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Abstract—Manageability and evolvability are crucial needs
for IP networks. Unfortunately, planned topological changes
may lead to transient forwarding loops in link-state routing
protocols commonly used in IP networks. These lead to service
unavailability, reducing the frequency at which operators can
adapt the network topology.

Prior works proved that the state of a given link can be mod-
ified while avoiding forwarding inconsistencies without changing
protocol specifications. In this paper, we study the more general
problem of gracefully modifying the state of an entire router,
while minimizing the induced operational impact. As opposed
to a single-link modification, the router update problem is k-
dimensional for a node of degree k. Moreover, we show that the
interplay between operations applied at the router granularity
can lead to loops that do not occur considering a single-link
modification. In this paper, we present an efficient algorithm that
computes minimal sequences of weights to be configured on the
links of the updated node. Based on real IP network topologies,
we show that the size of such sequence is limited in practice.

I. INTRODUCTION

IP networks are evolving entities that often undergo topol-
ogy modification, e.g., to support hardware, software and
configuration upgrades [1], [2]. Often, single links or single
devices are involved in each of those operations [3]. Link-state
routing protocols such as OSPF or IS-IS are used by the vast
majority of intra-domain IP networks. Unfortunately, they are
prone to convergence loops in case of topological changes [4]–
[6]. Operators currently lack simple mechanisms allowing to
gracefully adapt a network topology while avoiding transient
forwarding loops. On the one hand, recently proposed tech-
niques for lossless reconfigurations do not directly apply to
router changes [7] or introduce large overhead [8], [9], e.g.,
requiring two IGPs to be simultaneously run network-wide.
On the other hand, protocol specific features, like the overload-
bit in IS-IS, do not guarantee absence of transient forwarding
loops during IGP convergence. Unfortunately, the possibility
that planned operations may lead to packet losses can af-
fect the accommodation of strict Service Level Agreements
(SLAs), hence reducing the ability of operators to perform
frequent maintenance operations [10]. Moreover, the scarcity
of maintenance windows makes it difficult to promptly react
to sudden events, like the saturation of a network component
due to changing traffic conditions. It also limits the ability
to apply software and hardware upgrades at arbitrary times
(considering that some of those updates are meant to introduce
security patches, they would ideally need to be applied as soon
as possible).

In this paper, we investigate the possibility for link-state
IGPs to support graceful router update operations, without
changing protocol specifications. We show that the interplay
between operations applied at the router granularity can lead to
loops that do not occur in the single-link modification problem.
Nevertheless, we prove that forwarding loops possibly occur-
ring during protocol convergence can be provably avoided by
progressively modifying the weights of the links incident on
the router to be modified. Such a progressive modification
of weights can be imposed by propagating a conveniently
crafted sequence of Link State Advertisement (LSA) packets
from the router to be updated. In order to ensure a minimal
operational impact, we aim at computing minimal sequences of
weight increments. This need prevents us from re-using known
techniques [7] to de-tour traffic on a per-link basis. Thus,
we present a new and efficient algorithm, which we called
GBA, to compute minimal sequences of weight increments
(hence, intermediate LSAs packets to be propagated in order
to avoid any transient loops). Our algorithm also guarantees
the absence of transient loops in IGP networks relying on LDP.
The proposal described in this paper is hence valid even when
the IGP is used in conjunction with BGP, as long as Ingress-
Egress encapsulation is deployed in the network [11]. Such
deployments are very common in Service Provider networks.

The remainder of the paper is organized as follows. In
Section II, we motivate our approach by showing the inef-
ficiency of solutions defined for single link modifications. In
Section III, we propose a formal theoretical framework for the
router update problem. In particular, we introduce the notion
of loop-constraints, which define sufficient and necessary
intervals of metrics that need to be applied to avoid transient
forwarding loops. In Section IV, we describe the GBA al-
gorithm that relies on a greedy backward search approach to
optimally capture all loop constraints. Also, we formally prove
correctness and efficiency of GBA. In Section V we report
the performance of GBA on several real network topologies.
We show that most sequences are short, typically including
less than five intermediate vectors of increment in most of
the cases. Finally, we conclude and discuss future work in
Section VI.

II. THE NODE SHUTDOWN PROBLEM

In link-state routing protocols, forwarding information about
the network topology are propagated to all the routers through
Link-State Advertisement (LSAs). On the basis of this in-978-1-4799-1270-4/13/$31.00 c©2013 IEEE
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Fig. 1: Compute a loopfree sequence for a single destination (towards 1 on this gadget).
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TABLE I: Multiple destinations: towards a minimal safe convergence

formation, each router locally computes its shortest paths 1

to each destination. A known consequence of such a local
computation of the shortest path is that link-state routing IGPs
are prone to convergence loops. In particular, since IGPs do
not impose any constraint on routing update ordering, the
routing information is flooded asynchronously. This causes
temporarily inconsistent state at different routers, possibly
causing forwarding loops during IGP convergence.

