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ABSTRACT

An understanding of the topological structure of the Ingeris
needed for quite a number of networking tasks, e.g., makeig d
cisions about peering relationships, choice of upstreamiigers,
inter-domain traffic engineering. One essential compooétitese
tasks is the ability to predict routes in the Internet. Hogrethe In-
ternet is composed of a large number of independent autom®mo
systems (ASes) resulting in complex interactions, and natv no
model of the Internet has succeeded in producing preditain
acceptible accuracy.

We demonstrate that there are two limitations of prior medel
(i) they have all assumed that an Autonomous System (AS) is an
atomic structure — it is not, and (ii) models have tended terov
simplify the relationships between ASes. Our approach set-
ple quasi-routers to capture route diversity within the 4Smnd is
deliberately agnostic regarding the types of relatiorskigtween
ASes. The resulting model ensures that its routing is ctergis
with the observed routes. Exploiting a large number of olzg@n
points, we show that our model provides accurate predistfon
unobserved routes, a first step towards developing stalatuwd-
els of the Internet that enable real applications.

Categories and Subject Descriptors: C.2.2 [Computer-Com-
munication Networks]: Network Protocols—Routing Protocols
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—ternet (e.g., TCP/IP)

General Terms: Algorithms, Experimentation, Measurement

Keywords: BGP, inter-domain routing, route diversity, routing
policies
1. INTRODUCTION

The Internet is composed of a large number of independently
administered Autonomous Systems (ASes) coupled by theeBord
Gateway Protocol (BGP) into a single globe spanning enfitye
structure of this interconnected system has been of somesttfor
a variety of reasons; most commonly, because its topologyspl
a significant role in determining the performance of the rimg
though pure scientific interest has played a substantialindhese
investigations. Now, we propose that more direct use be roade
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this information to predict the behavior of the Internet endpe-
cific conditions.

In the past, high-level features of the inter-domain togglbave
been used to make generic inferences about its behavigmpevger-
law distributions [1] have been used to imply important ‘cah
ized” nodes (see [2] for a discussion of this issue). Thepesy
of generic inference are useful in terms of scientific un@ed-
ing of the Internet as it evolves, but do not allow one to amswe
specific questions about the current Internet. We seek tdlee a
to answer specific what-if questions, e.g., what if a cenpaiering
link was removed, or what-if we change policies thus? Ingpie,
knowledge of the Internet’s inter-domain topology can bedut®
answer such questions, and the capability would providatgnd-
ity for providers. This is particularly true given that thectis for
large providers has moved from simply providing connettjvio
maintaining contractual or business relationships that require
resilience despite changing traffic demands or link fagune addi-
tion to supporting customers who demand more control owr th
traffic flows [3, 4].

Despite the requirements, current practice is quite lichit®f-
ten, the only available approach is “tweak and pray” [5, Bttis,
providers make changes with limited ability to predict tiesuits,
and then observe to see if the desired effect occurred. Wmpeo
to build an AS-routing model which enables us to predict unob
served Internet paths with good accuracy.

It is known [7], that for the extracted model to be useful iB-r
diction, it must be substantially better than those testefdus Un-
til now, models of the network structure have been predontipa
inter-domain level models that do not worry about the dstefl
the ASes [7-9]. However, ASes are not simple nodes in a graph
— they are comprised of routers. The internal structure ofA8n
doesmatter. It influences inter-domain routing, for instanca vi
hot-potato routing [10, 11]. Furthermore, there are mldtigon-
nections between ASes, typically from different routersq his
adds to the diversity of known routes [12]. Even where poigcy
uniform across an AS, internal features of the AS may result i
different route choices for each router — this is a featur8 6P
that allows behaviors such as hot-potato routing. Suchrsiiye
is commonly observed in public routing databases such aseRou
views [13]. An AS which is a single node must always choose a
single best path to pass to its neighbors, and thereforeotaep-
resent this type of diversity.

In addition, inter-domain routing is controlled by divenseli-
cies decided locally by each AS, but acting globally across
entire system [14]. Hence the topology of the inter-domaaph
is not, in itself, sufficient to make predictions about Initrrout-
ing. In addition, policies need to be considered. Many paléta-
tionships may be described as “customer-provider” or “gusar”,

the



and in these simple cases policies are enacted using simglle, Inbound BGP filters Outbound BGP filters
known filtering rules [15]. Several papers have discussfaténce R
. . . = €ecIsion process =
of these simple policy rules [16-18], but unfortunatelyt aibpoli- 1 Fighest loca-ref
H o H . H H . shortes pat -
cies fit these simple rules: for instance, in some cases dipteul ound lers 3. lowest origin type
links between two ASes, the policies may vary even betwes i — 4. lowest MED
. . . . 5. eBGP over iBGP
Our approach to all of these issues is to remain agnostict atitat 6. lowest IGP cost
practices occur or do not occur in the current Internet. Wema Inbound fers z '°Wes‘i°“‘5f"d (Outbound Mers ). » Peer m)
minimal assumptions about inter-domain routing, and letdhta BGP routing table
speak for itself.
Of course, it is impossible to infer all of the internal dédaif an Figure 1: Operation of a BGP router.

AS'’s policies. We are not seeking to reverse engineer thegriat.
Our model does not necessarily correspond to the policieshe

used by the ASes. Rather the results are analogous to thén@®P ( tempting to model, and incorporate dynamic informatiom iatir

rior Gateway Protocol) link weights inferred by Rocketf{#9,20], predictions is a worthwhile goal (for example see [28]), lreyond
which do not correspond to those of the real networks ingatt, the scope of this paper.
but are nevertheless useful in understanding intra-dornagiolo- To summarize our contributions: We present a methodology fo
gies. In this paper, we introduce policies into our AS-nogtinodel deriving an AS-routing model that can reproduce all obsAS-
with the goal of making predictions about the behavior ofbno  paths, and predict unobserved routes with reasonableamycufur-
served paths. thermore we show the importance of considering more than one
Likewise, we do not seek to reproduce a Rocketfuel-like de- router per AS and accommodate a wide range of policies. Amoth
tailed intra- and inter-domain connectivity map [20], asigns major distinction of our work is that we use simulations téime
ficant part of this information is not used in determining tesu our model based on a large set of BGP data from diverse vantage
Rather, we shall build topological models incorporatintyanand points but evaluate the results using a separate set of B&Bgea
inter-domain information at the minimum level of detail ded to points.

explain the observed routing in the Internet. The resulsingplic-
ity allows us to derive insight into the relationship betweeuting 2. REVIEW OF INTER-DOMAIN ROUTING

pglt'g('jez’c%fg t?\lc\e/elLstlg’ngtn\(/jvimgu?ck:;\?ilnmgcﬁwé)c:értehgmal-e BGP routers exchange routing information over BGP sessions
gf the routing inside an AS [21]. It gives 35 the abilit todenir?e External BGP (eBGP) sessions are established over intaatio
9 19 y links, i.e., links between two different ASes (BGP peershilev

prt(e;:lljs;e;y vvrgircehl?;eggch:iege::I?hn;a}ggg 2?%3?(\;\{“”1”;?6 oloav and internal BGP (iBGP) sessions are established between therso
pp 9 pology within an AS. Through its BGP sessions, each router receines

