
A First Analysis of Multipath TCP on

Smartphones

Quentin De Coninck1, Matthieu Baerts2, Benjamin Hesmans1, and Olivier
Bonaventure1

1 Université catholique de Louvain, Louvain-la-Neuve, Belgium
{quentin.deconinck, benjamin.hesmans, olivier.bonaventure}@uclouvain.be

2 Tessares SA, Louvain-la-Neuve, Belgium
matthieu.baerts@tessares.net

smartphone.multipath-tcp.org

Abstract. Multipath TCP is a recent TCP extension that enables mul-
tihomed hosts like smartphones to send and receive data over multiple
interfaces. Despite the growing interest in this new TCP extension, little
is known about its behavior with real applications in wireless networks.
This paper analyzes a trace from a SOCKS proxy serving smartphones
using Multipath TCP. This first detailed study of real Multipath TCP
smartphone traffic reveals several interesting points about its behavior in
the wild. It confirms the heterogeneity of wireless and cellular networks
which influences the scheduling of Multipath TCP. The analysis shows
that most of the additional subflows are never used to send data. The
amount of reinjections is also quantified and shows that they are not a
major issue for the deployment of Multipath TCP. With our method-
ology to detect handovers, around a quarter of the connections using
several subflows experience data handovers.

1 Introduction

TCP is the dominant transport protocol, both on the wired Internet and in
wireless networks. Over the years, TCP has evolved and included various opti-
mizations. Multipath TCP is the last major extension to TCP [9], [20]. It enables
a multihomed host to exchange data for a single connection over different inter-
faces.

Multipath TCP was standardized in early 2013. Although the extension is
still young, it is already used to support several commercial services. In Septem-
ber 2013, Apple has deployed Multipath TCP on hundreds of millions of smart-
phones and tablets to improve the user experience for the Siri voice recognition
application. In July 2015, Korean Telecom announced that they have enabled
Multipath TCP on Android smartphones to bond WiFi and LTE together. These
smartphones reach download speeds of 800 Mbps and more. In September 2015,
OVH, a French ISP and hosting provider, announced their OverTheBox ser-
vice that uses Multipath TCP to enable SMEs to bond several DSL over cable
links together. Other use cases are being explored and it can be expected that
Multipath TCP traffic will grow in the coming years.

smartphone.multipath-tcp.org

2

Despite the important role that Multipath TCP could play on smartphones,
little is known about its behavior with real applications. Most of the articles
on Multipath TCP performance relied on lab measurements [15], [19] or were
carried out with test applications [1], [7, 8].

This paper provides the first detailed analysis of the operation of Multi-
path TCP on smartphones used by real users. Since Multipath TCP is not yet
deployed on Internet and cloud servers, installing a Multipath TCP kernel is
not sufficient to automatically generate Multipath TCP traffic. To benefit from
Multipath TCP, a SOCKS proxy had to be installed on a server supporting Mul-
tipath TCP and the smartphones were configured to use the SOCKS server as
their relay for all connections. This is the same setup as KT’s commercial de-
ployment. By sharing the studied trace, the measurement tools and the analysis,
this paper improves our understanding of the dynamics of this new protocol.

This paper is organized as follows. It first provides a brief overview of Multi-
path TCP and discusses related work in Sect. 2. It describes the collected dataset
in Sect. 3 and gives first characteristics in Sect. 4. In Sect. 5, it takes a closer
look at the performances of Multipath TCP. It concludes in Sect. 6 with the
main lessons that we learned from this first detailed analysis of Multipath TCP
packet traces.

2 Multipath TCP and Related Work

Multipath TCP is a recent TCP extension that enables the transmission of
the data belonging to one connection over different paths or interfaces [9]. A
Multipath TCP connection is a logical association that provides a bytestream
service. To understand its operation, let us see briefly an example on how a
smartphone could use Multipath TCP. To request the utilization of Multipath
TCP, the smartphone adds the MP CAPABLE option in SYN segment sent over
its cellular interface. This option contains some flags and a key [9]. If the server
supports Multipath TCP, it includes its key in the MP CAPABLE option sent in the
SYN+ACK. According to the Multipath TCP terminology, this TCP connection
is called the initial subflow [9]. The smartphone can use it to exchange data
over the cellular interface. If the smartphone wants to also send data for this
connection over its WiFi interface, it sends a new SYN segment with the MP JOIN

