
SRv6-FEC: Bringing Forward Erasure Correction to IPv6 Segment Routing

Louis Navarre, François Michel, Olivier Bonaventure
navarre.louis@student.uclouvain.be

Université catholique de Louvain, Louvain-la-Neuve, Belgium

SRv6-FEC: Bringing Forward Erasure Correction to IPv6 Segment Routing

Louis Navarre, François Michel, Olivier Bonaventure
navarre.louis@student.uclouvain.be

Université catholique de Louvain, Louvain-la-Neuve, Belgium

Motivation

Forward Erasure Correction (FEC) provides recovering capabilities
in lossy networks:
•Faster than pure packet retransmissions (reliable transfer)

•Heavily used for real-time applications
Retransmission mechanisms and FEC are costly for resource-constrained
devices (e.g. Internet of Things (IoT) devices)
⇒ Implement a FEC mechanism as a service in the network, transpar-
ently for the devices

Deployment architecture

We implement FEC as eBPF programs with the 
End.BPF action from SRv6

FEC decoderFEC encoder

Design of the solution: Global architecture & challenges 2

Protected tunnel

Implementation overview

User space
Kernel space

Network stackeBPF program

User space 
program

Incoming packets
SRv6 End.BPF

Source symbols in
perf events

Repair symbols
Generates and 

transmits 
repair symbols

eBPF maps Source and repair 
symbols as packets

Leverage IPv6 Segment Routing (SRv6) in the Linux kernel:

•Forward Erasure Correction plugin as an eBPF program

•The incoming packets trigger the End.BPF SRv6 action with
the corresponding Segment ID in their Segment Routing Header

• IPv6 Type-Length-Value (TLV) fields carry FEC-related in-
formation such as the Source FEC Payload ID

"! FEC at the network layer ⇒ protect routing information
about the packets (source/destination address, . . . )

Current limitations

The support of eBPF in Linux constraints us:

•Protection of IPv6 packets of at most 512 bytes
•Bottleneck user/kernel space communication:

− Create repair symbols using RLC

− Create and send new packets

Possible improvement: extend the eBPF sup-
port in the Linux kernel with new helpers and
modified limits (e.g. higher instruction limit)

Evaluation over the MQTT protocol

Experimental methodology:

•MQTT: IoT protocol over TCP

•Simulate losses with a parametrized and
reproducible two-states Markov model
using the experimental design

•Measure the mean message time to
send an MQTT message (100 bytes) to
the server and get an MQTT ack

30 40 50 60 70
Mean message time [ms]

0.00

0.25

0.50

0.75

1.00

E
C
D
F

TCP

RLC 8 1

RLC 8 2

RLC 8 4

RLC 4 2

Bandwidth usage overhead on the protected link

100 200 300 400
Bytes sent compared to the TCP baseline [%]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

Baseline TCP

TCP

RLC (+50%)

TCP Source
Symbol

0

50

100

150

200

250

300

S
iz
e
of

th
e
p
ac
ke
t
in

by
te
s

IPv6 Header

Source Symbol SRH

Source TLV

TCP Header

MQTT Payload

0 50 100 150 200 250 300
Packets sent compared to the TCP baseline [%]

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

Baseline TCP

TCP

RLC (+50%)

Decreasing the plugin overhead with a Controller

Dynamically (de)activate repair symbols generation:

•The FEC decoder regularly sends a feedback with the
measured percentage loss

•The FEC encoder uses a threshold function and
the feedback to (de)activate redundancy generation

⇒ Stop redundancy generation/transmission when the
network is in good condition
Parameters of the controller: feedback sending rate
and threshold value of the decision function

0 50 100 150
Time [s]

150

200

250

300

350

K
B
yt
es
/s
ec
on

d
re
ce
iv
ed

•Analyze a UDP client for 180 seconds

• Iteratively add/remove losses and analyze the im-
pact of the Controller

•# received bytes on the protected link without and
with the controller: the overhead decreases

•# received bytes on the server without and with
the controller: only small losses occur

Protect single links or entire backbone networks

Prototype implementation: https://github.com/louisna/FEC-SRv6-libbpf

Losses recovery⇒ decrease the number of retransmissions

220% bytes overhead but a 2
3 code rate Ignoring packet sizes, only 50% overhead

Losses triggering the redundancy generation again
cannot be recovered without redundancy


