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ABSTRACT

TCP has been one of the most important Internet protocols since the early days of this network. The
initial version of TCP assumed that (1) each device has a single interface, and (2) its network address
is permanent. Today's Internet attached devices have multiple interfaces with dynamic addresses. These
deployments do not match anymore the design principles of TCP. By decoupling the transport layer from
the underneath IP layer, Multipath TCP brings several key benefits in a variety of use cases. However, this
major TCP extension is also significantly more complex than the legacy TCP. Despite growing interests
in Multipath TCP, there are still many unknowns about its behaviours and performance in the real world.
Moreover, most Multipath TCP implementations are based on existing TCP stacks which are part of
operating systems kernels. Therefore, it is challenging to build Multipath TCP stacks that adapt to different
network scenarios and user requirements. The purpose of this thesis i...
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P R E A M B L E

The Internet has never ceased to expand since its inception in the 1970s. Now,
it plays a crucial role in almost every field and industry. Internet and other
dedicated IP networks are an essential part of many critical infrastructures: en-
ergy, water supply, heating, agriculture, transportation, banking, etc. Internet
is equally important at the personal level. Equipped with multiple network in-
terfaces, mobile devices now are not only a popular commodity but also a key
element enabling a myriad of personal and professional Internet-connected
services. It is becoming clear that the Internet is a Critical Infrastructure to our
society.

TCP has been a core protocol in the Internet architecture since its inception in
the 1970s. Although TCP has been significantly improved, its basic principles
remain largely the same. Some of these principles are not matched with
reality anymore, including (1) each device has a single interface, and (2) its
network address is permanent. These outdated assumptions prevent TCP from
exploiting the path diversity of the underlying infrastructure, or adapting to
the address changes.

By decoupling the transport layer from the underneath IP layer, Multipath
TCP covers a long-missed resource pooling opportunity from the viewpoint
of end-hosts. This brings several key benefits to the internetworking world.
However, this major TCP extension is also significantly more complex than
the legacy TCP and opens up a much larger design space. Despite grow-
ing interests in Multipath TCP, there are still a lot of unknowns about its
behaviours and performance in the real world. Moreover, instead of being
built from scratch, most MPTCP implementations are based on mature TCP
stacks which typically are in kernel space. Therefore, it is challenging to build
MPTCP stacks adaptable to different network scenarios, user requirements
and objectives.

With the above motivations, the purpose of this thesis is to answer two main
research questions:

• How do Multipath TCP and its current implementations behave and
perform in the Internet?

• How to customize and extend Multipath TCP implementations to adapt
them to current and future use cases?

For the first question, we have conducted two measurement campaigns, one
with traditional traffic types and the other is with voice-activated service. For
the second question, we have explored the capability of eBPF infrastructure
and leveraged it to extend both TCP and Multipath TCP stacks in the Linux
kernel. To be concrete, the main contributions of this thesis are the following:
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Passive measurements of real MPTCP traffic

In Chapter 3, we present the method and notable results of our passive mea-
surement of MPTCP traffic towards a public server (https://multipath-tcp.
org) consecutively during five months. The dataset consisted of nearly 200

thousands of MPTCP connections which carried about 113 GBytes of data. To
our knowledge, it was the largest public MPTCP dataset at the time. The main
insights from this passive measurement include: (1) Multipath TCP correctly
passes through a wide range of Internet paths. (2) Current implementations
of Multipath TCP try to utilise additional paths as quickly as possible. (3)
Multipath TCP could be further improved in terms of traffic overhead and
path management.

Active measurements of voice-recognition traffic using MPTCP

Apple Siri is one of the largest applications of Multipath TCP, but neither
its source code nor traffic datasets are publicly available for the community.
In Chapter 4, we investigate the benefit of using Multipath TCP for voice-
recognition traffic. Leveraging the MONROE mobile broadband testbed, we
conducted active measurements over multiple European wireless networks.
Since changing the kernel of the MONROE nodes is difficult, we adapted
the LKL library to use a custom networking stack without changing the
underlying Linux kernel. Our measurement results with emulated voice-
recognition traffic show that Multipath TCP could help to improve the user-
perceived delay in various network conditions. The latency could be further
reduced by optimizing the scheduler on the server side and adding regular
intermediate responses.

A generic framework to support user-defined TCP options and Multipath TCP options

Since most of matured TCP and MPTCP stacks are implemented in the kernel,
it is difficult and time-consuming to extend them. Given the popularity of both
Linux server and Android clients, we focus on extending the Linux TCP and
MPTCP stacks. In Chapter 5 and Chapter 6, we leverage the eBPF execution
environment to allow users to test and deploy new TCP and MPTCP options
on the fly without constantly recompiling and rebooting the Linux kernel.
This is possible since the eBPF virtual machine provides a safe and secure
environment for executing user code in the kernel in a highly efficient way.
Using our eBPF-based frameworks, we explore four practical use cases of TCP
options and other four use cases of MPTCP options. Two of them are proposed
[195, 196] to be standardized within the IETF MPTCP Working Group.

A generic framework to support user-defined Multipath TCP path managers

Path management of Multipath TCP should be controlled by the users or
applications. Recently, a netlink-based solution has been merged into the
Linux implementation of MPTCP. However, it has a couple of issues: (1) the
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cost of switching context between user space and kernel space, and (2) netlink
messages may be lost. In Chapter 7, we design and implement an alternative
approach using eBPF which is believed to be more deterministic. With this
framework, we implement four path managers as the BPF programs that could
be loaded dynamically by users or system administrators.

All the kernel code, tools, scripts and collected datasets that are used for
this thesis are publicly available at https://github.com/hoang-tranviet/

thesis-resources. Moreover, these eBPF-based frameworks are lightweight,
therefore, it is feasible to upstream them to the mainline Linux or the out-of-
tree MPTCP Linux.
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Part I

B A C K G R O U N D





1I N T R O D U C T I O N

1.1 computer networks - a critical infrastructure

Started as a research project, ARPAnet - the predecessor of the Internet -
initially consisted of four nodes located in four U.S. universities. The work of
Vint Cerf and Robert Kahn [38] envisioned an architecture to connect different
packet-switching networks to form a network of networks, or the Internet. The
architectural principles of this work have been consolidated into the TCP and
IP protocols.

Since then, the Internet has never ceased to expand. Now, it plays a crucial
role in almost every field and industry. The Internet and other dedicated IP
networks themselves are essential parts of traditional critical infrastructures:
energy, water supply, heating, agriculture, transportation, banking, etc.

During the inception of the Internet in the 1970s, its principles were imple-
mented in a single protocol - the original TCP. The need to support unreliable,
non-flow-controlled transport services soon led to the detachment of the IP
protocol from the original TCP, along with the creation of the UDP protocol.
The IP layer provides logical communication, datagram-mode service between
nodes, but it does so without guarantees about the reliability, fairness, etc.
These tasks are delegated to upper protocols, typically TCP.

1.2 transmission control protocol

The Transmission Control Protocol (TCP) was originally designed in 1970s
for reliable transfer in specific environments. Now it is being used in a wide
range of environments, from datacenters having the order of microseconds
delay to satellite networks having the delay of multiple seconds. TCP runs on
low-powered embedded environments with the bandwidth of only a few of
Kbps and it also runs in multi-Gbps networks and beyond.

Sandwiched between the network layer and the application layer, TCP
handles several tasks including multiplexing, connection-oriented service,
bidirectional transfer, reliable transfer, flow control and congestion control. A
protocol supporting these functionalities should be complex, as suggested by
its header format in Fig. 1.1. The basic design principles and operations were
specified in RFC 793 [161].

1.2.1 Connection Management

Each TCP connection is identified by the four tuples: source/destination
addresses and the source/destination ports. These port numbers are in the
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Figure 1.1: TCP Segment Structure Format

first fields of every TCP segment header, which are used for multiplexing
traffic with applications.

TCP supports two end hosts exchanging data on both directions, modeled
as a single stream on each direction. When the application wants to send data,
it passes this byte stream to TCP’s send buffer. Then, TCP separates it into
small chunks that could fit into TCP packets, the size of these chunks are
limited by the maximum segment size (MSS). Each byte in the stream is mapped
to a sequence number. Each packet is marked with the sequence number of the
first byte of the payload. This sequence number is initialized randomly at the
beginning of the connection, and is rotated once it reaches the largest number.
Therefore, it requires two sides to negotiate in a three-way handshake process
to agree on the initial sequence numbers and other parameters used for the
transfer, as shown in Fig. 1.2.

TCP hosts also need to close the connections that are not used anymore
to save their system resources. Normally, a TCP host gracefully closes a con-
nection by sending a TCP segment with FIN flag to signal that the host has
no more data to send, which requires the peer to respond with an acknowl-
edgement. Note that at this point, the connection is only half-closed, the
FIN-initiated host cannot send data anymore but it could still receive data
from its peer. As shown in Fig. 1.3, the stream of the other direction is closed
only after the peer sends its FIN segment and the host sends the acknowledge-
ment for this FIN. The initiator also needs to linger in TIME-WAIT state for as
long as twice the Maximum Segment Lifetime (MSL) to avoid the confusion
with a new connection incarnated on the same 4-tuple. The state transition of
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Figure 1.2: TCP connection handshake

the connection teardown process is more complex than that of the connection
establishment.

RST is a special TCP flag that can be used to close connections abruptly
without handshaking. This may happen when a host is running out of memory
and cannot carry a graceful closure. Another scenario is when a TCP host
(host A) crashed and rebooted, but its peer (host B) still sends traffic to the
host A. Host A needs to tell host B that it does not know about the connection
so host A would send a TCP-RST segment. Once receiving this RST segment,
host B immediately aborts the connection.