option over this interface. This option contains a token derived from the key
announced by the server in the MP CAPABLE option. This token identifies the
Multipath TCP connection on the server side. The server replies with a SYN+ACK
containing the MP JOIN option and the second subflow is established. At this
stage, the Multipath TCP connection contains two subflows, but this number
is not fixed. The WiFi subflow can stop when the smartphone goes away from
access point. At this point, the smartphone can advertise the proxy that it lost
one address through a REMOVE ADDR sent unreliably in TCP options. Another
subflow can be created when another IP address is learned from a different access
point. Multipath TCP sends data over any of the available subflows. Two levels
of sequence numbers are used by Multipath TCP : the regular TCP sequence

3

number and the Data Sequence Number (DSN). The DSN corresponds to the
Multipath TCP bytestream and when data is sent over a subflow, its DSN is
mapped to the regular sequence numbers with the DSS option that also contains
DSN acknowledgements. When losses occur, Multipath TCP can retransmit data
over a different subflow. This operation is called a reinjection [20].

The operation of a Multipath TCP implementation depends on several al-
gorithms that are not standardized by the IETF. First, the path manager de-
fines the strategy used to create and delete subflows. The smartphones use the
full-mesh path manager that creates one subflow over each pair of interfaces as
soon as the initial subflow has been fully established or as soon as a new address
has been learned. Second, the packet scheduler [16] selects, among the active
subflows that have an open congestion window, the subflow that will be used to
send the data. The smartphones and the proxy used the default Multipath TCP
scheduler in the Linux kernel that prefers the subflow with the smallest RTT.
Third, the congestion controller. Here, the standard one (LIA) was used.

Various researchers have analyzed the performance of Multipath TCP through
measurements. Raiciu et al. [19] discuss how Multipath TCP can be used to sup-
port mobile devices and provide early measurement results. Paasch et al. [15]
propose three modes for the operation of Multipath TCP in wireless networks
and analyse measurements of handovers. Chen et al. [1] analyze the performance
of Multipath TCP in WiFi/cellular networks by using bulk transfer applica-
tions running on laptops. Ferlin et al. [8] analyze how Multipath TCP reacts to
bufferbloat and propose a mitigation technique. As of this writing, this mitiga-
tion technique has not been included in the Linux Multipath TCP implemen-
tation. Ferlin et al. [7] propose a probing technique to detect low performing
paths and evaluates it in wireless networks. Deng et al. [4] compare the perfor-
mance of single-path TCP over WiFi and LTE networks with Multipath TCP on
multi-homed devices by using active measurements and replaying HTTP traffic
observed on mobile applications. They show that Multipath TCP provides ben-
efits for long flows but not for short ones, for which the selection of interface
for the initial subflow is important from a performance viewpoint. Hesmans et
al. [11] analyze a one week-long server trace supporting Multipath TCP.

3 Dataset

Although Multipath TCP is already used by hundred of millions of Apple smart-
phones to support the Siri voice recognition application, it is difficult to collect
both WiFi and cellular traces without cooperation from an ISP. Instead, a Mul-
tipath TCP capable SOCKS proxy was set up (like KT) and this analysis focuses
on the Multipath TCP implementation in the Linux kernel [14]. This implemen-
tation is distributed from http://multipath-tcp.org and can be integrated in
Android.

The dataset covers the traffic produced by a dozen of users using Nexus 5
smartphones running Android 4.4 with a modified Linux kernel that includes
Multipath TCP v0.89.5. These users were either professors, PhD or Master stu-

