SRvO-FEC: Bringing Forward Erasure Correction to IPv6 Segment Routing

Louis Navarre, Francois Michel, Olivier Bonaventure
navarre.louis@student.uclouvain.Dbe i

Forward Erasure Correction (FEC) provides recovering capabilities
in lossy networks:
o Faster than pure packet retransmissions (reliable transfer)

FEC encoder

FEC decoder

»
-

e Heavily used for real-time applications / ’
Retransmission mechanisms and FEC are costly for resource-constrained I brotected tunne @
devices (e.g. Internet of Things (loT) devices) \’ \ /

L 4

= Implement a FEC mechanism as a service in the network, transpar-
ently for the devices

Protect single links or entire backbone networks

Implementation overview Prototype implementation: https://github.com/louisna/FEC-SRv6-1ibbpf

Leverage IPvb Segment Routing (SRv6) in the Linux kernel:

Repair symbols

e Forward Erasure Correction plugin as an eBPF program

e [he incoming packets trigger the End.BPF SRv6 action with
User space the corresponding Segment ID in their Segment Routing Header

—————————————— S;ur—ce-syr-n T T T T T T T T T T T kemel ;p; e elIPv6 Type-Length-Value (TLV) fields carry FEC-related in-

perf events Incoming packets formation such as the Source FEC Payload ID

" Generates and
transmits
_ repair symbols

SRv6 End.BPF

Network stack Source and repair A FEC at the network layer = protect routing information

symbols as packets b sut the packets (source/destination address, . ..)

eBPF maps M eBPF program

Current limite

The support of eBPF in Linux constraints us:

Evaluation over the MQTT pr

| Experimental methodology:
e Protection of IPv6 packets of at most 512 bytes e MQTT: loT protocol over TCP

e Bottleneck user/kernel space communication: . . .
/ P e Simulate losses with a parametrized and

. -
reproducible two-states Markov model ©U-90-

— Create repair symbols using RLC

— Create and send new packets o i tal desi = H
using the experimental design 0.25] 1 ———- RLC 8 4
Possible improvement: extend the eBPF sup- e Measure the mean message time to S - - RLC 4 2
- - - 0.00 -
port in the Linux kernel with new helpers and send an MQTT message (100 bytes) to = I 5 & =
modified limits (e.g. higher instruction limit) the server and get an MQTT ack Mean message time [ms]

L osses recovery = decrease the number of retransmissions

Bandwidth usage overhead on the protected |

1.0 — 300 1.0 —
f 3 f
0.8- , 2250 ~~ 1Pv6 Header 0.8- l
= . :
! " 2001 " Source Symbol SRH |
0.6 | e = 0.6 _
@ | & 150 'l Source TLV 8 I
a, ——
= - 7 A O 0 O = i t .
0.4 | Baseline TCP p= 10041222 PP ... TCP Header 0.4 | == Baseline TCP
0.2 | Lt S | ~— MQTT Payload 0.2 1 | TCP
. == RLC (+50%) E . == RLC (+50%)
0.0 | . . R I == . 0.0 +— . ' . . .
100 200 300 400 TCP Source 0 50 100 150 200 250 300
Bytes sent compared to the TCP baseline [%)] Symbol Packets sent compared to the TCP baseline [%)]
220 % bytes overhead but a % code rate lgnoring packet sizes, only 50 7 overhead

Decreasing the plugin overhead with a Contrc

e Analyze a UDP client for 180 seconds

Dynamically (de)activate repair symbols generation:

V)
O
-

o [he FEC decoder regularly sends a feedback with the * lteratively add/remove losses and analyze the im-

measured percentage loss pact of the Controller

o
-
-

e +* received bytes on the protected link without and
with the controller: the overhead decreases

e The FEC encoder uses a threshold function and
the feedback to (de)activate redundancy generation

e #* received bytes on the server without and with
the controller: only small losses occur

()
-]
-

= Stop redundancy generation/transmission when the

KBytes/second received
(N)
Ot
-

network is in good condition _
Parameters of the controller: feedback sending rate 0 50 100 150 Losses triggering the redundancy generation again
and threshold value of the decision function Time |s] cannot be recovered without redundancy

—_
@)
-

