumi et al in [UTE17]. /dev/stdpkt

uses the Linux Kernel Library to implement virtual functions that can be

chained together.

3.7 Conclusion

Given its ability to enforce precise network paths for speci�c �ows, IPv6 Seg-

ment Routing appears to be an excellent candidate to support middleboxes

in entreprise networks. We leverage this IPv6 extension in our architecture

designed for enterprise networks. Its main bene�t is that the middleboxes

are explicitly exposed. �is signi�cantly improves the manageability of the

network. Our architecture supports both middleboxes that operate on a per-

packet basis (e.g. NAT, stateless �rewalls) and those that need to process

bytestreams (e.g. DPI, Application Level Gateways, . . .). For the la�er, we use

transparent TCP proxies that process the IPv6 Segment Routing Header. We

implement this architecture in the Linux kernel and evaluate its performance

with various benchmarks in our lab. Our measurements indicate that our

architecture is well suited to support middleboxes that process bytestreams.

3.8 Future Work

With SRv6Pipes, we implemented a proof of concept using the regular Linux

mechanisms. While kernel bypass techniques such as DPDK or user-space

TCP stacks like mTCP allow signi�cant performance boosts, they are o�en

speci�c to a subset of network hardware. By leveraging the kernel data-path,

our solution remains generic and can be deployed on any Linux-supported

hardware, ranging from high-end servers to home routers. Should an opera-

tor require performance only available through kernel bypass techniques, our

high-level network architecture would remain identical and our userspace im-

plementation of the proxy would require minimal changes to plug-in with a

DPDK-like library. �ese modi�cations can be realized as future work.

Chapter 4

Steering transport �ows in
Multipath networks

In this chapter, we propose two solutions to e�ciently leverage the path di-

versity in datacenter and enterprise networks. First, we present FlowBender,

a �ow-level adaptive routing technique for improved latency and throughput.

�en, we propose a solution that goes further than FlowBender and leverages

IPv6 Segment Routing and eBPF to e�ciently steer �ows.

4.1 FlowBender: re-routing �ows using Equal Cost
Multipath

Datacenter networks provide a high path diversity for �ows between any pair

of hosts. Typical multi-stages Datacenters topologies like fat-tree [AFLV08,

Lei85] provide a large number of paths between hosts. �is is illustrated in

Figure 4.1. Large-scale operators rely on network performances to improve

user experience. Because user-facing responses are constructed by aggregat-

ing the results from several servers, the tail latency of the individual �ows

directly a�ects response times and quality. In this context, e�ciently us-

ing these multiple paths becomes a critical requirement to guarantee that the

�ows fully take advantage of the entire network infrastructure.

At this level of requirements and scale, Datacenters needs a load-balancing

technique that: (1) spreads the tra�c evenly (2) scales easily (3) does not

impact the performances negatively (i.e by creating too much reordering).

Presented in Chapter 1.3, Equal Cost Multi-path (ECMP) is the standard

solution to load-balance �ows in Datacenters. By hashing the packet head-

ers to select a path, it allows to spread the �ows evenly in terms of num-

ber of �ows per-link. Furthermore, ECMP is stateless. If the header �elds

are correctly chosen (i.e the 5-tuple of a connection) a �ow always uses the

67

68 Chapter 4. Steering transport �ows in Multipath networks

Core

Aggregation

Top-of-Rack
POD1 POD2 POD3 POD4

Servers

Figure 4.1: Fat-tree Datacenter Network Topology

same path, thus limiting reordering. While being the reference, Equal Cost

Multi-path still su�ers from shortcomings. �is solution works well when

all the �ows share the same characteristics in terms of duration and size, but

might struggle when the �ows are too heterogeneous. Benson et al. [BAM10]

demonstrated that, in Datacenters, a few long �ows contribute to an impor-

tant fraction of all the tra�c. �is case is sub-optimal because ECMP is ”blind”

to the type of �ow, meaning that this solution cannot di�erentiate a long �ow

from a short �ow. In this situation, several long �ows can collide on a path,

creating long-lasting congestion, while other paths could be underutilized.

Because it has no way of sensing congestion just by hashing the packet head-

ers, ECMP can not react to this kind of collision. �e same applies when a

path breaks, ECMP is not be able to re-route the tra�c and continues to for-

ward the packets into a black-hole. While solutions like De-Tail [ZDM
+

12]

and RPS [ADK13] haven been proposed to address ECMP’s limitations, they

incur a high degree of re-ordering and De-Tail requires hardware changes

to the switches. In this scenario, Multipath TCP could be considered, how-

ever its deployment requires important modi�cations to the end-host TCP/IP

stack.

To allow an e�cient load balancing while reacting to congestion, we pro-

pose FlowBender, an end-host-driven load balancing scheme that is dynamic

and incurs li�le to no packet re-ordering. FlowBender o�ers both simplicity

and high performance. Its main idea is to address ECMP’s shortcomings by

re-routing a �ow when its path is either broken or congested. FlowBender

is a host based solution, that removes the need to make hardware changes

and uses existing ECMP-networks. �e fact that FlowBender only re-routes

a �ow when it detects that its path is broken or congested drastically reduces

4.1. FlowBender: re-routing �ows using Equal Cost Multipath 69

out-of-order packet delivery.

In this Section, we �rst describe FlowBender’s architecture. We then eval-

uate it with a real implementation and show that FlowBender reduces the tail

latency over ECMP by more than 40% on average for large �ows showing that

FlowBender makes a strong case for a non-intrusive, end-host- and �ow-level

load balancing using the classic end-to-end principle [SRC84].

4.1.1 �e architecture of FlowBender

We now explain the details of FlowBender, beginning with the insight that

lead to its design.

Flow versus Packet-level Load Balancing

FlowBender operates in between the extreme of statically sending a �ow on

one path (ECMP) and that of spreading its packets across multiple paths si-

multaneously (e.g. RPS, DeTail, and MPTCP). E�cient load balancing does

not necessarily mean that we have to simultaneously spread a �ow across

several paths and reassemble it at the receiver, especially when there is no

congestion to start with. Instead, we target the simpler mechanism of shi�-

ing (rerouting) the entire �ow to a di�erent path only once it is congested or

disconnected, thus avoiding sustained out-of-order packet delivery and any

hardware updates to existing datacenter infrastructures.

Flow Control: Link versus Transport Layer

Link and transport-level congestion signals are important for realizing be�er

rate control mechanisms, but they could be also leveraged for guiding our load

balancing decisions as will be explained next. �e question we are trying to

answer now is: which congestion signals should we leverage? Link-level noti�-

cation mechanisms such as PFC have faster reaction times compared to RTT-

based ones such as Explicit Congestion Noti�cation (ECN), especially when

the congestion point is close to the tra�c source itself. When the congestion

point is far away from the tra�c source, however, such link-level schemes

can notoriously result in congestion spreading trees [Dal92, STJ03, DK89].

Rather than worrying about this phenomenon and adding complexity into our

switches for load balancing based on PFC signals, our argument is that some-

thing simple like ECN has been already demonstrated to be prompt enough

in propagating congestion information back to the sources. Of course, re-

lying on end-to-end ECN signals means that we are targeting those longer

�ows that take several roundtrips to �nish, which happen to be those �ows

carrying most of the network tra�c anyway [BAM10]. Otherwise, in the hy-

pothetical scenario where most of the tra�c is generated by very small �ows

70 Chapter 4. Steering transport �ows in Multipath networks

only, ECMP should perform quite well handling such tra�c given the much

higher hashing entropy involved. Another important reason supporting our

transport-layer choice is that, unlike link-level ones, protocols such as TCP

can quickly detect link failures end-to-end, which can in�uence FlowBender

to promptly avoid broken paths. With the clear motivation to pursue �ow-

level and RTT-based load balancing only once congestion occurs, we now

proceed to discuss the details of FlowBender.

FlowBender

By design FlowBender’s architecture is meant to be ultra-simple and compati-

ble with today’s commodity Datacenter hardware. It follows an approach that

does not need additional hardware complexity or incur a high overhead due

to complex multi-path techniques. In a nutshell, FlowBender transmits a �ow
on a single path, through an ECMP-based network, and reroutes that individual
�ow only once it is congested.

FlowBender has two main components: (1) a mechanism to detect path

congestion and link failures at the host, and (2) a means for the end host to

re-route a speci�c �ow.

Detecting Congestion To detect congestion and link failure, we use stan-

dard TCP Timeouts (RTO) and Explicit Congestion Noti�cation (ECN), a TCP

/IP extension that is commonly used in today’s Datacenters. ECN is a stan-

dard congestion noti�cation scheme in today’s Datacenters where a congested
switch marks every packet exceeding a desired queue size threshold, and the TCP
sender keeps track of the fraction of ECN-marked ACKs every RTT. If this frac-

tion is larger than a certain threshold for any �ow, it means that this �ow

is congested and should be rerouted. By monitoring RTOs and the fraction

of packets marked by ECN, a host can decide whether to re-route a �ow or

not. Because it relies on end-to-end mechanisms, FlowBender is able to de-

tect congestion and failures across the entire path of the �ow. It is important

to note that our approach is not strictly tied to one way of triggering and

handling this feedback vs another.

Rerouting �ows When a congestion or a failure is detected, we leverage

ECMP to re-route the �ow. As explained in Chapter 1.3, ECMP relies on a se-

lection of �elds, typically the 5-tuple, in the packet header to compute a hash.

However, some already existing commercial platforms [BCMHash, cisco] al-

low to con�gure the hashing engine to hash upon other �elds of the headers

(e.g the VLAN ID �eld from the Ethernet header) or on programmable header

o�sets such as the Time-To-Live (TTL) �eld of a packet. �is simple change

in the con�guration can be done without replacing the platform. We leverage

4.1. FlowBender: re-routing �ows using Equal Cost Multipath 71

this feature and con�gure the hash function in the switches to compute the

hash based on an additional ”�exible” �eld such as the TTL in addition to the

other �elds. Per FlowBender, each TCP socket independently keeps track of

the value V it should consistently insert into such a ”�exible” hashing �eld.

When a �ow needs to be re-routed, we modify the value of V for this speci�c

�ow. Consequently, the value of the computed ECMP hash changes, and the

�ow is re-routed. Conceptually, this ”�exible” �eld acts as a path ID for the

�ow, and changing it causes the �ow to change path.

To summarize, each TCP socket sender (i.e. �ow) independently keeps

track of its value V and the per-RTT fraction of marked ACKs F. Once F ex-

ceeds a set threshold T, the current path is considered to be potentially con-

gested and the packets of the corresponding �ow are rerouted by changing the

value V of the �exible �eld. �e pseudocode for FlowBender’s basic algorithm

is shown in Figure 4.2. As is clear from its pseudo code and description, Flow-

Bender’s design is simple enough that its complete implementation requires

only about 50 lines of kernel code on the hosts, and 5 lines of con�guration

code on the switches. Such simplicity is in stark contrast to the so�ware

complexity of schemes like MPTCP [PB
+

] and the hardware complexity of

DeTail [ZDM
+

12].

for every RTT do
F ← num marked pkts/total pkts
if F > T then
Change V

end if
end for

Figure 4.2: Basic FlowBender pseudocode

Another important feature of FlowBender that needs to be emphasized

is its ability to recover from path failures. A packet could be at an advanced

stage in its route where the only way for reaching the destination happens

to be broken. In that situation, DeTail or PacketSca�er would be unable to

reroute around the broken path until the routing tables are updated. Because

FlowBender also monitors the TCP Timeouts, a rerouting can be triggered

once an RTO takes place, bringing the failure recovery time several orders of

magnitude smaller.

Optimizing FlowBender Due to its simple design illustrated by Figure 4.2,

FlowBender can easily be tuned to accommodate di�erent requirements. For

instance, to minimize the re-ordering, FlowBender could easily be readjusted

72 Chapter 4. Steering transport �ows in Multipath networks

to reroute only a�er a �ow is consistently congested (T is exceeded) for N

consecutive RTTs. �is could be done by adding a handful of lines (a variable

to count the number of consecutive congested RTTs) to Figure 4.2. �is is

illustrated in Figure 4.3.

for every RTT do
F ← num marked pkts/total pkts
if F > T then
num congested rtts++
if num congested rtts >= N then
num congested rtts← 0
Change V

end if
else
num congested rtts← 0

end if
end for

Figure 4.3: Optimized FlowBender pseudocode

4.1.2 Evaluation

In this section, we present some evaluations of FlowBender. Additional eval-

uations may be found in [KVHD14].

Functionality Veri�cation (Simulation)

To validate FlowBender’s functionality, we use ns-3 [ns3] simulations. We

simulate a fat-tree network [Lei85] analogous to the one depicted in Fig-

ure 4.1. �e network has 128 servers, organized into four pods, each having

four Top of the Rack (ToR) and four aggregation switches, with eight core

switches interconnecting the pods (overall oversubscription factor of four

from servers to core switches). Because 10 Gbps Ethernet is typical in today’s

datacenters, we use 10 Gbps point-to-point Ethernet links across our entire

network. We con�gure the host delay to be 20 µs and the switch delay to be

1 µs, and we obtain a baremetal RTT of 2× 5× 1 + 4× 20 = 90µs between

two servers on di�erent pods, which is realistic per today’s datacenters RTTs.

We set the parameters of DCTCP [AGM
+

10] to match those in [AGM
+

10]:

(1) g, the factor for exponential weighted averaging, is set to
1
16 ; and (2) K ,

the bu�er occupancy threshold for se�ing the CE-bit, is set to 90 KB (typi-

cal for 10 Gbps links). So, our base case (ECMP) is DCTCP running over a

4.1. FlowBender: re-routing �ows using Equal Cost Multipath 73

Flows

ECMP (ms) FlowBender (ms)

Mean Max Mean Max

8 588 1950 294 367

16 1468 5220 580 740

24 2515 9238 897 1144

Table 4.1: FlowBender’s �ow completion times relative to ECMP’s

commodity datacenter network with ECMP-enabled switches. For FlowBen-

der, we set T , the congestion threshold, to 5%, and N , the number of RTTs

a sender must be congested before switching paths, to 1. Both DCTCP and

FlowBender use an RTOmin of 10ms. We start by evaluating FlowBender’s

e�ciency in load balancing large �ows to validate its functionality. In this

experiment, we simultaneously initiate a small number of 250 MB �ows from

hosts on one ToR in a speci�c pod transmi�ing to hosts on another speci�c

ToR in a di�erent pod. We compare the average and worst completion times

of the �ows with FlowBender to that under ECMP. Because all �ows are of

equal size, as load balancing improves, both the mean and the maximum �ow

completion times improve. Furthermore, with be�er load balancing, we ex-

pect a tighter distribution of �ow completion times i.e., the mean and the tail

are close. �erefore, we can think of the ratio between the mean and the tail

as a quantitative measure of the quality of load balancing.

In this experiment, we vary the number of �ows as 8, 16 and 24 �ows,

which translates to an average number of 1, 2 and 3 �ows per route respec-

tively. Consequently, we expect the best �ow completion times to be roughly

200, 400, and 600 milliseconds respectively (modulo the round-trip time de-

lay and assuming instantaneous rate convergence to the fair share with no

slow-start delays). Table 1 shows the mean and maximum �ow completion

times. As expected, we see that FlowBender improves ECMP’s mean by 2x

and maximum �ow completion times by 5-8x respectively. Also, the ratio of

the maximum �ow completion time to the mean �ow completion time is more

than 3.3 with ECMP, while with FlowBender the ratio reduces to less than 1.3

implying a tighter latency distribution with lower variance.

