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Motivation

Forward Erasure Correction (FEC) provides recovering capabilities
in lossy networks:
•Faster than pure packet retransmissions (reliable transfer)

•Heavily used for real-time applications
Retransmission mechanisms and FEC are costly for resource-constrained
devices (e.g. Internet of Things (IoT) devices)
⇒ Implement a FEC mechanism as a service in the network, transpar-
ently for the devices

Deployment architecture

We implement FEC as eBPF programs with the 
End.BPF action from SRv6
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Design of the solution: Global architecture & challenges 2
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Leverage IPv6 Segment Routing (SRv6) in the Linux kernel:

•Forward Erasure Correction plugin as an eBPF program

•The incoming packets trigger the End.BPF SRv6 action with
the corresponding Segment ID in their Segment Routing Header

• IPv6 Type-Length-Value (TLV) fields carry FEC-related in-
formation such as the Source FEC Payload ID

"! FEC at the network layer ⇒ protect routing information
about the packets (source/destination address, . . . )

Current limitations

The support of eBPF in Linux constraints us:

•Protection of IPv6 packets of at most 512 bytes
•Bottleneck user/kernel space communication:

− Create repair symbols using RLC

− Create and send new packets

Possible improvement: extend the eBPF sup-
port in the Linux kernel with new helpers and
modified limits (e.g. higher instruction limit)

Evaluation over the MQTT protocol

Experimental methodology:

•MQTT: IoT protocol over TCP

•Simulate losses with a parametrized and
reproducible two-states Markov model
using the experimental design

•Measure the mean message time to
send an MQTT message (100 bytes) to
the server and get an MQTT ack
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Decreasing the plugin overhead with a Controller

Dynamically (de)activate repair symbols generation:

•The FEC decoder regularly sends a feedback with the
measured percentage loss

•The FEC encoder uses a threshold function and
the feedback to (de)activate redundancy generation

⇒ Stop redundancy generation/transmission when the
network is in good condition
Parameters of the controller: feedback sending rate
and threshold value of the decision function
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•Analyze a UDP client for 180 seconds

• Iteratively add/remove losses and analyze the im-
pact of the Controller

•# received bytes on the protected link without and
with the controller: the overhead decreases

•# received bytes on the server without and with
the controller: only small losses occur

Protect single links or entire backbone networks

Prototype implementation: https://github.com/louisna/FEC-SRv6-libbpf

Losses recovery⇒ decrease the number of retransmissions

220% bytes overhead but a 2
3 code rate Ignoring packet sizes, only 50% overhead

Losses triggering the redundancy generation again
cannot be recovered without redundancy