1.2.2 Reliable Transfer

To support reliable transfer, TCP must handle packets that are damaged, lost,
duplicated, or out-of-order that happened in lower communication layers.
TCP receivers use the sequence number of each packet to detect and discard
duplicated packets, or to reorder the out-of-order packets. Packet damages are
detected by using the checksum field. TCP receivers send ACK packets with
the sequence number of last accepted byte plus one. This number is called the
acknowledgment number. When a TCP packet is considered lost or corrupted, the
TCP sender simply retransmits this packet. A TCP sender detects packet losses
implicitly in several ways. First, a loss is considered happened when receiving
three duplicate ACK packets from the receiver. A threshold of three packets
is chosen to avoid the confusion caused by out-of-order arrivals. Second, a
stronger indication of loss is when the sender does not receive ACK for the
outstanding packet after a timeout duration. This retransmission timeout (RTO)
is computed based on the measured round-trip-time [156].
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Figure 1.3: TCP connection close

1.2.3 Flow Control and Congestion Control

TCP has a built-in flow control mechanism. TCP receivers store the arrived
packets in their receive buffer. This receive buffer could overflow when the host
memory is exhausted or the application reads incoming data at a rate slower
than the transfer rate. To avoid this problem, TCP receivers advertise their
current available receive buffer size in the window field. This value is usually
adjusted with the window scale option to give the actual receive window. TCP
senders need to make sure that they never send data outside of this window,
otherwise the receivers would drop it.

An important functionality of TCP is congestion control, which has helped
global Internet traffic recovered from congestion collapse in 1986 [115]. When
the arrival rate is larger than the dispatching rate on a node, its data queue
length increases and causes congestion. The congestion problem has many
costs. First, it increases the queuing delay of transmitted packets. Second, since
routers have limited buffer capacity, incoming packets are dropped, causing
the senders to retransmit these lost packets. If the senders do not reduce theirs
sending rate, most of the sent packets are just retransmissions. More generally,
when the total offered load of all TCP senders onto the network infrastructure
is larger than the network capacity, the whole network would cease to serve its
clients. This has happened in 1986 [115], leading to the addition of congestion
control mechanisms into TCP. Congestion control algorithms have to satisfy
multiple goals, which sometimes are mutually conflicting: to detect and avoid
congestion, to maximize the goodput and to minimize the latency while
maintaining the fairness with other co-existing algorithms.



1.3 edge (and core) evolution 7

Application

Transport

IP

DataLink

Physical

IP

DataLink

Physical

Application

Transport

IP

DataLink

Physical

End-host End-hostRouter

DataLink

Physical

Switch

Figure 1.4: Internet path as the original design

Since usually there is no explicit feedback from the network, these algo-
rithms have to infer the congestion from the possible packet loss and the
increase of RTT. It is difficult to infer correctly, and false positives would
harm the performance. Instead, in-network routers that experience conges-
tions could use Explicit Congestion Notification (ECN) signals [72] to provide
ground-truth information about congestions in a timely manner to the end
hosts.

1.3 edge (and core) evolution

The initial design of the Internet was based on the end-to-end principle [176].
End hosts fully handle transport functionalities, while intermediate nodes
like routers and switches take charge of IP services and are unaware of the
transport layer. Therefore, a typical Internet path should be like the one in
Figure 1.4. The Internet topology was highly hierarchical with mostly transit
links in a typical customer-provider relationship [61].

After more than four decades, the network landscape has changed dramati-
cally. These changes are manyfold:

Network capacity increases quickly. The first remarkable trend through
the Internet history is the ever-increasing network capacity, partly thanks to
the rapid progress of the router hardware and of transfer medium technologies
(copper-wires, fibers, wireless, etc...).

Path diversity increases. In the Internet core, the hierarchical structure has
transformed into a flatter topology when the ISPs started peering among
them via the Internet eXchange Points (IXPs) [61]. Also, MPLS-based and
BGP-based traffic engineering techniques [12, 165] increase path diversity in
the core. In the edge, hosts equipped with multiple interfaces are becoming
the norm. Notably, mobile devices are popular and become a commodity even
in many developing countries.
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Figure 1.5: Middleboxes are pervasive in today’s Internet

Services are more diverse and complex. The increase in network capacity
has enabled new service types and models [200]. This trend itself puts more
demand on the global network capacity in a positive feedback loop. For
example, the flourish of the cloud computing model came from the benefit
of the economy of scale by pooling a large amount of computing resource and
provisioning services quickly to meet users’ demands. Another trend is that
large content providers want to be as close to their end-users as possible.
Many of them directly peer in IXPs [213] or even locate their servers inside
ISPs [26, 200].

Middleboxes are pervasive. In the real world, there exist middleboxes
which are in-network devices that could analyse and manipulate the transport
and even application-level services. Several studies [68, 97, 108, 179] have
revealed that the middleboxes are deployed pervasively. They are as common
as traditional L2/L3 devices [179]. The network operators use them to achieve
mostly specific, short-term benefits. They serve for a wide range of purposes
including security, performance, and to deal with IPv4 address depletion
problem. End users need to consider that the presence of middleboxes is
the norm rather than the exception in today’s Internet paths (Figure 1.5).
Many of these middleboxes prevent the deployments of new protocols and
extensions, hindering the Internet evolutions. More details about middleboxes
are described in Section 2.3.

Network layer transitions from IPv4 to IPv6. Due to the IPv4 address
space exhaustion, IPv6 has been proposed and standardized [58, 105] since
the early 1990s. However, its deployments have really taken off only in the last
decade when the IPv4 address depletion is imminent [49]. In this transition
phase, dual-stack support is popular in both the end-hosts and the network
infrastructure. This also increases the path diversity between end hosts during
the transition.



1.4 conclusion 9

1.4 conclusion

Over the years, TCP protocol and its implementations have significantly
evolved. Although today’s TCP implementations still use the packet format
proposed forty years ago, they include various optimizations [18] to adapt
with today’s networks. These optimizations and extensions include TCP con-
gestion control schemes [1], TCP timestamp option, large windows extensions,
improved round-trip-time estimations and several forms of selective acknowl-
edgements for better retransmission. Despite that, its limitations are becoming
imminent in modern times. More importantly, each TCP connection is identi-
fied by a 4-tuple. The reason is that TCP was designed when all hosts were
stationary and each had a single long-lived network address.





2M U LT I PAT H T C P

The previous chapter discussed the basic design of TCP and its limitation
given the ongoing Internet evolution. In this chapter, we start with the benefits
that resource pooling principle and multipath service can bring to users in
Section 2.1. Then, we compare in Section 2.2 various multipath solutions at
different layers. Section 2.3 explains how different types of interference caused
by middleboxes have blocked the deployent of new transport protocols and
stagnated innovations in TCP. Then, we present an overview of the Multipath
TCP protocol in Section 2.4. Finally, real-world use cases and best practices of
Multipath TCP deployment are dicussed in Section 2.5.

2.1 resource pooling

The evolution of the Internet, and the computing industry in general, is directly
related to the development of new ways of pooling and sharing resources. D.
Wischik et al. [211] have summarized the main benefits of resource pooling as
following:

1. increasing resiliency against component failures;

2. better handling of local surges in traffic demand;

3. maximizing global utilization.

There are multiple examples of resource pooling mechanisms in the de-
velopment of networking and telecommunication. Packet-switched networks
replaced circuit-switched networks because the packet-based model allows
the flexible sharing of limited physical channels among a large number of
users. Cloud providers build large datacenters and virtualize their resources so
that they could dynamically provision and scale the service provided to each
customer based on their demand. By doing so, cloud providers could serve a
much larger number of users than the dedicated-server model and maximize
their resource utilization [82]. This is similar to the original motivation of
packet-switched networks in their early days: to allow more users sharing the
computing power.

As another example, BGP-based traffic engineering [165] and MPLS-based
traffic engineering [12] are important mechanisms which network operators
use to load balance among multiple network paths and to avoid failures
or congestions. However, there was still a missed opportunity for network
resource pooling. That is the availability of multiple network paths from the
viewpoint of the end hosts. This is now more important than ever given that

11
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Figure 2.1: Linux bonding

hosts equipped with multiple interfaces (fixed, WiFi, cellular interfaces) and
IPv4/IPv6 dual stack have become the norm.

2.2 multipath approaches

Various multipath solutions have been proposed and implemented at almost
every protocol layer. In this section, we analyse typical approaches, in the
bottom-up directon from the interface level up to the application level.

2.2.1 Link-layer and lower layer solutions

The main multipath techniques at these low-level layers are interface aggregation
and link aggregation. Generally, several physical interfaces are combined into
a logical interface. Aggregated interfaces may be configured with the same
MAC address or different MAC addresses, but they always share the same IP
address. This interface aggregation is supported by popular OS kernels, for
example, interface bonding in the Linux kernel or interface teaming in both
Windows and Linux. Figure 2.1 illustrates a Linux host bonding two links
towards a switch.

There are different modes of interface aggregation. If both ends of a link
enable interface aggregation and they are configured to be in the same mode,
it becomes link aggregation. This mechanism has been standardized in IEEE
802.3ad [125] and is usually called Link Aggregation Control Protocol (LACP)
which is supported by many switches.

The status of each link is monitored continuously, therefore this technique
could quickly detect the failure of any link, and if so, the traffic will be diverted
to the remaining working links. Since aggregated interfaces share the same
IP address, IP and the upper-layer protocols are unaware of the availability
of multiple links between two hosts. When a transfer is separated among
links with different delays, packets could arrive out of order. For this reason,
it is highly recommended that these links are symmetric. However, even if
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this is the case, any packet loss would cause a lot of TCP packets to arrive
in the wrong order. One TCP-friendly approach is to attach each layer-4 flow
to a specific link using a combined hash of MAC, IP and/or transport port
pairs. While this technique distributes multiple flows over links and avoids
the out-of-order issue, it cannot divide a single elephant flow among these
links.

2.2.2 Network-layer solutions

Various techniques have been proposed to combine multiple IP address pairs,
mostly to allow smooth handovers. Mobile IP [158, 182] is a well-known
technique to maintain the continuity of transport connections during client
address changes. However, it requires deploying considerable infrastructure
to support it. Moreover, traffic has to be redirected through Home Agent and
Foreign Agent, causing suboptimal paths and increased latency.

The shim6 extension [140] for IPv6 is an end-host-only approach that also
focuses on handover support. By using the IPv6 extension header to signal
between end hosts, it allows associating multiple IPv6 address pairs for smooth
handovers [15], while removing the need to deploy extensive in-network
infrastructure.

These solutions could support smooth handovers since they hide the net-
work address dynamics to the transport layer. However, each path has different
network properties in terms of bandwidth, delay, jitter, loss rate, etc. For reli-
able transport protocols like TCP, the congestion control, the loss detection
and recovery mechanisms are not aware of and may not react properly with
the abrupt changes in the network layer when different paths are used.