Testbed Implementation

Our real implementation (testbed) has 15 ToR switches with 12 to 16 servers

each. �e servers are connected to the ToRs via 10 Gbps links, and the ToRs

are interconnected via 4 aggregation switches with one 10 Gbps link to each

of the 4 switches. In other words, each server has 4 distinct paths to reach

any other server on the other ToR. Servers are running Linux 3.0, including

the aforementioned FlowBender changes (less than 50 lines of code added

74 Chapter 4. Steering transport �ows in Multipath networks

to the kernel) and the DCTCP implementation, and have their RTO set to

10 msec. We use standard ECMP-capable switches with a shared bu�er space

of 2 MB. �e switches are con�gured with the CE marking threshold set to

90 KB. In this experiment, servers on one ToR initiate 1 MB �ows randomly

to any other server in the network with exponential inter-arrival times at a

rate that cumulatively amounts to 20%, 40%, or 60% average utilization across

the bisectional links. We initiate a total of 1.2 million �ows, and wait for all

�ows to �nish. We use the default TCP re-ordering threshold of 3, and mon-

itor the out-of-order delivery numbers to ensure that FlowBender does not

introduce undesired CPU (processing) overhead. To recon�rm that FlowBen-

der does not lead to any abnormal packet re-ordering activity, we re-ran our

experiments with a TCP re-ordering threshold of 30, and we did not see any

noticeable di�erence in performance.

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

F
lo

w
 l
a

te
n

c
y

 n
o

rm
.
to

E
C

M
P

20% 40% 60%

0
0.1
0.2

Mean

F
lo

w
 l
a

te
n

c
y

 n
o

rm
.
to

Latency type

99% 99.9%

Figure 4.4: FlowBender’s Latency Reduction at 20, 40, and 60% load (Bisec-
tional).

In Figure 4.4, we show the mean, the 99thpercentile, and the 99.9th

percentile latencies along the X-axis, and FlowBender’s completion time nor-

malized to that of ECMP along the Y-axis. We use default parameter se�ings

for FlowBender i.e., N = 1 and T = 5%. FlowBender improves the 99th and

99.9thpercentiles by 15 - 26% and 34 - 45% respectively, in comparison to

ECMP. At 60% load, FlowBender’s �ows �nish more than twice as fast as

ECMP on average, and 87 - 96% faster at the tail end. �e qualitative results

support the claim that FlowBender o�ers drastic improvement over static

schemes like ECMP.

Decongesting HotSpots We now evaluate FlowBender’s ability to decon-

gest �ows by re-routing them around hotspots. We initiate an all-to-all ran-

4.1. FlowBender: re-routing �ows using Equal Cost Multipath 75

dom shu�e of 1MB TCP �ows from one ToR to another (all in the same

direction). �e aggregate TCP tra�c generates 14 Gbps from the sending

ToR (arbitrarily spread across the 4 10 Gbps links). We also initiate 1 UDP

�ow between the same pair of ToRs, in the same direction as the TCP tra�c,

and rate limit it to 6Gbps. �e purpose of the UDP �ow is to create a static

(asymmetric) hot spot along one of the four paths given that this �ow will

not be re-routed or load balanced by FlowBender. We denote the path which

this UDP �ow hashes on by U . Note that the aggregate TCP and UDP traf-

�c on the four routes between the sending and the receiving ToRs amounts

to 20 Gbps. Hence, in an ideal se�ing, one would wish that the 14 Gbps

would have been equally split across the three paths other than U given that

14/3 Gbps is still less than UDP’s 6 Gbps that was already routed on U . With

ECMP, on one hand, U was unsurprisingly ge�ing around quarter of the TCP

tra�c (14/4=3.5 Gbps) obliviously mapped to it, thus ending up with around

9.5 Gbps on average in total, driving that link practically unstable. Flow-

Bender, on the other hand, succeeded in load balancing the tra�c to a great

extent with only around 1.5 Gbps of the 14 Gbps going on U. �is experi-

ment con�rms FlowBender’s ability to adaptively re-route around congestive

hotspots in the network, and to respond to congestion created by non-TCP

tra�c. �e above experiment is also interesting from a Weighted Cost Mul-

tipathing (WCMP) perspective (as opposed to ECMP) in the context of asym-

metric topologies, where in order to reach a certain destination group, the

viable ports at a switch are con�gured with di�erent forwarding weights so

as not to prematurely oversubscribe those paths with lower capacities. One of

the challenges with WCMP is to be able to re�ect the di�erent weights of the

forwarding ports accurately, which is highly dependent on how many entries

the forwarding table can accommodate as per current ECMP implementations

(i.e. larger tables can represent the di�erent weights with higher granularity).

�e signi�cance of this experiment is in how even if the forwarding weights

su�er some inaccuracy because of the forwarding table being constrained to

have few entries only (as is the case with our testbed and most of the com-

modity switches), FlowBender is able to dynamically re-adjust the tra�c on

the di�erent available paths such that those with lower capacities are not

severely congested (i.e. more robustness to forwarding weight miscon�gura-

tions or chip limitations).

Topological Dependencies Our results above are based on a topology

with 8 and 4 di�erent paths between any pair of pods or ToRs respectively.

A question that commonly arises here is: how helpful would FlowBender be

when the path diversity between any pair of pods increases? In other words,

what role does FlowBender play if the port density of each switch is, say, dou-

bled, together with the number of servers per ToR, while keeping the over-

76 Chapter 4. Steering transport �ows in Multipath networks

subscriptions ratios the same (i.e. the path diversity quadruples)? �e extent

to which FlowBender helps clearly depends on the number of the available

paths P , but it also depends on the number of those larger �ows L that we’re

trying to spread out on those paths. More precisely, and particularly true in

the limits, the performance improvement depends on the ratio R = L/P of

the two numbers as we show next, which is typically expected to remain con-

stant given that as the bisectional capacity (i.e. P) is scaled up, the load, and

hence, L would be also scaled up proportionally to maintain the same uti-

lization. Considering the micro benchmark basic validation results discussed

earlier, where FlowBender is shown to do a good job in evenly spreading

the �ows across the di�erent paths, FlowBender’s performance improvement

amounts to how bad ECMP’s �ow distribution performance was in the �rst

place. Given the oblivious nature of ECMP, the distribution of the number of

large �ows per each route is, in steady state, a very straightforward binomial

distribution with a mean R and a variance R(11/P), which is therefore not

that di�erent for a reasonably large P . For example, varying P from 8 to 32

would increase the variance by less than 11% only and hence would have a

negligible e�ect in practice. In fact, we reran our All-to-All experiments with

a di�erent fan-out degree, and the performance improvement due to Flow-

Bender was almost the same.

4.1.3 Further optimizations

Stability

When it comes to taking a rerouting decision, FlowBender inherits from the

limitations of its rerouting component: ECMP. As described in Section 1.3,

ECMP is just a hashing technique to select an egress link. When FlowBen-

der takes a rerouting decision, it changes the V value, changing the value

of the hash, randomly choosing a new path. Neither FlowBender or ECMP

monitors the load on all available paths before taking a rerouting decision.

�erefore, the new path it reroutes to may also be congested. If that hap-

pens to be the case because say of an incast episode or because the network is

highly congested in general, FlowBender will trigger yet another path change,

and the rerouting process may repeat. Accordingly, FlowBender can be ex-

tended to limit the number of path changes that could occur when the net-

work is severely congested. More speci�cally, FlowBender can be constrained

to switch paths for a maximum of S consecutive times before it goes into a

locked state. In the locked state, it will pick one path out of the last S paths

that had the lowest value of F , the fraction of ECN-marked ACKs, and will

lock in to that path for the next U RTTs. At the end of the locked phase,

FlowBender resumes business as usual, tra�cking F and switching paths if

it exceeds T for N consecutive RTTs. Note that if we were to choose S and

4.1. FlowBender: re-routing �ows using Equal Cost Multipath 77

U as 5 and 10, respectively, with an N of 2 (which gives almost the same

performance as the default N = 1 con�guration), then we would be limiting

the rerouting events to a maximum of 5 times in every 5×2 + 10 = 20 RTTs,

thus signi�cantly limiting the number of out-of-order packets that could be

triggered by FlowBender.

Selective Rehashing

In our current implementation, we change the value of V for the �exible hash-

ing input �eld obliviously once congestion occurs. Because of ECMP’s design,

changing the value of V, however, does not always mean that the route will

change as this really depends on the hashing function. �at said, given su�-

cient knowledge about the hashing functions in the fabric, one can avoid this

artifact by having each �ow precompute a number of potential values for V

that would result in hashing to di�erent paths. �e process for precomputing

such values might be very challenging and time consuming to perform for

general hashing functions, but if the network operators choose their hashing

functions in a way such that �ipping one of the hashing inputs bits would

result in a di�erent hashing output (e.g. XOR hash functions), then this pro-

cess would become much easier to perform. Alternatively, �ows can correlate

the di�erent RTT estimates or values for F corresponding to di�erent V’s in

order to infer, with a high probability, how these V’s map to di�erent paths

and avoid choosing a redundant value for rerouting.

Proactive Probing and Route Caching

We have demonstrated the reactive version of FlowBender, where a �ow is

rerouted only once congestion has been detected. Of course, one might argue

that FlowBender is already quite prompt in rerouting when congestion arises,

given its low congestion detection threshold T, but the load balancing perfor-

mance could be still further improved by allowing a �ow to proactively probe

across the di�erent paths. By probing we mean that a �ow can periodically

send a few of its packets with di�erent V values, keeping track of their se-

quence numbers ranges, and check once they have been acked which of them

have experienced congestion. One of those V’s corresponding to probe pack-

ets which did not seem to be congested at all could be proactively selected as

the basic V once F has exceeded a threshold T0 smaller than T. Alternatively,

a �ow may a�empt to keep track of some of those be�er V’s to hash upon

once congestion occurs, instead of choosing V obliviously, or might simply

blacklist those highly congested V’s and avoid revisiting them until su�cient

time has elapsed.

78 Chapter 4. Steering transport �ows in Multipath networks

4.1.4 Conclusion

In this section, we described a new load balancing mechanism called Flow-

Bender. �e main motivation for introducing FlowBender is to overcome the

limitations of oblivious hashing schemes such as ECMP, prominent in today’s

datacenters, without su�ering from high packet re-ordering or requiring cus-

tom hardware changes and complicated host mechanisms that could o�set

any potential bene�ts. To summarize, the key strengths of FlowBender’s de-

sign are that it:

• Requires no changes to switch hardware (silicon).

• Amounts to only 50 lines of kernel code change.

• Requires simple re-con�guration to ECMP hash functions (a handful of

commands).

• Substantially outperforms ECMP and matches the performance of other

more complex schemes.

• Incorporates robust end-to-end congestion noti�cations (ECN) and fail-

ure signals (Timeouts).

• Reroutes at the Round-trip Time (RTT) granularity and recovers from

link failures essentially within an RTO.

Our evaluation shows that it cuts the �ow completion tail latencies by around

40% relative to ECMP’s for large �ows.

4.2. Leveraging SRv6 and eBPF to e�ciently steer transport �ows 79

4.2 Leveraging IPv6 Segment Routing and eBPF to
e�ciently steer transport �ows

�e advent of IPv6 Segment Routing and eBPF, opens new possibilities for

network engineers. While IPv6 Segment Routing enables network operators

to explicitly route packets in their networks, eBPF allows to e�ciently manip-

ulate the network stack with a very small overhead. As shown in Section 4.1

it is complicated for transport protocols to leverage the path diversity when

congestion or other problems occurs. While FlowBender allows to switch

paths when congestion occurs, it is more complicated to switch to a path that

is known to be less congested. �is comes from the decoupling between the

transport layer and the network layer. In the OSI model, the transport pro-

tocol has no precise knowledge of the path it is currently using. �e same

applies to the network layer that has few to no knowledge about the inter-

nal state of the transport protocol. While this design choice is interesting

because it allows to easily combine di�erent transport and network proto-

cols, it clearly limits the transport protocol’s possibilities when it experiences

problems. With this in mind, a naive solution would be to replicate the trans-

port protocol’s internal state (RTT, number of loss, …) inside the network

layer. However, this naive solution is a cross-layer violation that would make

compatibility between protocols di�cult. In this section, we propose to com-

bine eBPF and IPv6 Segment Routing to e�ciently tackle this problem. With

eBPF, we can e�ciently monitor the transport protocol’s internal state (e.g its

number of re-transmissions). With this information combined with IPv6 Seg-

ment Routing’s capability of routing tra�c, we can change the path used by a

�ow when the transport protocol is experiencing problems on that path. �is

allows to use the transport protocol information to make routing decisions

without commi�ing an undesirable cross-layer violation.

�is Section is organized as follows. First, we desribe a few use cases that

could bene�t from this combination in Section 4.2.1. In Sections 4.2.3 and 4.2.2

we describe our architecture and its building blocks. �en, in Section 4.2.4 we

demonstrate the feasability of our approach in simple emulated scenarios. In

Section 4.2.5 we describe the next steps of our solution.

4.2.1 Use cases

Re-routing �ows using IPv6 Segment Routing

In Section 4.1, we presented FlowBender, an e�cient solution to reroute �ows

when they use a congested path. One of the limitations of FlowBender is that

it inherits from the limitations of its rerouting component: ECMP. When it

detects that a �ow is using a congested path with ECN, FlowBender changes

80 Chapter 4. Steering transport �ows in Multipath networks

the �exible �eld V resulting in a new ECMP hash. However, there is no guar-

antee that this new path will be di�erent, disjoint and not congested. In that

case FlowBender tries again with another new path. To mitigate this prob-

lem, we propose to use IPv6 Segment Routing. FlowBender’s limitation comes

from the fact that it has no knowledge of the path used by the tra�c. With

IPv6 Segment Routing however, the path is explicitly speci�ed in the SRH. By

leveraging this capability, we can react to congestion by switching to a path

that is di�erent, disjoint and not congested. If no such path is available, we

avoid an unnecessary switch of path.

Multi-homed hosts

While mobile phones have been o�ering 4G and WiFi for years, multi-homed

hosts are ge�ing more and more deployed in di�erent environments. In or-

der to o�er higher bandwidths to their clients, ISPs have started to deploy

hybrid access networks [Fab16], i.e. networks that combine di�erent access

links such a xDSL and LTE. In one deployment, described in [LHZ
+

17], a

hybrid CPE router with xDSL and LTE is connected to an aggregation box

with GRE Tunnels. �e tunnels ensure that the packets sent by the hybrid

CPE are routed to the aggregation box that reorders them. As shown in pre-

vious sections, multi-homed hosts are also largely deployed in datacenters.

While Multipath TCP can be a good solution to leverage multiple interfaces,

it requires important modi�cations to the networking stack. In this context,

IPv6 Segment Routing can be used to replicate some of Multipath TCP’s fea-

tures at a lesser cost in terms of modi�cations. While bandwidth aggregation

would be di�cult to achieve because of the reordering cost at the receiving

host, IPv6 Segment Routing can be used to steer speci�c �ows through a spe-

ci�c interface, reduce the delay by using the lowest-RTT path or for failover

purposes. Our solutions leverage the multiple interfaces without needing to

signi�cantly change the host’s networking stack.

Limiting the impact of Heavy Hitters (elephant �ows)

In Datacenters, a few long �ows contribute to an important part of all the

tra�c [BAM10]. �ese long �ows are o�en called heavy-hi�ers or elephant

�ows. While these ”elephant” �ows only account for a fraction of the �ows,

they are an important part of all the tra�c in terms of bytes. On the other

hand, a ”mouse” �ow is a short �ow that typically serves a Remote Procedure

Call (RPC). �e mice �ows only account for a small fraction of the tra�c (in

terms of bytes), but represent the largest number in terms of �ows. A mouse

�ow is typically a short request/response query and is thus sensitive to la-

tency. Because responses to complex queries are constructed by aggregating

the results from several mice �ows, the tail latency of the individual �ows

4.2. Leveraging SRv6 and eBPF to e�ciently steer transport �ows 81

directly a�ects responses time and quality. In today’s networks, the prob-

lem appears when one tries to combine mice and elephant �ows on the same

path. �e elephant �ows are going to consume most of the available band-

width, negatively impacting the latency of the mice �ows. While solutions

like the hhf-qdisc [qdisc-hhf] that uses a multi-stage �lter [EV02] to detect

the elephants are already available in the Linux Kernel, they solve the prob-

lem by giving priority to the latency sensitive tra�c over the bulk one. With

our architecture, we take a di�erent point of view. Instead of trying to limit

the tra�c of the elephants, we propose to avoid the problem by detecting the

elephants with eBPF and to route them on a separate path using IPv6 Segment

Routing. �is allows network operators to design networks with, mice dedi-

cated low-latency links that do not need an important quantity of bandwidth

and elephant dedicated links with high bandwidth and less requirements in

terms of latency.