A. Routing Convergence Leads to Transient Forwarding Loops

As an illustration, consider Fig. 1 that shows a router
removal example. The topology of a network is depicted as a
graph, in which nodes represent routers, and links represent
the direct connections (or IGP adjacencies) used by routers to
exchange routing information. Graphs are weighted according
to the cost set on each IGP adjacency. We thus model the IGP

1ECMP enables the use of several Equal Cost Multi-Path and thus induces
routing DAG - for Directed Acyclic Graph - instead of routing tree. In this
paper, we take equal cost multiple paths into account.

network as a logical graph G = (N,E,w), where N is the set
of routers, E is the set of IGP links (or adjacencies) between
the routers, and w is a function associating a weight to each
link. Let 0 be the router to be removed from G. Colored arrows
represent intended packet forwarding paths from each router
to destination 1. In this paper, we refer to the set of forwarding
paths towards a given destination d as Reverse Shortest Path

DAG and denote it as RSPDAG(d)

The graphs in the leftmost and rightmost sub-figures rep-
resent the configuration of the network and the RSPDAGs
before and after the removal of 0, respectively. The central sub-
figure illustrates how inconsistent routing information owned
by different routers may cause transient forwarding loops
during the convergence. In particular, if router c updates its
FIB before b does, then c starts forwarding traffic to destination
1 according to the new topology, while b keeps forwarding
traffic as in the initial topology. This creates a forwarding
loop between c and b. A similar loop is present between
a and b, and such cycles may occur for all destinations in
the network. Note that the possibility for transient loops to
occur depends on the message propagation delays and the
RIB-FIB updating time of each router. Of course, those loops
are eventually solved as soon as the routers involved in the
loops are aligned with respect to the topological information.
Nevertheless, convergence loops can cause transient packet
losses towards multiple destinations during the convergence
process. Those problems can be exacerbated if some routing
updates are lost or delayed.

In this paper, we study how to prevent the transient for-
warding loops caused by the planned addition or removal of
a single router. Note that while we focus on the removal of
a node, symmetric considerations apply for the case of node
addition. Intuitively, in order to prevent convergence loops,
we aim at forcing an ordering in which routers change their
forwarding paths, so that no conflicting choices occur. We tar-



get to a solution that can be applied without changing current
protocol design, mechanisms, and message format. We only
admit to slightly change the implementation of the protocols,
namely, on how IGP topology modification commands are
implemented. The underlying goal is to make our solution
incrementally deployable, and implementable with a minor
router operating system upgrade.

We realize this objective by mandating the router to be
removed to progressively change the weight of its outgoing
links, i.e., by propagating a sequence of conveniently crafted
LSAs. Indeed, an LSA can contain local multiple topological
information. For example, a router LSA of type 1 in OSPF
carries information on the set of outgoing interfaces of a
given node and their respective IGP weights. Hence, the
information in a single LSA influences forwarding decisions
of all the routers in the network, since each router computes
its forwarding paths on the basis of the LSAs it receives. In the
following, we refer to this progressive change of link weights
as weight change or metric increment sequence.

Observe that each LSA causes IGP routers to exchange the
new topological information and converge to a new routing
state, leading to control plane overhead. Thus, a higher number
of LSAs translates to additional IGP convergence time and
more stress on the control planes of all routers (IGP churn).
As the convergence time and control-plane overhead are
major issues in link-state IGP networks, one of our primary
objectives is to minimize the number of LSAs being generated

to prevent convergence loops. Assuming that convergence for
each LSA does not exceed one second, we think that a realistic
upper bound for the number of LSAs to be generated can
be fixed to a value of 5. An opportunity to minimize the
number of LSAs comes from the possibility to include weight
changes for different links in the same LSA. However, finding
the minimal number of LSAs that provably prevent all the
possible transient loops leads to an algorithmic problem that
is not straightforward to solve.

Consider again the example in Fig. 1, and focus on the
convergence loop between a and b. Depending on the IGP
message timing, the loop can occur because a sends to b
its traffic towards destination 1 before the removal of router
0, while the opposite holds after the removal. The loop is
provably avoided if and only if a starts forwarding packets
directly to 1 before b changes its forwarding decision. This
occurs, for example, if a weight of 8 is configured on the
link (0, 1). Indeed, changing the weight of link (0, 1) to 8
before removing router 0 provably prevents the forwarding
loop to occur. The same does not hold if the weight of link
(0, 1) is set to 7 or to 9. In the former case, the weight
increment is not enough to make a dismiss its initial path
(a temporarily uses ECMP), while in the latter case both a
and b switch forwarding path and the convergence loop can
occur. In other words, there is a strict constraint on the weight
to be configured on link (0, 1) in order to avoid convergence
loops. On the other hand, the paths traversing links (0, 2)
and (0, 3) are already longer than path (a 1), which is the
final one. Hence, the weight of links (0, 2) and (0, 3) can

be kept the same or arbitrarily increased with no effect on
the convergence loop between a and b. Intuitively, constraints
for different possible transient loops (possibly, to different
destinations) have to be combined together. However, strict
constraints may be required on several link increments, thus
limiting the number of transient loops being prevented with a
single metric increment.

B. Single Link-based Graceful Updates Are not Efficient

In [7], it has been shown that convergence loops can be
provably avoided for single link weight changes. In principle,
the same technique could be directly applied to avoid conver-
gence loops for the router shutdown problem. Indeed, a simple
way to de-tour traffic from the router to be shutdown is to
make it unattractive through all its links, one at a time. Hence,
the technique proposed in [7] can be sequentially applied, in
order to prevent all IGP convergence loops. In the following,
we refer to such a technique as link-by-link. Unfortunately,
this technique would not minimize the number of LSAs to
be generated, since it overlooks the possibility to change the
weight of several links with the same LSA. In many cases, two
or three link weight changes are needed to gracefully re-route
the traffic from a single link [7]. Assuming that a router has
three outgoing links, this would lead to generate 6 to 9 LSAs,
which significantly deteriorates the convergence time.

A variant of the link-by-link technique is what we call
the uniform increase algorithm. This algorithm consists in
applying the technique proposed in [7] to a modified model
of the IGP topology. In this modified model, the node to
be removed is replaced by two virtual nodes with a unique
virtual link connecting them. In this new model, the node
shutdown problem translates to de-touring the traffic off the
virtual link. As a result, the original router shutdown is solved
by generating LSAs that contain the same weight increase for
all the links adjacent to the router to be shut down. While the
uniform algorithm allows for concurrent weight modification
on multiple links, it limits the weight increases that can be
applied. Hence, it does not minimize the number of generated
LSAs. An example in which the sequence computed by the
uniform algorithm is provided in Fig. 1 and Table I where all
the destinations are considered at the same time. In particular,
the table shows two sequences, namely SGFA and SGBA ,
still prevents all the transient loops, while being shorter than
the one computed by the uniform algorithm, namely SUFR.

