Making the Linux TCP stack more
extensible with eBPF

Viet-Hoang Tran, Olivier Bonaventure
(INL, UCLouvain)

Supporting new TCP option

The standard way to extend TCP

But implementation?

requires kernel changes

Supporting new TCP option is hard

True for just experiment

More with deployment: upstreaming patches?

Stand on the shoulders of giants...

Based on TCP-BPF by Lawrence Brakmo

TCP-BPF (since 4.13) already has:
e Hooks at different phases of a TCP connection
or when connection state changes
e Read & write to many fields of tcp_sock
e Indirect access with bpf getsockopt, bpf setsockopt

Add new option: 2 steps

TCP Layer IP Layer

tcp_write_xmit() \

tcp_send_ack() —> tcp_transmit_skb() ——> tcp_options_write() ——=>

/o X

tcp_retransmit()

| BPF VM
[NN] Y V I
adjust tcp_options_size write new option

One more thing: update current MSS

Parse new option

IP Layer TCP layer

/:/ tcp v4 rcv() \
\:* tcp_v6_rcv() /

ip_rcv() tcp_parse_options() ——>

pass new option

TCP-BPF program
processes new option

-
W
U
|
<
=

Overhead

Disable hooks by default

Benchmark:

on local host
trigger on every packet

Overhead: Goodput

Disable hooks by default

Benchmark:

on local host
trigger on every packet

30

N
(%))
1

N
o
1

TCP Throughput Measured by iPerf3 (Gbps)
— [
o %4]

w
1

T
Baseline

T
Insert

T
Insert and Parse

Insert and Parse
and BPF-Setsockopt

Overhead: RTT

Round-Trip Time Measured by iPerf3 (micro-seconds)

100

80 A
(@)
()
. e i o I?
— i i
60 A
40 A
20 A
O Ll 1 1 1
Baseline Insert Insert and Parse Insert and Parse

and BPF-Setsockopt

Use cases

User Timeout Option

TCP User Timeout (UTO):

max time waiting for the ACK of transmitted data
before resetting the connection

RFC 5482: TCP option to announce/request this value

Round-trip time (msec)

Congestion Control Request Option

Sy /,"‘\ s oy Receiver requests the sender to use a
S— /’\ / \\\ ----- bbr desired CC algorithm for the connection
1250 E.g.: Clients specify the preference for
low-latency traffic

1000 A

780

500 -

250 -

0

Time lapsed (sec)

CDF (Difference)

Initial CWND option

1.0
= W2 vs. IW10
A=+ IW4 vs. IW10
=== |[W10 vs. IW10
0.8 4 = IW20 vs. IW10
= W40 vs. IW10
0.6 1
0.4 1
0.2 1
0.0 - T T T 1} T
-600 —-400 —-200 0 200 400 600

Relative PLT to IW10 (ms)

When the receivers know more
about the network bottleneck.

Delayed ACK Option

Motivation: Too many ACKs or too few ACKs is not good.

— The need to know remote’s ACK delay strategy
... or to request the desired configuration

This option carries two values:
Delack timeout: relatively as a fraction of RTT
Segs count: Number of received segs before sending an ACK

What about the middleboxes”?

RFC 6994: “Shared Use of Experimental TCP Options”
(PROPOSED STANDARD)

Network operators “should” support (or fix it otherwise)

Code Status

TCP Option framework

Use case: TCP User Timeout
Use case: Congestion Control
Use case: Initial Window

Use case: Delayed ACK

Caveats

Option size <= 4 Bytes, extensible to 16 Bytes

Decouple from cgroup-v2?

Kernel changes
75

16

0

0

94

BPF program
76
92
76
77

Making the Linux TCP stack more
extensible with eBPF

Making the Linux MPTCP stack more
extensible with eBPF

Path Manager

Which path to create/remove? Which address to announce?

— Should be controlled by application / user

Slide from Netdevox12. 19
Smartphone and WiFi icons by Blurred203 and Antl Plasma under CC-by-sa, others from Tango project, public domain

Supporting user-defined Path Managers (PM)

Netlink-based PM framework
+ Available in mptcp-trunk branch (out-of-tree)
+ Control plane in uspace

+ Clean separation
Issues:
- Under high load, netlink messages may be lost

- Need separated facilities to support:

- set/getsockopt (e.g. access subflow-level info)
- TCP state change notification
- policy to refuse the establishment of a subflow

What if eBPF-based approach

+ Performance

+ Built-in support for TCP state tracking

+ Easy to apply custom policy on subflow establishment
- Restricted by current eBPF limits

- Less layering separation?

- BPF program can be called from different contexts — Locking is trickier

Our prototype
To track events: New TCP-BPF callbacks

To store local/remote addresses and subflows: BPF maps

To open a subflow: helper function

New TCP-BPF callbacks to track events

e MPTCP Session created

e MPTCP Session established

e MPTCP Session closed (e.g. fallback to regular TCP)
e Subflow established

e Subflow closed

e Remote IP address added/removed

Open subflows

via helper function mptcp _open_subflow()
e (meta_sk, srclP+port, dstlP+port) as input
e if afield of tuple is unset: use existing or kernel-assigned IP/port
But usually, we are in softirq context: cannot open subflow directly

— Schedule a workqueue instead

— subflow is actually opened later

Examples

Two minimal PMs were implemented as BPF programs:

ndiffports PM: ~20 LoCs

fullmesh PM: ~200 LoCs

Open issues

Handle events of local IP address changed:
Need to send events to each BPF program in each cgroup

Open subflows: more than one work in workqueue?

Remove subflows: (already done automatically in kernel when
receiving a REMOVE_ADDR option)

Dual-stack support: would be similar to bpf bind()?

Multiple PMs? e.g. each PM per netns

Wrap up

More details in our paper

Git repository: https://github.com/hoang-tranviet/tcp-options-bpf

Contact: hoang.tran [.at.] uclouvain.be

https://github.com/hoang-tranviet/tcp-options-bpf

Backup slides