4.2.2 Building blocks

Linux control groups (cgroups)

�e Linux control groups (cgroups) provide an interface to manage the be-

havior of processes. Cgroups can be used to limit or prioritize the access to

resources (cpu, memory,…) and to account for the group’s usage of said re-

sources. All of the processes of a cgoup share the same limitations.

extended Berkeley Packet Filter (eBPF)

eBPF (for extended Berkeley Packet Filter), is a general-purpose virtual ma-

chine that is included in the Linux kernel since the 3.15 release. �is virtual

machine supports a 64 bits RISC-like CPU [BDK18] which is an extension

of the BPF virtual machine [MJ93]. It provides a programmable interface to

adapt kernel components at run-time to user-speci�c behaviours. While so-

lutions such as [SCP
+

16, MZK
+

17] use P4 [BDG
+

14] to achieve data plane

programmability, they are limited by the fact that P4 relies on speci�c hard-

ware (and/or compiler), while eBPF targets a general purpose CPU. �e LLVM

project [LLV18] includes a BPF backend, capable of compiling C programs to

BPF bytecode. eBPF bytecode is either executed in the kernel by an inter-

preter or translated to native machine code using a Just-in-Time (JIT) com-

piler. Since the eBPF architecture is very close to the modern 64-bit ISAs, the

JIT compilers usually produce e�cient native code [BL18].

eBPF programs can be a�ached to predetermined hooks in the kernel.

Several hooks are available in di�erent components of the network stack, such

as the tra�c classi�er (tc) [Bor16], or the eXpress Data Path (XDP) [BX18],

a low-level hook executed before the network layer, used e.g. for DDoS mit-

82 Chapter 4. Steering transport �ows in Multipath networks

igation. When loading an eBPF program into the kernel, a veri�er �rst en-

sures that it cannot threaten the stability and security of the kernel (no invalid

memory accesses, no in�nite loops, . . .). �e eBPF program is then executed

for each packet going through the datapath associated to its hook. �e pro-

gram can read and, for some hooks, modify the packet.

eBPF programs can call helper functions [BH18], which are functions im-

plemented in the kernel. �ey act as proxies between the kernel and the eBPF

program. Using such helpers, eBPF programs can retrieve and push data from

or to the kernel, and rely on mechanisms implemented in the kernel. A given

hook is usually associated with a set of helpers.

�ere are two practical issues when developing eBPF programs. �e �rst

is how to store persistent state and the second is how it can communicate

with user space applications. State can be kept persistent between multi-

ple eBPF program invocations and shared with user space applications using

maps. Maps are data structures implemented in the kernel as key / value stores

[BX18]. Helpers are provided to allow eBPF programs to retrieve and store

data into maps. Several structures are provided, such as arrays, hashmaps,

longest pre�x match tries, . . .When processing packets, if information needs

to be pushed asynchronously to user space, perf events can be used. Perf

events originate from Linux’s performance pro�ler perf. In a networking

context, they can be used to pass custom structures from the eBPF program

to the perf event ring bu�er along with the packet being processed [BP18].

�e events collected in the ring bu�er can then be retrieved in user space.

�ese mechanisms allow stateful processing and a user-space communica-

tion that would be di�cult to achieve with P4. Finally, a lightweight tunnel

infrastructure named BPF LWT, provides generic hooks in several network

layers, including IPv6 [BL16]. �is LWT enables the execution of eBPF pro-

grams at the ingress and the egress of the routing process of network layers,

but is unable to leverage the speci�cities of IPv6 Segment Routing.

eBPF programs types �e Linux kernel supports several eBPF program

types. �e program type determines several properties of the program:

• Where the program can be a�ached (ingress, egress, . . .)

• Which kernel functions the program might call

• Whether packet data can be directly accessed and modi�ed

In our architecture, we use two types of eBPF programs :

• BPF PROG TYPE CGROUP SKB: this program type acts as a packet �l-

ter. Depending on the path where it is a�ached, this program will be

called for every packet received or emi�ed. When called, this program

4.2. Leveraging SRv6 and eBPF to e�ciently steer transport �ows 83

type receives a reference to a socket bu�er (skb). It can inspect every

received or emi�ed packet but cannot modify socket options.

• BPF PROG TYPE CGROUP SOCK: this type of program is called by the

kernel during certain events. It is allowed to modify socket options.

Contrary to its CGROUP SKB counterpart, this type of program is not

called for every packet, but only when one of the supported events hap-

pens. In the Linux kernel, such events are when a connection is estab-

lished, when the TCP state changes, or when a skb is re-transmi�ed,…

�is type of program does not receive a reference to an skb, but only to

the socket concerned by the event.

IPv6 Segment Routing

Described in Section 1.5, IPv6 Segment Routing is used to steer packets through

an ordered list of segments. �e IPv6 �avor of Segment Routing (SRv6) lever-

ages a dedicated IPv6 routing extension header, named Segment Routing Header

(SRH). Each segment is an IPv6 address representing a node or link to traverse.

�e SRH thus represents a path to follow in the network. In the Linux Kernel,

it is possible to steer a TCP connection through a certain path by a�aching an

SRH to the TCP socket. �is can be done by using the setsockopt function.

So�ware Resolved Networks (SRN)

Many entreprises are seduced by So�ware De�ned Networks (SDN) [M
+

08,

CFP
+

07, KRV
+

15a] which promise to simplify the management of their net-

works. So�ware Resolved Networks (SRN) [LJC
+

18] instantiate this SDN vi-

sion by using IPv6 Segment Routing in enterprise networks. Like SDNs, SRNs

use a controller that manages the network resources. As in SDNs, the pres-

ence of the controller simpli�es the management of the network and allows

the operator to be�er control the available resources.

However, there are several di�erences between SRNs and SDNs. First,

SRNs leverage IPv6 Segment Routing in the dataplane and the SRH to con-

trol the �ow of packets through the network. �is reduces the amount of

state required on the routers in contrast with Open�ow-based SDNs. Sec-

ond, applications can interact explicitely with the controller to indicate the

requirements for their �ows. �e controller responds to these requirements

by returning a SRH for a path that meets them.

In SRNs, the controller is co-located with the entreprise DNS resolver and

hosts use the DNS protocol to interact with the controller/resolver. When

an application initiates a conversation, it performs the following operations.

First, it issues a DNS request to resolve the DNS name of the server and adds

its requirements. �en, the controller chooses a network path that meets

84 Chapter 4. Steering transport �ows in Multipath networks

those requirements. �e controller can use any optimization algorithm to

select this path. Once the path is chosen, it is transformed into a list of SRv6

segments. Di�erent path selection algorithms can be included in the SRN

controller. �e controller then sends back to the endhost a DNS response

containing the server IPv6 address and the SRH corresponding to the selected

path. Finally, the endhost a�aches the SRH to each packet of the connection.

DNS resolver
& SDN controller

1ms1ms

4ms

DNS.re
sponse(IP

, S
RH)

DNS.re
q(se

rver.c
om, R

TT=8ms)

1ms 1ms
server.com

Figure 4.5: Illustration of path selection in SRN.

Figure 4.5 shows a So�ware Resolved Network. All its links have an IGP

weight of 1. In a traditional IPv6 network, the application �ows have to follow

the shortest network path. In this example, the application wants a RTT of

maximum 8 ms and the shortest path has a RTT of 12 ms. �e controller

selects the upper path and returns its SRH to the endhost. Additional details

about SRNs and the realisation of its controller may be found in [LJC
+

18].

4.2.3 Architecture

Our architecture, illustrated in Figure 4.6 is built around the building blocks

described in the previous section.

R1 R2 R3

R4 R5 R6

R7 R8 R9

eBPF maps

host

C

R
1
,R

2
,R

3

b
a
n
d
w

id
th

 =
 4

5
0
M

b
p
s

Figure 4.6: High level architecture.

4.2. Leveraging SRv6 and eBPF to e�ciently steer transport �ows 85

�e starting point is that we regroup the processes of the applications

into cgroups. By doing so, it is possible to create a cgroup having the ex-

pected network behavior. For instance, bulk-transfer applications might be

put in a group and latency-sensitive applications in another. �is allows us

to apply di�erent policies depending on the application. �e policy applied

will depend on which eBPF programs is a�ached to the cgroup. To man-

age the communications between the controller and the host, we add a host

daemon. �is host daemon establishes an out-of-band connection with the

controller. �is connection is allows the controller to send updates about the

path. Once the host daemon receives an update from the controller, it up-

dates the relevant �elds in the host’s eBPF maps. In a simple scenario where

an application wants to connect to a server, the application �rst queries the

controller [LJC
+

18] about the di�erent available paths to reach this server.

With the help of the host daemon, the controller updates the local eBPF-Maps

of the host with the available paths for this destination and their status. At

this point, the host is aware of the available paths, and the rest of the pro-

cess is at the host level. Figure 4.7 shows the process at the host level. To

eBPF maps

R1,R2,R3

R4,R5,R6

R6,R7,R8

0

1

2

map_paths
id path

path = 0
0

1

2

map_flows
id flow infos

loss = 45

path = 2
loss = 0

path = 0
loss = 20

eBPF program

case: ON_CONNECT:
bp = get_best_path(socket)
set_socket_path(socket,bp)
update_flow_infos(map_flows)

...

...

TCP Stack

connect():
....

CALL_BPF(ON_CONNECT, socket)
....

...

...

1

2

3

4

connect

host

packet

IP TCPR1,R2,R3
SRH

5

Figure 4.7: Host processing.

explain Figure 4.7, we consider a simple scenario in which the host wants

to establish new connections on the best available path. In this scenario: (1)

the application uses the connect system call. (2) the TCP stack executes

the connect function, and calls the eBPF program a�ached to its cgroup (if

any). (3) �e eBPF program selects one of the paths previously �lled by the

controller in its eBPF map. (4) the eBPF program calls our implementation

of bpf setsockopt to a�ach this path to every packet sent on the socket.

(5) the TCP stacks sends the packets through the network. At this point the

eBPF program is no longer necessary in this simple scenario. �e SRH being

associated with the socket, the stack will insert it with every packet.

86 Chapter 4. Steering transport �ows in Multipath networks

While in the previous example, the eBPF program is triggered by the

connect system call, there are several ways to trigger an eBPF program in

our architecture.

Reacting to kernel events

A �rst way of triggering an eBPF program is an event in the networking stack.

An event is triggered when some conditions are ful�lled and detected by the

networking stack. �ere are already several events de�ned in the Linux ker-

nel. �ese are called when:

• a connect system call is issued;

• a connection is established;

• a retransmission timer (RTO) has expired;

• a skb is retransmi�ed;

• TCP changes state.

When a kernel event happens, the TCP stack might call a BPF PROG -

TYPE CGROUP SOCK program. For instance, when a re-transmission occurs

the kernel will call the associated program. It can then decide if a change of

path is needed or not.

An event should typically be added for very simple case and thus does not

require more than a few lines of code in the kernel. In our implementation, ap-

part from the bpf setsockopt allowing BPF PROG TYPE CGROUP SOCK pro-

grams to set an SRH, we added events for cases such as when an ECN marked

packet is received or when a packet is transmi�ed.

Reacting to an incoming/outgoing skb

When a packet is transmi�ed or received, a BPF PROG TYPE CGROUP SKB

program might be called before the packet reaches the TCP/IP stack. �is

program has access to the whole packet, but cannot modify the associated

socket. Because this kind of program is meant to act as a packet �lter, it has

to return a ”verdict” indicating whether this packet must be dropped or not.

Because it has access to the ”raw” packet, this kind of program might me used

for accounting or �ltering purposes.

Reacting to other eBPF programs

Another way of triggering an eBPF program might be another eBPF program.

In some cases, one could want to modify some socket option when a certain

4.2. Leveraging SRv6 and eBPF to e�ciently steer transport �ows 87

kind of packet is received. �is cannot be done by a BPF PROG TYPE CGROUP -

SKB program alone because it does not have write access to the socket. �is

cannot either be done by a BPF PROG TYPE CGROUP SOCK program alone be-

cause it does not have access to speci�c packets. A simple way of solv-

ing this problem could be to add an event in the kernel in order to call a

BPF PROG TYPE CGROUP SOCK when such packet is received. However, if

the information needed to trigger the event lies in the payload of the said

packet, the processing might be complex. Let us take the example of a spe-

ci�c ICMP message received from a router in the network, informing that

the current path is congested and containing a new path to use. Modifying

the kernel to implement such a complex analysis is neither easy nor desir-

able. To support that case, we use a BPF PROG TYPE CGROUP SKB to parse

the packet and extract the information. When the speci�c ICMP message

is detected by this program, it extracts its content and places it in an eBPF

map (for instance, replacing the current SRH by the one in the ICMP packet).

�e program then forwards the packet to the stack. Later (this can be just

a�er the reception of the packet if program our called for every packet is

enabled), when an event is triggered for the socket concerned by this mes-

sage, the BPF PROG TYPE CGROUP SOCK program will be called. �is pro-

gram can then inspect the map to check if any of the path has been mod-

i�ed by another program. To detect such changes, we use a ”DIRTY BIT”

that’s set by the program modifying the map. If such change is detected, the

BPF PROG TYPE CGROUP SOCK can then proceed to modify the path for the

socket by calling our dedicated bpf setsockopt.

�e need of a controller

At this stage, it is important to specify that if the controller described in this

section is an important part of our architecture, it is however not strictly nec-

essary. �e controller is important because it allows to have a global view

of the network, computes disjoint paths [AVBD18] and to receive updates on

some metrics. It is however still possible to use our IPv6 Segment Routing-

eBPF architecture without a controller for certain metrics if the di�erent paths

between two hosts are statically de�ned. Some metrics are di�cult to com-

pute by the TCP/IP stack. �e bandwidth available on a path for instance

does not only depend on the path usage by the sole host our eBPF program

is running on. Other hosts might congest the path, so a program that se-

lects the path by checking the available bandwidth needs a controller. Other

metrics however can easily be measured by a host without the help of a con-

troller. �e Round-Trip-Time (RTT) for instance is already measured by the

TCP stack without any help from a controller. For instance, a program that

selects a path based on the RTT does not need a controller to update this met-

88 Chapter 4. Steering transport �ows in Multipath networks

ric. Every RTT, this program is called by the stack and updates the eBPF-Map

containing the path with the RTT the TCP stack computed. If the RTT is over

a certain threshold, the program can lookup an alternative path with a lower

RTT in the map. To ensure that the RTT of the alternative path is accurate,

it is not strictly necessary to rely on continuous probing. While continuous

probing could be an interesting technique it complexi�es the implementation

and sends unnecessary tra�c onto the network. To ensure that the RTT of

the alternative path is accurate, we rely on other connections. Indeed, if the

host is actively communicating some other connection will use these paths

at some point, and thus update the RTT observed for this path. A limitation

of this approach is that we have to make sure that no path stays unused for

too long. To address this, if a path has not been used for a certain amount of

time, a new connection will be steered on this path. �is connection will then

estimate the RTT, update it in the map, and move if it is over the threshold.

4.2.4 Evaluation

In this section, we evaluate our architecture by running emulated scenarios

with mininet [mininet]. �e purpose of this section is to evaluate the capabil-

ity of using IPv6 Segment Routing and eBPF to implement our architecture.

�e performances of the controller are therefore out of the scope of this sec-

tion and will be evaluated in a di�erent publication.

Reacting to ECN

In Section 4.1, FlowBender proved to be an e�cient solution to re-route �ows

based on the ECN feedback, its main limitation being its dependence on ECMP.

For this evaluation, we use a BPF PROG TYPE CGROUP SOCK program that,

like FlowBender, reacts to congestion detected by ECN. We consider the topol-

ogy illustrated in Figure 4.8. When it detects congestion by receiving ECN

marking, this program tries to move the �ow to a path where no conges-

tion event has recently been observed. When a congestion event occurs, the

program remembers the timestamp and changes the path if possible. A�er

changing the path, a �ow has to wait for N seconds before changing it again.