While those techniques do not guarantee the minimality of
the computed metric increment sequence, they prove that a
progressive weight sequence that avoids transient loops always
exist. In the rest of the paper, we present a new node-specific
algorithm minimizing the number of LSAs to flood, and we
evaluate the gain in term of link weight size with respect to
link-by-link and uniform techniques.

C. Flapping Side Effect Potentially Leads to More Loops

While enabling the minimization of the sequence, the
opportunity of simultaneously applying non-uniform weight
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Fig. 2: Illustration of a transient loop induced by route flapping: a floop between nodes 0 and c

increments to different links may come at the cost of intro-
ducing traffic flapping, i.e., multiple routing changes on the
node being updated. Such a phenomenon potentially leads to
additional transient loops that we call floop. Floops are due to
transiently used shortest paths that are not captured neither in
the initial RSPDAG RSPDAG(d) nor in the final RSPDAG
RSPDAG′(d) and form cycles implying node 0. Note that
floops cannot appear when a single link has to be re-weighted,
i.e., they are specific to the graceful router update problem.

An illustration of floop for destination 4 is shown in
Fig. 2. In this example, the optimal sequence computed by
considering only the initial and final RSPDAGs, i.e., SGBA in
the figure, includes two metric increments. Each of those two
increments can be achieved with a single LSA originated by
0. Such a transition is safe for all the routers in the network,
but for 0 itself. Indeed, a floop could occur when applying the
second set of link weight increments, as shown in the central
sub-figure in Fig. 2. At that step, the new link weights (9, 9, 8)
(assigned to (0, 1), (0, 2) and (0, 3), respectively) induce 0 to
use c as next-hop for destination 4, while the opposite holds
before applying this metric increment. This can cause a floop
between 0 and c.

We decided to address the constraints of floop avoidance
separately from usual loop constraints, as floops have different
properties than usual ones. Both an algorithmic and a techno-
logical solutions to avoid floops are given in Section IV. In
Section V, we show that additional increment vectors to handle
these loops are seldom required.

III. PROBLEM FORMALIZATION

In this section, we define the theoretical framework of our
solution. We first introduce the notion of vectorial increments,
representing a set of simultaneous weight increments on
several outgoing links of the node being modified. Then, we
explain how to model potential forwarding loops as a set
of vectorial constraints, which represents necessary intervals

of metric configurations allowing to compute a safe weight
sequence, preventing loops.

A. Towards Multi-Dimensional Increments

We now present a formalization of our problem, which
generalizes the main concepts previously illustrated. Our for-
malization is based on the usage of positive vectors. We denote
the i-th component of any vector v as v[i]. The size of a
vector v, |v| is the number of components of v. Vectors of the
same size can be compared, and a partial order relationship
exists between them. In particular, we say that two vectors
v1 and v2 of size k ≥ 0 are equal, i.e., v1 = v2, if
∀i ∈ 1 . . k, v1[i] = v2[i]. Greater (>), greater or equal (≥),
smaller (<), and smaller or equal (≤) relationships between
vectors are similarly defined, and apply on vectors if they hold
on all the corresponding components. In addition, given two
vectors v1 and v2 (such that |v1| = |v2| = k), we say that v1
is positively greater than v2 if ∀i ∈ 1 . . k either v1[i] > v2[i]
or v1[i] = v2[i] = 0. If v1 is positively greater than v2,
then v2 is positively smaller than v1, and we use notation
v1 >+ v2. This relation is introduced to model the absence
of constraints on some alternative links while it imposes to
verify strict constraints on others.

Given any router x &= 0, we define ∆0
d(x) as the vector

of the minimum increments such that router x uses at least a
new path not including 0 to reach d. For the sake of simplicity,
we reduce the notation whenever the destination or the node
to be removed are clear from the context. ∆(x) are vectors
in which each component represents the increment necessary
to start to detour x’s traffic from each of the links outgoing
from the router 0 to be shut down. The values of ∆(x) can be
derived by shortest paths topological properties on graphs G
and G′ = G \ 0. Let li be the i-th link outgoing from router
0, let C ′(x, d) be the cost of the shortest path from x to a
destination d after the router removal (G′), and let C(x, li, d)
be the cost of the shortest path from x to a destination d



traversing li before the router 0 removal (G). Then, we have

∆0
d(x)[i] = C ′(x, d)− C(x, li, d)

As ∆(x) represents distance amounts to be added to a set of
link weights, we also impose that each of its components to
be a positive value, i.e., if C ′(x, d) − C(x, li, d) < 0, then
∆(x)[i] = 0. Thus, if ∆(x)[i] = 0, it implies the absence of
constraints on the weight of the i-th link.

By definition of ∆(x), a router x switches to the final
forwarding path if and only if each of the links outgoing from
0 is configured with a weight which is strictly greater than the
corresponding component of ∆(x) (except for null values by
definition of the positively greater relation >+). Otherwise, the
initial path is still used by x. Indeed, if the weight increment
of a link li is equal to ∆(x)[i], then the path traversing li may
be still used as well in an ECMP context. Moreover, note that
by definition of C(x, li, d) a total ordering applies among ∆d

(for a given destination d), while it is not the case among ∆
vectors for several destinations (i.e., only a partial ordering
applies at the global view).