It is worth to mention about happy eyeballs [210] technique, which parallelizes
the connection establishment on dual IPv4/IPv6 stack. The purpose of this
technique is to shorten the connection establishment time, to select the path
with lower latency, and to avoid using broken paths. However, after one
connection attempt is selected, the other attempt will be abandoned. Similar
mechanisms at the transport layer are proposed such as TAPS [71], for example,
allows racing between TCP and UDP-based connection setup.

2.2.3 Transport-layer solutions

To be able to manage per-path characteristics, multipath logic should be
located at the transport layer or above. Stream Control Transmission Protocol
(SCTP) [187] is a notable transport protocol which supports multiple paths by
design. However, the original SCTP is only able to use one path at a time. It
was later extended to allow using multiple paths concurrently [113]. However,
while it gained support from major Operating Systems, its actual deployment
is very limited. Two main reasons are (1) applications need to support a new
API different from the traditional TCP/UDP sockets, and (2) conservative
NAT gateways and other middleboxes block SCTP.
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As revealed by measurement literature [60, 179], various types of middle-
boxes have been deployed pervasively in today’s networks. Many of them
simply block the protocols and traffic that they do not understand. This practi-
cally means that any multipath solution that is targeted for wide deployment
has to rely on either TCP or UDP [153]. Middlebox interference is discussed
in more details in Section 2.3.

QUIC [123] is a major UDP-based reliable protocol that is promoted and
standardized by large Internet companies. QUIC is designed to fix various
issues of TCP, including fully encrypted headers to avoid middlebox interfer-
ence, multiple streams support to reduce head-of-line blocking, connection
migration support, better support for zero-RTT handshake, and more. Exten-
sions for QUIC to support multipath are proposed [54, 203] and investigated
[110] but not included in the first standardized version of QUIC. However,
recent measurements show that UDP protocol is blocked [69, 122] on a non-
negligible percentage of Internet paths: more than 4% on port 443 and more
than 2% on other ports. UDP rate-limiting policies is another issue that hinders
the deployment of QUIC in the public Internet [122].

2.2.4 Application-layer solutions

Another interesting approach to work around the ossification problem of the
transport layer is to offload the multipath service to the application layer. As
proposed by Y. Chen et al. [40], client applications may open several TCP
connections in parallel to one or multiple servers to download separate chunks
of the same media file. The benefit of this solution is that it leverages both
path diversity and source diversity while not requiring kernel modification
and is fully compatible with current network infrastructure. On the other
hand, this solution requires non-trivial content synchronization among source
servers, increased global server load. Moreover, using multi-source does not
work with upstreaming or dynamic contents.

A general problem with application-level solutions is that the senders cannot
steer traffic quickly among different connections, since they cannot inject data
into the head of the connection’s send queue. This limits the performance of
the approach and its flexibility to adapt to changing network conditions.

2.3 middlebox interference

2.3.1 Landscape

As mentioned in Section 1.3, the end-to-end principle does not hold anymore
in today’s Internet, given the presence of the middleboxes. In RFC 2334, a
‘middlebox’ is defined as “any intermediary box performing functions apart
from normal, standard functions of an IP router on the data path between
a source host and destination host”. Several measurement studies [68, 97,
108, 179] have revealed that the middleboxes are deployed pervasively and
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play important roles in various networks. These middleboxes are deployed
for multiple purposes, notably to improve the performance and to scale up
services, to enforce the security policies, or to deal with the IPv4 addresses
depletion problem. Additionally, different types of virtualization technologies
have enabled Network Function Virtualization (NFV) which has streamlined
the middlebox provision and deployment. It is expected that over the time,
more and more types of middleboxes will be deployed in the Internet.

Unfortunately, despite these benefits from the viewpoint of the middlebox
operators, at the same time they have undesirable consequences. Middleboxes
increase the complexity of network paths significantly without clear visibility
from the view of end hosts. Also, this is one of the main causes of the network
ossification problem, i.e. deploying new protocols or extensions to popular
protocols becomes almost impossible.

Furthermore, due to the complexity of the middleboxes themselves, opera-
tors may experience operational issues with the middleboxes more frequently
than with the traditional Layer-2 and Layer-3 devices [179], including miscon-
figurations, scalability, the need to update the software frequently, etc.

2.3.2 Impacts on TCP

The impact of middleboxes on both the operation and the evolution of TCP is
remarkable given that the TCP headers are not encrypted. In this section, we
summarize the main types of middlebox interference on TCP [68, 97, 108].

The simplest interference type is blocking the connection when the mid-
dlebox observes some unknown TCP options or behaviors. This is normally
done by firewalls, intrusion detection/prevention systems (IDS/IPS) to secure
the networked assets behind them. For end hosts, the only way to deal with
this issue is to re-establish the connection without the new feature disabled
after having experienced some timeout.

Security middleboxes may also remove unknown TCP options. This behav-
ior only degrades the connection performance by disabling a feature, but still
allows the connection to continue. Some middleboxes even block or remove
essential TCP features [68] such as the window scale option or Selective ACK
option, which severely hamper the performance.

Network Address Translation (NAT) devices are common in access networks
to deal with the IPv4 addresses exhaustion problem. They modify the IP
address and port number field in the packet headers and usually prevent
connection attempts from outside.

The sequence number and acknowledgment number are not expected to
be modified by the networks. However, since some very old TCP stacks were
vulnerable to the TCP sequence prediction attack, some middleboxes tried to
protect them by randomizing the sequence number of every TCP connection.
Although not being relevant anymore, this “security feature” is still common
in today’s networks [68].
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Figure 2.2: Most fields (in red color) of the TCP header and IP header could be modified
by middleboxes. Even IPv6 Flow label could be cleared in rare cases by
firewalls for security reasons [6]
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On end hosts, modern Network Interface Cards (NICs) are increasingly
complex. They could handle more and more tasks other than sending and
receiving packets. A common feature on modern NICs is TCP Segmentation
Offload (TSO) which allows the TCP stacks to process very large TCP segments.
NICs would split large TCP segments into smaller ones that fit the MTU
before actually sending them out. Similarly, on the receiver side, typical NICs
support Large Receive Offload (LRO) which combine multiple segments into
a larger one before sending it to the network stack. These NICs have to compile
new IP and TCP headers for newly created TCP segments. From the viewpoint
of the TCP stacks, these NICs are one type of middlebox.

For high-latency connections, it may take a long time to reach the right
congestion window or to react to packet losses. Performance enhancing proxies
(PEPs) typically terminate [207] each passed-by TCP connection into two
separate connections, actively handshake and acknowledge data to each peer
of the connection. PEPs reduce the effective round-trip-time and therefore
increase performance.

Web proxies may also support other features [207, 216] such as caching,
media compression. Similarly, when clients use active FTP behind a NAT
device, the NAT has to change the IP address field in the FTP command.
These kinds of payload-modification may lead to the change of segment
length and TCP sequence numbers.

All these interferences mean that introducing new features to TCP is notori-
ously difficult. For example, TCP Fast Open [42] is an important feature to
avoid the TCP connection handshaking time. However, experimental deploy-
ments [146, 190] have shown that middleboxes could block or invalidate the
TCP connections, accounting for 20% of total TCP connections. In the worst
case, some IDSes even block the clients due to the presence of payload in SYN
packets which is wrongly considered as a security anomaly by these IDSes.

2.4 multipath tcp protocol

Designing the multipath functionality at the transport layer is the right ap-
proach. However, due to the network ossification issue, deploying a new
clean-slate transport protocol in the Internet is painfully hard. Instead, Mul-
tipath TCP [80, 170] was designed as an extension to regular TCP that is
backward compatible with TCP.

2.4.1 Goals and Requirements

As mentioned in Section 2.2.3, there were several proposals to support multi-
path at the transport layer, but none of them was widely deployed in the real
world. Therefore, from the beginning, the designers had set the requirement
for Multipath TCP protocol to be backward compatible [170] with regular TCP
in three aspects:
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Figure 2.3: MPTCP Protocol Stack

• Application level: Legacy applications designed for regular TCP could
use Multipath TCP without any source code modification. To support
this, Multipath TCP must use the same socket API as TCP (see Fig. 2.3).

• Network level: Multipath TCP must successfully pass through a majority
of middleboxes such as NAT, firewalls, PEPs. It also needs to work with
common performance-enhancing mechanisms such as coalescing and
segmentation offloading.

• Fallback mechanism: Multipath TCP must be able to fall back to regular
TCP when communicating with legacy-TCP peers. Fallback to TCP is also
needed when Multipath TCP traffic is blocked, filtered or manipulated
by middleboxes.

Moreover, to be a successful protocol, it has to satisfy two important require-
ments [170]. First, in terms of performance, Multipath TCP must perform at
least as well as regular TCP in the same conditions. Second but not less impor-
tant, it must be feasible to implement Multipath TCP in standard operating
systems, without requiring much more system resource consumption.

2.4.2 Design Overview

Multipath TCP should enable hosts to exchange the packets that belong to one
connection over different interfaces or paths. One simple design of Multipath
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TCP could be just taking the outgoing segments from the TCP stack and
spreading them over different paths. To gather per-path characteristics, due
to the ambiguity of the ACK number, Multipath TCP would then need to
track each segment by processing Selective ACK information. However, such a
design would not work in the public Internet. Many middleboxes do not allow
a hole or a discontinuity of the sequence number and will stall the connection.
Multipath TCP needs a more robust design.

It is necessary to establish a separate TCP connection along each path so
that traffic could be sent on each path reliably. This also allows the sender to
infer and measure per-path characteristics correctly. These TCP connections
are called subflows. These TCP subflows are combined into a single Multipath
TCP connection and they are transparent to the application. Since Multipath
TCP must appear as regular TCP to the existing applications, it has to deliver
similar services: connection setup and teardown, reliable and in-order data
transfer, flow control and congestion control.

The conceptual view of the Multipath TCP protocol stack is depicted in
Fig. 2.3. In the remainder of this section, we present a summary of the main
protocol operations. More detailed explanations of the protocol can be found
in [80, 170]. The second version of Multipath TCP, which will be published
soon [81], improves the first version [80] with reliable connection setup and
various security enhancements.

All operations of Multipath TCP use TCP options for signaling. All types of
MPTCP-specific options share the same option kind number to avoid being
blocked selectively by middleboxes. These option types are only differentiated
by their subkind field.