In this topology, there are 3 paths available between the client and the

server, and each link is con�gured at 100Mbit/s. �e scenario consists in a

client process running in a cgroup with our BPF PROG TYPE CGROUP SOCK

program. �e client tries to send data to the server a �xed rate of 10 Mbits/s.

A�er a delay of 5 seconds, we create congestion between two of the routers

(R1-R2) of the currently used path by running an uncapped iperf [iperf].

Figure 4.9 illustrates this scenario with our eBPF program deactivated.

As expected, a�er 5 seconds, our 10Mbit/s �ow throughput drastically drops

to less than 4Mbit/s and then oscillates between 4Mbit/s and 7Mbit/s for the

4.2. Leveraging SRv6 and eBPF to e�ciently steer transport �ows 89

R1 R2 R3

R4 R5 R6

R7 R8 R9

Client Server

Figure 4.8: Topology of our mininet network.

0 5 10 15 20 25 30
Time (s)

0

2

4

6

8

10

Ba
nd

wi
dt

h
(M

bp
s)

Figure 4.9: Observed goodput of a TCP �ow without our eBPF solution.

remainder of the connection. �is is expected and is due to the congestion

created on the path.

Figure 4.10 compares the same scenario but with our eBPF program en-

abled. In this case, a�er 5 seconds there is no observed drop in the throughput

of the client. �is is due to the fact that upon reception of the ECN mark, our

eBPF program moved the �ow to one of the two other paths that was not

experiencing congestion.

�is simple evaluation shows that it is possible and practical to replicate

FlowBender’s behavior, with the advantage that the �ow moves to a path that

is known to be di�erent and disjoint. In this topology, the basic FlowBen-

der incurs a 33.3% risk of staying on the same path due to ECMP generating

a new hash that ended up on the same path.

90 Chapter 4. Steering transport �ows in Multipath networks

0 5 10 15 20 25 30
Time (s)

0

2

4

6

8

10
Ba

nd
wi

dt
h

(M
bp

s)

with eBPF
without eBPF

Figure 4.10: Comparison of the observed goodput of a TCP �ow with and
without our eBPF solution.

In a case where the second path (and/or the third path) is also experi-

encing congestion, our program can rely on the fact that other connections

having experienced congestion on that path will update the map with the

timestamp of the congestion event. In the case where that path has not been

used by this host for a long time, there is a risk of moving a �ow to that path

only to �nd it experiencing congestion. To limit this possibility the solution

is to rely on the controller updating the map when other hosts experience

congestion on that path.

Limiting the impact of elephant �ows

For this evaluation, we use mininet and the topology illustrated in Figure 4.11.

In this topology, a client has two 100 Mbit/s paths to a server. �e upper link

represents the LTE interface and is con�gured with a delay of 20 ms each way.

�e other link represents a xDSL link and is con�gure with a delay of 40 ms

each way.

In this scenario, we use the LTE link for latency sensitive tra�c and the

xDSL link for bulk tra�c. To simulate latency sensitive tra�c, we use apache

benchmark[AB] running HTTP requests of 1KB. To simulate bulk tra�c we

launch 3 unlimited instances iperf. �e algorithm of our BPF PROG TYPE -

CGROUP SOCK program is simple : each �ow starts as a mouse/latency sen-

sitive, thus using the LTE link. If a �ows transfers more than 1 MB over a

4.2. Leveraging SRv6 and eBPF to e�ciently steer transport �ows 91

R1 R2 R3

R4 R5 R6

Client Server

Figure 4.11: Topology of our mininet network with two links.

period of 1 second, it is identi�ed as elephant/bulk �ow and is moved to the

xDSL link.

0 200 400 600 800 1000 1200 1400
Request completion time (ms)

0

20

40

60

80

100

CD
F

with eBPF
without eBPF

Figure 4.12: Latency of short �ows with and without our eBPF program.

Figure 4.12 shows the latency of the latency sensitive tra�c as reported

by apache benchmark. Without our eBPF program, the mice experience a

latency of 715 ms on average. �is is caused by the congestion created by the

elephant �ows on the LTE link. With our eBPF program enabled however

the mice experience a latency of 57ms, more than 15 times faster. �is is due

to the fact that the bulk tra�c has been moved to the xDSL link. �is simple

experience shows that eBPF and IPv6 Segment Routing can be e�ciently used

to identify elephant �ows and move them to a dedicated link in order to void

any impact on latency sensitive tra�c.

92 Chapter 4. Steering transport �ows in Multipath networks

4.2.5 Future Work

Now that we established that eBPF and IPv6 Segment Routing can e�ciently

be used to steer �ows over the network, our next step is to implement more

eBPF programs that cover more use cases. While we presented only 3 use

cases in this section, the �exibility of eBPF allows to envision many more use

cases. �e remainder of the future work will consist in evaluating the con-

troller’s performance and build more elaborated uses cases upon it. During

our next steps, we will also evaluate our architecture using other transports

protocols like QUIC or Multipath TCP. In the case of Multipath TCP, our ar-

chitecture already works because each of Multipath TCP’s sub�ows is a TCP

socket. However, our current implementation does not take into account that

these TCP sockets actually belong to the same Multipath TCP connection.

With some small modi�cations, our architecture could take this information

into account and o�er Multipath TCP path manager new possibilities, like

opening two new sub�ows on two totally disjoint paths. �is is impossible at

this time and o�en results in two sub�ows sharing the same bo�leneck. With

our architecture, the Multipath TCP Scheduler and Path Manager could make

more informed decisions.

4.2.6 Conclusion

�e objective of this section was to design a new architecture to ”�ll the gap”

between the transport and the network layer. By leveraging IPv6 Segment

Routing routing potential and eBPF’s ability to access TCP’s internal state, we

demonstrated that it is possible to improve transport protocol performances

by selecting a path according to the transport protocol’s status. We modi�ed

the Linux kernel to add new events and the possibility for eBPF to a�ach

an SRH to an existing TCP connection. We implemented eBPF programs to

emulate to behavior of FlowBender and solve the problem of the elephant

�ows in a new way.

Chapter 5

Making Multipath TCP
friendlier to Load Balancers
and Anycast

5.1 Introduction

During the last years, several use cases have emerged for Multipath TCP

[BS16]. Apple uses Multipath TCP on all its tablets, smartphones and laptops

to support the Siri voice recognition application. Apple also uses Multipath

TCP for its audio streaming service Apple Music, and has opened its Multi-

path TCP API to other applications. In this use case, Multipath TCP provides

very fast failovers when a smartphones leaves or enters the coverage of a

WiFi access point. A second use case for Multipath TCP is bandwidth aggre-

gation. In Korea, high-end smartphones include Multipath TCP to bond the

bandwidth of their WiFi and cellular interfaces and achieve higher through-

puts [Seo]. Finally, network operators have started to deploy Multipath TCP

proxies to bond xDSL and LTE networks in rural areas [BS16, BBG
+

19].

Given that the Multipath TCP speci�cation was published in 2013, the

Apple deployment that began in September 2013 is the fastest deployment

of a TCP extension [Fuk11]. Despite this fast start, Multipath TCP is still

not widely supported by servers [MHFB15]. �ere are several reasons for

this limited deployment. On the client side, the implementation in the Linux

kernel [PB
+

] is not included in the o�cial kernel. On the server side, the

deployment of Multipath TCP is hindered by technical problems [PGF15]. To

leverage the di�erent paths available in the network, operators frequently

use load-balancing techniques. �is technique is also heavily used for servers

[Datanyze]. �ere are basically two families of load balancers: the state-

less and the stateful load balancers. Stateful load balancers maintain state

93

94 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

for each established TCP connection and load balance them among di�erent

servers. Some of these load balancers have been upgraded to support Multi-

path TCP [bigip,Netscaler]. However, the state maintained by these load bal-

ancers limits their scalability. �is is the reason why large content providers

prefer to deploy load balancers [EYC
+

16] that store as less state as possible.

�ose load balancers operate on a per-packet basis and take their load bal-

ancing decision based on �elds of the IP and TCP headers (e.g. the 5-tuple

that uniquely identi�es each TCP connection). Multipath TCP breaks this

assumption and forces to rethink the operation of stateless load balancers.

Several researchers have proposed modi�cations to load balancers to support

Multipath TCP [OR16, LD16]. We discuss them in details in Section 5.2.

In this Chapter, we view the load balancing problem from a di�erent an-

gle, closer to one of the key ideas of Multipath TCP’s design: having a proto-

col that is deployable in today’s networks, without changing them. Instead of

changing the load balancers to support Multipath TCP, we propose to slightly

change Multipath TCP to be compatible with existing load balancers. �is en-

ables Multipath TCP to be used in any environment containing load balancers

and is a much simpler deployment path than changing load balancers. Our

modi�cation is simple since it relies on a single bit in the MP CAPABLE option

exchanged during the three-way handshake. It has been integrated in the

forthcoming revision of Multipath TCP [FRH
+

19]. We implement it in the

Linux kernel and demonstrate its performance based on lab measurements.

Furthermore, we show that with this small modi�cation it becomes possible

to e�ciently support anycast services over Multipath TCP. �is opens new

bene�ts for Multipath TCP in addition to the existing bandwidth aggregation

and fast failover use cases.

5.2 Background and motivation

A key bene�t of Multipath TCP is that a Multipath TCP connection can trans-

port data over di�erent paths. A typical example is a smartphone that wants

to use both its WiFi and LTE interfaces to exchange data. As explained in Sec-

tion 1.4.3, a Multipath TCP connection always starts with a three-way hand-

shake like regular TCP connections, except that the SYN and SYN+ACK carry

the MP CAPABLE option. Considering our smartphone example, if the initial

sub�ow was created over the cellular interface, then another sub�ow is cre-

ated over the WiFi interface. Each sub�ow is created by using the TCP three-

way handshake with the MP JOIN option in the SYN packets. �is option

contains an identi�er of the Multipath TCP connection to which the sub�ow

is a�ached (called token in [FRHB13]) that is derived from the information

exchanged in the MP CAPABLE option and some authentication information.

5.2. Background and motivation 95

5.2.1 Load balancing principles

A network load balancing infrastructure is typically composed of one or sev-

eral load balancers located between the physical servers that host the con-

tent and the edge routers as shown in Figure 5.1. In this chapter, we fo-

cus on Layer-4 load balancers [LVS, EYC
+

16, Barracuda] that do not termi-

nate the TCP connection unlike some Layer-7 load balancing solutions [NGI,

Haproxy].

load
balancer

#1

load
balancer

#2

Rack
#1

Rack
#2

VIP 1
VIP 2

VIP 3
VIP 4

Figure 5.1: Typical deployment of Layer-4 load balancers.

Load balancers typically announce Virtual IP addresses (VIP). A VIP dif-

fers from a traditionnal IP address because it is not assigned to a single server.

It usually belongs to a service whose content will be served by multiple servers

located behind the load balancers.

When a client tries to connect to a service, it usually obtains the VIP via

a DNS query and then sends packets to this address. When the �rst packet

of a connection reaches the load balancer, the load balancer needs to select

one of the service’s servers for this particular connection. �e speci�c algo-

rithm used to select the best server is outside the scope of this chapter, but

it is important to emphasize that once the server has been selected, all the

packets belonging to this speci�c connection will be forwarded to that par-

ticular server. With regular TCP, load balancers usually extract the 5-tuple

of the connection (protocol, source address, destination address, source port,

destination port) from each received packet and assign each tuple to a speci�c

server. Some load balancers simply forward these packets to the correspond-

ing server [LVS] while others encapsulate the packet using Generic Routing

96 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

Encapsulation (GRE) [EYC
+

16] or other tunneling techniques. �e main ben-

e�t of encapsulation is that the physical server does not need to be physically

close to the load balancer.

�is solution works perfectly with TCP and UDP because each TCP or

UDP packet contains the �ve-tuple that identi�es the �ow. Multipath TCP

unfortunately breaks this assumption. A load balancer should send all the

packets that belong to a given Multipath TCP connection to the same phys-

ical server. Since a Multipath TCP connection is composed of di�erent TCP

connections, a packet can reach the load balancer via any of these TCP con-

nections and thus via possibly di�erent �ve-tuples. A Layer-4 load balancer

cannot rely only on the information contained in this packet to determine the

physical server that was selected for this speci�c Multipath TCP connection.

Several solutions have been proposed to reconcile Multipath TCP with

load balancers. A �rst approach is to use stateful load balancers. Some com-

mercial products [bigip, Netscaler] already support Multipath TCP and re-

searchers have proposed stateful Multipath TCP capable load balancers [LD16].

Olteanu and Raiciu propose in [OR16] a modi�cation to Multipath TCP that

enables stateless load balancers to support Multipath TCP. �eir solution re-

lies on changing the TCP timestamp option. Instead of using this option to

encode regular timestamps, they encode an identi�er of the physical server

behind the load balancer inside the low-order bits of the timestamp option

[BBJS14]. Since clients always echo the timestamp option sent by servers,

this enables the load balancer to receive in each packet an identi�er of the

physical server that needs to receive the packet. �is solution has been imple-

mented and tested in lab environment [OR16]. However, it su�ers from three

important limitations. First, load balancers and servers need to be modi�ed

to extract the information from the timestamp option. Second, this option,

like any TCP option, can appear anywhere in the extended TCP header. �is

implies that a hardware implementation will be more complex than existing

hardware solutions that simply extract the source and destination addresses

and ports that are placed at �xed locations in all packets. �ird and more

importantly, there are various types of middleboxes that are deployed on the

global Internet that change the values of the timestamp transported in TCP

Options [HNR
+

11]. �is solution is thus fragile in the presence of such mid-

dleboxes.

Stateless load balancers are much more scalable than stateful load bal-

ancers and large content providers want to continue to use stateless approaches

for load balancing. In this chapter, instead of modifying the load balancer,

a device that is usually hard to modify, we modify the protocol by slightly

changing how addresses are advertised and used. Our choice is driven by the

fact that Multipath TCP has been developed with a strong idea in mind: being

deployable in today’s networks (i.e without modifying the middleboxes). �is

5.3. Modi�cations to Multipath TCP 97

idea has deeply in�uenced the design of the protocol and is responsible for a

big part of its complexity. Given that the IETF is currently �nalising the revi-

sion of Multipath TCP [FRHB13] to publish it as a standard track document

[FRH
+

19], this is the right time to propose such a modi�cation.

5.3 Modi�cations to Multipath TCP

In a nutshell, our modi�cation to Multipath TCP to support load balancers is

to assign two addresses to each physical server: a VIP that is the load balanced

address and a unique address that is assigned to each physical server. When

a client creates a Multipath TCP connection to a load balancer, it uses the VIP

and the load balancer forwards the packets to the selected physical server.

�e physical server advertises its unique address and the client immediately

creates a second sub�ow towards this address. In this section, we provide

an in-depth explanation of how we modi�ed the protocol to support the new

feature.

5.3.1 Restricting the initial sub�ow

Our �rst modi�cation concerns the initial sub�ow that is created by the client.

�is sub�ow is created by sending a SYN packet that contains the MP CAPABLE

option. �e format of this option is detailed in Figure 1.5. �is sub�ow is es-

tablished between the client address and the VIP served by the load balancer.

As described previously, the main problem for Multipath TCP is that this VIP

cannot be used to establish additional sub�ows. To support our architecture

and avoid clients trying to establish sub�ows that could not be established,

we modify the protocol to allow a host to be able to inform the other end that

this speci�c address cannot be used to establish additional sub�ows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype Version A B CD E F G H

Options Sender’s Key (64 bits)

(if option Length greather than 4)

Options Receiver’s Key (64 bits)

(if option Length == 20)

Data-Level Length Checksum

Figure 5.2: RevisedMultipath Capable (MP CAPABLE) Option (RFC6824bis).