Let us illustrate the use of ∆ on Fig. 1: different values of
such vectors are reported on the left side, in the bottom part of
the figure. As an example, consider ∆(a): ∆(a)[1] = 10−4 =
6 meaning that adding 6+1 to the weight of link (0, 1) makes
any path from a to 1 traversing link (0, 1) strictly longer than
the final one. Hence, setting 7 on link (0, 1) ensures that a does
not use link (0, 1) to reach 1. Moreover, ∆(a)[2] = ∆(a)[3] =
∆(a)[4] = 0 because a switches to its final forwarding path
even if the links (0, 2), (0, 3) and (0, c) remain unchanged.

B. Modeling Loops as Vectorial Constraints

∆ vectors allow us to model constraints on the weights to
be used in order to avoid convergence loops. In the following,
we refer to any change in the weight of the links or in
the topology of the IGP graph as topological change. Let
c be the constraint modeling a convergence loop L that can
occur during a topological change, and let 0 the router to be
shut down. Then, we define the loop-constraint, or simply
constraint, associated to L as follows.

c := (c := min
∀x∈L

(∆(x)), c̄ := max
∀x∈L

(∆(x)))

For the sake of simplicity, we shorten the notation to c :=
(c, c̄). By definition of ∆, the following property holds.

Property III.1. Given a constraint c, ∀i ∈ 1 . . |c| either

c̄[i] = c[i] = 0 or c̄[i] ≥ c[i] + 2.

In particular, c̄[i] = c[i] = 0 represents the absence of
constraints for the i-th link outgoing from router 0. Intuitively,
a constraint defines the interval of weights that allows for
breaking a loop L. Both c and c̄ are vectors of size k = |c|
where k is the out degree of router 0. In particular, c represents
the set of minimum relative weight increments to be set on
the corresponding link in order to force one router in L to
use at least one of its final forwarding path (recall that we
consider ECMP in our model), while weight increments equal
or higher than c̄ cause all the routers in L to use at least one

of their respective final paths (not including 0). Moreover, for
any increment of link weights positively greater than c and
smaller than c̄, a subset of routers in L switch definitively to
their respective final paths (i.e. they do not use anymore any
paths including node 0). Note that we consider here the simple
case of applying only a single weight increment.

More formally, we define a weight increment as a vector
with k components (where k is the number of links incidents
to 0). We say that a weight increment v meets a constraint
(c, c̄) if v >+ c and ∃i ∈ 1 . . k | v[i] < c̄[i]. We also say
that a weight increment v precedes a constraint c iff ∃i ∈ 1 . .
k | v[i] ≤ c[i] &= 0. On the contrary, a weight increment v
follows constraint c iff ∀i ∈ 1 . . k | v2[i] ≥ c̄[i].

By definition of ∆, the following properties hold for loops
involving an arbitrary number of routers, and in case of
asymmetric link weights.

Property III.2. Given a loop L and its corresponding con-

straint c, if a weight increment v meets c then the router x ∈ L
verifying ∆(x) = c is ensured to definitively switch to its final

next-hop. It no longer uses its initial paths through 0.

Property III.3. Given a loop L and its corresponding con-

straint c, if a vector w precedes c then any router x ∈ L still

uses its initial forwarding paths.

Property III.4. Given a loop L and its corresponding con-

straint c, if a vector w follows c then any router x ∈ L only

uses its final forwarding paths.

As an example, consider again Fig. 1. The possible con-
vergence loop L1 = {a, b, a} is encoded as the following
constraint c1 := (c1 = (6, 0, 0, 0); c̄1 = (8, 0, 0, 0)). Let v1
and v5 be two weight assignments defined as in the right
part at the bottom of the figure. Then, we have that v1 meets
constraint c1. On the contrary, vector v5 follows c1, i.e., does
not meet c1, because v5 > c̄1 (and the same for vector ∆0

1(b)
which is equal to c̄1, b enters in a ECMP state using such
a vector). Observe that, despite the strict requirement that c1
enforces, v1 is not the only vector that meet c1. Indeed, a
vector such as (7, 10, 10, 10) also meets c1, because if the
value of a component i of a vector v is between the i-th
component of c and of c̄, then any other components j &= i of v
can be arbitrarily higher than c[j]. This is a crucial observation
to compute minimal sequence of link weight assignments that
satisfy several constraints at the same time.

C. Defining Safe Weight Increment Sequences

In this paper, we aim at computing sequences of weight
increments, i.e., weight sequences, that provably prevent any
convergence loops. A weight sequence v0, . . . , vm must also
ensure that v0 and vm correspond to the initial and final routing
state (i.e. vm should be equivalent to a (∞, . . . ,∞) vector
metric for the node shut).

We now define a sufficient and necessary condition for
a weight sequence to prevent a loop L. Let c = (c, c̄) be
the constraint corresponding to L. We say that a weight
sequence s includes an unsafe transition for c if it contains two



consecutive vectors vi and vi+1 such that either i) vi precedes
c and vi+1 follows c̄; or ii) vice versa, vi follows c̄ and vi+1

precedes c (decreasing sequence case).

Theorem 1. A weight sequence s avoids a loop L if and only

if all pairs of successive vectors of s form a safe transition

with respect to the constraint corresponding to L.

Proof: Let c = (c, c̄) and d respectively be the constraint
and the destination associated to loop L. We prove the
statement in two steps.

• if s includes an unsafe transition for a constraint, then
s does not avoid L. Indeed, by definition of unsafe
transition, we have two cases. Let vi and vi+1 be the
two consecutive vectors involved in the unsafe transition.

– vi precedes c and vi+1 follows c. By Property III.3
and III.4, all the routers in L will switch from their
initial next-hop to their final next-hop to d.

– vi follows c and vi+1 precedes c. By Property III.3
and III.4, all the routers in L will switch from their
final next-hop to their initial next-hop to d.

In both cases, by definition of L, the transition from vi
to vi+1 can cause L to occur.