2.4.3 Data plane

Since Multipath TCP creates a separate subflow per path, it maintains different
subflow sequence number (SSN) spaces.

To achieve the reliability and the right order of data delivery at the receiver,
MPTCP uses a data sequence number (DSN) for tracking the MPTCP-level data
stream. This sequence number is 64-bit long and can manage 264 bytes of
data without recycling the sequence space. Wrapped sequence numbering is a
common issue with regular TCP which uses 32-bit sequence numbers. To allow
the receiver to reassemble data stream correctly from different subflows, the
sender might simply insert a TCP option containing only the data sequence
number of each data chunk. However, typical modern Network Interface
Cards (NICs) would split and coalesce TCP segments and copy the same TCP
options to each chunk. This makes different TCP segments having the same
data sequence numbers and breaks the implicit mapping between DSN and
SSN.

Therefore, the alternate solution is to specify explicit mapping in MPTCP
Data Sequence Signal (DSS) option, which is attached to almost every packet of
an MPTCP connection. While this early design worked well in local networks,
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the experiments turned out that it was blocked in the public Internet. The
reason is that subflow sequence numbers can be modified by on-path middle-
boxes. This is considered a security feature to protect very old TCP stacks like
the one of Windows 95.

For this reason, instead of using the absolute subflow sequence numbers, the
final design of the DSS option stores the relative SSN which can not be changed
by any middlebox (otherwise regular TCP traffic would be corrupted). This
DSN allows retransmitting or duplicating data on different subflows to either
overcome a failure, improve the performance, or reduce the latency. However,
it is difficult for the sender to infer which data sequence number has really
advanced in case of reordering; therefore, an explicit data acknowledgement
number (Data ACK) is added to the DSS option. The Data ACK number also
provides multipath-level flow control capability. The complete format of the
DSS option is shown in Fig. 2.4.

While each subflow has a dedicated send buffer which is separated from
the MPTCP-level send buffer, all subflows share the same receive buffer (see
Fig. 2.3). This design decision was made to avoid a deadlock scenario [170].

Since application-level middleboxes may change the payload and break the
mapping between DSS and subflow sequence number, an MPTCP checksum
is added to the DSS option to protect data packets. If a payload manipulation
is detected, MPTCP will close the affected subflow. If this is the only subflow
of the connection, MPTCP will fall back to regular TCP so that the middlebox
could change the payload without breaking the connection.

2.4.4 Initial Subflow setup

The MPTCP connection establishment relies on the regular TCP connection
handshake. As shown in Fig. 2.5a, MPTCP hosts add the MPTCP_CAPABLE option
in the three TCP handshaking segments. This option verifies if the remote end
supports Multipath TCP and exchanges crypto information (MPTCP key) for
authenticating additional subflows later.
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Figure 2.5: MPTCP connection/subflow establishments

The client may receive a SYN-ACK without an MPTCP_CAPABLE option, be-
cause either some middlebox removed the option or the server simply does not
support MPTCP. In this case, MPTCP was designed to transparently fallback
to TCP and continue the session. A rarer but still possible issue is that the
MPTCP connection attempt is silently blocked by middleboxes. As stated in
the protocol specification, the sender should establish a legacy TCP connection
when the timeout expired.

2.4.5 Additional Subflow setup

After the initial subflow established and some data has been exchanged, ad-
ditional subflows could be created to use other available paths. The keys
exchanged during the connection setup provide a crypto base for authenticat-
ing between end hosts when creating new subflows. Similar to the connection
setup, three handshaking segments also carry the MP_JOIN options. However,
different from the connection setup, the subflow establishment is only done af-
ter a four-way handshake, as shown in Fig. 2.5b. The first SYN MP_JOIN option
carries the 32-bit connection token, which is inferred from the connection key,
which the receiver could use to quickly look up the connection. Both sides
send a nonce challenge, requiring each other peer to verify itself with the
corresponding HMAC. The option also contains the ID of the local IP address
and optional flags (not shown in the figure).
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Figure 2.6: MPTCP Connection Close

In certain situations, a host may want to inform its peer about its available IP
addresses. For example, when a client-side NAT prevents a server to directly
establish the connection. This can be done by sending an ADD_ADDR option
which contains both the IP address and its local identification. MPTCP also
supports signaling the removal of an address by using the REMOVE_ADDR
option which contains the local identification of the IP address.

2.4.6 Subflow and Connection teardown

An MPTCP host may close a subflow in certain cases, e.g. due to bad perfor-
mance or high monetary cost, by initiating the regular 4-way handshake of
TCP FIN/ACK packets. It is worth to mention that these FINs only occupy
the subflow sequence space but not the data sequence space, so that they do
not affect the other subflows. A subflow could also be closed abruptly by TCP
RST, for example when a host receives the REMOVE_ADDR option and needs to
remove all subflows towards the lost IP address.

At the MPTCP connection level, hosts use the DATA_FIN flag bit in the
DSS option to inform their peers that there is no more data to send on this
MPTCP connection, as illustrated in Fig. 2.6a. For simplicity, Fig. 2.6a only
presents the MPTCP connection closure in one direction. This happens when
the application calls the close() system call to close the outward stream. The
mechanism is semantically similar to the TCP FIN/ACK handshake for closing
a regular TCP connection gracefully. While the DATA_FIN signal occupies one
bit in the data sequence space, it does not affect the subflow sequence space
and is not attached into any TCP segment having a payload. The DATA_FIN
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can only be DATA_ACKed when all previously sent data has been acknowledged
at the connection level.

On the other hand, the subflow-level FIN signal occupies one octet in the
subflow sequence space, but it is not included in the data sequence space. A
host must not close all subflows (including combining TCP FIN and DATA_FIN

in the same segment) if there is outstanding data on other subflows.
Alternatively, MPTCP hosts may terminate a session abruptly by sending

an MP_FASTCLOSE option whose semantic is equivalent to TCP RESET but
at the MPTCP connection level. MP_FASTCLOSE may be attached to a regular
TCP-ACK segment (which is transferred reliably, as shown in Fig. 2.6b) and
goes to the FASTCLOSE_WAIT state. The new version of MPTCP (defined in RFC
6824bis [81]) allows the sender to attach the option to the TCP-RST segment
(which may be lost) and go directly to CLOSED state without further delays.

In some cases, MPTCP hosts want to quickly close or reject a specific
subflow only. Since it is often useful for the peer to know the reason for the
connection abrupt close, RFC 6824bis defines a new MP_TCPRST option for
hosts to explicitly notify their peers the exact reason.

2.5 multipath tcp in practice

With new capabilities, Multipath TCP enables more use cases and has a much
larger decision space than the regular TCP. In Section 2.5.1, we discuss main
use cases of using Multipath TCP. Subflow management (in Section 2.5.2)
and packet scheduling (in Section 2.5.3) are two new tasks that did not exist
with legacy TCP. Multipath TCP also introduces new requirements for the
congestion control mechanism, as discussed in Section 2.5.4.

2.5.1 Main use cases

Many use cases for Multipath TCP are proposed in the literature and are
deployed commercially [22, 23]. Initially, the motivation for Multipath TCP
was the emergence of multihomed hosts like smartphones that are equipped
with several network interfaces. Such hosts did not exist when TCP was
designed. Users of smartphones expect that multiple available interfaces could
be used simultaneously to increase the bandwidth [211] or successively to
support mobility [143, 169]. In general, Multipath TCP is deployed much faster
on the client side than on the server side. Therefore, it is necessary to deploy
proxies between MPTCP-capable clients and legacy-TCP servers. There are
several commercial deployments that combine fixed broadband network and
cellular network as shown in Fig. 2.7, notably by Tessares [119]. In sparsely
populated areas, this approach provides high network performance for end
users at a much lower cost than deploying broadband technologies such as
FTTx, VDSL2, DOCSIS3.0. Similar deployments that combine Wi-Fi and 4G
for high-end smartphones have been done by Korean telecom providers [23].
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Figure 2.7: Hybrid access networking: One typical use case of Multipath TCP is
combining cellular and xDSL paths

One type of this explicit proxy has been generalized for other TCP extensions
and is actively standardized within IETF TCPM working group [24].

The second use case is in the datacenters [168] where Multipath TCP
improves network utilization by exploiting the path diversity between two
hosts when the Equal Cost Multipath (ECMP) feature is enabled.

The third use case is for single-homed but dual-stack hosts that support
IPv4 and IPv6. On such hosts, Multipath TCP can use both network layer
paths simultaneously for increased performance [131].

In September 2013, Apple enabled Multipath TCP on all of its iOS devices,
including smartphones and tablets. Within a few months, hundreds of millions
of devices started to use this TCP extension. Siri is the first iOS application
using Multipath TCP, which helped significantly improving the availability
of its voice recognition service. More recently, Apple Maps and Apple Music
are also using Multipath TCP by default to improve responsiveness and
throughput [152]. Moreover, all third-party iOS applications now can enable
Multipath TCP using provided APIs under one of three modes: handover,
aggregation or interactive. It is also included in recent MacOS releases and
the upstream project is actively working to add Multipath TCP support into
the official Linux kernel [151].

2.5.2 Subflow management

When each peer of a connection has more than one interface or IP address,
there are multiple path options to establish the subflows for the connection.
RFC 6824 specifies the mechanisms to establish and terminate each subflow,
but it does not specify the path selection strategies which are intentially left to
be decided by the implementers.

The Linux implementation of MPTCP currently supports four subflow man-
agement modes (usually called path managers). The default one actually
does not establish any additional subflows neither advertise available ad-
dresses. However, it accepts the subflow request from its peer. The fullmesh

path manager, as its name suggested, creates all possible subflows between
two hosts, forming a full-meshed connection. Figure 2.8 illustrates the behav-
ior of this path manager when each host has two interfaces. The third path
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Client Server

Figure 2.8: Fullmesh path manager tries to establish subflows along all possible paths

manager is ndiffports which creates multiple subflows on the same address
pair, trying to exploit the path diversity in ECMP-enabled datacenters [168].
The fourth path manager is binder [19] which uses Loose Source Routing to
combine multiple internet gateways in community networks.

Technically, the subflow establishment is symmetrical, i.e. it could be initi-
ated from either the client or the server. However, all path managers in Linux
MPTCP initiate subflows only from the client side. The first reason is that the
clients are often behind some NAT devices which block the subflow requests
from the server. The second reason is that if both sides initiate the subflows
simultaneously then it may end up at least two subflows per path, leading to
unnecessary overhead and potential interference.

