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Forward Erasure Correction (FEC) provides recovering capabilities
in lossy networks:
o Faster than pure packet retransmissions (reliable transfer)

FEC encoder

FEC decoder
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e Heavily used for real-time applications / ’
Retransmission mechanisms and FEC are costly for resource-constrained I brotected tunne @
devices (e.g. Internet of Things (loT) devices) \’ \ /
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= Implement a FEC mechanism as a service in the network, transpar-
ently for the devices

Protect single links or entire backbone networks

Implementation overview Prototype implementation: https://github.com/louisna/FEC-SRv6-1ibbpf

Leverage IPvb Segment Routing (SRv6) in the Linux kernel:

Repair symbols

e Forward Erasure Correction plugin as an eBPF program

e [ he incoming packets trigger the End.BPF SRv6 action with
User space the corresponding Segment ID in their Segment Routing Header

—————————————— S;ur—ce-syr-n T T T T T T T T T T T kemel ;p; e  elIPv6 Type-Length-Value (TLV) fields carry FEC-related in-

perf events Incoming packets formation such as the Source FEC Payload ID

" Generates and
transmits
_ repair symbols

SRv6 End.BPF

Network stack Source and repair A FEC at the network layer = protect routing information

symbols as packets b sut the packets (source/destination address, . ..)

eBPF maps M eBPF program

Current limite

The support of eBPF in Linux constraints us:

Evaluation over the MQTT pr

| Experimental methodology:
e Protection of IPv6 packets of at most 512 bytes e MQTT: loT protocol over TCP

e Bottleneck user/kernel space communication: . . .
/ P e Simulate losses with a parametrized and
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— Create repair symbols using RLC
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L osses recovery = decrease the number of retransmissions
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Decreasing the plugin overhead with a Contrc

e Analyze a UDP client for 180 seconds

Dynamically (de)activate repair symbols generation:
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o [he FEC decoder regularly sends a feedback with the * lteratively add/remove losses and analyze the im-

measured percentage loss pact of the Controller
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e +* received bytes on the protected link without and
with the controller: the overhead decreases

e The FEC encoder uses a threshold function and
the feedback to (de)activate redundancy generation

e #* received bytes on the server without and with
the controller: only small losses occur
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= Stop redundancy generation/transmission when the

KBytes/second received
(N)
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network is in good condition _
Parameters of the controller: feedback sending rate 0 50 100 150 Losses triggering the redundancy generation again
and threshold value of the decision function Time |s] cannot be recovered without redundancy
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