• if s does not include an unsafe transition for c, then s
provably avoids L. Indeed, if there are no unsafe tran-
sitions, then, by definition, there exists a safe transition
meeting c. From a vector vi ∈ s preceding c to a vector
vj ∈ s (j > i+1) following c, and vice versa, we know
that there exists at least one vector vk, i<k<j , meeting
c such that vi, vk is a safe transition. Hence, each time
all routers in L change next-hop from their initial to their
final routing state there is an intermediate step k, in which
some router update breaks the possibility of the loop to
occur by Property III.2.

The statement follows by applying the same argument to all
loop constraints.

Intuitively, this theorem implies that, for each constraint
(c, c̄), at least one vector must meet the constraint for each
transition from weight increments smaller than c to increments
greater than c̄, and vice versa for weight increments that
may actually imply some weight decreases. Indeed, always
increasing sequences (i.e. that only include actual increments)
are a subset of weight sequences space. A sequence s =
(v0, . . . , vm) is always increasing if ∀i ∈ 1 . . m, vi > vi−1.
We now state a simplified version of Theorem 1 which holds
for such sequences.

Theorem 2. An always increasing weight sequence s avoids

a loop L if and only if s contains at least one vector meeting

the constraint corresponding to L.

Proof: Let c = (c, c̄) be the constraint corresponding to
any loop L. By definition of always increasing sequence, s
is a concatenation of three subsequences, s = l m h, where
l is composed by vectors preceding c (including the initial
weights), m contains vectors meeting c, and h includes vectors
following c̄ (including the target weights). By hypothesis, m

function GBA(G,n)
Minimal sequence: S
Set of constraints: CS
Cardinal of the set of neighbors of n: k
/* 1) Extract constraints */

for d in N do
for x in N do

for i ∈ 1 . . k do
∆n

d (x)[i] = C ′(x, d)− C(x, i, d)

cs = enum_cycles(RSPDAG(d)
⋃

RSPDAG′(d))
for c in cs do

CS.add ({c.min(∆[d]), c.max(∆[d])})

/* 2) GBA main Loop */

while CS &= ∅ do
reinit (gv)
/* 2a) Compute the current greedy vector */

for c in CS do
for i ∈ 1 . . k do

gv[i] = max (gv[i], c[i] + 1)

/* 2b) Build S in a backward fashion */

S.append (gv)
/* 2c) Remove satisfied constraints */

for c in CS do
for i ∈ 1 . . k do

if c̄[i] > gv[i] then
CS.remove (c)

return S
Fig. 3: The GBA algorithm

cannot be empty. As a consequence, s cannot contain any
unsafe transition. The statement then follows by Theorem 1.

In the following, we show an algorithm that solves the
node shut problem by computing always increasing weight
sequences. Intuitively, sequences that do not verify such a
monotonic behavior cannot help to reduce the number of
intermediate vectors.

IV. COMPUTING MINIMAL SEQUENCES WITH GBA

In this section we start by presenting at a high level our
main contribution, GBA, that stands for Greedy Backward
Algorithm. Its purpose is to enable a loop free convergence
for all destinations with a minimal operational impact. After
describing and illustrating GBA at a high level, we first prove
that GBA weight sequences provably prevents convergence
loops and have minimal size. Moreover, we discuss how to
implement GBA as an efficient algorithm, whose running time
is polynomial in the number of routers in the network. Time
efficiency of GBA makes it practical: we argue that it can be
directly supported in current routers operative systems. Finally,
we describe simple solutions to deal with floops.

The GBA algorithm is presented in Figure 3. The algorithm
can be divided into two macro-steps:

1) Extract the constraints corresponding to all potential for-
warding loops;

2) Iteratively compute the weight sequence:



2a) compute a greedy weight increment gv that meets
constraints c with highest c values;

2b) append gv in the weight sequence;
2c) and update the set of constraints still to be met.

The algorithm stops when all the constraints are met.

Loop-constraints may be computed by a standard cycle
enumeration algorithm considering the merging of the initial
and final RSPDAG. We discuss how to efficiently compute
loop-constraints and satisfy them in Section IV-B.

Figure 1 and Table I illustrate how GBA works. Considering
all destinations and their related cycles, the first greedy vector
computed with GBA is equal to (9 9 8 0) and satisfies
constraints/cycles c2, c3 and c5. These three constraints are
met using a single weight increment. Since it does not meet
the two remaining constraints due to an unsafe transition, at
least one more iteration is needed. GBA performs a second
step and computes vector (7 2 3 0) that is sufficient and
necessary to deal with the two last constraints. The length of
the resulting sequence depends on the possibility of satisfying
multiple constraints at the same time. In practice, GBA is
able to produce small sequences because chains of successive
dependent cycles (verifying in particular cy ≥ c̄x) are limited
in size (in O(|N |) at worst for a given destination), hence
constraints can often be met with only one weight increment,
as shown in Section V.

Observe that the weight sequence is computed in a back-
ward fashion, i.e., in the opposite order with respect to how
they will be applied. Using a reverse order enables us to
build the weight sequence greedily. On the contrary, a greedy
forward search as the one provided in [7] does not ensure
minimality of the computed sequence, as shown in the example
in Table I. This significant difference with previous works is
due to the asymmetry induced by constraint satisfaction: a
vector v meets a constraint (c, c̄) if and only if v >+ c and
v &≥ c̄. The min and max rules do not form similar metric
intervals such as with scalars. The min rule is much more
restrictive than the max one in the node shut problem.

In the following, we discuss safety, minimality and effi-
ciency properties of GBA.

A. GBA Sequences Are Safe and Minimal

We now prove that GBA computes weight sequences that
prevent convergence loops. And, most of all, weight sequences
computed by GBA are of minimal size. In our proofs, we
rely on the properties of GBA that hold by definition of the
algorithm. We say that a constraint is unsatisfied at an iteration
j if it is not met by any vector of the weight sequence currently
computed by GBA. Note that the term before denotes all
previous iterations considering a backward sequence building.