policy model that is consistent with the observed routintha In- S )
ternet. To this end we exploit BGP observations from mora tha Eéosgzgaéiz %(;Eerrc;l:éisrf(?l:tge:g\r/]::tliosgrFr)1reerf1|th eZ'SASESWZr?EHEEEM
thirteen hundred observations points (including Routesi¢l3], g o ' .
RIPE [22], and a number of other sources). We separate theseAdmlnlstrators specify input filters per BGP peer, whichased to
into two datasets: a training dataset, and a validationsdatal he gg\(/::rrt?sgpnaecr::teizt?atz:felgtz%mt:;%h‘gee;r}:pi?\;ﬁ{:fﬁmgn;fécm? r
gsggp\?eze:c:jt:]nsed\}\?ebﬁgig L(;Fi)r?lOgysgpgfps(?lrlr%?:ti%?ﬁsggﬁit with the routes originated at this router in the incoming fRay

g. 9 Information Base (RIB-In) for the peer, possibly after soofi¢he

?nviiirnizln:g:eo?ttgeglrc'ft'c;rgges;ir::beghg'nszgt'rzn ljli?régigdrlr:;?mﬁ route attributes have been modified according to the loaging
pology policy 9 q policies. Next, the BGP decision process is used to seledight

served routing. We accommodate path diversity by creatinlgi-m f h orefix f h ilabl Thi
le quasi-routers within each AS. A quasi-router represerfroup route or €ach prefix trom among.t € avariab'e routes. oS route
gf routers all making the samel choice about best route, and soIs then placed into the BGP routing table, which we will alse r
Y ! fer to as theRIB-Out Finally, administrators may specify output

the *quasi-router topology” does not represent @he phj(smaer filters for each peer, which are used to decide which beséesaat
topology of a network, but rather the logical partitionirfgtse pol- propagate to a BGP neighbor.

icy rules. Importantly, we try to minimize the assumptiorsmwake The BGP decision process consists of a sequence of elimmati

about “likely” policies, e.g., we do not assume that rela$ioips steps. Its final goal is to select a single best route for avgrgpre-

fall into neat categories. We find that we can build an ASirmut . . ey :
model that matches the trainin ctly However remember fix. For this purpose the BGP decision process considergaleve
9 ¥ ! of the BGP routes attributes. One of the first attributeisl-

itrk:lsslztng)zgzﬁ r?sagz)czgﬂgﬁ:)iﬁer?tnt%tshr?of/?i:]tazatl:\g S:Qu?::;man‘:{: preferenceg(in short,local-pref). As local-pref is a non-transitive
g y e attribute, it can be used to locally rank routes. The next BXGP

c_al use. We test the usefulnes_s of_the model by making a se¢of p tribute examined by the BGP decision process isABepath An
dictions about routes, and validating them with the datduebed .
from training. We find that we can match the predictions down AS-pathcontains the sequence of ASes that a route crossed to reach
to the final IgGP tie break in more than 80% of tlile test cases seethe current AS. Routes with shorter AS-paths are prefe t
Section 5 0 ' in the evaluation process is timeulti-exit-discriminator(in short,

’ med. This attribute is used to rank routes received from theesam

rol?r:s %a?:;rnﬁcgotr(ﬁ:gc'ﬁ:%lgc;?girlgztgl Wllrt: rgr?gﬁllngahn_iel_t neighbor AS, but it can also be used across neighbors. Tleateth
9ay i y yimp ; cision process ranks routes according to the IGP cost ofitina-i

erable gffort has already gone [nto such modelmg e.9.2347]. domain path towards theext-hop preferring routes with smaller
In our f'.rSt prototy[:_)e for pr_edlctlng Internet behavior wedebthe IGP cost. This rule implements hot-potato routing [29]. &y if
equilibrium behavior of this system, for the (vastly) pradoant there is still more than a single route left, the router bsei#ds, for

case that a stable routlng solution exists. It IS these ldaqu_uutn be- example by selecting the route to the neighbor which hasthedt
haviors that are of most interest for the questions posditeakt- . . .
router-id (typically one of its IP addresses).



Given a set of filters and policies, it is possible to simulde
propagation of BGP routes using simulators such as C-BGP [30
C-BGP’s model for the inter-domain routing protocol rel@sthe
computation of the paths that routers know once the BGPnguti
has converged [23]. For this purpose, it models the propagat
of BGP messages and reproduces the selection performedhby ea
router [31].

3. DOMAINS AS SIMPLE NODES

In this section, we use measured routing data to illustiage t
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need to go beyond treating ASes as simple nodes in a graph. We

first analyze the degree of route diversity present in theeoiin-
ternet and then examine the limitations of single-node ASiet®
for predicting path choices throughout the Internet adelyaThe

data shows that one must have a way to capture some internal de

tails of routing at least for a subset of ASes.

3.1 BGP data set

There are many different techniques for collecting BGP $eed
from an AS. One of the most common technique is to rely on a
dedicated workstation running a software router that peds a
BGP router inside the AS. We refer to each peering session fro
which we can gather BGP data asabservation pointand the AS
to which we peer as thebservation AS

We use BGP data from more thafBD0 BGP observation points
including those provided by RIPE NCC [22], Routeviews [13],
GEANT [32], and Abilene [33]. The observation points are-con
nected to more than 700 ASes, and in 30% of these ASes we hav
feeds from multiple different locations. As we are currgnibt
yet interested in the dynamics of BGP we use a static viewef th
routes at a particular point in time. The table dumps pravibe
the route monitors are each taken at slightly different §inwe use
the information provided in these dumps regarding when gerou
was learned to extract those routes that were valid tabtéeeran
Sun, Nov., 13, 2005, at 7:30am UTC, and that were stable in the
sense that they have not changed for at least one hour. Intie f
we are planning to also incorporate the AS-path informafiom
BGP updates. Our dataset contains routes wj#8a 222 differ-
ent AS-pathsbetween 3271, 351 different AS-pairs. We derive an
AS-level topology from the AS-paths. If two ASes are nextacle
other on a path we assume that they have an agreement to gechan
data and are therefore neighbors in the AS-topology graphah®/
able to identify 58903 such edges. We identify level-1 providers
by starting with a small list of providers that are known tatiee-1.

An AS is added to the list of level-1 providers if the resuitinS-
subgraph between level-1 providers is complete, that isjevve
the AS-subgraph to be the largest clique of ASes includingead
ASes. This means that the AS-graph contains edges for all-lev
1 AS-pairs. This results in the following 10 ASes being reddr
to as level-1 providers (174, 209, 701, 1239, 2914, 33569354
3561, 5511, 7018). Note, this list is not complete. Howewadr,
found ASes are well-known tier-1 provider. There af@% ASes
that are neighbors of laevel - 1 provider in the BGP graph. We
refer to these akevel - 2. All other 13174 ASes are grouped
together into the classt her . Of the 21178 ASes 3486 provide
transit for some prefixes in the sense that they appear atdees

in the middle of an AS-path. Among those ASes that do not pro-
vide transit, called stub-ASes, we distinguish betweersehthat
are observed to have a single upstream provider (are sivogiesd)
and those that have multiple providers (are multi-homed.f\é

1We removed AS-path prepending to prevent distraction froen t
task of route propagation.

# distinct AS paths observed between AS—pairs

Figure 2: Histogram of # of distinct AS-paths.

that there are 11 single-homed and 1077 multi-homed ASes.
Single-homed ASes that do not provide transit only add &ohih-
formation about the AS-topology as long as any path infoilonat
gathered from prefixes originated at such stub-ASes is femt
to a prefix originated at its AS neighbor. Removing singleaked
stub-ASes and AS-paths with loops from the AS-topology ltesu
in a graph with 14563 nodes and 5288 edges. Note, our data
does not cover the complete AS topology [34] since not all &S r
lationships are observable in our data. There are relgtivere
observation points in the level-1 and level-2 ASes than énatiher
ASes. Therefore it is likely that AS-relationships invalgilevel-2

roviders are missing. Yet, their impact with regards tdirmucan

e expected to be less significant.