http://multipath-tcp.org

4

dents at Université catholique de Louvain. While some of them used their device
to go only on the Internet, others are still using them as their main phone.
However, installing Multipath TCP on the smartphones is not sufficient to use
it for all connections established by applications. As of this writing, there are
probably only a few dozens of Multipath TCP enabled servers on the Internet
and these are rarely accessed by real smartphone applications. To force these
applications to use Multipath TCP, ShadowSocks1 was installed on each smart-
phone and configured to use a SOCKS server that supports Multipath TCP for
all TCP connections. Note that since ShadowSocks does not support IPv6, this
trace only contains IPv4 packets. The smartphones thus use Multipath TCP over
their WiFi and cellular interfaces to reach the SOCKS server and this server uses
regular TCP to interact with the final destinations. From the server side, all the
connections from the dozen smartphones appear as coming from the SOCKS
server. This implies that the external (cellular or WiFi) IP address of the smart-
phone is not visible to the servers that it contacts. This might affect the operation
of some servers that adapt their behavior (e.g. the initial congestion window) in
function of the client IP address. Moreover, note that the ShadowSocks client
sends DNS requests over TCP.

A special Android application [3] managing the utilization of the cellular
and WiFi interfaces was also installed on each smartphone. Smartphones with
Android 4.4 assume that only one wireless interface is active at a time. When such
a smartphone switches from cellular to WiFi, it automatically resets all existing
TCP connections by using Android specific functions. This application enables
the cellular and WiFi interfaces simultaneously. It also controls the routing tables
and updates the policy routes that are required for Multipath TCP every time
the smartphone connects to a wireless network. Thanks to this application, the
modified Nexus 5 can be used by any user since it does not require any networking
knowledge.

The SOCKS proxy ran tcpdump to collect all the packets exchanged with
the smartphones. Measurements were performed in Belgium from March 8th to
April 28th 2015. Over this period of 7 weeks, more than 71 millions Multipath
TCP packets were collected for a total of 25.4 GBytes over 390,782 Multipath
TCP connections.2 To our knowledge, there is no equivalent public dataset. The
analysis scripts are also open-sourced [2, 3].

4 Characterization of the Trace

The main characteristics of the Multipath TCP connections in the dataset are
first analyzed. The destination ports of the captured packets are not sufficient to
identify the application level protocol. Since the smartphone connects through
a SOCKS proxy, all the packets are sent towards the destination port used by
the proxy (443 to prevent middlebox interferences). The real destination port
is extracted from the SOCKS command sent by the ShadowSocks client at the

1 Available at http://shadowsocks.org.
2 Anonymized traces available: http://crawdad.org/uclouvain/mptcp_smartphone.

http://shadowsocks.org
http://crawdad.org/uclouvain/mptcp_smartphone

5

Table 1. Statistics about destination port fetched by smartphones.

Port # connections % connections Bytes % bytes

53 107,012 27.4 17.4 MB < 0.1

80 103,597 26.5 14,943 MB 58.8

443 104,223 26.7 9,253 MB 36.4

4070 571 0.1 91.7 MB 0.4

5228 10,602 2.7 27.3 MB 0.1

8009 10,765 2.8 0.97 MB < 0.1

Others 54,012 13.8 1,090 MB 4.3

beginning of each connection. As shown on Tab. 1, most of the connections and
data bytes are related to Web traffic. Since ShadowSocks sends DNS requests
over TCP, it is expected to have a large fraction of the connections using port
53. Among other popular port numbers, there are ports 4070 — e.g., used by
Spotify —, Google Services (5228) and Google Chromecast (8009).

65% of the observed connections last less than 10 seconds. In particular, 4.3%
are failed connections, i.e. the first SYN was received and answered by the proxy,
but the third ACK was lost (or a RST occurred). 20.8% of the connections last
more than 100 seconds. Six of them last for more than one entire day (up to
nearly two days).

Looking at the bytes carried by each connection, most (86.9%) of them carry
less than 10 KBytes. In particular, 3.1% of the connections carry between 9 and
11 bytes. Actually, those are empty connections, since the SOCKS command are
7 bytes long, two bytes are consumed by the SYNs and the use of the remaining
two bytes depend on how the connections were closed (RST or FIN). The longest
connection in terms of bytes transported around 450 MBytes and was spread over
five subflows.

5 Analysis

In the following, the analysis will focus on relevant subsets of the trace such
as connections with at least two subflows, connections using at least two sub-
flows or connections experiencing handover. Table 2 gives the characteristics of
these subsets. They are used to analyze how Multipath TCP subflows are cre-
ated (Sect. 5.1), study the heterogeneity of the available networks in terms of
round-trip-times (Sect. 5.2), estimate the packet reordering of Multipath TCP
(Sect. 5.3), study how subflows are used (Sect. 5.4), quantify the reinjection over-
head (Sect. 5.5) and identify connections experiencing handovers (Sect. 5.6).