Property IV.1. At each iteration j, GBA computes a vector

v such that v >+ cs for all the constraints c ∈ cs = (cs, c̄s)
still unsatisfied before j.

Property IV.2. At each iteration j, GBA computes a vector

v such that for each component i, a constraint c = (c, c̄)

exists such that v[i] = c[i] + 1 and c is not met by any vector

computed by GBA before j.

Property IV.3. GBA computes always increasing sequences.

Property IV.4. GBA stops as soon as all the constraints are

met. Each of them is met by at least one vector in the returned

sequence.

Properties IV.1 and IV.2 are ensured by vector computation
- 2a). Property IV.3 is the result of both vector computation
and constraint removal - 2b). Properties IV.4 derives from the
constraint removal mechanism - 2c). Properties IV.1 and IV.2
directly lead to the following important lemma.

Lemma 1. At each iteration, GBA computes a vector v that

meets at least one constraint not met before.

Proof: Consider any iteration j of GBA. Let cs be the
set of unsatisfied constraints at the beginning of iteration j,
and let v the vector computed by the algorithm during the
iteration j. By Property IV.1 and IV.2, there must exist at
least one constraint c ∈ cs such that c = (c, c̄), v >+ c and
∃i : v[i] = c[i] + 1. By Property III.1, then ∃i : v[i] < c̄[i].
This means that c is met by v, hence the statement.

Lemma 1 ensures that GBA always terminates in a finite
number of iterations. We now prove the safety and minimality
of the algorithm. To this end, we refer to the following
problem.

Problem 1. Constraint Minimal Meeting Problem (CMP):

Given a set cs = {(c1, c̄1), . . . , (cn, c̄n)} of loop-constraints,

compute a minimal weight increment sequence which contains

no unsafe transition for any constraint in cs.

Provided that all the loop-constraints are correctly enumer-
ated, solving CMP implies preventing all possible convergence
loops by Theorem 1. First of all, we show that GBA is
correct, that is, it computes safe weight sequences such that
no convergence loop can occur.

Theorem 3. Given a CMP instance I , GBA computes se-

quences that prevent convergence loops.

Proof: By Property IV.4, GBA stops when all constraints
are met. Moreover, Property IV.3 states that GBA computes
always increasing sequences. Hence, the statement directly
follows by Theorem 2.

We now prove the minimality of the sequences computed
by GBA.

Lemma 2. Consider a CMP instance I . Let s = (v1 . . . vn)
be any sequence solving I , and let g = (g1 . . . gm) be the

sequence computed by GBA on I , with possibly n &= m. Then,

the last respective vectors verify vn ≥ gm.

Proof: Assume by contradiction that vn[i] < gm[i] for a
given component i. By Property IV.2, for the same component
i there must exist at least one constraint c in I , such that
gm[i] = c[i] + 1. This implies that vn[i] ≤ c[i], i.e., the
constraint vector c is not met by vn. Since vn is the last metric



increment in s and the final weight assignment is greater or
equal than c̄ to ensure all routers enter their final state, then s
contains an unsafe transition for c. Thus, Theorem 1 implies
that s is not a solution for I , contradicting the hypothesis.

Lemma 3. Consider a CMP instance I . Let s = (v1 . . . vn)
be any sequence solving I , and let g = (g1 . . . gm) be the

sequence computed by GBA on I , with possibly n &= m. Then,

all the constraints met by vn (and possibly more) are also met

by gm.

Proof: Assume by contradiction that a constraint c is met
by vn, but not by wm. This would imply that:

• in order for c to be met by vn, ∃i | vn[i] < c̄[i].
• by Property IV.1, gm >+ c. Hence, if gm does not meet
c, it must be gm >+ c̄. Also, Lemma 2 implies that
vn ≥ gm, hence vn[i] > c̄[i], ∀i=1,...,k.

Those two conditions cannot be satisfied at the same time,
contradicting the assumption and yielding the statement.

Theorem 4. The GBA algorithm finds a minimal sequence

for any CMP instance I .

Proof: Let s = (v1 . . . vn) and g = (g1 . . . gm) respec-
tively be any minimal solution (possibly not always increasing)
of I and the sequence computed by GBA on I , with n ≤ m.
If m = 1, n must be equal to 1 as well, and the statement
trivially follows. Otherwise, by Lemma 3, we know that if
gm meets a set cs of constraints, then vn meets a subset of
constraints ∈ cs. Consider now the sequences (v1 . . . vn−1)
and (g1 . . . gm−1). Again by Lemma 3, gm−1 meets at least the
same set of constraints that vn−1 meets. This implies that the
sequence (gm−1 gm) meets the same constraints (and possibly
more) than (vn−1 vn). By iterating the same argument on
all the elements in s, we have that (gm−n+1 . . . gm) meets
at least the same set of constraints as (v1 . . . vn). Observe
that, by definition of s, all the constraints in I must be
met by (v1 . . . vn), hence by (gm−n+1 . . . gm). Moreover, by
Property IV.4, GBA stops when all the constraints are met,
i.e., at gm−n+1. Hence, it must be m − n = 0 and |g| = |s|,
yielding the statement.

Theorem 3 and 4 respectively prove the safety and min-
imality of the weight sequences computed by GBA. Since
GBA computes always increasing sequences, this implies that
among the set of minimal sequences, there exists at least
one which is always increasing. In other words, restricting
to always increasing sequences does not limit our ability to
optimally solve the node shutdown problem.