3.2 Route diversity in the Internet

To investigate the significance of route diversity in thestnet
we examine how many different routes can be seen for each orig
nating and observation AS pair (over all prefixes adverttsethe
origin). Figure 2 plots a histogram of the number of distiA&-
paths using a logarithmic y-axis. Note, that for more thago 3
the AS-pairs we see more than one AS-path. Indeed, thereae m
than 5000 pairs with more than 10 different paths.

Each AS may originate multiple prefixes and an AS-path may be
used by many prefixes. Indeed, we find that there are very popu-
lar AS-paths used by more than0DO different prefixes while the
number of AS-paths that are only used by a single prefix is less
than 50%. When plotting the histogram of how many prefixes are
propagated along an AS-path on a log-log plot, one can seearli
relationship (plot not shown). In terms of route diversite ob-
serve that most prefixes are only propagated through a skfgfle
path. Yet, there are quite a number of prefixes whose projo@gat
samples the full path diversity between two ASes.

Obviously, one router per AS is not sufficient to capture thle f
diversity imposed by intra-domain routing. A single routan only
propagate the route it chooses as best. With multiple reach
router within the AS can select its own best route and pragaiga

To motivate the need for modeling ASes with several routers,
let us consider a concrete example from our data for the prefix
202. 94. 48. 0/ 20 at AS 5511 shown on Figure 3.

AS 24249, which originates this prefix, is multi-homed to two
ASes: AS 4694 and AS 4716. From these two providers the reute i
propagated to five level-1 providers: AS 2914, AS 3356, AS9354
AS 3561, and AS 7911. Since AS 3356 propagates multiple AS-
paths to AS 3356 it needs to be modeled by at least two differen
routers. Which route is propagated can depend on the spgeifip
within the AS. Yet, path diversity within the ASes is only pally
responsible for the route diversity. Another reason is &ngd in-
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ship utilizing the valley-free assumption [15, 16, 18]. Warshy
declaring all links between the level-1 ASes as peering hed it-

Figure 3: Example of path diversity. eratively infer customer-provider relationships. We fyeour clas-

sification by using data from several ASes whose peeringyoli

[ Percentile [25[50] 7590959899 100 | we have access to. This results in @47 customer-provider peers,
max # of 7,290 peering relationships, and 640 siblings. All other sdwpn-
unique AS-path|| 1| 2| 4| 5| 7|10| 10| 23 not be classified. We then realized appropriate policieedas

the local-pref BGP attribute and route filtéiis the simulator and
rerun the simulations. The results are fairly discouragiitg only
12.5% agreement on the AS-paths. The main problem is that for a
L ) . lot of the prefix/observation point combinations the obsenAS
terconnectivity in the core of the Internet; in this case 5 afu8 does not learn the “correct” path. Overall, this indicatémwaaccu-
AS-paths. Still AS 3356 needs eight routers to propagateadlis racy for AS-path prediction, if an AS-routing model is sglbhased
further downstream. o _ on AS-relationship inference.

To judge how much of the path diversity is due to multiple esut Unfortunately, an agreement of less tha# for the selected best
per ASes rather than multiple routes from different ASes eterd AS-paths and just above/2 for the available AS-path, while not
mine the distribution of the maximum number of distinct wréq too bad, is not sufficient to answer, e.g., what-if questisush as
paths each AS receives towards any destination prefix. Ehigv how the routing in the Internet would change if a peering iseat!
is a lower bound on how many routers are needed inside an AS to, de-peering of some provider occurs. Accordingly, we iis th
propagate all these paths to downstream ASes. Table 1 shews t 4per tackle the task of deriving more accurate models.dardo
larger quantiles of this distribution. We observe that nthes 50% account for route diversity and to predict unobserved heepaths,

of the ASes receive two unique AS-paths for at least onersti  \ye allow forrouting policiesas well as fomultiple routersinside
tion prefix, 10% more than 5, and 2% more than 10, respectively ASes.

This highlights the importance of not loosing such path iditg.

Table 1: Maximum route diversity received for all ASes.

3.3 Route diversity in single router models 4. METHODOLOGY _
In the past, large-scale models of routing in the Internet fr  The goal of this section is to propose a methodology for build
quently assume that each AS consists of a single router,[&g. ~ Ng an AS-routing topology model that captures the outcorine o
To judge how appropriate this is for answering practicalstjoes the routing poI|C|e§ and the internal structgre of all AS(ersn‘ ob-
we now examine how accurately it can predict AS-path choices served BGP data in order to answer practical questions abotit
throughout the Internet. ing. The example question we use to highlight the capadmslitif

We use the BGP simulator C-BGP [30] to compute AS-level OUr model concerns predicting Internet path choices foripusly
paths on the AS-level graph after eliminating the stub-AS#% unobserved AS-paths.

originate one prefix per AS, resulting in 563 prefixes. Origi- We consciously choose an approach which allows for multiple
nating multiple prefixes per AS does not provide more infaiara ~ rOUters, so called quasi-routers, within an AS, and thagi®atic
since at this point we do not consider per-prefix specificopesi about inferred relationships such as customer-providefoapeer-
To evaluate the quality of the model we compare the prediaterd g relationships. After all, the real world knows many wats of

observed AS-paths. Table 2 summarizes the results. Notisurp ~Such relationships [35]. We take the approach of modelingtwh
ingly we have agreement for only Z% of the AS-paths. The W€ actually opserve. In this manner we can avoid many patenti
main problem is again that for slightly less than 50% of the- pr pitfalls that arise from incomplete assumptions or tryingotess

fix/observation point combinations the observing AS doesxien BGP into some fixed schema.

learn the “correct” AS-path. For the remaining.6% only 47% In the following we first introduce the components of our AS-
of the incorrect decisions occur due to the shortest-path st the routing model and then show how one can evaluate its prelicti
BGP-decision process (Figure 1). If a router learns therémtt capabilities. Next, we introduce our principle approact #men
route it seems to be able to choose the “correct” one in rqughl 9ive an example of how to use it for deriving an AS-routing rlod
50% of the cases. from gathered BGP data. Finally, we discuss how to use thesmod

Today’s Internet does not use shortest-AS-path routing @s w for predicting previously unconsidered AS-paths, and hownt-
assumed above. Most BGP peerings come with routing policies Prove it for previously unconsidered prefixes.
of which the most common ones can be classified as customer-2\\e treat siblings in the same manner as peerings relatjgsshi

provider and/or peering relationships. Relying on the B@R&d  and set the same local-preference for unknown AS edges as for
we use a simple heuristic for inferring customer-providsation- peerings.




4.1 Components of the AS-routing model

The AS-routing model should be capable of predicting Alev
paths, as used in the Internet, and so it needs to have a rajtion
inter-domain connectivity. Since it should capture the actpof
intra-domain routing it needs to account for the diversitgd aon-
nectivity within each AS. Furthermore, as BGP is used to @npl
ment policies, we must accommodate this in our model.