2.5.3 Packet Scheduling

When there are two or more available subflows (or paths), the sender needs to
choose on which subflow it should send each outgoing packet. Although it is
not strictly a part of the protocol specification, packet scheduling plays a very
important role to achieve high performance. The receivers may request the
senders to set a subflow to the backup mode or the active mode by sending
the MP_PRIO option with relevant flags. The scheduler on the sender side
enforces this policy by not selecting the backup subflows when sending data.

The default scheduler algorithm in the reference implementation of MPTCP
in Linux is based on subflow-level round-trip-time (Lowest RTT [144]). Among
the subflows having open sending window, it selects the subflow having the
lowest current RTT to send packets.

There are many proposed MPTCP schedulers for different purposes, most
of them were implemented for the Linux reference implementation. A com-
prehensive overview of existing approaches could be found in the ProgMP
paper [84]. Pinedo et al. and Frommgen et al. [86] independently proposed
and implemented redundant schedulers which duplicate data on multiple
subflows to minimize the latency and increase the robustness. The DEMS [92]
and RAVEN [126] schedulers selectively duplicate data to reduce the latency
for interactive traffic. These schedulers send selective redundant packets on
multiple subflows to both probe current status of inactive subflows and to
minimize the round-trip-time.
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Schedulers may take a diversed range of input parameters to make the
decision. The DAPS [177], OTIAS [218] and BLEST [75] schedulers use subflow-
level information as input data. The ECF [130] and DEMS [92] and Cross-
Layer [51] schedulers rely on application layer information, e.g. data chunk
boundary and delivery deadline, to minimize the flow completion time. The
MP-DASH solution [94] takes a step further that couples the operation of
MPTCP scheduler and DASH layer to optimize HTTP-based video streaming.
On the other hand, other works proposed to utilize the lower-layer information
to improve the situational awareness of multipath schedulers, e.g. device-
driver buffer occupancy [181].

One common problem of Multipath TCP is that the difference of RTT
among subflows causes high level out-of-order delivery of packets. This in
turns imposes a requirement for large receive buffer. More importantly, it is
the reason for the head-of-line (HoL) blocking, i.e. stall when data is still in
flight on the slow path and later a large burst when this data is acknowledged
at connection level. The Lowest-RTT scheduler [144] mitigates this problem by
opportunistic retransmission and penalisation (PR) mechanism, i.e. reinjecting
data which was on the slow subflow on to the fast subflow, and halving the
congestion window of the slow one. However, this decouples the scheduling
and the congestion control mechanism, causing suboptimal behaviors. It
does not fully prevent sending data on the slow subflow when it hurts the
performance. Meanwhile, when the quality of this subflow gets better, the
low congestion window prevents this subflow to be used efficiently. Instead,
the BLEST [75] scheduler or MPTCP-LA [139] temporarily disables a slow
subflow when it predicts that sending data on this subflow is not effective.
Another solution is to schedule low-DSN packets on the fast subflows and
high-DSN packets on the slow subflows so that they can arrive in order at the
receiver. This has been proposed and implemented in DAPS [177] and OTIAS
[218]. Meanwhile, the STMS scheduler [180] adjusts the packet dispatching
based on the DATA-ACKed size instead since it is the right feedback for the
out-of-order level at the receiver.

2.5.4 Congestion control

Multipath TCP could be used with regular TCP congestion controllers which
manage outgoing data per subflow independently. However, this was consid-
ered to be unfair with regular TCP traffic. Congestion controls for MPTCP
need to consider the current states of all subflows to direct traffic through the
least congested paths and to maintain fairness with other TCP connections.
For that, RFC6356 [167] specifies three criteria that an multipath congestion
control must satisfy.

1. “Improve Throughput”: each multipath flow should perform at least as
well as a single-path flow would on the best path.
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2. “Do no Harm”: each multipath flow should not occupy more resources
shared by its different paths than if it were a single flow using only one
of these paths.

3. “Balance Congestion”: each multi-path flow should move as much traffic
as possible away from the most congested paths.

Researchers proposed various coupled congestion control schemes and im-
plemented them in the Linux as kernel modules. Linked-Increases Algorithm
(LIA) [212], which is based on NewReno, is the default congestion control of
the Linux kernel implementation of MPTCP. The OLIA [120] and BALIA [157]
algorithms are the improved versions of LIA and they focused on friendliness,
responsiveness, and window oscillation. Wvegas [33] is an multipath adap-
tation of the delay-based Vegas congestion control. Most recently, a coupled
version [95] of the BBR congestion control was proposed.

2.6 conclusion

This chapter has provided an overview of various multipath approaches and,
in specific, the Multipath TCP protocol which is the main research interest
of this thesis. The benefits of adding multipath capability to TCP are clear,
and actually there were several efforts over the years. However, to the best of
our knowledge, none of them are widely deployed. A deployable design of
Multipath TCP [170] only comes nearly four decades after the birth of TCP
in the 1970s. On one hand, this suggests the network ossification that the
pervasive middleboxes have introduced. These middlebox interferences have
heavily influenced the design of Multipath TCP. The control plane signaling is
heavily based on TCP option and the data plane use a separated data sequence
space for multipath level. On the other hand, the development of Multipath
TCP protocol is parallel with the development of its implementation the Linux
kernel. This has shown that the success of a new protocol depends on not
only the protocol specification itself but also the availability of feature-rich
implementations.





Part II

T H E M E A S U R E M E N T S

As discussed in previous chapters, Multipath TCP was designed to
provide more benefits than regular TCP while remaining backward
compatible with legacy applications and existing infrastructure.
However, despite the growing interests and the number of com-
mercial deployments, there are still many unknowns about the
behaviors and performance of Multipath TCP in the real world.
Chapters 3 and 4 focus on passively and actively measuring Multi-
path TCP to improve our understanding of the dynamics of this
protocol in the wild.





3PA S S I V E M E A S U R E M E N T: O B S E RV I N G R E A L M U LT I PAT H
T C P T R A F F I C

In this chapter, we provide the first detailed analysis of the operation of
Multipath TCP in real networks by analyzing long packet traces collected on
a Multipath TCP server often used by researchers and implementers.

We first collected a five-month-long packet trace that contains 190,451 Mul-
tipath TCP connections originated from more than 7,000 different hosts across
the Internet. This was the largest publicly available dataset of Multipath TCP at
the time (2015)1. To analyze this long trace, we improved the performance and
the functionality of open-source mptcptrace software [99] and develop custom
scripts. Our analysis reveals various important information about the current
usage of Multipath TCP. The protocol works well over many Internet paths
and we observe very few fallbacks caused by middleboxes. Multipath TCP
connections can last thousands of seconds or more and we observe handovers
on such connections. From the performance viewpoint, our analysis reveals
that Multipath TCP connections are often composed of subflows having very
different round-trip-times. We also analyze some inefficiencies of the current
Multipath TCP implementations and study in more details the reinjections, i.e.
the transmissions of the same data over several paths, and how they affect the
performance.

This chapter is organized as follows. We first discuss related work in Sec-
tion 3.4. We describe the dataset that we have collected in Section 3.1 and
our extensions to mptcptrace that enabled us to process them efficiently in
Section 3.2. In Section 3.3, we analyze how the Multipath TCP connections
use their subflows. We discuss in Section 3.5 the main lessons that we learned
from this first detailed analysis of Multipath TCP packet traces.

3.1 dataset

Although Multipath TCP has already been used by Apple iOS devices to
support the Siri voice recognition application, our analysis instead focused
on the open-source Multipath TCP implementation in the Linux kernel [149].
This is the reference implementation for Multipath TCP, and it is recently
used by Apple on the server side to serve all Siri clients around the world.
This implementation is distributed from multipath-tcp.org and thousands of
users have downloaded and installed it on their computers. We use tcpdump on
the server side to collect all the packets sent and received by multipath-tcp.

org. At the time of writing, one limitation is that we have a single server only
with one interface, but dual IPv4/IPv6 stack is available to clients. In addition

1 This dataset is available at http://www.multipath-tcp.org/data/COMCOM16
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Figure 3.1: Map of MPTCP-enabled clients based on their IP addresses

to providing source code and binaries for the Multipath TCP patch, this host
also supports other web servers, an FTP server and uses an iperf3 daemon
to enable researchers and users to perform various tests. We extract from the
trace the packets that correspond to Multipath TCP connections. They are
identified by looking at the utilization of the Multipath TCP options during
the three-way handshake. The dataset has been collected during 5 months
from November 25

th, 2014 to April 29
th, 2015. The remaining of this section

provides main characteristics and statistics of our dataset.
We observed 10300 IP addresses used by our clients, including 7770 IPv4

addresses. Figure 3.1 shows their locations distributed across many regions.
Most of the clients came from Europe, North America, South and East Asia.
While the distribution of users could be biased toward MPTCP developers
and early adopters, we still observed a very diverse users set based on their
Autonomous Systems (AS). According to the IP-to-ASNumber database of
Team Cymru [52], these client IP addresses correspond to 588 unique ASes.

We identified 190,451 Multipath TCP connections, which used several desti-
nation ports. Most (86.17 %) of the connections used port 80. The remaining
connections were on port 21 (FTP, 5.33 %), port 5001 (Iperf, 1.68 %) and other
high port numbers linked to passive-mode FTP connections and a private
HTTP proxy (port 3128) used for some tests.

The observed connections are diverse in terms of both duration and size.
Figure 3.2 plots the durations of the Multipath TCP connections. We observe
that most of the Multipath TCP connections last in the range of 1 to 100

seconds. There are only 1.51% of the connections lasting more than 100

seconds.
In terms of connection size, as shown in Fig. 3.3, we could identify some

major clusters of connections: a group of exactly 2 Bytes (account for 12% of
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Port MPTCP connections % Connections % Traffic volume

20 82 0.04 1.04

21 10158 5.33 0.002

80 164123 86.17 26.80

3128 1215 0.63 0.50

5001 3211 1.68 22.14

Others 11662 6.12 49.52

Table 3.1: The dataset, broken down by TCP server ports

all the connections), large groups around 1 KByte (account for 15%) and 10

KBytes (account for 65%), smaller groups around 100 KBytes and 1 MBytes.
The connections containing exactly two bytes are empty connections with
one-byte space for DATA_FIN in both directions.