B. GBA Can Be Implemented as An Efficient Algorithm

The algorithm presented in Figure 3 is not time efficient.
In particular, the first enumerative step can require an amount
of time which is exponential with respect to the size of the
input (i.e., the number of routers in the network). Indeed,
the identification of constraints is based on the enumeration
of cycles on the graph obtained by merging the initial and
the final RSPDAGs. Since the number of cycles in a graph
can be exponential with respect to the number of nodes, then

enumerating all the cycles in a graph cannot be performed
efficiently. In the following, we discuss a new version of
GBA in which the loop-constraints are identified with a less
time consuming procedure. We show that this new version is
time efficient. Intuitively, this efficient version is based on the
observation that we can produce a number of constraints that
is significantly lower than the number of possible convergence
loops. In this case, a convergence loop is always associated
to a constraint, but meeting a constraint translates to prevent
multiple loops. Due to space limitations, we will not enter into
all the algorithmic details of the efficient version of GBA.

1) Extracting and updating constraints in polynomial time:

To build an efficient version of GBA, we replace the explicit
cycle enumeration with a more lightweight partial constraint
detection. The key observation is that GBA only requires the
max constraints for all destinations (see Fig. 3, Step 2a)) at
each iteration. Hence, in our efficient version of GBA, we
identify a subset of constraints during each iteration instead
of enumerating all of them at the beginning of the algorithm.

More precisely, for any destination d ∈ N and its related
set of constraints cs, we thus look for routers x such that
∆0

d(x) = max∀c∈cs(c). An efficient constraint computation
is achieved by considering each destination independently
to divide the problem space, and computing a superset of
∆ vectors that includes cs. This computation relies on a
standard cycle detection algorithm. In particular, we use the
following algorithm, which is linear in the number of links
in the network. Consider the graph resulting from merging
two RSPDAGs, namely, RSPDAG1 and RSPDAG2. First,
all the nodes with no incoming or no outgoing edges are
removed from the merged graph, as they cannot be part
of any convergence loop. Then, let δ be the minimum ∆0

d

value as computed in the remaining graph. We update the
graph by simulating an increase of δ on the merged graph.
We iterated this update until all the nodes are visited. The
last δ is the maximum value in cs. Indeed, δ ≤ max(cs),
otherwise the merged graph would have had no cycle and the
algorithm would have stopped before this iteration. Moreover,
if δ < max(cs), then a still unsatisfied cycle must exist,
preventing the algorithm to terminate.

Observe that in this optimized version of GBA, we do not
need to compute c̄-vectors anymore. Indeed, in the original
version of GBA, c̄-vectors are only used to check which
constraints are met by the vector computed during the current
iteration, see Fig. 3. This is not needed anymore as constraints
are updated at each macro-step iteration of the algorithm.

2) Overall complexity analysis: Let k be the degree of the
node to be removed. The size of a minimal weight sequence for
an arbitrary weight change on a single link is in O(|N |2) [7].
Hence, removing one link at a time leads to sequences of at
most k|N |2 elements. This property implies Theorem 5.

Theorem 5. GBA terminates in a number of main loop

iterations that is polynomial with respect to the number of

routers in the network.

Proof: Lemma 1 ensures that GBA always terminates.



Moreover, at each iteration, GBA appends a weight assign-
ment to the weight sequence, and never backtracks. As a
consequence, GBA performs a number of iterations that is
equal to the size of the weight sequence it computes. Finally,
the maximal sequence size property given in [7] (the length
of any link-shut sequence is lower than |N |2) and Theorem 4
ensure that the number of iterations is at most k|N |2, where
k is the number of links of the router to be shutdown.

Theorem 5 is relative to the weight sequence computation
macro-step. Of course, listing the loop-constraints must also
have to be taken into account. With the efficient constraint
technique described in Section IV-B, step 1) and step 2c)
are modified, while step 2a) and 2b) are left unchanged. In
particular, the efficient version of GBA computes constraints
on a per-iteration/per-destination basis, using a modified cycle
detection procedure that can be efficiently implemented (see
Section IV-B). Hence, we were able to implement a GBA
version that is polynomial in time.

Note that, in practical cases, long weight sequences are not
interesting, as applying them would increase the convergence
time and control-plane overhead too much. Thus, a given value
p can be defined as maximum length of weight sequences. In
this case, GBA can be even more efficient, by stopping the
main loop after at most p iterations. Using a reasoning similar
to the proof of Theorem 5, it is easy to show that stopping
GBA after at most p iterations can be used to verify that
there exists a safe sequence s for node n verifying |s| ≤ p
and compute it (if it exists).

Due to space limitations, we cannot enter in all the details
of GBA complexity. The version of GBA we design has a
worst case complexity in O(p× |N |3) if p < N , or O(|N |4)
otherwise. Our implementation of the algorithm always results
in running times that are on the order of a second (even for
worst case nodes on our largest IGP topologies – about 1100
nodes).

C. Preventing Floops

Both the basic GBA algorithm and its time-efficient version
only consider constraints extracted from the merging of the
initial and final RSPDAG. As a consequence, they do not
solve the floop problem (see Section II).

Nevertheless, GBA can be extended to take floops into
account, by adding new transient constraints at each iteration
of the algorithm. In particular, during the update of the set of
unsatisfied constraints, the RSPDAG corresponding to the
last weight assignment computed by the algorithm is merged
with the initial RSPDAG, and transient constraints may be
identified on this merging. Unfortunately, adding constraints
at each iteration possibly prevents GBA to find a minimal
weight sequence. Fig. 2 provides such an example (FF2
versus FF1): removing a floop as a usual loop (i.e., in
a greedy fashion) does not necessarily result in a minimal
sequence because there exists other ways to avoid it. The issue
of finding the minimal floop-free weight sequence with an
efficient algorithm remains as an open problem. However, our
experiments on real-world IP networks show that the overhead

of the floop-preventing extension of GBA is almost negligible
(considering the length of the sequence).