5.1 Establishment of the subflows

With Multipath TCP, a smartphone can send data over various paths. The
number of subflows that a smartphone creates depends on the number of active
interfaces that it has and on the availability of the wireless networks.

6

Table 2. The different (sub)traces analyzed in this section.

Name Description # connections Bytes to proxy Bytes from proxy

T0 Full trace 390,782 652 MB 24,771 MB

T1 At least 2 established subflows 126,040 238 MB 13,496 MB

T2 At least 2 used subflows 32,889 152 MB 11,856 MB

T3 With handover 8,461 36.7 MB 4,626 MB

Table 3. Number of subflows per Multipath TCP connection.

Number of subflows 1 2 3 4 5 >5

Percentage of connections 67.75% 29.96% 1.07% 0.48% 0.26% 0.48%

Table 3 reports the number of (not necessarily concurrent) subflows that are
observed in T0. Most of the connections only have one subflow. On another side,
2.29% of the connections have more than two subflows. Having more subflows
than the number of network interfaces is a sign of mobility over different WiFi
and/or cellular access points since IPv6 was not used. A connection establishing
42 different subflows was observed.

Another interesting point is the delay between the establishment of the con-
nection (i.e. the first subflow) and the establishment of the other subflows. The
smartphone tries to create subflows shortly after the creation of the Multipath
TCP connection and as soon as a new interface gets an IP address. Late joins can
mainly be expected when a smartphone moves from one network access point
to another. To quantify this effect, Fig. 1 plots the CDF of the delays between
the creation of each Multipath TCP connection and all the additional subflows
that are linked to it. 57.4% of all the additional subflows are established within
200 ms. This percentage increases to 72.2% if this limit is set to one second. If
the analysis is restricted to the first additional subflow, these percentages are
respectively 61.7% and 77.5%. Joins can occur much after the connection is es-
tablished. Indeed, 13.5% of the additional subflows were established one minute
after the establishment of the connection, and 1.5% of them were added one hour
later. The maximal observed delay is 134,563 seconds (more than 37 hours) and
this connection was related to the Google Services. Those late joins suggests
network handovers, and late second subflow establishments can be explained by
smartphones having one network interface unavailable.

5.2 Subflows round-trip-times

From now, we focus on the subtrace T1 that includes all the connections with at
least two subflows. A subflow is established through a three-way handshake like a
TCP connection. Thanks to this exchange, the communicating hosts agree on the
sequence numbers, TCP options and also measure the initial value of the round-
trip-time for the subflow. For the used Linux implementation of Multipath TCP,

7

10-2 10-1 100 101 102 103 104 105 106

Time between MP_JOIN and MP_CAP [s]
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Additional subflows
Second subflows

Fig. 1. Delay between the creation of the
Multipath TCP connection and the estab-
lishment of a subflow.

10-1 100 101 102 103 104 105

RTT [ms]
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Worst - Best

Fig. 2. Difference of average RTT seen by
the proxy between the worst and the best
subflows with at least 3 RTT samples.

the round-trip-time measurement is an important performance metric because
the default packet scheduler prefers the subflows having the lowest round-trip-
times.

To evaluate the round-trip-time heterogeneity of the Multipath TCP con-
nections, the analysis uses tstat [13] to compute the average round-trip-time
over all the subflows that a connection contains. Then, it extracts for each con-
nection the minimum and the maximum of these average round-trip-times. To
have consistent values, it only takes into account the subflows having at least
3 RTT estimation samples. Fig. 2 plots the CDF of the difference in the aver-
age RTT between the subflows having the largest and the smallest RTTs over
all connections in T1. Only 19.4% of the connections are composed of subflows
whose round-trip-times are within 10 ms or less whereas 77.9% have RTTs within
100 ms or less. 3.9 % of the connections experience subflows having 1 seconds
or more of difference in their average RTT. With such network heterogeneity,
if a packet is sent on a low-bandwidth and high-delay subflow s0 and following
packets are sent on another high-bandwidth low-delay one s1, the sender may
encounter head-of-line blocking.