98 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

�is is done by adding a new “C“ �ag to the MP CAPABLE option returned

by the physical server. �is change is shown in Figure 5.2 that can be com-

pared with Figure 1.5. In the original format, the “C“ �ag was reserved for

crypto algorithm negotiation, but was not used. We chose to use this �ag to

carry the ”don’t join” meaning. When the “C“ �ag is set, this indicates that

the source address of the packet carrying this option (in this case the VIP ad-

dress) cannot be used to create additional sub�ows. If a smartphone receives

a SYN+ACK packet with the “C“ �ag set in response to a SYN packet sent over

its cellular interface, it infers that it cannot create any additional sub�ow to-

wards this address. To allow the protocol to know in which case this “C“ �ag

must be set, we add a simple �ag in the so�ware that is used to con�gure

addresses on the host. When the VIP is added to the host, it is possible to

specify a ”no join” �ag for this speci�c address. �is sole modi�cation pre-

vents the smartphone from creating a sub�ow that would not be correctly

load balanced by the load balancer.

5.3.2 Using unique addresses

At this point, all the packets of the initial sub�ow will reach the load bal-

ancer and be forwarded to the physical server chosen by the load balancer

for this connection. To bene�t from Multipath TCP’s features, the client must

be able to establish additional sub�ows. If the client creates another sub�ow,

the packets belonging to this connection must also reach the same physical

server. For this, we con�gure each physical server with two addresses: the

VIP and a unique (physical) address. �en, we leverage the existing ADD ADDR

option [FRHB13] and illustrated in Figure 1.10 to advertise it to the client. If

the physical server advertises its physical address then the client will be able

to create additional sub�ows towards this address which can bypass the load

balancer.

IPv4
IPv6

MP_CAPABLE
ADD_ADDR

Load Balancer

Internet

MP_JOIN

Client

Server 1

Server 2

Server 3

1
2

3

Figure 5.3: Description of our architecture.

5.3. Modi�cations to Multipath TCP 99

�is is illustrated in Figure 5.3 where: (1) the client connects to the VIP

passing through the load balancer and the servers informs the client that this

address cannot be used to establish new sub�ows; (2) the server advertises its

physical IP address to the client; (3) the client connects directly to the server’s

physical address.

5.3.3 Reliable ADD ADDR

If the “C“ �ag has been set in the MP CAPABLE option, the client is prohibited

from establishing any additional sub�ow until it has received the ADD ADDR

option that advertises the unique address of the server. Unfortunately, as

explained in 1.4.5, according to the current Multipath TCP speci�cation, the

ADD ADDR option is sent unreliably. �is implies that any loss of the packet

carrying this option could be problematic. In the best case, the client would

be limited to the single initial sub�ow. In other cases, this could break the

connection e.g. for a smartphone that moves away from the wireless access

point used for the initial sub�ow.

To ensure that the ADD ADDR is reliably transmi�ed we need to design an

acknowledgment mechanism. �e �rst solution, is implicit. When a server

receives an MP JOIN for an address that it just advertised this address can be

considered as acknowledged. While this solution is su�cient in our case be-

cause the client will always establish a connection as soon as a new address is

advertised, the speci�cations de�nes that the establishment of a new sublfow

is at the client’s discretion. To allow a generic extension to the protocol and

ensure that addresses are reliably advertised, we proposed an echo mecha-

nism for the ADD ADDR option. �e modi�ed option is shown by Figure 5.4

which can be compared to Figure 1.10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Kind Length Subtype (rsv) E Address ID

Address (8 or 16 bytes)

Port (optional)

Truncated HMAC (if E = 0)

Figure 5.4: Modi�ed Add Address (ADD ADDR) Option (RFC6824bis).

In the newer version, we remove the IPVer �eld because the version of

the IP protocol can be inferred from the length of the option. Instead, we add

the “E“ bit or ”Echo“ �ag. �is bit is reset when a host advertises an address.

When a host receives an ADD ADDR option with the “E“ �ag reset, it must

100 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

echo this ADD ADDR option with the “E“ �ag set. �is echoing serves as an

acknowledgement of the ADD ADDR option. �is mechanism is illustrated in

Figure 5.5.

Client Server

ADD ADDR

ADDRA,E=0

ADD ADDR

ADDRA ,E=1

Figure 5.5: Address advertisement echo mechanism.

5.4 Use cases

In this section, we describe two use cases leveraging the protocol extension

described in the previous section. �e �rst one is that it becomes possible to

place the load balancers complete o�-path once the Multipath TCP connec-

tion has been established. �e second one is that with our proposed extension

it becomes possible to deploy anycast services over Multipath TCP, even in

small networks.

5.4.1 Beyond Direct Server Return

Several deployment scenarios exist for load balancers. A simple approach is

to place the load balancer in front of all the physical servers such that all

the packets sent and received by the physical servers pass through the load

balancer. �is type of deployment is widely used when only a few physical

servers are used. �e main advantage of this deployment is that it is simple

to deploy and operate. However, since all packets pass through the load bal-

ancer, it could become a bo�leneck when the network load increases. �is is

illustrated in the le� part of Figure 5.6.

Large web farms use a di�erent approach to deploy their load balancers

to support higher tra�c loads. HTTP is highly asymmetrical. Most of the

HTTP tra�c is composed of the data packets that are sent by the physical

5.4. Use cases 101

Server Server Server

Load Balancer

Client

Server Server Server

Load Balancer

Client

Server Server Server

Load Balancer

Client

NAT Direct Server Return Multipath TCP

Figure 5.6: Di�erent types of load balancer deployments.

servers towards the clients. �e clients themselves only send the HTTP re-

quests which are much less frequent. Many web farms leverage this tra�c

asymmetry by con�guring the router/switch a�ached to the physical server

to send the packets generated by those servers directly to the clients with-

out passing through the load balancer. �e packets sent by the clients (TCP

acknowledgements and HTTP requests) still need to pass through the load

balancer to be forwarded to the selected physical server. �is deployment is

illustrated in the center of Figure 5.6.

With our proposed modi�cation to Multipath TCP, it is possible to go be-

yond Direct Server Return and completely bypass the load balancer for any

type of TCP connection. �e client establishes the initial sub�ow with the

load balancer that forwards all packets belonging to this sub�ow to the se-

lected physical server. �e physical server advertises its address and the client

creates an additional sub�ow towards this server address. All the packets sent

to and from the physical server address automatically bypass the load bal-

ancer. Once the additional sub�ow has been established, the physical server

can terminate the initial sub�ow so that no packet passes through the load

balancer anymore. Storage services like Dropbox and Google Drive where the

HTTP tra�c is less asymmetrical could bene�t from this modi�cation. Sev-

eral APIs have already been proposed and implemented to enable applications

to control the Multipath TCP sub�ows [HB16, HDB
+

15]. �is deployment is

illustrated in the right part of Figure 5.6 where the red arrows (center) are

related to the initial sub�ow, and the blue arrows (right) to the secondary

sub�ow.

102 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

5.4.2 Supporting Anycast Services

�ere are three types of addresses that can be supported in an IP network:

(i) unicast addresses, (ii) multicast addresses and (iii) anycast addresses. �e

unicast service is well-known. Multicast is outside the scope of this chapter.

Anycast has been initially proposed by Partridge et al. in [PMM93]. Anycast

applies to a network that contains several hosts that provide the same ser-

vice. If each of these hosts is con�gured with the same anycast address, then

when a client sends a packet towards the anycast address associated to the

service, the network automatically forwards the packet to the closest host.

Anycast has several appealing features such as its resilience to failure or its

ability to minimize latency. Anycast is widely used to deploy DNS resolvers

in ISP or enterprise networks [FHG13,AL06]. Given the privacy and security

constraints of the DNS service, several researchers have proposed to run the

DNS service above TLS and TCP instead of UDP [ZHH
+

15, HZH
+

16].

Unfortunately, it is di�cult to use TCP servers with anycast addresses

[NG14]. To understand this di�culty, let us consider the simple network

topology shown in Figure 5.7. �ere are two anycast servers in this network

shown as Server in the �gure. One is a�ached to router R2 and the other is

a�ached to router R4. Both advertise the same anycast address in the network.

If the client a�ached to router R1 creates a connection towards this anycast

address, the resulting packets are forwarded to the server a�ached to R2. If

the R1-R2 link fails, the next packet sent by the client towards the anycast

address will be delivered to the server a�ached to R4. Since this server does

not have state for this TCP connection, it will send a RST packet to terminate

it and the client will have to restart this connection.

R3

R1 R4

R2

Server

Server Client

Figure 5.7: Anycast work�ow.

5.5. Performance Evaluation 103

�anks to our proposed extension to Multipath TCP, it becomes possible

to support anycast services. For this, each unicast server must be con�gured

with two addresses: (i) the anycast address that identi�es the service and (ii)
the unique server address that identi�es the physical server. Let us consider

the same scenario as above. �e client creates a Multipath TCP connection

towards the anycast address. �e network forwards the SYN packet to the

server a�ached to router R2. �is server accepts the Multipath TCP connec-

tion and replies with a SYN+ACK. �e server then advertises its unique address

over this initial sub�ow and then signals to the client to consider this sub�ow

as a backup one. If link R1-R2 fails, the packets of the initial sub�ow reach

the server a�ached to R4. �is server does not have state for this sub�ow and

thus replies with a RST packet that terminates the initial sub�ow. �is does

not a�ect the other sub�ow that is bound to the unique address of the server

a�ached to R2. �e Multipath TCP connection with the server a�ached to R2

continues without any impact on the client.

Anycast TCP services are typically deployed by associating a Fully �ali-

�ed Domain Name (FQDN) to each service and using the DNS server to spread

the load among di�erent servers. However, there are several situations where

a DNS-based solution might not work. A �rst example are the DNS resolvers

mentioned earlier [ZHH
+

15, HZH
+

16]. �ose servers must be reachable via

an IP address that is advertised by DHCP or through the IPv6 router adver-

tisements. Another example are the di�erent types of proxies that are being

discussed within the IETF [BBG
+

19, Seo, BS16].

5.5 Performance Evaluation

To demonstrate the bene�ts of the solution described in the previous section,

we �rst modify the reference implementation of Multipath TCP in the Linux

kernel [PB
+

]. We then use this implementation to perform experiments in a

lab with both load balancers and anycast services.

5.5.1 Implementation in the Linux kernel

�e Multipath TCP implementation in the Linux kernel [Paa14] is divided

in three parts. �e �rst part includes all the functions that send and receive

TCP packets. �e second part is the path manager. �is module contains

the logic that manages the di�erent sub�ow. Several path managers have

been implemented [Paa14, BFM13]. �e reference implementation contains

the full-mesh and the ndiffports path managers. �e full-mesh path

manager is the default one. It tries to create a full-mesh of sub�ows among the

addresses available on the client and the server. �e ndiffports path man-

ager was designed for single-homed clients and servers. On the client side,

104 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

WHEN A NEW CONNECTION IS ESTABLISHED:

/* Get the specific IP address */

ip_addr = GET_SERVER_IP()

/* Send an ADD_ADDR containing that

address to the client */

ADVERTISE_TO_CLIENT(ip_addr)

/* Change the first subflow to backup mode */

SET_BACKUP_MODE(get_first_subflow())

Figure 5.8: Pseudocode from our path manager.

it creates n sub�ows with di�erent source ports towards the server. It was

designed for the datacenter use case described in [RBP
+

11]. �e third part

is the packet scheduler that selects the sub�ow that will be used to transmit

each packet.

We �rst add support for the “C“ �ag in the code that processes the

MP CAPABLE option described in Section 5.3.1. To support this �ag, we had to

modify the path manager used by the client to prohibit it form creating any

sub�ow towards the destination address of the initial sub�ow.

Our second modi�cation was to add the support of the “E“ bit in the

ADD ADDR option as described in Section 5.3.3. We implemented it, by send-

ing the ADD ADDR option in every packet until the reception of the address

acknowledgement (reception of an echo, with the“E“ bit set to 1), making the

transmission of the ADD ADDR option reliable.

To support these two modi�cations, we have created a new path manager

that is tuned for servers behind a load balancer. �is path manager does not

create any sub�ow, this is the standard behaviour of path managers running

on servers. It advertises the unique server address on the initial sub�ow and

then changes the priority of this sub�ow to become a backup sub�ow. Multi-

path TCP [FRHB13] de�nes backup sub�ows as follows : path to use only in the
event of failure of other working sub�ows. �is means that the initial sub�ow,

that passes through the load balancer can still be used but the server encour-

ages the client to use the sub�ows towards its unique address. An alternative

would have been to reset the initial sub�ow, but this would have been less

failure resilient. We have preferred to set the initial sub�ow in backup mode.

�e algorithm of this path manager is illustrated by the Figure 5.8.

�ese modi�cations represent approximatly 600 lines of kernel code, split-

ted into three patches (one by feature). 50% of the code lays in the path man-

ager that can easily be plugged into the Linux kernel implementation.

5.5. Performance Evaluation 105

Clients LVS

Server 1

Server 2

Server 3

1Gbps link

Figure 5.9: Evaluation setup.

5.5.2 Layer-4 load balancers

To evaluate the performances with load balancers, we use the network shown

in Figure 5.9. �e client is a 2 GHz AMD Opteron 6128 with 16 GB of RAM

running Debian Linux with our modi�ed version of the Multipath TCP kernel.

�is version is based on Linux kernel version 4.4. �e server uses the same

hardware con�guration and runs ligh�pd version 1.4.35 with the same kernel

as the client.

�e client accesses the web server via a VIP. �is VIP is a�ached to the

load balancer. Our load balancer runs on a 2.5 GHz Intel Xeon X3440 server

running Linux Virtual Server (LVS) [LVS] con�gured in NAT mode. We use

1 Gbps Ethernet links between the load balancers and the servers. Each server

has a second 1 Gbps interface that is a�ached to a switch connected to the

client.

�e purpose of this setup is to mimic a production environment where the

servers would have a dedicated network interface directly connected to the

Internet. Clients download web pages, representing a total amount of 4 GB.

We use the apache benchmark so�ware [AB] to simulate 10 parallel clients.

We use netem to simulate di�erent delays and di�erent packet loss ratios. To

simplify the interpretation of the �gures, we started by con�guring the load

balancer to send all requests to a single server. An evaluation with several

servers is provided in Section 5.5.3.

Figure 5.10 shows the number of requests completed every second when

the client downloads 4 GB using di�erent web pages sizes. �e evaluation

shows that for small request sizes, Multipath TCP slightly underperforms

TCP. �is can be explained by the slightly higher cost of establishing Mul-

tipath TCP connections [RPB
+

12].

106 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

2000

4000

6000

8000

10000

12000

14000

16000
R

eq
ue

st
s

pe
rs

ec
on

ds
Requests per second with 0% loss and 0.0ms delay

Regular TCP
Multipath TCP

Figure 5.10: Number of requests per second without loss or delay.

For larger request sizes, starting at 100 KB, Multipath TCP and TCP both

sustain the same number of requests per second, which is expected because

TCP uses the 1 Gbps link connected to the load balancer, while Multipath TCP

uses the 1 Gbps link connected directly to the server.

With this experiment, we want to test whether our solution is deployable

in a production environment. In this chapter we argue that with our proposal

it is no longer needed to use costly hardware to run a load balancer. To prove

this point, the remaining measurements in this section have been run with

the same scripts, but we changed the speed of the link between the client and

the load balancer to 100 Mbps.

Figure 5.11 shows the transfer rate for the same experiment as the one

shown in 5.10, but with a 100 Mbps link between the client and the load bal-

ancer. Again, for small request sizes, Multipath TCP slightly underperforms

TCP. For larger requests such as 500 KB, Multipath TCP reaches a goodput

of 942 Mbps. �e higher Multipath TCP goodput is an illustration that Multi-

path TCP provides more than TCP. Indeed, shortly a�er the establishment of

the initiation sub�ow, the client learns the address of the load balanced server

and creates a second sub�ow via the 1 Gbps interface of the server. Multipath

TCP then automatically uses the interface going directly to the server and

achieves higher goodput than TCP.

5.5. Performance Evaluation 107

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000
R

at
e

(M
bi

ts
/s

ec
)

Transfer rates with 0.0% loss and 0.0ms delay

Regular TCP
Multipath TCP

Figure 5.11: Transfer rates without loss or delay.