Based on these criteria and the fact that we do not yet canside

BGP dynamics, we propose to use a class of topology models tha

can also be used as input to the C-BGP simulator [21, 30]. ®-BG
is designed for studying the propagation of routing infotiora
along a topology model that consists of multiple ASes. Ibwad
multiple routers within an AS, the setup of BGP sessions betw
any pair of routers, and supports iBGP as well as eBGP. To-prop
agate routing information, C-BGP models the propagatioBGP
messages and executes the BGP decision process basediog rout
policies. Hence, C-BGP’s routing model addresses all ayuire-
ments. Since C-BGP only computes the steady-state choite of
BGP routers after the exchange of the BGP messages hasgedver
and not the whole state machine of the BGP routing prototd, i
thus possible to perform large-scale simulations for siqpgkfixes

on topologies with more than 1800 routers split among 1800
ASes in 2 — 45 minutes with 200 MB — 2 GB memory consump-
tion depending on the complexity of the routing policiesBGP’s
capability of simulating large-scale propagation of BGBtes not
only allows us to test how accurately the model can answeexur
ample question, it also enables us to refine an AS-routingeinod
incrementally.

While deriving the model we make the simplification that we
only originate one prefix per AS. This allows us to address¢ue
tions regarding path diversity while keeping the model ngaadble.
For similar reasons we again exclude stub-ASes but keepARei
path to ensure that we do not loose any path information.

We capture the inter-domain connectivity via an AS-topglog
graph as extracted from the BGP data. In order to represent th
intra-domain routing diversity we allow each AS to consisinul-
tiple quasi-routers. Ajuasi-router represents a group of routers
within an AS all making the same choice about best route, and s
the “quasi-router topology” does not represent the physmater
topology of a network, but rather the logical partitioninfgts pol-
icy rules. Each edge (AS 1, AS 2) of the AS-topology is realize
by establishing a BGP session between one or more quasirsout
from AS 1 to one or more quasi-routers from AS 2. Propagation
of routes can be restricted by applying route filters andyantro-
ducing other routing policies.

4.2 Evaluating prediction

C-BGP enables us to predict, using an AS-routing model as in-
put, the AS-path along which the routing information for aomg-
fix, originated at any node, is propagated to any other node.

For a fair evaluation we need one dataset to derive the ABagu
model, callect r ai ni ng, and another separate one, calest
I'i dati on, to evaluate the quality of the AS-routing model. We
divide the available BGP data randomly into two subsets by as
signing observation points to either subset. This pladepaths,
observed at an observation point, into one of the two sub3éts
t rai ni ng set is then used to derive the AS-routing model while
theval i dat i on setis used for evaluation purposes.

An alternative way of slicing the data is to split the set of-AS
paths according to the originating ASes into two subsetse €am
then compare how well an AS-routing model derived from astibs
of the prefixes predicts the AS-paths for another set of prsfix
Furthermore, one can combine both approaches and partitéon

RIB-In
match

Potential &5
RIB-Out
match

RIB-Ou
match

AS37..-07 = simulated paths to p

BGP session

Observation RIB-Out

point RIB-In observed| simulated

AS1 1-4-5-6, 1-7-6| 1-4-5-6 | 1-7-6

AS 2 2-7-6, 2-8-6 2-8-6 2-7-6

AS 3 (router 1) | 3-2-7-6 3-8-6 3-2-7-6

AS 3 (router 2) | 3-8-6 3-8-6 3-8-6

Figure 4: Metrics - Example.

obtainedt r ai ni ng or/andval i dati on subsets according to
the originating AS.

The evaluation proceeds by executing a C-BGP simulation for
each prefix and then comparing the predicted AS-path actprdi
to the AS-routing model with the actual observed AS-pathhim t
Internet. In this manner we can evaluate the predictivelmépas
of the model. Since routing decisions are determined irnuidgetly
for each prefix we run a separate simulation for each prefix.

After the simulation runs one has access to the routing finder
tion base (RIB) of all quasi-routers. Therefore, we can nom<
pare for each AS the AS-path that is recorded in the BGP data to
the AS-paths chosen in the simulation. Some mismatchestbave
be expected. We measure the degree of mismatch by detegnifinin
a route with the AS-path is received by a quasi-router widmAS
(RIB-In), if it is selected by a quasi-router (RIB-Out), éiticould
have been selected but was not due to an “unlucky” decision in
the last step of the BGP decision process, the tie-breakesripal
RIB-Out). More precisely we use the following metrics:

RIB-In match: The observed route at an observation point is con-
tained in the simulated RIB-In for at least one quasi-router
in the observed AS. Note, this does not say that the simu-
lated and observed RIB-Ins are the same. as the observation
point only sees the best routes advertised by the monitored
AS. The metric provides an upper bound on the prediction
accuracy — we can only expect a RIB-Out match if we have
a RIB-In match. A RIB-In match is a necessary but not suf-
ficient condition for a RIB-Out match.

Potential RIB-Out match: A RIB-In match where in the process
of choosing a best route the observed route is eliminated in
the last tie-breaking step of the BGP decision process in the
simulation (“Lowest Neighbor IP address”).

RIB-Out match: At least one quasi-router in the AS has selected
the route with the observed AS-path as its best route and
propagates it to its neighbors.

Furthermore we count for how many prefixes we find RIB-Out
matches for at least 50%, 90%, or 100% of their respectivguani
AS-paths.

To visualize the various possibilities Figure 4 shows a toy e
ample with 8 ASes, three observation points (at AS 1, AS 2, and



AS 3) and one prefip originated at AS 6. The dashed arréws
indicate the traffic flows along the observed AS-paths whike t
dotted arrows indicate the paths chosen by the simulatioom- C
sider first AS 1 — its RIB-In contains the learned routes’- 6, p2 at AS 4, and one observation point at AS 1 which observes a
andl- 4- 5- 6 toreach AS 6. The path- 7- 6 is chosen instead of ~ route with AS-pathl- 4- 3 for p1 and routes with paths- 4 and

1- 4- 5- 6, which has been observed in BGP data. This represents 1- 5- 4 for p2. These AS-paths are visualized via dashed lines.
a RIB-In match, but no RIB-Out match. Since the observed AS- The AS-paths currently chosen after a simulation run aréspat
path is longer than the simulated path, the used policieslasely 1- 2- 3 for p1 andl1- 4 for p2 (dotted lines).

wrong. Next, consider AS 2. Once again, we see that there is a  Starting with prefixpl, the heuristic detects that in the simula-
RIB-In match (neighbor AS 8 propagates the “correct” suffitip tions the pathi - 2- 3 is chosen instead of the path4- 3 at AS 1.

to AS 2). But there is no RIB-Out match. In this case, the best This mismatch is due to the fact that in our setup the quasgero
path is chosen “wrongly” in the final BGP tie-break. We calsth  of AS 2 has a lower IP address than the quasi-router at AS 4. To
a potential RIB-Out match, because the choice is made based o correct this “wrong” tie-break decision, our heuristicssep a pol-

ample how to use routing policies and topology diversifaratio
improve the model. Suppose there are five ASes, intercoemest
shown in Figure 5 (a), with two prefixgsl originated at AS 3 and

the tie-breaker. This mismatch is due to an unlucky decisidhe
simulation, rather than using incorrect policies. In reaitng IGP
weights, etc., are also used to break these ties. Finally3 ASs
a RIB-Out match: simulation and observation agree for mo2itef
AS 3.

4.3 Deriving an AS-routing model

In this section, we introduce the details of our iterativprapch
for constructing an AS-routing model based otirai ni ng set
of BGP data from multiple vantage points in the Internet.

icy at the quasi-router in AS 1 to prefer routes learned froghA
for prefix p1. We re-simulate, and now the path4- 3 is selected
instead of the patli- 2- 3 (see Figure 5(b)).