5.3 Multipath TCP acknowledgements

As explained in section 2, Multipath TCP uses two ACK levels: the regular
TCP ACKs at the subflow level and the cumulative Multipath TCP ACKs at
the connection level. It is possible to have some data acknowledged at TCP level
but not at Multipath TCP one, typically if previous data was sent on another
subflow but not yet acknowledged. Fig. 3 plots in red-dotted curve the CDF of
the number of bytes sent by the proxy that are acknowledged by non-duplicate
TCP ACKs. This plot is a weighted CDF where the contribution of each ACK
is weighted by the number of bytes that it acknowledges. In TCP, ACKs of
1428 bytes or less cover 50.7% of all acknowledged bytes and considering ACKs
of 20 KB or less the percentage is 91.1%.

8

The same analysis is now performed by looking at the DSS option that carries
the Multipath TCP Data ACKs with mptcptrace [10]. The green curve in Fig. 3
shows the weighted cumulative distribution of the number of bytes acked per
Data ACK. Compared with the regular TCP ACKs, the Multipath TCP ACKs
cover more bytes. Indeed, 51% of all bytes acknowledged by Multipath TCP are
covered with Data ACKs of 2856 bytes or less, and this percentage increases to
70.6% considering Data ACKs of 20 KB or less.

The difference between the regular TCP ACKs and the Data ACKs is caused
by the reordering that occurs when data is sent over different subflows. Since the
Data ACKs are cumulative they can only be updated once all the previous data
have been received on all subflows. If subflows with very different round-trip-
times are used, it will cause reordering and data will possibly filling the receiver’s
window during a long period. This can also change the way applications read
data which would be more by large bursts instead of small frequent reads. On
mobile devices, such memory footprints should be minimized.

100 101 102 103 104 105 106 107

Acks size [Bytes]
0.0

0.2

0.4

0.6

0.8

1.0

By
te

s
pe

rc
en

ta
ge

MPTCP acks
TCP acks

Fig. 3. Size of the Multipath TCP and
TCP ACKs received by the proxy.

100 101 102 103 104 105

subflow blocks
0.0

0.2

0.4

0.6

0.8

1.0
CD

F
0B-10KB
10KB-100KB
100KB-1MB
>=1MB

Fig. 4. Size of the subflow blocks from
proxy to smartphones on T1.

5.4 Utilization of the subflows

The next question is how data is spread among the subflows. Does Multipath
TCP alternates packets between the different subflows or does it send bursts of
packets ? Again, to be relevant, the subtrace T1 is considered.

To quantify the spread of data, this paper introduces the notion of subflow
block. Intuitively, a subflow block is a sequence of packets from a connection
sent over a given subflow without any packet transmitted over another subflow.
Consider a connection where a host sends N data packets. Number them as
0, ..., N − 1 with 0 the first data packet sent and N − 1 the last one. Let fi de-
note the subflow on which packet i was sent. The nth subflow blocks bn is defined
as bn = {max(bn−1) + 1} ∪ {i | i − 1 ∈ bn and fi = fi−1}, with b0 = {−1} and

9

f
−1 =⊥. As an example, if the proxy sends two data packets on s0, then three
on s1, retransmits the second packet on s0 and sends the last two packets on s1,
we will have b1 = {0, 1}, b2 = {2, 3, 4}, b3 = {5} and b4 = {6, 7}. This notion is
implemented in our analysis scripts [2]. A connection balancing the traffic with
several subflows will produce lot of small subflow blocks whereas a connection
sending all its data over one single subflow will have only one subflow block con-
taining all the connection’s packets. Figure 4 shows the number of subflow blocks
that each connection contains. Each curve contains connections carrying their
labeled amount of total bytes from proxy to smartphones. For most of the large
connections, Multipath TCP balances well the packets over different subflows.
In particular, 26.4% of connections carrying more than 1 MB have more than
100 subflow blocks. As expected, the shorter the connection is, more the subflow
blocks tend to contain most of the connection traffic. For short connections car-
rying less than 10 KBytes, 72.8% of them contain only one subflow block, and
therefore they only use one subflow. This number raises concerns about unused
subflows. If connections having at least two subflows are considered, over their
276,133 subflows, 41.2% of them are unused in both directions. It is worth noting
that nearly all of these unused subflows are actually additional subflows, leading
to 75.6% of unused additional subflows. This is clearly an overhead, since creat-
ing subflows that are not used consumes bytes and energy [18] on smartphones
since the interface over which these subflows are established is kept active.