This is expected since today’s web browsers usually pre-open connections
on the client side to reduce the latency perceived by users. Web traffic and the
FTP control channel are responsible for the majority of the small connections
which carry around 400 Bytes and 20 KBytes (account for around 80% of all
the connections). The remaining large connections are likely FTP data traffic
and iperf test transfers.

3.2 tracing multipath tcp

While many software tools are designed to extract information about TCP
connections from a packet trace, such as tcptrace [141] or tstat [78], these
tools do not understand the specificities of Multipath TCP. To analyze our
dataset, Hesmans el al. have developed and extended the mptcptrace software
[99]. The first version of mptcptrace [99] was designed to process short packet
traces. A summary of this mptcptrace tool is presented in the following part.
mptcptrace understands the semantics of the Multipath TCP protocol and

can extract the keys that are exchanged during the establishment of the
initial subflow from the MP_CAPABLE option. Thanks to these keys, mptcptrace
computes the tokens that identify the Multipath TCP connection on both
the client and the server. With these keys, mptcptrace can link the different
subflows that compose each Multipath TCP connection.

The tool recognizes three ways to finish a connection. First, the DATA_FIN

has been exchanged from both end hosts. Second, one of the two end hosts
has sent the FAST_CLOSE mptcp option. Third, no activity of the connection
has been detected within the last s seconds, which can be set as a parameter.
Another option has been added to limit the size of the queue that keeps
in memory the mapping between Multipath TCP (or data-level) sequence
numbers and the subflow on which it has been sent initially. This queue is
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Figure 3.2: Duration of the Multipath TCP connections
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Figure 3.3: Connection size (in Bytes) of Multipath TCP sessions
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used to detect reinjections but can become very large if the connection is very
long. The internal structure used to store the Multipath TCP connections and
subflows has been implemented as hash tables to process long traces faster.
New per-file statistics, rather than per-connection statistics (described in [99])
have also been added to ease the analysis. Anomalies detected during the
analysis are also reported by mptcptrace.

Once the subflows that are associated to one Multipath TCP connection
have been grouped together, mptcptrace produces detailed plots that provide
a graphical representation of the Multipath TCP connection and its subflows.
In contrast with tstat, mptcptrace exploits mainly the contents of the DSS

option instead of the SEQ, ACK and other fields of the TCP header. For example,
mptcptrace can plot the instantaneous throughput at the Multipath TCP level.
It can also plot the evolution of the receive window and the amount of data that
are in flight. mptcptrace also computes global statistics like tstat but at the
Multipath TCP level. For example, mptcptrace computes the duration of each
Multipath TCP connection. This is defined to be the delay between the first SYN
that carries the MP_CAPABLE option and the last packet sent over this connection,
possibly on another subflow. mptcptrace also computes the fractions of the
bytes that are sent over each subflow and also detects reinjections (i.e. the
transmission of the same data over two or more subflows).
mptcptrace is publicly available2. In addition, we also implemented a

set of Python scripts that post-process the outputs of tstat, tcptrace and
mptcptrace for specific analyses. These scripts are also publicly available 3 4.

3.3 analysis

This section provides the most important results about both behavior and per-
formance of the protocol, including the interferences caused by middleboxes
(Sec. 3.3.1), how fast the hosts establish the additional subflows (Sec. 3.3.2),
the round-trip-time pattern of Multipath TCP paths (Sec. 3.3.3), how data is
spread over different subflows (Sec. 3.3.4), and the overhead introduced by
Multipath TCP compared to regular TCP (Sec. 3.3.5 and 3.3.6).

3.3.1 Middlebox interference

Multipath TCP was designed to cope with a wide range of middlebox in-
terferences [80, 101]. If a middlebox interferes too much with the operation
of Multipath TCP, the connection should fallback to regular TCP. More con-
cretely, if a middlebox modifies the payload, the mapping between Multipath
TCP-level and subflow-level sequence numbers would likely be invalid and
corrupt the transferred data. Multipath TCP uses its own checksum to detect
any modification of payload, ensuring that the mappings are always correct. If

2 See https://bitbucket.org/bhesmans/mptcptrace
3 See https://github.com/multipath-tcp/mptcp-analysis-scripts
4 See https://bitbucket.org/hoang-tranviet/mpmine

https://bitbucket.org/bhesmans/mptcptrace
https://github.com/multipath-tcp/mptcp-analysis-scripts
https://bitbucket.org/hoang-tranviet/mpmine
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the checksum fails, the receiver will inform the remote peer using the MP_FAIL

option. Then it will either close this subflow with RST if there are other
subflows or it will fall back to regular TCP if this is the only alive subflow.

Among 190,451 Multipath TCP connections, we observe only 125 of them
explicitly falling back to regular TCP, which happened with 28 distinct client
IP addresses. These include 91 HTTP connections and 34 FTP connections. The
FTP interference is expected and due to Application Level Gateways running
on NAT boxes which try to “correct" the port number in FTP command to
match with forwarded port number. The HTTP interference appeared only
on the direction from the server to the client and could have been caused by
transparent proxies deployed in cellular and enterprise networks [207]. The
rate of fallbacks that we observe is lower than that of earlier work [107]. Note
that since we collect data on the server, we cannot detect the removal of the
MP_CAPABLE option by a middlebox in the SYN. A recent measurement work by
Edeline and Donnet [68] in 2019 reports that the MPTCP_CAPABLE removal rate
is around 0.5% and Multipath TCP is blocked at the rate of one per 500,000

connection attempts.

3.3.2 Establishment of the subflows

The number of subflows created by a host depends on various factors including
the number of interfaces that it has and its path-manager. As mentioned
earlier, the server has a single interface but with dual IPv4/IPv6 stack. Table
3.2 reports the number of subflows per connection (these subflows are not
necessarily concurrent). We see that 61.56% of the connections contain only
one subflow. This is probably the case in which the client has one interface
and does not support dual stack, and the client is configured to not create
additional subflows. Another reason for this is that the connection lifetime is
too short and there is not enough time to establish a new subflow. Among
the connections that have at least two subflows, 49% of them originated from
different IP addresses and were likely created by the full-mesh path manager5.
The other 51% of the connections originated from a single address, which
normally correspond to the ndiffports path manager.

The maximum number of subflows per connection is as large as 68. Notice
that this is the number of all subflows during the lifetime, not necessarily active
at the same time, so this is not inconsistent with the fact that the Multipath TCP
implementation in the Linux kernel supports only 32 concurrent subflows. This
unexpected large number was probably due to researchers who performed
subflow-rotation tests with the monitored server.

Another interesting point is the delay between the establishment of the
connection (i.e. the first subflow) and the establishment of the other subflows.

5 We expect that most of the packets in the dataset were generated by Linux clients. Although
other implementations exist, they are not usable for regular traffic (e.g., Apple or Citrix) or not
yet mature enough (e.g., FreeBSD). We cannot, however, infer the version of the Multipath TCP
implementation used by a client from the packet trace.
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Number of subflows Percentage

1 61.56%

2 23.3%

more than 2 15.14%

Table 3.2: Number of subflows per Multipath TCP connection
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Figure 3.4: Delay from the creation of MPTCP connection to the establishment of an
additional subflow

This metric can be used for two purposes: showing how quickly Multipath
TCP utilizes additional subflows, and suggesting handovers. The process to
establish the subflows is called join. With the Linux implementation, path
managers try to set up subflows shortly after the creation of the Multipath
TCP connection and as soon as a new IP address is learned by the client. To
quantify this effect, we plot in Fig. 3.4 the CDF of the delays between the
creation of each Multipath TCP connection and all the subflows that are linked
to it.

We observe that 86% of the additional subflows are established during the
first second of the Multipath TCP connections. Comparing the two lines, we
can see the difference with longer duration. After one minute, most of the first
joins had been done, but there is still 1.79% of all subflows joined after one
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Figure 3.5: Difference of average server-side RTT between the worst subflow
and the best subflow of the same MPTCP connection (at least 100 KB)

minute and 0.22% of that after one hour. These joins happening a long time
after the connection establishment could be because those connections were
experiencing a break-before-make handover or a subflow recreation after a
NAT timeout.

3.3.3 Subflows round-trip-time

A subflow is established through a handshaking process. Thanks to this
exchange, the communicating hosts measure the initial value of the round-trip-
time (RTT) for the subflow. For the Linux implementation, the round-trip-time
measurement is an important performance metric because the default packet
scheduler prefers the subflow having the lowest RTT.

We evaluate the RTTs heterogeneity of Multipath TCP connections. For this,
we first extract from the trace the connections that carry at least 100 KBytes.
For each connection, we use tcptrace to compute the average round-trip-
time of all the subflows that it contains, and then extract the minimum and
the maximum of these values. Figure 3.5 plots the CDF of the average RTT
difference between the fastest and the slowest subflows over all connections.
Only 22.6% of the connections have subflows whose RTT difference is within
10 ms.
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Figure 3.6: The average RTT of the second-best subflow
vs. the average RTT of the best subflow

of the same MPTCP connection (at least 100 KB)

We observe as many as 12.5% of the considered connections whose RTTs
differ by more than one second, which might be caused by bufferbloat. Excep-
tionally, for some connections, this RTT difference is as high as 22 seconds.

Since the default packet scheduler prefers low RTT subflows, we focus on
the two best subflows of each connection. Figure 3.6 shows the boxplot of
the average RTT of the second-best subflow in relation with that of the best
subflow of the same Multipath TCP connection. Except the first box depicting
the connections having best subflow’s RTT smaller than 40 ms, the figure
shows an observable difference between the RTT of the second-best subflow
and the RTT of the best subflow. While the median RTT value of the second-
best subflow is not far away from the best one, the tail values may be pretty
high.

3.3.4 Data distribution

Another important point is the distribution of the data among the available
subflows. Observing Multipath TCP connections that contain two or more
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active subflows, we see that data can be distributed in very different ways
among the subflows. At one extreme, almost all bytes are sent over a single
subflow. At the other extreme, packets can be distributed in a round-robin
fashion.