Next, consider the two AS-paths observed for pre@xat AS 1.
A route with the shorter AS-pathh- 4 is already selected by the
quasi-router in AS 1; therefore no changes are required, iivet
order to account for the AS-paflhh 5- 4, a second quasi-router in-
side AS 1 is needed. Therefore, a new quasi-robter created
as an identical copy of the existing quasi-rougewith the same
neighbors as quasi-router(see Figure 5(c)). Thus, quasi-router

We start from the simplest AS-model possible. It consists of b will have a RIB-In match for a route with AS-path 5- 4, but
one quasi-router per AS and contains one edge between any twodoes not select it as best route (the AS-pktH is shorter). In or-

connected ASes of the AS-level graph. Accordingly, this etod

only includes information that is easy to derive from theuingata
set. Then we determine for the ai ni ng set, where the AS-
paths predicted by the current AS-routing model differ frifrose
observed in the Internet (those in theai ni ng set). This can be
due to two reasons: First, the model prefers the shortegpatis-
in the absence of more complex policies. Second, the qoagens
inside an AS do not suffice to capture the required route siityer

der to correct this at routdrof AS 1, two policy rules are used. A
filter at AS 4 prevents routes for prefp2 from being propagated
to quasi-routeb of AS 1 and a ranking policy is set to prefer routes
for p2 announced by AS 4. This ensures that quasi-rduoéAS 1
can select the route with AS-path 5- 4 as its best route.

4.5 Initial model
To derive the initial model we usa| available BGP feeds,r ai -

To reduce the discrepancies between the observed AS-paths a nj ng as well asval i dat i on, to derive an AS-graph from the

those predicted by the model, \atter the model iteratively by ei-
ther adding routing policies or quasi-routers. Adding dasters

AS-path information. Such an AS graph is likely to be incoete)
as it is probable that there are other peerings that are ot oy

enables us to propagate more than one best route to the neat AS  any of the AS-paths recorded at our vantage points. It isiples®

necessity as the data analysis shows (see Sectiofi 82)dding
policy rules we ensure that the appropriate AS-path is tedeand
can be propagated, even though it may not be the shortest one.

further improve the coverage of the AS-graph by adding ittt
observation points or information from the routing poliatabase
or traceroute data. Yet, as these additional data sources adth

We do not aim at inferring the actual policies used by the ASes some uncertainties [36], we only focus on data from our alaser
Rather, it is our goal to derive an AS-routing model where the tjon points.

simulated AS-paths correspond to the observed AS-paththéor

Initially, all ASes consist of a single quasi-router, an@ipegs

trai ni ng set. By doing so we hope to, and indeed do, improve gre established according to the edges of the AS graph. Wext,

the predictive capabilities of the AS-routing model oves thodels

discussed in Section 3.3. We are in this way capable of remgovi

the limitations of the “one router per AS” model of the Intetn
In effect each iteration of the heuristic, see Figure 6, i8S

of comparing the AS-paths predicted by the model to thoskeén t

assign IP address to each quasi-router. This choice is tamtaxs
the IP address is used as the final tie-breaker in the BGPiolecis
process. (In case of a tie a quasi-router prefers the ASspath
nounced by the quasi-router with the lower IP address.) &ftheg,
this choice can directly influence the quality of the predittpro-

trai ni ng data. Based on the results, changes to the model (new cess. We choose to use IP addresses such that the high otules 16

quasi-routers or changes to the policies) are determinedttam
path propagation is re-simulated for all prefixes that afecefd
by the changes. This cycle is repeated until the desired tdve
agreement for ther ai ni ng set is achieved. In the following, we
present more details about the initial model and how thetiter
refinement proceeds.

4.4 Example: refining an AS-routing model

Since any simple AS-routing model with just one quasi-route

per AS is unlikely to match reality, we now illustrate with ar-

3In all figures routes are directed according to the flow ofitaf

4Keep in mind that a quasi-router does not have to correspond t

an actual router. Itis just an entity responsible for routes

are set to the AS number and the low order bits are a uniquerlD fo
each quasi-router within the AS.

4.6 lterative refinement

The goal of the iterative refinement process, see Figuretb, is
modify the AS-routing model until one achieves the desimatll
of agreement between the predicted AS-paths and the oldserve
AS-paths. Accordingly, we now introduce orafinement heuris-
tic which, by adding quasi-routers and BGP policy rules, reduce
the discrepancies between the simulated and observed thS{pa
a set of prefixes.

We have two main reasons for using an iterative process in-
stead of trying to correct the discrepancies in a single. skést,



——  BGP session
------ » AS path observed in BGP data (traffic flow)
------------- » simulated AS path (traffic flow)

(a) observed and simulated AS-paths (b) matching AS-paght 4 (c) matching AS-paths- 4

from AS 1 topl,p2 to pl

andl1- 5- 4 to p2

Figure 5: Heuristic example: applying changes at AS 1 for préixes pl, p2.

ITERATIVE REFINEMENT

run simulations for prefixep (initial model)

repeat until RIB-out match for all observed AS-paths
apply heuristic, compute changes
restart simulations

HEURISTIC (1 ITERATION)
foreach prefix p
foreach AS a
O = (suffixes of) AS-paths fop observed at A&
foreachoe O
if RIB-Out match
no change
mark the quasi-router as used
else ifRIB-In match
duplicate a quasi-router if necessary
add policies: filtering, ranking (MED)
mark the quasi-router as used
elseskip

Figure 6: Model refinement — methodology.

route propagation itself is an iterative process. For thepagh of

1- 2- 3- 4 from the origin (AS 4) to be observable at the obser-

vation point (AS 1), AS 3 first has to select an appropriateeou

and propagate it to AS 2. Then AS 2 has to select this routesas it

best one and propagate it to the observation point. To reped
this step-by-step process in the AS-routing model we moom fr
the origin of the route towards the observation points arahgb
the policies or the topology at the AS where the path chosémein
model differs from the one observed in theai ni ng set. The
change ensures that the desired route is propagated onetA8rfu
towards the observation point in the next iteration. Thise&son-
able since this is a local decision and one does not have¢aiete
how the changes influence the overall route propagationruktfe
local changes. This task is delegated to C-BGP. Accordjrmly
second motivation for the iterative approach is that we ddage
to reimplement the full routing logic of C-BGP to determiret
necessary changes to the AS-routing model. Note that itinem
essary to proceed AS-hop by AS-hop. Rather in each iteratien
determines the AS which is closest to the originating AS witlis-
crepancy between the observed AS-path and the selectesbbtst
and fixes this discrepancy at this AS.

In the following we first introduce our principle approachgh
explain how the policies are adjusted; and finally how they ma
have to be corrected.

Refinement heuristic — principle approach:

The heuristic proceeds prefix-wise starting with the rasoftall
C-BGP simulations runs for all prefixes of the respectivai -

ni ng set based on the initial or previous AS-routing model. For
each prefixp with AS-pathP of thet r ai ni ng set and each AS

a on the path it checks the following conditions and if necessa
takes appropriate actions:

RIB-Out match:

Condition: The observed path up to this AS (the suffix up to
a) is selected as best route by at least one quasi-router
inside the AS.

Action: We choose among this set of quasi-routers the one
with the lowest quasi-router ID and mark/reserve this
quasi-router as being responsible for this AS-path and
not available for matching another observed AS-path
for the same prefix.

RIB-In match but no RIB-Out match:

Condition: There is at least one quasi-router which learns
the observed AS-path up to this AS. But none of the
guasi-routers has selected it as best route and none of
these quasi-routers are already reserved for other routes
for this prefix.