There are three reasons that explain those unused subflows. Firstly, a sub-
flow can become active after all the data has been exchanged. This happens
frequently since 62.9% of the connections carry less than 2000 bytes of data.
In practice, for 21% of the unused additional subflows the proxy received their
third ACK after that it had finished to send data. Secondly, as suggested in
Sect. 5.2, the difference in round-trip-times between the two available subflows
can be so large that the subflow with the highest RTT is never selected by the
packet scheduler. If the server does not transmit too much data, the congestion
window on the lowest-RTT subflow remains open and the second subflow is not
used. Though, 36.2% of the unused additional subflows have a better RTT for
the newly-established subflow than the other available one. However, 59.9% of
these subflows belong to connections carrying less than 1000 bytes (90.1% less
than 10 KBytes). Thirdly, a subflow can be established as a backup subflow [9].
Indeed, a user can set the cellular subflow as a backup one, e.g., for cost purpose.
2.1% of the unused additional subflows were backup subflows.

5.5 Reinjections and retransmissions

In addition to unused subflows, another Multipath TCP specific overhead is the
reinjections. A reinjection [20] is the transmission of the same data over two or
more subflows. Since by definition, reinjections can only occur on connections
that use at least two subflows, this analysis considers the subtrace T2. A reinjec-
tion can be detected by looking at the Multipath TCP Data Sequence Number
(DSN). If a packet A with DSN x is sent first on the subflow 1 and after another
packet B with the same DSN x is sent on the subflow 2, then B is a reinjection

10

of A. mptcptrace [10] was extended to detect them. A reinjection can occur for
several reasons: (i) handover, (ii) excessive losses over one subflow or (iii) the
utilization of the Opportunistic Retransmission and Penalization (ORP) algo-
rithm [17], [20]. This phenomenon has been shown to limit the performance of
Multipath TCP in some wireless networks [21]. Typically, Multipath TCP rein-
jections are closely coupled with regular TCP retransmissions. Figure 5 shows
the CDF of the reinjections and retransmissions sent by the proxy. The number
of retransmitted and reinjected bytes are normalized with the number of unique
bytes sent by the proxy over each connection. 52.7% of the connections using at
least two subflows experience retransmissions on one of their subflows whereas
reinjections occur on 29.3% of them. This percentage of retransmissions tends
to match previous analysis of TCP on smartphones [6], [12]. 68.7% of T2 connec-
tions have less than 1% of their unique bytes retransmitted, and 85% less than
10%. 79.7% of the connections have less than 1% of their unique bytes reinjected,
and 89.8% less than 10%. Observing more retransmissions than reinjections is
expected since retransmissions can trigger reinjections. In the studied trace,
the impact of reinjections remains limited since over more than 11.8 GBytes of
unique data sent by proxy, there are only 86.8 MB of retransmissions and 65 MB
of reinjections. On some small connections, we observe more retransmitted and
reinjected bytes than the unique bytes. This is because all the data sent over
the connection was retransmitted several times. On Fig. 5 the thousand of con-
nections having a fraction of retransmitted bytes over unique bytes greater or
equal to 1 carried fewer than 10 KB of unique data, and 83.3% of them fewer
than 1 KB. Concerning the reinjections, the few hundred of connections in such
case carried less than 14 KB, 63.4% of them carried less than 1 KB and 76.1%
of them less than 1428 bytes.

10-5 10-4 10-3 10-2 10-1 100 101

Fraction of unique bytes

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Retransmission
Reinjection

Fig. 5. Fraction of bytes that are rein-
jected/retransmitted by the proxy on T2.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of total unique bytes
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Additional SFs

Fig. 6. Fraction of total data bytes on non-
initial subflows sent by the proxy on T3.