A basic question about data distribution is whether the scheduler has
bias towards the initial subflow, like the capture effect mentioned in [9]. For
this purpose, we extract from the trace all the connections having exactly 2

subflows and compute the percentage of data that has been sent on the initial
subflow over the entire connection. Based on the connection size distribution
(Fig. 3.3), we examine three different groups of connections: (1) smaller than
50 KBytes, (2) between 50 KBytes and 5 MBytes, and (3) larger than 5 MBytes.

As shown in Fig. 3.7, it turns out that the data distribution of the two-
subflow connections suggests some interesting points. Looking at the right
part of the graph, there are as many as 29.6% of sub-50KB MPTCP connections
which send all traffic over only the initial subflow (the ratio is one). This
proportion is smaller for groups of larger connections (13.8% in group 2 and
6.7% in group 3). Moreover, there are around 65.5% of the MPTCP connections
larger than 5 MB sending more than half of their traffic over the initial
subflow. This bias is even more significant (76.6%) if we consider the MPTCP
connections between 50 KBytes and 5 MBytes. Interestingly, only a minority
(47.5%) of the connections smaller than 50 KBytes send more traffic over their
initial subflow. After checking these connections in detail, we observe that the
initial subflow has the RTT worse than that of second subflow in most cases.
Usually, the initial subflow carries data during the establishment of the second
subflow. The RTT of the initial subflow probably increases over time and is
likely higher than that of the second subflow when handshaking without
payload. Since the Linux’s default scheduler prefers the subflow with smallest
RTT, data would be sent through the second subflow. When the connection
is very small, the scheduler does not switch back to initial subflow before
finishing the transfer.

3.3.5 Un-used and under-used subflows

A potential imperfection of Multipath TCP is that subflows can be established
without being used to transport data. Creating subflows that are not used
consumes resources and energy [103, 129] on smartphones since the interface
over which these subflows are established is kept active.

There are three reasons explaining those unused subflows. Firstly, for the
small connections, all data exchange can be finished before new subflows are
fully established. Secondly, the subflow can be established as a backup subflow.
These two reasons explain the fact that 43.15% of the unused additional
subflows have better RTT than the active subflow. Thirdly, the difference in
round-trip-times between the two subflows can be so large that the subflow
with the highest RTT is never selected by the packet scheduler. In fact, 75% of
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Figure 3.7: Ratio of data sent via initial subflow
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the connections containing such subflows carry fewer than 1000 bytes, and
95% less than 20 KBytes.

By immediately creating subflows, the full-mesh path manager is responsi-
ble for some Multipath TCP inefficiencies. An improved path manager [103,
129] would prevent some of these inefficiencies.

3.3.6 Retransmissions and Reinjections

A reinjection [171], is the retransmission of the same data over two or more
subflows. Reinjections can occur for several reasons: (i) handover, (ii) excessive
losses over one subflow or (iii) limited windows due to the Opportunistic
Retransmission and Penalization (ORP) heuristic proposed in [171] and en-
hanced in [150]. Similar to TCP retransmissions, a reinjection is a sender’s
reaction to deal with a performance issue or functional issue.

The Linux implementation of Multipath TCP reinjects data to other subflows
only after an RTO happened on the current subflow. This may be too late
and may cause a swift transfer stall. A more responsive approach could be
reinjecting data when observing a spike of RTT and loss rate on one subflow.

Multipath TCP reinjections are closely linked with regular TCP retransmis-
sions. Since reinjections, by definition, can only occur on connections that
contain at least two subflows, we consider only the connections composed of
at least two subflows and carrying at least one byte. Figure 3.8 shows the CDF
of the reinjections and retransmissions of these connections. The number of



42 passive measurement : observing real multipath tcp traffic

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of unique bytes

0.75

0.80

0.85

0.90

0.95

1.00

CD
F

Retransmission
Reinjection

Figure 3.8: The fraction of bytes that are reinjected/retransmitted on the Multipath
TCP connections composed of at least two subflows

retransmitted and reinjected bytes are normalized with the number of bytes
exchanged over the connection. Since the same data can be sent over several
subflows, this fraction can be larger than 1.0 for connections that carry a small
amount of data that is retransmitted or reinjected.

We observe that reinjections occur but are less frequent than regular TCP
retransmissions. While 25% of the multi-subflow connections do experience
retransmissions, only 4.1% of them experience reinjections. 923 MBytes are
reinjected and 1323 MBytes are retransmitted, out of a total of 113 GBytes
transferred.

To better understand the reinjections and the retransmissions, we plot in
Fig. 3.9 the CDF of the normalised times when reinjections and retransmissions
occur during each Multipath TCP connection. To produce this plot, we extract
from each connection the timestamps of all retransmissions and reinjections
and normalize them as a fraction of the duration of the entire Multipath TCP
connection.

Moreover, each point corresponds to the timestamp of one retransmit-
ted/reinjected packet. We observe that there are proportionally more retrans-
missions in the beginning of the connections than close to the end. This is
probably because TCP’s congestion control algorithm is more aggressive dur-
ing the slow-start phase than when it enters congestion avoidance mode. For
the reinjections, we do not observe in Fig. 3.9 such a strong bias in favor of
the beginning of the connections.
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3.4 related work

Various researchers have analyzed the performance of Multipath TCP through
measurements. Raiciu et al. [169] discuss how Multipath TCP can be used to
support mobile devices and provide early measurement results. Pluntke et
al. [160] analyze whether Multipath TCP could reduce energy consumption
by using several interfaces simultaneously. Paasch et al. [143] propose three
modes for the operation of Multipath TCP in wireless networks and describe
measurements of handovers. Chen et al. [41] analyze the performance of
Multipath TCP in WiFi/cellular networks by using bulk transfer applications
running on laptops. Ferlin et al. [74] analyze how Multipath TCP reacts
to bufferbloat and propose a mitigation technique. As of this writing, this
mitigation technique has not been included in the Linux Multipath TCP
implementation. Livadariu et al. explore the performance of Multipath TCP
on dual-stack hosts [131] and show that performance over IPv6 and IPv4

paths differ. Ferlin et al. [76] propose a probing technique to detect low
performing paths and evaluate it in wireless networks. Lim et al. [128] propose
a technique to reduce the energy consumption of smartphones that are using
Multipath TCP and evaluate it experimentally. Williams et al. analyze in
[209] the performance of Multipath TCP on moving vehicles. Deng et al. [59]
compare the performance of single-path TCP over WiFi and LTE networks with
the performance of Multipath TCP on multi-homed devices by using active
measurements and replaying HTTP traffic observed on mobile applications.
Their measurements show that Multipath TCP provides benefits for long flows
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but not for short ones. For short flows, they show that the selection of the
interface for the initial subflow is important from a performance viewpoint.

Hesmans et al. analyze in [102] a one-week-long subset of the trace that we
use in this work. In this chapter, we use a much larger dataset (5 months).
This work and its earlier version [102] are the first ones that collect and
analyze a large real-world Multipath TCP dataset, revealing some new aspects
of Multipath TCP traffic. A similar work to this chapter was done for real
smartphone traffic [56] using SOCKS proxies to enable Multipath TCP towards
the end devices, while maintaining regular TCP to popular Internet servers.
More recently, a large-scale measurement of Multipath TCP on high-speed
rails was conducted [127], revealing that Linux Multipath TCP improved the
robustness of regular TCP but also had suboptimal throughput in this extreme
condition due to very frequent hand-overs.

3.5 conclusion

TCP is probably one of the most studied networking protocols. Hundreds
of papers have analyzed its performance and behavior in a wide range of
conditions. All this work has led to various improvements that are used in
widely deployed implementations [18]. Thanks to the utilization of multiple
flows, Multipath TCP brings another dimension to the problem of reliably
transmitting data between two hosts. With regular TCP, a host adapts its
transmission rate to avoid congestion thanks to its congestion control scheme.
With Multipath TCP, when several concurrent subflows are active, the host can
spread the data over different paths. Furthermore, the number of subflows
that are associated to a connection can vary over time.

Our detailed analysis of a five-month-long packet trace has led to several
interesting observations. First, Multipath TCP works correctly over a wide
range of Internet paths. This demonstrates the deployability of the protocol
extension in the global Internet. Second, the trace reveals two different usages
of Multipath TCP. About 86% of the connections are composed of subflows
that are created almost immediately.

These connections expect improved performance from the utilization of
several subflows. In the remaining 14% of the connections, one or more
subflows is created more than one second after the initial subflow. This is
likely corresponding to the second use case for Multipath TCP that enables
applications to continue to use existing connections after a handover. This use
case is very important for mobile devices. Looking at the round-trip-times
of the subflows that Multipath TCP uses, our analysis reveals that there can
be a huge difference between the fastest and the slowest subflow inside each
Multipath TCP connection. This large delay difference must be taken into
account by Multipath TCP implementers who propose solutions to improve
the performance of the protocol.

We have then analyzed in more details some of the inefficiencies of Multi-
path TCP. The first identified inefficiency is that the current Multipath TCP
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implementation in the Linux kernel often creates subflows that do not carry
any data. On a server, this is not a severe problem, but on a smartphone,
establishing a subflow on the cellular interface without using it has a cost in
terms of energy consumption and radio channel usage.

We have also studied in detail how retransmissions and reinjections occur.
Our analysis reveals that reinjections, i.e. retransmitting data over more than
one subflow, are common but less frequent than regular retransmissions. We
also observed a couple of performance issues due to inefficient receive buffer
autotuning and the large RTT difference among active subflows. In general,
there are still many aspects of the Linux implementation of MPTCP that
could be improved. More recent measurement works [127, 138] have similar
observations.





4A C T I V E M E A S U R E M E N T: M U LT I PAT H T C P F O R
V O I C E - A C T I VAT E D A P P L I C AT I O N S

In the previous chapter, we have analysed Multipath TCP traffic on a public
domain. However, this dataset contains mostly traditional types of service
(web, FTP, echo/discard, proxy, etc.). It is important to know how Multipath
TCP performs with newer, modern services. In this chapter, we focus on the
usage of Multipath TCP for voice-activated applications.

Voice is progressively becoming a popular way to interact with mobile de-
vices such as smartphones or connected cars. Most of the current deployments
depend on cloud services to recognize the user’s commands. For this reason,
voice-controlled applications have stringent network requirements in terms
of delay or availability. On the other hand, many of the devices using such
applications are attached to several wireless networks. On iPhones, thanks to
Multipath TCP, voice-enabled applications remain available while users move
from cellular to WiFi networks or vice versa. This is one of the first Multipath
TCP applications which is deployed on a large scale.