Action: We choose among this set of quasi-routers the one
with the lowest router ID and mark/reserve it as being
responsible for this AS-path. Then we adjust this pre-
fix’ BGP policy at this quasi-router by either adding
filters or setting MED values as described below.

Condition: Same as above but all quasi-routers are already
reserved for other routes for this prefix.

Action: In this case we choose to “duplicate” one quasi-
router with a RIB-In match. The new quasi-router has
the same neighbors and policies as the copied one to
ensure that it also has a RIB-In match for the prefix
Then the BGP policy for this prefix is adjusted as in the
previous case.



No RIB-In match:

Condition: No quasi-router at the current AS has learned a
route with the observed AS-path.

Action: No action as a route with an appropriate AS-path
first has to be propagated to this AS.

Refinement heuristic — policy adjustment:
Two ideas are central to our refinement process: First, n@sgigu
routers are added to account for path diversity. Yet, coptathe
routers in the Internet we do not establish iIBGP sessionsdest
the quasi-routers within an AS. Experiments with such amaggh
have shown that it is extremely difficult to control routeesgion,
in particular to install different routes at neighboringdB routers.
Therefore, we choose to use quasi-routers instead of souEarch
new quasi-router receives the appropriate routes by datpig the
BGP sessions to the neighboring ASes but remains isolateal fr
other quasi-routers inside the AS. In effect we short-dirthe
intra-AS route propagation process. As a result each AS gan ¢
sist of multiple separate quasi-routers which do not exgbaheir
reachability information.

Second, we use policy rules on a per-prefix basis to filter and
rank routes at each selected quasi-router such that the vatit

— —p paths observed in BGP data
p= Simulated paths to p

Figure 7: Necessity of filter deletion.

However, as noted above we are not concerned about reveagise en
neering real policies: rather we aim at understanding thmagnof
routing policy on route diversity.

Refinement heuristic — filter deletion:

the desired AS-path can be selected as the best route. Supposlf one could process all AS-paths in a single step it would dsye

that a quasi-router learns a route with the correct (suffath or a
certain prefix, yet it does not select it as its best route (RiIBatch

to determine when an AS needs multiple quasi-routers togprop
gate AS-paths of different length. Using the iterative psxcthis is

but no RIB-Out match). This can happen at any one of the steps not possible. It can happen that a filter is set while proogstie

in the BGP decision process, see Figure 1. At the same tirae thi
multi-step decision process provides us with many diffeneays in
which we can change the decision: by either adding a politiyeat
current quasi-router or through a filter at the announcirighimr
which ensures that a route is no longer available at the cugrea-
si-router. At this point our goal is not to infer the specifimting
policy used by the AS. Rather we want to account for all pdssib
weird routing policies.

The first step in the decision process is based on the BGP at-

tributelocal-pref It has been shown in [37] that the preference of
routes with longer AS-paths over those with shorter onedezah

to divergence. Attempts to udecal-pref for building our rout-
ing model resulted in divergence problems which are verd lbar
debug. Therefore, we choose to not rely on this attributehéta
we use BGP filters to ensure that routes with shorter AS-gh#rs
the route we are looking for are not propagated to the cugaasi-
router. This is achieved by setting a filter policy for thigfix at the
announcing neighbor. To avoid further reduction of routedity

we do not filter those routes that have the same AS-path leaggth
the one we are looking for. Instead, we take advantage ofeke n
step in the BGP decision process that relies onMIED attribute.

If two routes have the same local-pref and the same AS-patftHe
the one with the lower MED value is selected. We assign a lower
MED value to routes announced by the AS from which the ob-
served AS-path is learned. We require that MED values araysw
compared during the BGP decision process, even for rouaesdd
from different neighbor ASes. Since quasi-routers insidé& are
not connected in our model, no iIBGP divergence can arise [38]
Simply changing the ID of the router does not work as this woul
affect all routes.

It should be noted that our choice of BGP policies - filtering a
MED values - is arbitrary and in general does not corresporidet
policies actually used in the Internet. Infering the actalicies
will be addressed in future work. In the Internet, localfprence
is often used to implement business relationships anddficien-
gineering. Yet, prioritizing AS-paths via MED is also notoam-
mon, as MED allows the realization of cold-potato routin@][3

“shorter AS-path” which stops the “longer AS-path” from hgi
propagated. This filter has thus to be removed in a latertitera
see Figure 7.

Assume that observation point AS 1 observes two routes with
AS-pathsl- 2- 3- 4 and1- 7- 6- 5- 4 for prefix p, originated by
AS 4. Neither of the two AS-paths is selected as best routeawhe
simulating the initial model. The quasi-router at AS 1 clema
route with AS-pathl- 7- 4 to reach prefixp (dotted arrow from
AS 1 to AS 4). However, the heuristic detects a RIB-In match
for 1- 2- 3- 4 at AS 1 during the first iteration. To prevent the
shorter AS-patli- 7- 4 from being propagated to AS 1, a filter at
the egress of AS 7 to AS 1 is set. Restarting the simulationdte
in a RIB-Out match for AS-path- 2- 3- 4.

With regards to the second AS-path 7- 6- 5- 4, the quasi-
router at AS 7 does not select the correct suffix as best path un
a later iteration. However, when it does select it as beserat
cannot propagate it to its neighbor AS 1 due to the egress $itte
during the first iteration. As a consequence, AS 1 does not lea
a route with the observed AS-path 7- 6- 5- 4. When we do not
find a RIB-Out or RIB-In match for a suffix of an observed AS-
path, we check for a RIB-Out match at all announcing neighbor
ASes. Provided that there is a RIB-Out match at this AS we re-
move any filter rule that prevents the propagation of the ofese
AS-path towards the observation point.

The removal of the filter in Figure 7 leads to the creation of a
new quasi-router at AS 1 for a route with AS-pdth7- 6- 5- 4.
After the next iteration the route with this path is selecasdest
route by AS 1 and the above problem is circumvented and pssgre
is ensured and no cycles will occur. Perfect RIB-Out mateires
achieved after a total number of iterations that is a mutifithe
maximum AS-path length.

4.7 Using the AS-routing model for predic-
tions for other prefixes
At this point we can use the AS-routing model derived from a
t rai ni ng set as input to the C-BGP simulator and predict likely
AS-path choices for the prefixes of the ai ni ng set to previ-
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transfer policies from g2 to p > P (to match)

Figure 8: Transfer of policies across prefixes.

ously not considered observation points.

But as the policies are determined on a per-prefix basis itis u
clear so far how to take advantage of the AS-routing modgbfer
dicting AS-paths for prefixes that armt part of thet r ai ni ng
set but for which we have AS-path information for some observ
tion points. One approach is to use multiple iterations ef ri+
finement heuristic with the drawback of ignoring the routpaicy
information accumulated in the AS-routing model derivemhirthe
t rai ni ng set.

To overcome this limitation we introduce tiheuse policy heu-
ristic. The key assumption behind this heuristic is that most ASes
specify their policy rules on a per-peer basis — reflectirggebo-
nomic relationship between peering ASes — and not on a gixpr
basis. Accordingly, independent of the success of thisisiarwe
can improve our understanding of the correlation betweeites
for different prefixes, i.e., whether different prefixes émeated
equally or differently by the policies within an AS. In thdlfawing,
we explainfrom whereandwhich policy rules are reused.

In order to determine from where policy rules are transfitmwe
again proceed prefix by prefix. For each of the new prefixes and
observation points we have an observed AS-patRor each such
AS-path thereuse policy heuristidries to find an AS-patla that
satisfies the following conditions:

1. The AS-patha is part of thet r ai ni ng set, i.e., the input
to the refinement heuristic and the AS-routing model shows
a RIB-Out match foa.