11

5.6 Handovers

One of the main benefits of Multipath TCP is that it supports seamless han-
dovers which enables mobility scenarios [9], [15]. A handover is here defined as
a recovery of a failed subflow by another one. A naive solution is to rely on
REMOVE ADDRs to detect handover. However, this TCP option is sent unreliably.
Indeed, 22.1% of the connections experiencing handover have no REMOVE ADDR.

This paper proposes an alternative methodology implemented in [2] that re-
lies on the TCP segments exchanged. Let LAi be the time of the last (non-RST)
ACK sent by the smartphone seen on subflow i (that was used to send data) and
LPj the time of the last (non-retransmitted) segment containing data on subflow
j. If ∃ k, l | k 6= l, no FIN seen from the smartphone on subflow k, LAl > LAk

and LPl > LAk, then the connection experiences handover. Notice that only
handovers on the subflows carrying data are detected. Among the connections
that use at least two subflows, 25.7% experience handover. It has also the ad-
vantage to be implementation independent since it does not use the ADD ADDRs
or REMOVE ADDRs options that are not supported by all implementations [5].

Based on the subtrace T3, Fig. 6 shows the fraction of unique bytes that
were sent by the proxy on the additional subflows on connections experiencing
handover. This illustrates the connections that could not be possible if regular
TCP was used on these mobile devices. Indeed, an handover is typically related
to the mobility of the user who can go out of the reachability of a network.
Notice that this methodology can also detect handover in the smartphone to
proxy flow. Indeed, 20.4% of connections experience handover with all data sent
by the proxy on the initial subflow because the smartphone sent data on another
subflow after having lost the initial one.

6 Conclusion

This work brings the first results about real Multipath TCP traffic on smart-
phones. In addition to analyzing the released trace, this paper proposes tech-
niques to quantify the utilization of the subflows and presents a simple imple-
mentation independent methodology to detect handover. The analysis tools are
also available for the community [2]. The results shows that Multipath TCP
offers benefits for long connections, since it allows seamless handovers. However,
with the default algorithms, the protocol brings some overheads, in particular
with the establishment of unused subflows. This opens new areas of improve-
ments to adapt Multipath TCP with the smartphone case, in particular the
path manager.

Acknowledgements This work was partially supported by the EC within the
FP7 Trilogy2 project. We would like to thank Gregory Detal and Sébastien Barré
for the port of the latest Multipath TCP Linux kernel on the Nexus 5 and Patrick
Delcoigne and his team for the cellular measurements.

12

References

[1] Chen, Y.-C., et al. A measurement-based study of MultiPath TCP performance
over wireless networks. In IMC ’13 (New York, NY, USA), ACM, pp. 455–468.

[2] De Coninck, Q., and Baerts, M. Analysis scripts. http://github.com/

multipath-tcp/mptcp-analysis-scripts, 2015.
[3] De Coninck, Q., et al. Poster: Evaluating android applications with multipath

tcp. In MOBICOM 2015, ACM, pp. 230–232.
[4] Deng, S., et al. WiFi, LTE, or both?: Measuring multi-homed wireless internet

performance. In IMC ’14 (New York, NY, USA), ACM, pp. 181–194.
[5] Eardley, P. Survey of MPTCP Implementations. Internet-Draft draft-eardley-

mptcp-implementations-survey-02, IETF Secretariat, July 2013.
[6] Falaki, H., et al. A first look at traffic on smartphones. In IMC ’10 (Melbourne,

Australia), ACM, pp. 281–287.
[7] Ferlin, S., Dreibholz, T., and Alay, Ö. Multi-path transport over hetero-

geneous wireless networks: Does it really pay off? In Proceedings of the IEEE
GLOBECOM (Austin, Texas/U.S.A., December 2014), IEEE.

[8] Ferlin-Oliveira, S., et al. Tackling the challenge of bufferbloat in multi-path
transport over heterogeneous wireless networks. In Quality of Service (IWQoS),
2014 IEEE 22nd International Symposium of (May 2014), pp. 123–128.

[9] Ford, A., Raiciu, C., Handley, M., and Bonaventure, O. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824, January 2013.