Impact of the delay

We evaluate in this section whether latency a�ects the performance of Mul-

tipath TCP behind load balancers.

For this experiment, we con�gure a delay of 20 ms on the link between

the client and the load balancer. Figure 5.12 shows that Multipath TCP is

still able to bene�t from the 1 Gbps link. Unsurprisingly, the transfer rate

for small web objects is lower than when there is no added latency. �is

is an expected and already documented [AGC
+

14b] behaviour of Multipath

TCP. In our setup, Multipath TCP starts with an initial sub�ow that uses the

100 Mbps link. �e client sends the HTTP GET over this sub�ow and it can

only start the establishment of the second sub�ow a�er the reception of the

acknowledgements for this initial data. �e 20 ms added latency delays the

establishment of the second sub�ow and thus lowers the total transfer rate.

By increasing the latency to 200ms, as shown in Figure 5.13 we see an im-

portant impact on both Multipath TCP and TCP. �is high latency increases

the time required for congestion control algorithm used on the sub�ows to

ramp up.

Impact of packet losses

Packet losses are another factor that can in�uence the performance of TCP.

Measurements over the global Internet have reported packet loss ratios of

108 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000
R

at
e

(M
bi

ts
/s

ec
)

Transfer rates with 0% loss and 20.0ms delay

Regular TCP
Multipath TCP

Figure 5.12: Transfer rates with no loss and 20ms delay.

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0.0% loss and 200.0ms delay

Regular TCP
Multipath TCP

Figure 5.13: Transfer rates with no loss and 200ms delay.

roughly up to 1%. Our solution needs to cope with two di�erent types of

packet losses: (i) loss of a TCP packet and (ii) loss of a packet carrying the

5.5. Performance Evaluation 109

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000
R

at
e

(M
bi

ts
/s

ec
)

Transfer rates with 1.0% loss and 0.0ms delay

Regular TCP
Multipath TCP

Figure 5.14: Transfer rates with 1% loss and no delay.

ADD ADDR option that announces the physical address of the server. �e stan-

dard retransmission and congestion control mechanisms used by TCP and

Multipath TCP cope with the former type of packet losses. Our implemen-

tation copes with the la�er by ensuring that the ADD ADDR option is reliably

delivered. If a packet carrying the ADD ADDR option is lost, it is retransmi�ed

later to ensure that the remote host has learned the new address. Figure 5.14

shows that when there is no added latency, the Multipath TCP throughput

is not a�ected by packet losses. A closer look at the packet traces con�rmed

that a second sub�ow was created for all Multipath TCP connections.

Figure 5.15 shows that even when we combine loss and delay, the per-

formance of Multipath TCP is not signi�cantly a�ected compared to TCP.

�e important factor being the latency, this can be veri�ed by comparing �g-

ures 5.15 and 5.13. �e high latency playing only for the initial connection

establishment, the performances are lower than without latency, but larger

�les sizes enable Multipath TCP to achieve a transfer rate of 803 Mbps where

TCP achieves 16 Mbps. With these measurements, we demonstrated that with

our modi�cations, Multipath TCP works in environments where Layer-4 load

balancers are used. In this speci�c setup, we used Linux Virtual Server [LVS],

but any Layer-4 load balancer can ben used with the same results. Our mea-

surements show that with our modi�cations, the load balancer is no longer

the bo�leneck of the network since it is only used to put the client in relation

with the server. With Multipath TCP, the load balancers no longer need to be

110 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000
R

at
e

(M
bi

ts
/s

ec
)

Transfer rates with 1.0% loss and 200.0ms delay

Regular TCP
Multipath TCP

Figure 5.15: Transfer rates with 1% loss and 200ms delay.

expensive machines with a lot of power and network bandwidth as almost all

of the tra�c can be exchanged directly between the server and the client.

Direct Server Return (DSR) or Direct Return [LVSDR] improves perfor-

mance in a download scenario, but does not bring bene�ts for upload sce-

narios, where most of the tra�c is going from the client to the server like

in storage scenarios. Our solution, however, fully works in both directions,

allowing it to be used in more scenarios.

5.5.3 Anycast

A full evaluation of anycast would require a deployment in a larger network

that was not possible given the number of servers in our lab. From an ab-

stract viewpoint, an anycast deployment can be considered as a network that

distributes the packets sent by clients to the closest server. If the network

topology changes, some clients could be redirected to a di�erent server. �is

change would a�ect TCP and this is the main reason why anycast TCP is

di�cult.

To evaluate the support of anycast services, we rely on the network shown

in Figure 5.16. Each server has two addresses on its 1 Gbps interface: the any-

cast address and a unique address. Each server listens to the anycast address

and they are con�gured to advertise their unique address with Multipath TCP

and set the initial sub�ow as a backup sub�ow. �ese servers are behind a

5.5. Performance Evaluation 111

router that uses Equal Cost MultiPath (ECMP) [Hop00] to distribute the load

accross the servers. �e client is connected to the router via a 10 Gbps link,

while each server is connected to the router via a 1 Gbps link. As in the pre-

vious setup, the clients establish multiple HTTP connections, 300 in this case,

and download �les from these servers.

Clients Router

Server 1

Server 2

Server 3

Anycast addr.

Anycast addr.
Public prefix.

Anycast addr.
Public prefix.

Anycast addr.
Public prefix.

Figure 5.16: Anycast Evaluation setup.

To simulate network recon�gurations, every 10 seconds, we remove one

of the server from the ECMP anycast pool during 5 seconds. A�er 5 seconds,

this server is added again.

TCP Anycast

Figure 5.17 shows results obtained with TCP anycast. We run the measure-

ment during 120 seconds. �e client machine runs apache benchmark con�g-

ured to retrieve very large (100 MBytes) �les from one of the anycast servers.

We use 300 parallel clients. �e �gure shows two di�erent curves. �e top

curve plots the utilisation of the link between the client and the router. When

all servers are part of the ECMP pool, the client downloads at 2800Mbps.

However, when the router is recon�gured and one of the physical servers

is removed from the pool to simulate a topology change in the network, the

utilisation of the link drops to 1900 Mbps. �is is expected since one server

has le� the ECMP pool. Unfortunately, a consequence of this network recon-

�guration is that some packets towards the anycast address are redirected to a

di�erent server than before the topology change. Since this server does have

state for the TCP connection, it sends a RST packet and the client needs to

restart the entire download. A closer look at the bo�om curve of Figure 5.17

reveals that servers also send RST packets when a new server is added to the

112 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

0 20 40 60 80 100 120

Time (seconds)

0

500

1000

1500

2000

2500

3000
B

an
dw

id
th

(M
bi

ts
/s

ec
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
ro

fR
S

T

Bandwidth usage (RX) on the client (TCP)

Figure 5.17: With TCP, many connections are reset and this a�ects the utili-
sation of the client-router link.

pool. We experimentally observe that more RST packets are generated when

a server is removed from the ECMP anycast pool than when a server is added

to the ECMP anycast pool. �is is normal because when a server is removed

from an ECMP anycast pool, all the TCP connections that were handled by

this server are redirected. �ese RST packets explain why network operators

do not want to deploy TCP anycast in entreprise networks.

We now perform exactly the same measurements with our extension to

Multipath TCP. Figure 5.18 shows results that are completely di�erent from

those obtained with regular TCP. �e �rst and most important result is that

we do not observe any failure of established Multipath TCP connections dur-

ing the 120 seconds of the experiment. Despite of the 16 topology changes

that we simulated, no Multipath TCP connection failed. �is is a very im-

portant result that con�rms that Multipath TCP can be deployed to support

anycast services which could bring an additional use case for Multipath TCP.

�e upper curve of Figure 5.18 reveals that the utilisation of the client-router

bandwidth stays at 2.8 Gbps despite the network recon�gurations. When a

server is removed from the ECMP anycast pool, the Multipath TCP connec-

tions that were handled by this server automatically switch to the second

sub�ow as the initial sub�ow (towards the anycast address) is redirected to

another physical server. �is handover is seamless for the application and

the connection continues. When a server is removed from the ECMP anycast

5.6. Security Considerations 113

0 20 40 60 80 100 120

Time (seconds)

0

500

1000

1500

2000

2500

3000
B

an
dw

id
th

(M
bi

ts
/s

ec
)

0

2000

4000

6000

8000

N
um

be
ro

fR
S

T

Bandwidth usage (RX) on the client (Multipath TCP)

Figure 5.18: With Multipath TCP, no connection is reset when the network
topology changes.

pool, the packets belonging to an initial sub�ow are redirected to another

server that does not have state for this sub�ow. �is server responds to those

packets with RST packets that terminate this initial sub�ow. However, the

second sub�ow, which is a�ached to the unique server address, is still up and

the data transfer continues.

5.6 Security Considerations

Besides distributing the load among di�erent servers, load balancers also shield

the physical servers from the open Internet and can �lter some of the packets

sent to the physical servers depending on their con�guration. By advertising

the addresses of the physical servers, our solution exposes them more than

existing stateless load balancers. If network operators are concerned about

the advertisement of the addresses of the physical servers, there are several

solutions that can be used to mitigate the security risks.

First, the physical servers only need to accept additional sub�ows. A se-

curity concerned network administrator can easily reject incoming SYN pack-

ets containing the MP CAPABLE option to prohibit the establishment of new

Multipath TCP connection that do not pass through the load balancer. �ose

�lters can be installed on the physical servers or upstream �rewalls. �is

could also be achieved by slightly modifying the Multipath TCP/TCP imple-

114 Chapter 5. Making MPTCP friendlier to Load Balancers and Anycast

mentation to reject any SYN packets not containing the MP JOIN option on

speci�ced interfaces.

Another point that is worth to be discussed are the additional sub�ows

that can be established by sending SYN packets with the MP JOIN option to-

wards the physical server that was selected by the load balancer. Multipath

TCP [FRHB13] relies on two techniques to protect the servers from the estab-

lishment of fake sub�ows. First, the MP JOIN option contains a 32-bits token

that uniquely identi�es the Multipath TCP connection. If an a�acker wants to

add a sub�ow to an existing Multipath TCP connection, they must guess the

32-bits token that identi�es this connection. �is is not su�cient since the

establishment of the additional sub�ows is authenticated by using HMACs

that are computed over 64 bits keys exchanged by the client and the server

during the initial handshake. To successfully create an additional sub�ow, an

a�acker would need to guess this 64 bits key.

With the above solution, the server plays an active role in mitigating the

a�ack since it needs to match the received SYNwith the tokens that it has allo-

cated and then compute the HMAC before sending the SYN+ACK. �e compu-

tational cost of this HMAC could be a concern in the case of denial of service

a�acks. In our LAN, a single unique address has been assigned to each phys-

ical server. In IPv4 networks, this would be the expected deployment given

the scarcity of IPv4 addresses. In IPv6 networks, many addresses are avail-

able. We could leverage the large IPv6 addressing space and allocate one /64

pre�x to each physical server. �e server would then announce this pre�x to

the network to which it is connected. When a new Multipath TCP connection

arrives on the server, it assigns a unique IPv6 address from its /64 pre�x to

this speci�c connection. We propose to compute the low order 64 bits of this

address as hash(secret, token) where hash is a fast hash function, token the

token associated to this connection and secret a random number. �e server

then concatenates the output of this function to its /64 pre�x and announces

it to its client. �is address is unique to this speci�c connection. If the client

creates another sub�ow towards this server, it will send a SYN packet towards

this address with the connection token inside the MP JOIN option. A simple

�lter can then be used, either on the physical server or an upstream �rewall

to verify the validity of the SYN packet without requiring any state. �is �l-

ter could be implemented as a set of eBPF rules similar to those described

by Cloud�are in [Ber16]. Such eBPF rules can process packets at a higher

rate than the Linux kernel and thus are very useful when mitigating denial of

service a�acks.

5.7. Conclusion 115

5.7 Conclusion

�e deployment of Multipath TCP on servers has been hindered by the dif-

�culty of supporting it on stateless load-balancers. In this chapter we have

proposed a small modi�cation to Multipath TCP that enables it to work be-

hind any stateless load balancers. �is modi�cation has already been accepted

by the IETF [FRH
+

19]. We have implemented our modi�cations to Multipath

TCP in its reference implementation in the Linux kernel and have demon-

strated its performance with measurements in the lab. An important bene�t

of our solution compared to existing deployments such as Direct Server Re-

turn, is that the load balancer can be placed o�-path for long transfers. �is

is an important feature that could be very useful as the web transitions to the

HTTP/2 protocol that will use longer connections than HTTP/1.x.

Our Multipath TCP extension is more generic that simply supporting load

balancers in front of servers. It enables network operators to use anycast ad-

dresses for Multipath TCP services. �is brings another use case for Multi-

path TCP in addition to the existing deployments that leverage fast failover

or bandwidth aggregation.

Repeatability of the results

�e measurement results described in this chapter were obtained with our

modi�cations to the reference implementation of Multipath TCP in the Linux

kernel. �ese modi�cations and the measurement scripts are available at

https://github.com/fduchene/ICNP2017 to enable other researchers to

repeat our measurements and expand them.

Chapter 6

Conclusion

Over the last decades, the Internet has dramatically grown in size and in adop-

tion. To meet the user’s expectations in terms of reliability and performance,

network engineers and operators designed and deployed several load balanc-

ing techniques like ECMP, Layer-4 load-balancers or Multipath TCP. In this

thesis, we explored some of these techniques to identify potential weaknesses

and possible new use cases with one idea in mind: �nding simple solutions

that scale in today’s networks.

With this idea in mind, in Chapter 2 we reconsidered Multipath TCP’s

usage of sub�ows. First, we reconsidered the semantics of the backup sub-

�ow. We introduced the active backup scheduler that provides a trade-o�

between packet time delivery and the utilization of the backup interface by

allowing the usage of a backup sub�ow for packets that have been delayed

for a con�gurable amount of time. We implemented and evaluated this sched-

uler, showing that it keeps most of the tra�c on the primary sub�ow for in-

teractive applications such as web browsing. �en, we introduced the notion

of trusted resource pooling with Multipath TCP enables specifying a level

of trust per-interface. �is level of trust allows protecting speci�c pieces of

data like the keys contained in the MP CAPABLE option or sensitive parts of

unencrypted protocols. �e evaluation of our implementation indicated that

considering the trustiness of the interfaces has a very small impact on the raw

performance of Multipath TCP.

In Chapter 3, we leveraged IPv6 Segment Routing’s ability to enforce pre-

cise network paths to create an architecture that enables arbitrary in-network

Virtual Functions, that can be applied on bytestreams and chained together.

We explained that functions operating on the bytestream where opening the

possibilities of new stateful uses cases like multimedia transcoding and Mul-

tipath TCP proxies. We also argued that one of the bene�ts of this solu-

tion is that the middleboxes are explicitly exposed, improving the manage-

ability of the network. We implemented a proof-of-concept of our architec-

117

118 Chapter 6. Conclusion

ture and evaluated it on several platforms. Our measurements indicated that

our architecture is well suited to support explicit middleboxes that process

bytestreams.

In Chapter 4, we proposed a new solution leveraging IPv6 Segment Rout-

ing and eBPF to e�ciently steer transport �ows. As it takes its inception in

FlowBender, we �rst presented this solution that allows an e�cient re-routing

of �ows using Equal Cost Multipath (ECMP) and Explicit Congestion Noti�-

cation (ECN). �en, we presented our architecture leveraging IPv6 Segment

Routing and eBPF’s ability to access TCP’s internal state to e�ciently steer

transport �ows. We argue that our solution could be used for di�erent use

cases and is not limited to reacting to congestion events. With our implemen-

tation and simulated scenarios, we demonstrated that it is possible to improve

the performance of transport protocols by dynamically selecting paths.