. Both AS-paths end at the same observation points, ie., th
first ASes of both AS-paths are identical. Furthermore we
require that both AS-paths share at least the first two edges.
The underlying assumption is that the policies appliedter t
“new” prefix are the same as for the “old” prefix.

. There is no other AS-paththat satisfies the first two condi-
tions that is longer thaa.

The example shown in Figure 8 illustrates this process fima s
ple topology that consists of five ASes. AS 1 is again our cbser
vation point. Prefixp is originated by AS 4ql by AS 3, andg2
by AS 5. We assume that the AS-paths for prefiggg1- 2- 3)
andg2 (1- 2- 3- 4- 5) result in RIB-Out matches after using the
refinement heuristic to derive an AS-routing model. The ¢@&b
find a sensible policy for prefip with AS-pathl- 2- 3- 4. Since
both AS-pathsX- 2- 3 and1- 2- 3- 4- 5) satisfy the first two con-
ditions, the longer path is selected. In the absence of tBigpath
the shorter one would have been chosen.

Policies, that allow the propagation of AS-pdath2- 3-4-5,
are likely to ensure the propagation of the similar phti2- 3- 4,
too. The underlying assumption is that policies in the imé¢are in
general specified for complete BGP sessions (neighbospasd
not on a per-prefix basis.

In the example of Figure 8, we transfer policies from the sub-
path1- 2- 3- 4 of 1- 2- 3- 4- 5 to the current one fop. If there
is a policy (MED, filter) for prefixg2 alongl1- 2- 3- 4, it is con-
verted into a policy rule for prefiyp. In contrast to the refinement
heuristic, no new quasi-routers are added.

5. RESULTS

In this section we evaluate thefinemenandreuse policy heuris-
tics by using them to derive an AS-routing model for various sets
of t r ai ni ng data, and evaluate their effectiveness using separate
val i dat i on data.

Data:

Ofthe 1,300 BGP observation points, see Section 3.1, we randomly
assign 23 to thet rai ni ng set and the remainder ones to the
val i dati on set. We sub-select the AS-path information from
1,000 ASes and their corresponding paths from bothtthai -

ni ng and theval i dat i on sets to derive our base AS-routing
model. In order to ensure a reasonable coverage of the Ashgra
we include all level-1 ASes as well as randomly selected ASes
of the groups level-2 and other. We refer to this set of prefixe
and their AS-paths gsset A. To evaluate the effectiveness of the
reuse policy heuristieve select two other disjoint sets of prefixes
and their AS-paths in a similar manner. These sets, refeored
pset B andpset C, again consist of D00 randomly chosen pre-
fixes.

Training:
The inference of the AS-routing model uses an iterative gssc
that incrementally refines the model with the goal of aclmigwan
exact match between the AS-paths predicted by the modehend t
trai ni ng set. Figure 9(a) shows the progress of the heuristic
with each iteration as measured in terms of RIB-In matches, p
tential RIB-Out matches and RIB-Out matches. The lengthhef t
longest AS-path is 10, and 11 iterations happen to sufficehieae
our goal of perfect RIB-Out matches. Notice that the earbgpess
of the heuristic is excellent. Just one iteration more thamnbtes
the percentage of RIB-Out matches from524 to 593%, and in-
creases the potential RIB-Out matches and RIB-In matcheste
than 70% and 85% respectively. Given that the average lesfgth
the AS-paths is about it is not surprising that we achieve RIB-
Out matches for all but 5% of the AS-paths after five iteration
Further inspection of the data reveals that matching thepAifis
for some prefixes and some observation points requires nube p
icy adjustments than for others. After the fifth iteration stert to
see a significant number, 238 out of the 1000 prefixes with RIB-
Out matches for all observation points. This number in@sagth
the next iterations via 481 and 683 to 969 after the eighthtiten.
This means that at this point we only have a very small percent
age of unmatched AS-paths. Note that if we do require RIB-Out
matches for 90% of the AS-paths for each prefix, already nine t
40% of the prefixes satisfy this condition after two iteratio For
the other two subsets of prefixgsset B andpset C, even faster
improvements are observable

Validation:

Given an AS-routing model we can now evaluate its prediaae
pabilities for our example question for a different set ofetva-

tion points. We find, based on the subsetvefl i dat i on for
pset A, that we improve our prediction capabilities from.2%
(without routing policies) to 63% for RIB-Out matches, ahave
ignore the final tie-breaking rule of the decision processnf50%

to more than 80% (see Figure 9(b)). For RIB-In matches we see
an improvement from 55% to 93%. Let us point out that the major
improvements happen during the first six iterations.

To judge the qualitative improvement of our results vs. éhes
ported by Mao et al. [7] we point out that our results hold asro
more than 300 observation points rather than 3 ASes and gre si
nificantly better. In terms of RIB-Out matches which cor@spto
exact matchewe have 63% vs. their 35%, 10%, and 3%; in terms
of RIB-In matches which correspond meatchesve have 93% vs.
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Figure 9: Refinement heuristic— Results

M (pset C), that we improve our prediction capabilities by almost
a factor of two from 246% (237%) (without routing policies) to
46.6% (455%) for RIB-Out matches. If we ignore the final tie-
breaking rule of the decision process, the number of PatdRtB-
Out matches increases from .38 (467%) to 590% (583%).
This implies that the assumption that policies are well aagat by
the AS-routing model and that tlreuse policy heuristican take
advantage of this capability. In addition it shows that sahthe
policies are applicable on a per-peer basis. Yet, as we dgetot
H HH perfect matches one should restrain from over-generedizat
Thereuse policy heuristigives an AS-routing model fggset B
© - (0] -0 HHHHH”H = = andpset C which utilizes the results gbset A. If one wants to
2 4 6 810 13 16 19 22 25 28 derive an AS-routing model fggset B/pset Cone can either start
# routers inside ASes (without single router ASes) from thepset A AS-routing model or start from scratch using the
refinement heuristic. With regards to potential RIB-Out chat
Figure 10: # of quasi-routers per AS (ignoring 14,305 ASes we have fopset B after thereuse policy heuristid6.6% vs. 246%
with one quasi-router) for the initial model, after the first iteration @96 vs. 553%, and
after the second iteration 8% vs. 810%. We note that the ad-
ditional information frompset A helps both in terms of progress
their 82%, 64%, and 16%. To better compare the results wesfocu during the early iterations as well as with regards to thelipte
on the same three ASes (7018, 2152, 8121) as Mao et al. movingcapabilities after the initial iterations. Yet, of courbe tAS-routing
them from thet r ai ni ng to theval i dat i on set and rerunning model that utilizes theeuse policy heuristicis based on a much
the refinement heuristic for 200 prefixespsfet A. We find perfect larger knowledge base that has needed significant compuitirie
RIB-In matches for AS 7018, almost perfect matches for AS2215  to derive.
and 442% for AS 8121.

absolute frequency
20 30 40 50 60 70
1 1 1 1 ]
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Revisiting the effectiveness of the refinement heuristic:

The main reason for the effectiveness of our refinement i Even though the heuristics are very effective in terms ofjoteng
that an AS can, if necessary, consist of multiple quasiensutT his AS-paths we also need to investigate how and why they may fail
raises the question how many of these quasi-routers areedeed 'St We point out that it is quite possible for an AS-path ® b
Figure 10 shows a histogram of the number of quasi-routerage  contained bothin ther ai ni ng as well as theral i dat i on set.