An alternative solution to this extension is to deal with the
flooping problem at the technological or the protocol level,
rather than at an algorithmic level. For example, introducing
a local convergence delay on the router to be shut down and
freezing data plane decisions in the meanwhile, as proposed
in a recent Internet draft [12], would avoid the flooping
problem. A similar mechanism can be directly supported into
a new generation of link-state IGPs fully supporting loop-free
convergence in case of network topology changes.

V. EVALUATION: GBA SEQUENCES ARE SHORT

This section aims at evaluating the sequence length resulting
from our algorithms on real IP networks. First, we briefly
introduce the graphs we use, as well as our evaluation environ-
ment. We then present the results, in terms of sequence length,
obtained with several algorithms. As in previous sections, we
focus here on the node withdrawal for the sake of simplicity
(as it gives maximal sequence sizes).

We evaluated our algorithms on a wide set of real IP
network graphs of various shape and size. Table 4a provides
a general overview: Abilene and GEANT networks are two
well-known IP networks whose weighted graphs are freely
available [13], [14]. The last six networks are real ISP that we
anonymized for confidentiality reasons. Evaluated algorithms
(including GBA) are implemented in C and are available on
demand. On most networks, GBA takes a few milliseconds
to compute a minimal increment sequence, and up to 5s
on ISP6 (which is by far the largest network) on the worst
case node. Table 4a provides key points in the distributions
of sequence lengths. In particular, it gives the percentage of
empty sequences as well as, for each algorithm, the proportion
of sequences containing 5 intermediate increments or less and
the length of the longest sequence.

Interestingly enough, we observe that, apart from the ring
architecture of Abilene, no intermediate increment is required
for most of the nodes of a network. Such situation appears
mainly on the rim of the network, for nodes that are used
to reach a few number of destinations. Such nodes can be
safely and easily removed from the network without worrying
about transient loops. On the other hand, core nodes on largest
networks may require up to dozens of intermediate increments.
Performing each increment of long sequences is not realistic as
it would result in too much convergence time and IGP churn.
Hopefully, such extreme cases seldom happen and most of the
sequences are much smaller. If one considers 5 intermediate
metrics to be a reasonable upper bound for a maintenance
operation on a node, we observe that at least 80% of the
nodes for all topologies meet such requirement. Besides, this
proportion increases to 100% for topologies with less than
100 nodes. We also notice that uniform sequences are often
longer (up to three times) than those produced with both
versions of GBA. The floop free version only slightly increases
the sequence sizes, so that the proportion of short enough

sequences is almost the same as with the standard version.



Topology
#nodes /

S = ∅
Uniform Std GBA FF GBA

#edges |S| ≤ 5 max |S| ≤ 5 max |S| ≤ 5 max
Abilene 11 / 28 36.4 % 100 % 3 100 % 3 100 % 3
GEANT 22 / 72 63.6 % 100 % 5 100 % 3 100 % 4

ISP1 25 / 55 69.2 % 100 % 4 100 % 4 100 % 4
ISP2 55 / 195 81.5 % 94.4 % 7 100 % 3 100 % 3
ISP3 110 / 340 59.1 % 81.8 % 21 90.9 % 10 89.1 % 11
ISP4 140 / 410 67.4 % 85.8 % 21 92.9 % 10 91.5 % 11
ISP5 210 / 785 56.7 % 74.8 % 63 82.9 % 33 82.9 % 36
ISP6 1170 / 7240 84.2 % 92.1 % 147 93.2 % 57 93.1 % 57

(a) Global result table
(b) Sequence length increase on ISP6

Fig. 4: Evaluation results

On Fig. 4b, we evaluate the efficiency of non-optimal
algorithms, by representing their average length increase com-
pared to the minimal referent sequence, obtained with GBA.
We first notice that the floop free GBA, in red, remains
quite close to the standard version with less than one extra
increment on average, even for large sequences. In the event
that introducing a local convergence delay on the failing node
is not possible, this technique would hence allow to prevent
flooping issues at a negligible overhead. On the other hand, the
length of uniform sequences, in green, rapidly grows for larger
sequences, reaching more than twice the minimal length for 11
and 13 (the number of additional increments is proportional to
the GBA sequence length). Thus, while the uniform heuristic
is a nice alternative to GBA for short sequences, as it com-
pletely prevents flapping, it should be avoided for longer ones.
One can also notice the low performances of a link-by-link
technique. Our results clearly indicate that link based heuristics
are not sufficiently efficient compared to GBA, which is able
to compute shortest sequences for node operations.

VI. CONCLUSION

To enable graceful router-wide updates in link-state rout-
ing networks without changing protocol specifications, we
designed an optimal metric update algorithm, called GBA. In
the case of a router addition or removal, our algorithm progres-
sively shifts of the traffic flows in or out of the updated router,
while provably avoiding transient forwarding loops. The need
for such a router-wide solution is motivated by the inefficiency
of link-based algorithms in terms of number of intermediate
steps. On the contrary, GBA induces minimal operational
impact and we show that graceful update sequences are short
in practice. Also, GBA is a polynomial time algorithm that
only requires few seconds on large real-world IP network
topologies. Finally, we studied how to prevent specific loops
related to the graceful router update problem. They occur in
case routers does not support features like local convergence
delay. We thus proposed a straightforward extension of GBA
that guarantees their prevention at the cost of a negligible
overhead on the operational impact.

In the future works, we plan to define a general solution for
the problem of the transition from a given set of links metric
configuration to another one. Such an approach could be
used in conjunction with traffic-engineering tools suggesting
link metric reconfigurations at independent locations. We also

envision evaluating and extending our solutions on other type
of networking environments, such as data center topologies,
where router states may be dynamically switched according to
the traffic load.
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