In Chapter 5, we took a di�erent approach to make Multipath TCP friendlier

with load balancers and anycast. We showed that despite its growing deploy-

ment on client devices, its deployment in datacenters is hindered by its in-

compatibility with current Layer-4 load-balancers. Other researchers tried to

solve this problem by designing Multipath TCP-aware load-balancers. To re-

spect Multipath TCP’s design goal to be used in today’s networks, we took the

stance to solve this problem by modifying Multipath TCP. By slightly modi-

fying the protocol, we designed an extension that enables it to work behind

any stateless load-balancer. We also demonstrated that our Multipath TCP

extension is more generic than simply supporting load balancers in front of

servers. It enables network operators to use anycast addresses for Multipath

TCP services, bringing another use case for Multipath TCP in addition to the

existing deployments. We demonstrated its performance with measurements

in the lab. Our extension is part of the next version of Multipath TCP that is

�nalized within the IETF.

Open problems

During this thesis, we opened several future research directions. First, while

we demonstrated the bene�ts of using an expiration timer, �nding the right

value is di�cult for the application. We believe that the application should

be able to express its intent to the stack in a simple fashion (e.g., latency

senstive connection or bulk transfer). �e stack would then compute the ad-

equate value of the expiration timer. In its deployment of Multipath TCP,

Apple recently started to give the application this kind of simple con�gura-

tion. Second, while our implementation of SRv6Pipes is generic and provides

good performances, kernel bypass techniques such as DPDK [DPD] or user-

space TCP stacks like mTCP [JWJ
+

14] could allow signi�cant performance

boosts and be considered for a future deployment. Finally, while eBPF’s ini-

119

tial usage was limited to the Linux kernel, it has since broadened and re-

searchers are now using eBPF in user space to dynamically extend proto-

cols like QUIC [DCMP
+

19]. Meanwhile, eBPF’s implementation in the Linux

kernel is growing by the day, allowing researchers to extend protocols like

TCP [TB19]. eBPF’s broadening scope and the evolution of its implementa-

tion combined are opening new possibilities for our solution combining IPv6

Segment Routing and eBPF. �ese possibilities could be explored to address

more use cases in the future.

Bibliography

[AB] AB, Apache Bench. Accessed: 2017-04-23.

[ABK
+

12] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin

Vahdat, xomb: Extensible open middleboxes with commodity servers, Pro-

ceedings of the eighth acm/ieee symposium on architectures for network-

ing and communications systems, 2012, pp. 49–60.

[ABP13] N. AlFardan, D. Bernstein, and K. Paterson, On the Security of RC4 in TLS,

USENIX Security (2013).

[ACF
+

17] Ahmed AbdelSalam, Francois Clad, Clarence Fils�ls, Stefano Salsano,

Giuseppe Siracusano, and Luca Veltri, Implementation of virtual network
function chaining through segment routing in a linux-based nfv infrastruc-
ture, Ieee conference on network so�warization (netso�), 2017July.

[ACO
+

06] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger,

Timur Friedman, Ma�hieu Latapy, Clémence Magnien, and Renata Teix-

eira, Avoiding traceroute anomalies with paris traceroute, Proceedings of

the 6th acm sigcomm conference on internet measurement, 2006, pp. 153–

158.

[ADK13] Y. C. Hu A. Dixit P. Prakash and R. R. Kompella., On the impact of packet
spraying in data center networks, 2013.

[AFLV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat, A scalable,
commodity data center network architecture, Proceedings of the acm sig-

comm 2008 conference on data communication, 2008, pp. 63–74.

[AGC
+

14a] B. Arzani, A. Gurney, Shuotian Cheng, R. Guerin, and Boon �au Loo, Im-
pact of path characteristics and scheduling policies on MPTCP performance,

Advanced information networking and applications workshops (waina),

2014 28th international conference on, 2014May, pp. 743–748.

[AGC
+

14b] Behnaz Arzani, Alexander Gurney, Sitian Cheng, Roch Guerin, and

Boon �au Loo, Deconstructing MPTCP performance, Network protocols

(icnp), 2014 ieee 22nd international conference on, 2014, pp. 269–274.

[AGM
+

10] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan,

Data Center TCP (DCTCP), Proceedings of the acm sigcomm 2010 confer-

ence, 2010, pp. 63–74.

[AL06] J. Abley and K. Lindqvist, Operation of Anycast Services, Internet Request

for Comments, RFC Editor, RFC Editor, Fremont, CA, USA, 2006.

[amazontranscode] Amazon Elastic Transcoder. Accessed: 2018-04-05.

121

122 BIBLIOGRAPHY

[AMK98] Elan Amir, Steven McCanne, and Randy Katz, An active service frame-
work and its application to real-time multimedia transcoding, Acm sig-

comm computer communication review, 1998, pp. 178–189.

[AVBD18] François Aubry, Stefano Vissicchio, Olivier Bonaventure, and Yves Dev-

ille, Robustly disjoint paths with segment routing, Proceedings of the 14th

international conference on emerging networking experiments and tech-

nologies, 2018, pp. 204–216.

[BAM10] �eophilus Benson, Aditya Akella, and David A. Maltz, Network tra�c
characteristics of data centers in the wild, Proceedings of the 10th acm sig-

comm conference on internet measurement, 2010, pp. 267–280.

[BAM13] Mehdi Bezahaf, Abdul Alim, and Laurent Mathy, Flowos: A �ow-based
platform for middleboxes, Proceedings of the 2013 workshop on hot topics

in middleboxes and network function virtualization, 2013, pp. 19–24.

[Barracuda] Barracuda Load Balancer ADC. Accessed: 2017-04-23.

[BBG
+

19] Olivier Bonaventure, Mohamed Boucadair, Sri Gundavelli, SungHoon

Seo, and Benjamin Hesmans, 0-RTT TCP Convert Protocol, Technical Re-

port dra�-ietf-tcpm-converters-08, Internet Engineering Task Force, 2019.

Work in Progress.

[BBJS14] D. Borman, B. Braden, V. Jacobson, and R. Sche�enegger, TCP Extensions
for High Performance, Internet Request for Comments, RFC Editor, RFC

Editor, Fremont, CA, USA, 2014.

[BCMHash] Avoiding network polarization and increasing visibility in cloud networks
using broadcom smart hash technology. Accessed: 2013-07-17.

[BDG
+

14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-

nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, and David Walker, P4: Programming protocol-independent
packet processors, SIGCOMM Comput. Commun. Rev. 44 (July 2014), no. 3,

87–95.

[BDK18] BPF-DOC-KERNEL, Linux kernel documentation - linux socket �ltering aka
berkeley packet �lter (bpf), 2018. [Online; accessed 8 June 2018].

[Ber16] Gilberto Bertin, Introducing the p0f BPF compiler, 2016. https://blog.

cloudflare.com/introducing-the-p0f-bpf-compiler/.

[BFM13] Luca Boccassi, Marwan M. Fayed, and Mahesh K. Marina, Binder: A sys-
tem to aggregate multiple internet gateways in community networks, Pro-

ceedings of the 2013 acm mobicom workshop on lowest cost denominator

networking for universal access, 2013, pp. 3–8.

[BH18] BPF-Helpers, Bpf helpers - documentation, 2018. [Online; accessed 8 June

2018].

[BHH
+

10] A. Bi�au, M. Hamburg, M. Handley, D. Mazières, and D. Boneh, �e Case
for Ubiquitous Transport-level Encryption, Usenix security, 2010.

[bigip] Release Note: BIG-IP LTM and TMOS 11.5.0. Accessed: 2017-05-10.

[BJSE16] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad, A survey
on service function chaining, J. Netw. Comput. Appl. 75 (November 2016),

no. C, 138–155.

[BL16] BPF-LWT, bpf: Bpf for lightweight tunnel encapsulation, 2016. [Online; ac-

cessed 8 June 2018].

BIBLIOGRAPHY 123

[BL18] BPF-LWN, Linux weekly news - a thorough introduction to ebpf, 2018. [On-

line; accessed 9 June 2018].

[Bor16] Daniel Borkmann, On ge�ing tc classi�er fully programmable with cls bpf,
Proceedings of netdev (2016).

[BP18] BPF-PERF, perf examples, 2018. [Online; accessed 8 June 2018].

[BPB11] Sébastien Barré, Christoph Paasch, and Olivier Bonaventure, Multipath
tcp: From theory to practice, I�p networking, valencia, 2011May.

[BPG
+

14] M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure, and C. Raiciu, Analysis
of MPTCP residual threats and possible �xes, Technical Report dra�-ietf-

mptcp-a�acks-00, 2014.

[BS16] Olivier Bonaventure and SungHoon Seo, Multipath
TCP deployments, IETF Journal 2016 (2016November).

h�p://www.iet�ournal.org/multipath-tcp-deployments/.

[BX18] BPF-XDP, Bpf and xdp reference guide, 2018. [Online; accessed 8 June

2018].

[CB02] B. Carpenter and S. Brim, Middleboxes: Taxonomy and Issues, Internet Re-

quest for Comments, RFC Editor, RFC Editor, Fremont, CA, USA, 2002.

[CBHB16] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, Observing
real smartphone applications over Multipath TCP, IEEE Communications

Magazine 54 (2016March), no. 3, 88–93.

[CFP
+

07] Martin Casado, Michael J. Freedman, Justin Pe�it, Jianying Luo, Nick

McKeown, and Sco� Shenker, Ethane: Taking control of the enterprise, Sig-

comm ’07, 2007, pp. 1–12.

[CGKR10] Lorenzo Coli�i, Steinar H. Gunderson, Erik Kline, and Tiziana Re�ce,

Evaluating ipv6 adoption in the internet, Passive and active measurement,

2010, pp. 141–150.

[cisco] Cisco cli command reference. Accessed: 2013-07-17.

[CLG
+

13] Yung-Chih Chen, Yeon-sup Lim, Richard J. Gibbens, Erich M. Nahum,

Ramin Khalili, and Don Towsley, A measurement-based study of Multipath
TCP performance over wireless networks, Proceedings of the 2013 confer-

ence on internet measurement conference, 2013, pp. 455–468.

[CT14] Y. C. Chen and D. Towsley, On bu�erbloat and delay analysis of Multi-
path TCP in wireless networks, Networking conference, 2014 i�p, 2014June,

pp. 1–9.

[cznic] CZ.NIC. Accessed: 2017-08-28.

[Dal92] W. J. Dally, Virtual-channel �ow control, IEEE Trans. Parallel Distrib. Syst.

3 (March 1992), no. 2, 194–205.

[Datanyze] Datanyze - Load Balancers market share report. Accessed: 2017-04-23.

[DCBHB16] �entin De Coninck, Ma�hieu Baerts, Benjamin Hesmans, and Olivier

Bonaventure, A �rst analysis of Multipath TCP on smartphones, Inter-

national conference on passive and active network measurement, 2016,

pp. 57–69.

[DCMP
+

19] �entin De Coninck, François Michel, Maxime Piraux, Florentin Rochet,

�omas Given-Wilson, Axel Legay, Olivier Pereira, and Olivier Bonaven-

ture, Pluginizing QUIC, 2019 acm sigcomm conference, 2019.

124 BIBLIOGRAPHY

[DH98] S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6) Speci�cation,

Internet Request for Comments, RFC Editor, RFC Editor, Fremont, CA,

USA, 1998. Updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045,

7112.

[DK89] Daniel M. Dias and Manoj Kumar, Preventing congestion in multistage net-
works in the presence of hotspots, Icpp (1)’89, 1989, pp. 9–13.

[dlOBC
+

11] A. de la Oliva, C. Bernardos, M. Calderon, T. Melia, and J. Zuniga, IP Flow
Mobility: Smart Tra�c O�oad for Future Wireless Networks, IEEE Com-

munications Magazine 49 (2011), no. 10, 124–132.

[DNSB14] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan,

WiFi, LTE, or both?: Measuring multi-homed wireless internet performance,

Proceedings of the 2014 conference on internet measurement conference,

2014, pp. 181–194.

[DPD] DPDK, Dataplane Development Kit. Accessed: 2019-07-18.

[ea15] Andrew Wood et al., Pipe viewer, URL

h�p://www.ivarch.com/programs/pv.shtml (2015).

[ER13] J. Erman and K. Ramakrishnan, Understanding the Super-sized tra�c of the
Super Bowl, Acm imc, 2013.

[EV02] Cristian Estan and George Varghese, New directions in tra�c measure-
ment and accounting, Proceedings of the 2002 conference on applications,

technologies, architectures, and protocols for computer communications,

2002, pp. 323–336.

[EYC
+

16] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman

Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-

tao Shang, and Jinnah Dylan Hosein, Maglev: A fast and reliable so�ware
network load balancer, 13th usenix symposium on networked systems de-

sign and implementation (nsdi 16), 2016, pp. 523–535.

[Fab16] G. Fabregas, Tr-349: Hybrid access broadband network architecture, 2016.

Broadband Forum.

[FAMB16] Simone Ferlin, Özgü Alay, Olivier Mehani, and Roksana Boreli, BLEST:
Blocking estimation-based MPTCP scheduler for heterogeneous networks,
I�p networking 2016, May 2016.

[FBK
+

17] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris

Bentzel, and Parisa Tabriz, Measuring HTTPS adoption on the web, 26th

USENIX security symposium (USENIX security 17), 2017, pp. 1323–1338.

[FDP
+

19] Clarence Fils�ls, Darren Dukes, Stefano Previdi, John Leddy, Satoru

Matsushima, and daniel.voyer@bell.ca, IPv6 Segment Routing Header
(SRH), Technical Report dra�-ietf-6man-segment-routing-header-21, In-

ternet Engineering Task Force, 2019. Work in Progress.

[FGL
+

19] Clarence Fils�ls, Pablo Camarillo Garvia, John Leddy,

daniel.voyer@bell.ca, Satoru Matsushima, and Zhenbin Li, SRv6
Network Programming, Technical Report dra�-�ls�ls-spring-srv6-

network-programming-07, Internet Engineering Task Force, 2019. Work

in Progress.

[FHG13] Xun Fan, John Heidemann, and Ramesh Govindan, Evaluating anycast in
the domain name system, Infocom, 2013 proceedings ieee, 2013, pp. 1681–

1689.

BIBLIOGRAPHY 125

[FK97] Roy T Fielding and Gail Kaiser, �e Apache HTTP server project, Internet

Computing, IEEE 1 (1997), no. 4, 88–90.

[FLM
+

10] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin, A
First Look at Tra�c on Smartphones, Acm imc, 2010.

[FNP
+

15] C. Fils�ls, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois, �e
Segment Routing Architecture, 2015 IEEE Global Communications Confer-

ence (GLOBECOM), 2015Dec, pp. 1–6.

[For17] Mat Ford, Landmark ipv6 report published: State of deployment 2017, 2017.

CircleID, http://www.circleid.com/posts/20170606_landmark_

ipv6_report_published_state_of_deployment_2017/.

[FPG
+

18] Clarence Fils�ls, Stefano Previdi, Les Ginsberg, Bruno Decraene, Stephane

Litkowski, and Rob Shakir, Segment Routing Architecture, Request for

Comments, RFC Editor, 2018.

[FRHB13] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions for
Multipath Operation with Multiple Addresses, Internet Request for Com-

ments, RFC Editor, RFC Editor, Fremont, CA, USA, 2013.

[FRH
+

19] Alan Ford, Costin Raiciu, Mark J. Handley, Olivier Bonaventure, and

Christoph Paasch, TCP Extensions for Multipath Operation with Multiple
Addresses, Technical Report dra�-ietf-mptcp-rfc6824bis-18, Internet En-

gineering Task Force, 2019. Work in Progress.

[Fuk11] Kensuke Fukuda, An analysis of longitudinal tcp passive measurements
(short paper) (Jordi Domingo-Pascual, Yuval Shavi�, and Steve Uh-

lig, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Gia13] Giovanni Giacobbi, �e GNU Netcat project, URL h�p://netcat. source-

forge. net (2013).

[Goo13] D. Goodin, Guerilla researcher created epic botnet to scan billions of ip ad-
dresses, 2013. http://goo.gl/G86ew.

[Gro19] MAWI Working Group, Packet traces from wide backbone,

2019. http://mawi.wide.ad.jp/mawi/samplepoint-G/2019/

201906261400.html.

[Haproxy] HAProxy. Accessed: 2017-04-23.

[HB16] Benjamin Hesmans and Olivier Bonaventure, An Enhanced Socket API
for Multipath TCP, Proceedings of the 2016 applied networking research

workshop, 2016, pp. 1–6.