[10] Hesmans, B., and Bonaventure, O. Tracing Multipath TCP connections.
SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 361–362.

[11] Hesmans, B., et al. A first look at real Multipath TCP traffic. In TMA ’15 ,
vol. 9053 of LNCS. Springer International Publishing, 2015, pp. 233–246.

[12] Huang, J., et al. Anatomizing application performance differences on smart-
phones. In MobiSys ’10 , ACM, pp. 165–178.

[13] Mellia, M., et al. Tstat: Tcp statistic and analysis tool. In Quality of Service
in Multiservice IP Networks. Springer, 2003, pp. 145–157.

[14] Paasch, C., Barre, S., et al. Multipath TCP in the Linux Kernel. Available
from http://www.multipath-tcp.org.

[15] Paasch, C., et al. Exploring Mobile/WiFi Handover with Multipath TCP. In
ACM SIGCOMM CellNet workshop (2012), pp. 31–36.

[16] Paasch, C., et al. Experimental evaluation of Multipath TCP schedulers. In
CSWS ’14 (New York, NY, USA), ACM, pp. 27–32.

[17] Paasch, C., et al. On the benefits of applying experimental design to improve
Multipath TCP. In CoNEXT ’13 (New York, NY, USA), ACM, pp. 393–398.

[18] Peng, Q., et al. Energy efficient Multipath TCP for mobile devices. In MobiHoc
’14 (New York, NY, USA), ACM, pp. 257–266.

[19] Raiciu, C., et al. Opportunistic mobility with Multipath TCP. In MobiArch
’11 (New York, NY, USA), ACM, pp. 7–12.

[20] Raiciu, C., et al. How hard can it be? Designing and implementing a deployable
Multipath TCP. In NSDI’12 (Berkeley, CA, USA), USENIX Assoc., pp. 29–29.

[21] sup Lim, Y., et al. Cross-layer path management in multi-path transport pro-
tocol for mobile devices. In INFOCOM 2014 (April 2014), IEEE, pp. 1815–1823.

http://doi.acm.org/10.1145/2504730.2504751
http://doi.acm.org/10.1145/2504730.2504751
http://github.com/multipath-tcp/mptcp-analysis-scripts
http://github.com/multipath-tcp/mptcp-analysis-scripts
http://dx.doi.org/10.1145/2789168.2795165
http://dx.doi.org/10.1145/2789168.2795165
http://doi.acm.org/10.1145/2663716.2663727
http://doi.acm.org/10.1145/2663716.2663727
http://tools.ietf.org/html/draft-eardley-mptcp-implementations-survey-02
http://dx.doi.org/10.1145/1879141.1879176
http://dx.doi.org/10.1109/GLOCOM.2014.7037567
http://dx.doi.org/10.1109/GLOCOM.2014.7037567
http://dx.doi.org/10.1109/IWQoS.2014.6914310
http://dx.doi.org/10.1109/IWQoS.2014.6914310
http://www.rfc-editor.org/rfc/rfc6824.txt
http://www.rfc-editor.org/rfc/rfc6824.txt
http://doi.acm.org/10.1145/2740070.2631453
http://dx.doi.org/10.1007/978-3-319-17172-2_16
http://dx.doi.org/10.1145/1814433.1814452
http://dx.doi.org/10.1145/1814433.1814452
http://www.tlc-networks.polito.it/mellia/papers/Tstat_QoSIP.ps
http://www.multipath-tcp.org
http://doi.acm.org/10.1145/2342468.2342476
http://doi.acm.org/10.1145/2630088.2631977
http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://doi.acm.org/10.1145/2632951.2632971
http://doi.acm.org/10.1145/1999916.1999919
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://dx.doi.org/10.1109/INFOCOM.2014.6848120
http://dx.doi.org/10.1109/INFOCOM.2014.6848120

	A First Analysis of Multipath TCP on Smartphones
	Introduction
	Multipath TCP and Related Work
	Dataset
	Characterization of the Trace
	Analysis
	Establishment of the subflows
	Subflows round-trip-times
	Multipath TCP acknowledgements
	Utilization of the subflows
	Reinjections and retransmissions
	Handovers

	Conclusion