for pset A (for those ASes with more than one quasi-router). For 1hiS ¢an occur since we have multiple observation point®ines
almost all ASes (14805) one quasi-router suffices. For 71 we need ASe€s: We happen to have at least one observation point irsetsh
two. Yet, there are 138 ASes that need more than 9 quasirsoute 07 168 ASes. As a result we find that 2% of all AS-paths for
Note, not all of these quasi-routers are needed for all Esfikot pset Aare in both. For the subset of these AS-paths inviiei -
surprisingly, we find that our level-1 ASes are among the A@Es dat i on set we hgve RIB-Out matches by design, in this case for
many quasi-routers. After all, level-1 ASes offer peeriagsjuite 49% of the paths in theal i dat i on set ofpset A.

a number of peering locations, peer with and provide sertoce If the AS-path is not contained in both the ai ni ng and the

many other ASes, and have a sizable backbone network. Most ofV@! I dati on sets then, even though we hope to have configured
the others are level-2 ASes, but there are also some in therot 1€ appropriate policies, the heuristics may have failqitopagate

group. The average number of quasi-routers for level-1 Ases (he route along the observed AS-path. A route may not be propa

Characteristics of the inferred AS-routing model:

17.1, while for all other ASes it is D3. gated in the AS-routing model either due to another poligisien

or due to a missing policy. Given that we do not have trainiagd
Effectiveness of thereuse policy heuristic: from all ASes we have to predict policy choices to some degree
Given an AS-routing model, we can now evaluate its predictiv especially if the data used to derive the AS-routing motlek( -
capabilities for our example question for a different setpoé- ni ng set) does not include an AS-path for all AS-edges. We refer

fixes. We find, based on the subsettafai ni ng for pset B to such AS-edges as uncovered.



# paths| RIB-In | Pot. RIB-Out | Not
Path class RIB-Out found
# uncovered
0 AS-edge 9,486 [ 90.0% 59.1% 43.3% | 10.0%
1 AS-edge 43,823 | 86.3% 74.2% 25.9% 13.7%
2 AS-edges | 5,624 | 34.2% 26.3% 6.6% | 65.8%
3 AS-edges 45 0.0% 0.0% 0.0% | 100.0%

Table 3: Effectiveness of refinement heuristic by uncovereAS-
edges.

Table 3 shows the effectiveness of the refinement heurigtimb
covered edges, considering only AS paths contained in &heé -
dat i on set but not in the r ai ni ng set ofpset A. We find that
the majority of these AS-paths contain at most one uncovaf&d
edge. No AS-path includes more than three uncovered ASsedge
Of these uncovered AS-edges almost all493to be precise, occur
next to the observation point.

are typically partitioned into a few classes which captimermost
common practices in use today [46]. Unfortunately it is &isown
that the reality of routing policies [17] and peering resaships is
far more complex than those few typical classes [46, 47].r&ir
approaches for AS-level topology inference rely on a toptap-
proach. They first define a set of policies and then try to match
those policies with their observations of the system. Yelicpes as
used by ISPs have to realize high-level goals [46]. Assuraimg
kind of consistency of such policies across ASes is quesaiien
especially as in practice, policies are often configured gea
router, or per-peering basis [46]. This means that obseB@B
routes do not even have to be consistent with the high-leiél p
cies of the AS.

Traceroute is one of the most widely used tools for discoxgri
end-to-end paths and can be used in combination with otloés to
to derive AS-level paths [8,9]. These tools require netvamgess.
To overcome this problem Mao et al. [7] proposed a first method
ology for inferring AS-level paths based on presumed BGRimgu

As the number of uncovered edges on an AS-path increases,policies. They find that the accuracy of the estimation ddpem

the likelihood of achieving a RIB-In match for these paths de
creases. For AS-paths with 0 uncovered edges we ha@®®0
RIB-In matches. For paths with 1 uncovered edge we ge3%86
RIB-In matches which further decreases ta234 and 0% for 2
and 3 uncovered AS-edges, respectively. Similar obsenatiold
for potential RIB-Out and RIB-Out matches. As shown in Takle

the precision of the AS relationship inference and the tgtiti in-
corporate additional information regarding the first hop.

7. CONCLUSION

This paper makes four fundamental contributions. Firstlg,

the percentages of RIB-In matches do not decrease as fdse as t Show that AS topologies using a single router are limitedey th
ones for RIB-Out matches when there are uncovered AS-edges o ¢annot hope to capture all kinds of route diversity in theinet

the path. This is not surprising as RIB-In matches are noeas s
sible to the specific policy choices. These results agrek thie
intuition behind Mao’s et al. [7] approach. If one can detieren
the first hop then the uncertainty about the remaining A%t
reduced.

In order to predict how good our results can be for arbityaril
chosen observation points, we randomly select a setGifl6ASes
and compute for all possible originating ASes how many uaoey
AS-edges one may have to predict. We find that {380 there is
no uncovered edge. For B8, 367%, 66% there are one, two,
and three, respectively. Only2B6 require more than three. These
numbers are a bit more pessimistic than for our data sets.a¥et

today. This is in contrast to the majority of prior work on netidg
the large scale structure of the Internet. Secondly, we dimow
to use simulation-based heuristics to iteratively buildd&model
that is consistent withll observed paths. Thirdly, we show that the
model can be used to predict previously unobserved AS-pattes
accuracy is in practice limited to around 63% due to policgide
sions on parts of the network that we have not previously viese
in our data, and tie-break decisions that are inherentlgt tapre-
dict. Ignoring tie-breaks we reach an accuracy of more tt#.8
Finally, our results provide some insights about the stmacof the
Internet.

Obviously, we shall continue to work on improved heuristizs

shown above we can expect reasonable results, when justrone oincrease the accuracy of our methods. However, there arg man

two AS-edges are uncovered.

6. RELATED WORK

other areas for interesting future work. In particular, vegdonly
considered how well our model answers one type of questiom-H
ever, there are many questions an operator might wish tofask,
instance, what-if they change a policy, or peering arrareggm/\e

Improving our understanding of routing dynamics has been a wish to study such questions in future work both to providacpr

topic of huge interest over the last few years, e.g. [23,24@-42].

tical solutions to operators, and because the results willige

Most of the attention has been given to the dynamics of the BGP insight into how policies are affecting the current Interne

protocol, e.g., to understand why convergence time of BGFbea
rather long [23,24,40]. Oscillations in BGP [43] can ocaae [44]
for a review of their possible causes. Apart from the aspetased
to the time required for BGP to converge, divergence an@sas
defined in [44], are permanent failures of BGP to convergetde/
a stable path. Divergence anomalies stem from two typicses
conflicting eBGP policies [14], and iBGP oscillations [43The
first can be explained within a model that only contains ongeo
per AS, the second cannot.

Recent work has investigated the interactions of routingyaffic
within an AS. Based on data gathered from the Sprint netwsk [
it was shown that the impact of external BGP events on it§i¢raf
matrix is limited. Still hot-potato disruptions [10, 11]rcdave a
significant impact on transit ASes. This highlights thattiog dy-
namics can be complex, even when just looking at a single AS.

AS-level topology inference [15,16,18] provides anothiareh-
sion to the complexity of routing in the Internet. Routindipies

Furthermore, the ability to refine instances of our modeived|
to gain insight into what information has to be present inrésed
routing system to account for the observed state. This stated-
ing of the relationships between topology and policies aod h
routing information propagates may be useful input for gleisig
the next inter-domain routing system (e.qg., [48]).
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