[HDB
+

15] B. Hesmans, G. Detal, S. Barre, R. Bauduin, and O. Bonaventure, SMAPP:
Towards Smart Multipath TCP-enabled Applications, Proceedings of the

11th acm conference on emerging networking experiments and technolo-

gies, 2015, pp. 28:1–28:7.

[HNR
+

11] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh,

Mark Handley, and Hideyuki Tokuda, Is it still possible to extend tcp?, Pro-

ceedings of the 2011 acm sigcomm conference on internet measurement

conference, 2011, pp. 181–194.

[Hop00] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, Internet Re-

quest for Comments, RFC Editor, RFC Editor, Fremont, CA, USA, 2000.

[howtopackage] Creating OpenWRT packages. Accessed: 2017-08-28.

126 BIBLIOGRAPHY

[HP15] J. Halpern and C. Pignataro, Service Function Chaining (SFC) Architecture,

Internet Request for Comments, RFC Editor, RFC Editor, Fremont, CA,

USA, 2015.

[HQG
+

13] J. Huang, F. Qian, Y. Guo, Y. Zhou, and Q. Xu, An in-depth Study of LTE:
E�ect of Network Protocol and Application Behavior on Performance, Acm

sigcomm, 2013.

[HRW14] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood, Netvm: High per-
formance and �exible networking using virtualization on commodity plat-
forms, Proceedings of the 11th usenix conference on networked systems

design and implementation, 2014, pp. 445–458.

[HZH
+

16] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Ho�man,

Speci�cation for DNS over Transport Layer Security (TLS), Internet Request

for Comments, RFC Editor, RFC Editor, Fremont, CA, USA, 2016.

[ICA11] ICANN, Available pool of unallocated ipv4 internet addresses now com-
pletely emptied, 2011. https://www.icann.org/en/system/files/

press-materials/release-03feb11-en.pdf.

[iperf] iPerf - �e ultimate speed test tool for TCP, UDP and SCTP. Accessed: 2019-

07-14.

[IT19] Jana Iyengar and Martin �omson, QUIC: A UDP-Based Multiplexed and
Secure Transport, Technical Report dra�-ietf-quic-transport-22, Internet

Engineering Task Force, 2019. Work in Progress.

[JB08] C. Jackson and A. Barth, Forceh�ps: Protecting High-Security Web Sites
from Network A�acks, Www, 2008.

[JB16] Kaustubh Joshi and �eophilus Benson, Network function virtualization,

IEEE Internet Computing 20 (2016), no. 6, 7–9.

[JBB92] V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High Perfor-
mance, Internet Request for Comments, RFC Editor, RFC Editor, Fremont,

CA, USA, 1992. Obsoleted by RFC 7323.

[JWJ
+

14] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,

Sunghwan Ihm, Dongsu Han, and KyoungSoo Park, mtcp: a highly scal-
able user-level TCP stack for multicore systems, 11th USENIX sympo-

sium on networked systems design and implementation (NSDI 14), 2014,

pp. 489–502.

[KHP01] Christian Kreibich, Mark Handley, and V Paxson, Network intrusion de-
tection: Evasion, tra�c normalization, and end-to-end protocol semantics,
Proc. usenix security symposium, 2001.

[KRV
+

15a] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, So�ware-de�ned networking: A comprehensive survey,

Proceedings of the IEEE 103 (2015Jan), no. 1, 14–76.

[KRV
+

15b] Diego Kreutz, Fernando M. V. Ramos, Paulo Verı́ssimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, and Steve Uhlig, So�ware-De�ned Net-
working: A Comprehensive Survey, Proceedings of the IEEE 103 (2015),

no. 1, 63.

[KVHD14] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene,

Flowbender: Flow-level adaptive routing for improved latency and through-
put in datacenter networks, Proceedings of the 10th acm international on

conference on emerging networking experiments and technologies, 2014,

pp. 149–160.

BIBLIOGRAPHY 127

[LB17] David Lebrun and Olivier Bonaventure, Implementing IPv6 Segment Rout-
ing in the Linux Kernel, Proceedings of the 2017 applied networking re-

search workshop, 2017July.

[LC15] Yong Li and Min Chen, So�ware-de�ned network function virtualization:
A survey, IEEE Access 3 (2015), 2542–2553.

[LD16] Simon Liénardy and Benoit Donnet, Towards a Multipath TCP Aware Load
Balancer, Proceedings of the 2016 applied networking research workshop,

2016, pp. 13–15.

[Leb17] David Lebrun, Reaping the bene�ts of ipv6 segment routing, Ph.D. �esis,

2017.

[Lei85] Charles E. Leiserson, Fat-trees: universal networks for hardware-e�cient
supercomputing, IEEE Trans. Comput. 34 (October 1985), no. 10, 892–901.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown, A network in a laptop:
rapid prototyping for so�ware-de�ned networks, Proceedings of the 9th

acm sigcomm workshop on hot topics in networks, 2010, pp. 19.

[LHZ
+

17] N. Leymann, C. Heidemann, M. Zhang, B. Sarikaya, and M. Cullen,

Huawei’s GRE Tunnel Bonding Protocol, Internet Request for Comments,

RFC Editor, RFC Editor, Fremont, CA, USA, 2017.

[LJC
+

18] David Lebrun, Mathieu Jadin, François Clad, Clarence Fils�ls, and Olivier

Bonaventure, So�ware resolved networks: Rethinking enterprise networks
with ipv6 segment routing, Sosr’18: Symposium on sdn research, 2018.

[LLV18] LLVM, �e llvm compiler infrastructure - project website, 2018. [Online;

accessed 9 June 2018].

[LLY
+

13] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, Mobile Data O�oading: How
Much Can WiFi Deliver?, IEEE/ACM Transactions on Networking 21
(2013), no. 2, 536–550.

[LVSDR] Direct return in Linux Virtual Server. Accessed: 2017-05-12.

[LVS] LVS, Linux Virtual Server. Accessed: 2019-07-18.

[MHFB15] Olivier Mehani, Ralph Holz, Simone Ferlin, and Roksana Boreli, An Early
Look at Multipath TCP Deployment in the Wild, Proceedings of the 6th

international workshop on hot topics in planet-scale measurement, 2015,

pp. 7–12.

[mininet] An Instant Virtual Network on your Laptop (or other PC). Accessed: 2019-

07-14.

[MJ93] Steven McCanne and Van Jacobson, �e bsd packet �lter: A new architec-
ture for user-level packet capture., Usenix winter, 1993.

[MMFR96] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective Acknowl-
edgment Options, Internet Request for Comments, RFC Editor, RFC Editor,

Fremont, CA, USA, 1996.

[MSM13] J. Milliken, V. Selis, and A. Marshall, Detection and analysis of the
Chameleon WiFi access point virus, EURASIP Journal on Information Se-

curity 2013 (2013), no. 1, 1–14.

[M
+

08] Nick McKeown et al., Open�ow: Enabling innovation in campus networks,
SIGCOMM Comput. Commun. Rev. 38 (March 2008), no. 2, 69–74.

[MZK
+

17] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan

Yu, Silkroad: Making stateful layer-4 load balancing fast and cheap using
switching asics, Sigcomm ’17, 2017, pp. 15–28.

128 BIBLIOGRAPHY

[Netscaler] Citrix Netscaler. Accessed: 2017-04-23.

[NG14] E. Nordmark and I. Gashinsky, Neighbor Unreachability Detection Is Too
Impatient, Internet Request for Comments, RFC Editor, RFC Editor, Fre-

mont, CA, USA, 2014.

[NG16] Mehdi Nikkhah and Roch Guérin, Migrating the internet to ipv6: an explo-
ration of the when and why, IEEE/ACM Transactions on Networking 24
(2016), no. 4, 2291–2304.

[NGI] NGINX, Nginx. Accessed: 2017-04-23.

[ns3] NS-3 network simulator. Accessed: 2013-07-17.

[OL15] Bong-Hwan Oh and Jaiyong Lee, Constraint-based Proactive Scheduling for
MPTCP in Wireless Networks, Comput. Netw. 91 (November 2015), no. C,

548–563.

[openwrt] OpenWRT. Accessed: 2017-08-28.

[OR16] Vladimir Olteanu and Costin Raiciu, Datacenter scale load balancing for
multipath transport, Proceedings of the 2016 workshop on hot topics in

middleboxes and network function virtualization, 2016, pp. 20–25.

[Paa14] Christoph Paasch, Improving Multipath TCP, Ph.D. �esis, 2014.

[PB12] C. Paasch and O. Bonaventure, Securing the MultiPath TCP handshake with
external keys, Technical Report dra�-paasch-mptcp-ssl-00, 2012.

[PB
+

] Christoph Paasch, Sebastien Barre, et al., Multipath TCP in the Linux Ker-
nel. available from h�p://www.multipath-tcp.org.

[PDD
+

12] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, Exploring
Mobile/WiFi Handover with Multipath TCP, Acm sigcomm cellnet work-

shop, 2012, pp. 31–36.

[perf] perf: Linux pro�ling with performance counters. Accessed: 2018-03-29.

[PFAB14] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure,

Experimental evaluation of Multipath TCP schedulers, Proceedings of the

2014 acm sigcomm workshop on capacity sharing workshop, 2014, pp. 27–

32.

[PGF15] Christoph Paasch, Greg Greenway, and Alan Ford, Multipath TCP
behind Layer-4 loadbalancers, Technical Report dra�-paasch-mptcp-

loadbalancer-00, Internet Engineering Task Force, 2015. Work in Progress.

[PJ13] Rahul Potharaju and Navendu Jain, Demystifying the dark side of the mid-
dle: a �eld study of middlebox failures in datacenters, Proceedings of the

2013 conference on internet measurement conference, 2013, pp. 9–22.

[PMM93] Craig Partridge, Trevor Mendez, and Walter Milliken, Host anycasting ser-
vice, 1993.

[Pos81a] J. Postel, Internet Protocol, Internet Request for Comments, RFC Editor,

RFC Editor, Fremont, CA, USA, 1981. Updated by RFCs 1349, 2474, 6864.

[Pos81b] Jon Postel, Transmission Control Protocol, Internet Request for Comments,

RFC Editor, RFC Editor, Fremont, CA, USA, 1981. Updated by RFCs 1122,

3168, 6093, 6528.

[qdisc-hhf] net-qdisc-hhf: Heavy-Hi�er Filter (HHF) qdisc. Accessed: 2019-07-14.

[QEP17] P. �inn, U. Elzur, and C. Pignataro, Network Service Header (NSH), 2017.

Internet dra�, dra�-ietf-sfc-nsh-28.

BIBLIOGRAPHY 129

[RBP
+

11] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Hand-

ley, Improving Datacenter Performance and Robustness with Multipath TCP,

Acm sigcomm 2011, 2011.

[Res01] E. Rescorla, SSL and TLS: Designing and Building Secure Systems, Addison

Welsey, 2001.

[RFB01] K. Ramakrishnan, S. Floyd, and D. Black, �e Addition of Explicit Conges-
tion Noti�cation (ECN) to IP, Internet Request for Comments, RFC Editor,

RFC Editor, Fremont, CA, USA, 2001. Updated by RFCs 4301, 6040.

[RNBH11] Costin Raiciu, Dragos Niculescu, Marcelo Bagnulo, and Mark James Han-

dley, Opportunistic mobility with Multipath TCP, Proceedings of the sixth

international workshop on mobiarch, 2011, pp. 7–12.

[RPB
+

12] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio

Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley, How
hard can it be? Designing and implementing a deployable Multipath TCP,

Proceedings of the 9th usenix conference on networked systems design

and implementation, 2012, pp. 29–29.

[RSS] RSS: Receive Side Scaling. Accessed: 2018-08-28.

[San12] C. Sankaran, Data O�oading Techniques in 3GPP Rel-10 Networks: A Tu-
torial, IEEE Communications Magazine 50 (2012), no. 6, 46–53.

[Sch10] Michael Scharf, Multi-Connection TCP (MCTCP) Transport, Technical Re-

port dra�-scharf-mptcp-mctcp-01, Internet Engineering Task Force, 2010.

Work in Progress.

[SCP
+

16] Muhammad Shahbaz, Sean Choi, Ben Pfa�, Changhoon Kim, Nick Feam-

ster, Nick McKeown, and Jennifer Rexford, Pisces: A programmable,
protocol-independent so�ware switch, Sigcomm ’16, 2016, pp. 525–538.

[SE01] P. Srisuresh and K. Egevang, Traditional IP Network Address Translator
(Traditional NAT), Internet Request for Comments, RFC Editor, RFC Edi-

tor, Fremont, CA, USA, 2001.

[SEKF13] Philipp S. Schmidt, �eresa Enghardt, Ramin Khalili, and Anja Feldmann,

Socket Intents: Leveraging Application Awareness for Multi-access Connec-
tivity, Proceedings of the ninth acm conference on emerging networking

experiments and technologies, 2013, pp. 295–300.

[Seo] SungHoon Seo, KT’s GiGA LTE: Commercial Mobile MPTCP Proxy ser-
vice launch. h�ps://www.ietf.org/proceedings/93/slides/slides-93-mptcp-

3.pdf.

[SHS
+

12] Justine Sherry, Shaddi Hasan, Colin Sco�, Arvind Krishnamurthy, Sylvia

Ratnasamy, and Vyas Sekar, Making middleboxes someone else’s problem:
network processing as a cloud service, ACM SIGCOMM Computer Com-

munication Review 42 (2012), no. 4, 13–24.

[Soc11] �e Internet Society, State of ipv6 deployment 2018, 2011.

https://www.internetsociety.org/resources/2018/

state-of-ipv6-deployment-2018/.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark, End-to-end arguments in system
design, ACM Trans. Comput. Syst. 2 (November 1984), no. 4, 277–288.

[STJ03] J. R. Santos, Y. Turner, and G. Janakiraman, End-to-end congestion con-
trol for in�niband, Ieee infocom 2003. twenty-second annual joint con-

ference of the ieee computer and communications societies (ieee cat.

no.03ch37428), 2003March, pp. 1123–1133 vol.2.

130 BIBLIOGRAPHY

[TB19] Viet-Hoang Tran and Olivier Bonaventure, Beyond socket options: making
the linux tcp stack truly extensible, �e i�p networking 2019 conference,

2019May.

[TMB10] J. Touch, A. Mankin, and R. Bonica, �e TCP Authentication Option, Inter-

net Request for Comments, RFC Editor, RFC Editor, Fremont, CA, USA,

2010.

[turris] Turris Omnia. Accessed: 2017-08-28.

[UTE17] Motomu Utsumi, Hajime Tazaki, and Hiroshi Esaki, /dev/stdpkt: A ser-
vice chaining architecture with pipelined operating system instances in a
unix shell, Aintec ’17: Asian internet engineering conference, 2017Novem-

ber 20–22.

[VB10] C.A. Visaggio and L.C. Blasio, Session Management Vulnerabilities in To-
day’s Web, IEEE Security & Privacy 8 (2010), no. 5, 48–56.

[WBKW14] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and

David Wetherall, How speedy is SPDY?, 11th usenix symposium on net-

worked systems design and implementation (nsdi 14), 2014, pp. 387–399.

[WHB08] D. Wischik, M. Handley, and M. Bagnulo, �e resource pooling principle,

SIGCOMM Comput. Commun. Rev. 38 (September 2008), no. 5.

[wrk] wrk - a HTTP benchmarking tool. Accessed: 2017-12-31.

[XLS05] Jun Xin, Chia-Wen Lin, and Ming-Ting Sun, Digital video transcoding, Pro-

ceedings of the IEEE 93 (2005), no. 1, 84–97.

[ZDM
+

12] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and

Randy Katz, Detail: reducing the �ow completion time tail in datacenter net-
works, Proceedings of the acm sigcomm 2012 conference on applications,

technologies, architectures, and protocols for computer communication,

2012, pp. 139–150.

[ZHH
+

15] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and

Nikita Somaiya, Connection-oriented DNS to improve privacy and security,

Security and privacy (sp), 2015 ieee symposium on, 2015, pp. 171–186.

