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Supporting new TCP option

The standard way to extend TCP

But implementation?

requires kernel changes



Supporting new TCP option is hard

True for just experiment

More with deployment: upstreaming patches?



Stand on the shoulders of giants...

Based on TCP-BPF by Lawrence Brakmo

TCP-BPF (since 4.13) already has:
e Hooks at different phases of a TCP connection
or when connection state changes
e Read & write to many fields of tcp_sock
e Indirect access with bpf getsockopt, bpf setsockopt



Add new option: 2 steps

TCP Layer IP Layer

tcp_write_xmit() \

tcp_send_ack() —> tcp_transmit_skb() ——> tcp_options_write() ——=>
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One more thing: update current MSS



Parse new option

IP Layer TCP layer

/:/ tcp v4 rcv() \
\:\* tcp_v6_rcv() /

ip_rcv() tcp_parse_options() ——>

pass new option

TCP-BPF program
processes new option
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Overhead

Disable hooks by default

Benchmark:

on local host
trigger on every packet



Overhead: Goodput

Disable hooks by default

Benchmark:

on local host
trigger on every packet
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Overhead: RTT

Round-Trip Time Measured by iPerf3 (micro-seconds)
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Use cases



User Timeout Option

TCP User Timeout (UTO):

max time waiting for the ACK of transmitted data
before resetting the connection

RFC 5482: TCP option to announce/request this value



Round-trip time (msec)

Congestion Control Request Option

Sy /,"‘\ s oy Receiver requests the sender to use a
S— /’\ / \\\ ----- bbr desired CC algorithm for the connection
1250 E.g.: Clients specify the preference for
low-latency traffic
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CDF (Difference)

Initial CWND option
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When the receivers know more
about the network bottleneck.



Delayed ACK Option

Motivation: Too many ACKs or too few ACKs is not good.

— The need to know remote’s ACK delay strategy
... or to request the desired configuration

This option carries two values:
Delack timeout: relatively as a fraction of RTT
Segs count: Number of received segs before sending an ACK



What about the middleboxes”?

RFC 6994: “Shared Use of Experimental TCP Options”
(PROPOSED STANDARD)

Network operators “should” support (or fix it otherwise)



Code Status

TCP Option framework

Use case: TCP User Timeout
Use case: Congestion Control
Use case: Initial Window

Use case: Delayed ACK

Caveats

Option size <= 4 Bytes, extensible to 16 Bytes

Decouple from cgroup-v2?

Kernel changes
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Making the Linux TCP stack more
extensible with eBPF



Making the Linux MPTCP stack more
extensible with eBPF



Path Manager

Which path to create/remove? Which address to announce?

— Should be controlled by application / user

Slide from Netdevox12. 19
Smartphone and WiFi icons by Blurred203 and Antl Plasma under CC-by-sa, others from Tango project, public domain



Supporting user-defined Path Managers (PM)

Netlink-based PM framework
+ Available in mptcp-trunk branch (out-of-tree)
+ Control plane in uspace

+ Clean separation
Issues:
- Under high load, netlink messages may be lost

- Need separated facilities to support:

- set/getsockopt (e.g. access subflow-level info)
- TCP state change notification
- policy to refuse the establishment of a subflow



What if eBPF-based approach

+ Performance

+ Built-in support for TCP state tracking

+ Easy to apply custom policy on subflow establishment
- Restricted by current eBPF limits

- Less layering separation?

- BPF program can be called from different contexts — Locking is trickier



Our prototype
To track events: New TCP-BPF callbacks

To store local/remote addresses and subflows: BPF maps

To open a subflow: helper function



New TCP-BPF callbacks to track events

e MPTCP Session created

e MPTCP Session established

e MPTCP Session closed (e.g. fallback to regular TCP)
e Subflow established

e Subflow closed

e Remote IP address added/removed



Open subflows

via helper function mptcp _open_subflow()
e (meta_sk, srclP+port, dstlP+port) as input
e if afield of tuple is unset: use existing or kernel-assigned IP/port
But usually, we are in softirq context: cannot open subflow directly

— Schedule a workqueue instead

— subflow is actually opened later



Examples

Two minimal PMs were implemented as BPF programs:

ndiffports PM: ~20 LoCs

fullmesh PM: ~200 LoCs



Open issues

Handle events of local IP address changed:
Need to send events to each BPF program in each cgroup

Open subflows: more than one work in workqueue?

Remove subflows: (already done automatically in kernel when
receiving a REMOVE_ADDR option)

Dual-stack support: would be similar to bpf bind()?

Multiple PMs? e.g. each PM per netns



Wrap up

More details in our paper

Git repository: https://github.com/hoang-tranviet/tcp-options-bpf

Contact: hoang.tran [.at.] uclouvain.be


https://github.com/hoang-tranviet/tcp-options-bpf

Backup slides