In this chapter, we leverage the MONROE platform to analyze the perfor-
mance of Multipath TCP for voice-activated applications. For this, we port
the Multipath TCP Linux kernel code into the Linux Kernel Library so that
it can run in user space as a regular application. We extend iperf3 to emu-
late voice-activated applications and carry out measurement campaigns. Our
measurements show that Multipath TCP brings benefits for users at different
levels depending on the network conditions and configurations.

4.1 introduction

While voice recognition has a long history of research and development,
recent advances in deep learning, the improvement of hardware capability
and the pervasiveness of the Internet have enabled a new generation of cloud-
based voice recognition platforms, e.g. Apple Siri, Google Speech Recognition,
Microsoft Cortana, Amazon Alexa. These platforms have enabled several use
cases in various activities of our lives: voice-based search or commands, hands-
free infotainment control at home and in connected cars [188], automated
customer support [2], voice-based path guides for visually impaired people
[17], etc. These systems do not require a high volume of network traffic, but
they do present very specific networking requirements: high availability, low
latency and energy awareness. These applications typically send voice samples
to cloud servers that return the recognised text.

Since 2013, Siri, the voice-recognition and virtual assistant application on
iOS, has used Multipath TCP (MPTCP) [80] by default to communicate with
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the Apple servers [8]. Given that voice-recognition is one of the largest com-
mercial deployment of Multipath TCP [23], we would like to answer two
questions in this chapter: (1) What are the benefits of using MPTCP for voice-
recognition traffic? and (2) What are the factors that impact the performance of
MPTCP?

A first possible approach could be conducting passive measurements with
real Siri traffic at some vantage points such as on university campus WiFi
networks, or on mobile operator gateways. However, this approach is in-
complete since Multipath TCP can use different paths and it is difficult to
passively collect all the packets sent by a smartphone over both WiFi and
cellular networks.

Another approach is to leverage existing mobile measurement platforms to
deploy simplified voice-activated applications and conduct active measure-
ments. The challenge now is to have a mature Multipath TCP stack on the
mobile nodes used on those platforms. In this chapter, we present a methodol-
ogy to conduct Multipath TCP measurements on a mobile broadband platform
and leverage the Linux Kernel Library [163] to quickly deploy Multipath TCP.
We use this methodology to collect sample measurements to demonstrate its
benefits by answering the two above questions.

This chapter is organised as follows. Section 4.2 provides some background
on the voice-recognition traffic and our observations on recent Siri traffic.
Section 4.3 describes the MONROE platform, the challenges to run Multipath
TCP on this platform and our approach. The measurement methods and
procedures are depicted in detail in Section 4.4. Section 4.5 presents the results
of two measurement campaigns and Section 4.6 concludes the chapter.

4.2 voice-recognition traffic

In this section, we briefly describe the behaviour of voice-recognition applica-
tions such as Siri.

Traditionally, unreliable protocols like UDP are used to transport interactive
voice traffic to avoid the additional latency induced by reliable transport pro-
tocols. However, most of the deployed cloud-based voice-recognition systems
use TCP [217] or QUIC[122] - which is on top of UDP but has added reliability
- as their transport protocols. This is likely because the responses from servers
are typically textual or binary messages, which need to be transferred reliably.

The network traffic generated by Siri has been preliminary analysed in
several works [10, 11, 37, 55]. Based on the history of the Siri development
and by the reverse engineering effort of previous work [37], it is believed that
Siri uses HTTPS as the application protocol layer with a request-response
communication pattern. In order to have up-to-date information on the current
Siri communication behavior, we have captured Siri traffic on an iPhone
running iOS 11.1 (Fig. 4.1). The tests included a series of real-life questions, a
current weather query, and a one-off Google search. Below are some of our
observations, which are used for traffic emulation in our measurements.
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Figure 4.1: The observed Siri traffic pattern

Siri uses TLS 1.2 for encrypting the exchanged data. As an interesting
side note, shortly after the beginning of the Siri connection, we also observe
that other TCP connections are established towards other servers for other
Apple services, e.g. weather forecast, notification update, new system update
check. These connections are probably created opportunistically to save the
energy consumed by the activation of the network interfaces. Except in the
TLS handshaking phase, the client sends data in bursts of several small TCP
segments, which likely contain the encoded voice samples. The length of each
segment lies in the range of 50-500 Bytes and always has the PSH flag set,
showing that the TCP NO_DELAY socket option has been used. After each burst,
the server sends back a small response. It is believed that Siri uses HTTPS as
the application protocol for the transaction [37], in which the voice samples
are included in HTTP POST messages. Thus, the small responses that we
observe are probably the HTTP 100 Continue informational status messages.
When all voice samples have been received and processed, the server sends
back its final response. After that, the connection is not closed immediately by
the client nor the server, but is maintained persistently for a long time. This
process is illustrated in Figure 4.1.
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4.3 mptcp measurements : challenges and approach

We use the MONROE platform [3] for our measurements since it supports
various multi-homed wireless nodes. To realise our MPTCP measurements on
the MONROE platform, we have to overcome a technical challenge. Since the
platform only allows experimenters to run their tests inside Docker container
[20], we cannot run the experimental MPTCP stack in the Linux kernel directly.
To run a Linux MPTCP implementation in user-land, we extend the Linux
kernel library to provide Linux MPTCP to the application.

4.3.1 The MONROE Platform

MONROE [3] is a large multi-homed mobile-broadband measurement plat-
form. It enables the experimenters to access and control hundreds of APU-
based nodes. Each node is equipped with multiple cellular interfaces, or with
one WiFi and one cellular interface. These nodes could be stationary or mobile
(which are placed on trains, trucks, or buses). While the platform is shared
among different experimenters, the access to each node is given exclusively
to one experimenter at one time to avoid interferences among concurrent
experiments. Detailed descriptions of the platform can be found in several
measurement papers [121, 159]. For example, [121] presents simple but exten-
sive download/upload measurements on this platform. In our experiments,
we observed - on more than half of the nodes - that the MP_CAPABLE option
[80] used by Multipath TCP to establish connections was removed from the
SYN packet on port 80 towards an external server. However, the MPTCP con-
nections on other port ranges (5201 to 5300) do not suffer from this problem.
This suggests that HTTP transparent proxies are used in the cellular networks
attached to these nodes, confirming the observation in [121].

The MONROE platform is based on a container technology. The users have
to prepare a Docker image to deploy on each MONROE node, and then Docker
instances run in user space. However, using Multipath TCP requires kernel
upgrades, which is challenging to deploy on the MONROE nodes. We solve
this problem by using the Linux kernel library [163] to allow an application
to use a custom MPTCP-enabled network stack without requiring any kernel
change on the host.

4.3.2 Linux Kernel Library overview

The Linux kernel library (LKL) [163] is essentially a library that enables users
to use custom Linux kernel code directly inside applications. Unlike a typical
build of Linux kernel source tree which produces a bootable image, a build of
LKL generates a set of library files which contain the Linux kernel but live in
userspace. An application can link the LKL library in order to call alternate
system calls (instead of the ones of the host kernel) implemented in LKL.
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We leverage this feature to use the Multipath TCP network stack for our test
application.

After traversing packet processing in the LKL system calls (completely
operated inside userspace), a packet goes through a virtualized device driver
composed of Linux kernel code, which is a virtio driver implementation,
and destined to a virtio device of LKL to be transmitted to the outside. LKL
supports a series of virtio devices: raw socket, tap device, Virtual Distributed
Ethernet (VDE) [53], Intel Data Plane Development Kit (DPDK) [112], etc. With
those devices, the incoming and outgoing packets processed by the network
stack of LKL do not need to pass through the stack of the host operating
system.

There are several other options to achieve the customized network stack:
User-mode Linux (UML) [62], QEMU [16], or a custom userspace MPTCP
implementation. First, UML can also introduce a custom Linux kernel with
MPTCP extension executed in userspace. However, an UML instance is usually
bundled with a complete Linux runtime which involves various initialization
procedures with multiple process invocations such as shell scripts for con-
figurations, DHCP client, etc. This results in a longer boot time than LKL
even if the new network stack is only used by a single application. Second,
while a complete Linux operating system on top of QEMU with hardware-
assisted virtualization is the most transparent solution to utilize a virtualized
system on top of an existing operating system, virtualization is not cheap.
Furthermore, its overhead may be too much for this solution to run on APU
devices. Finally, a custom MPTCP implementation in userspace would have
plenty of options to meet requirements of a restricted environment such as
the MONROE platform. Such an approach looks tempting but it also drops
the maturity of the code quality in terms of both suboptimal performance and
functionalities that LKL (UML, or Linux with QEMU) does not have.

4.4 measurement design

The MONROE platform consists of not only stationary nodes which are
located in four European countries (Norway, Sweden, Italy and Spain) but
also mobile nodes which are set up on trains (Norway), buses (Sweden, Italy),
and trucks (Italy). For our experiments, we selected 28 stationary nodes and
40 mobile nodes. Each of them has two cellular interfaces which are connected
to different mobile operators. Our server is located in our university campus
in Belgium.

Both clients and server run version 0.93 of the Multipath TCP implementa-
tion in the Linux kernel [142]. On the client, we merge the source code of LKL
and Linux Multipath TCP and build them as a library to the client application
1. We also use the enhanced socket API [100] to only use the wireless interfaces
for creating the subflows. We use the OLIA (Opportunistic Linked-Increases

1 Merged code is available at https://github.com/hoang-tranviet/mptcp/commits/lkl_4.

13-mptcp_v0.93_API

https://github.com/hoang-tranviet/mptcp/commits/lkl_4.13-mptcp_v0.93_API
https://github.com/hoang-tranviet/mptcp/commits/lkl_4.13-mptcp_v0.93_API
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Figure 4.2: General Experiment Procedure with LKL

Algorithm) congestion control [120] which is a coupled one and is proven to
be stable. For packet scheduling, we use the default Lowest-RTT scheduler.

4.4.1 Measurement Procedure

Figure 4.2 depicts our general procedure for the experiments with LKL on
clients. While this procedure was originally designed for voice-activated traffic
measurements and for the MONROE project, it can be adapted to run on
other measurement platforms and with other custom Linux network stacks.
At the beginning of the experiment, we run tcpdump to capture packets sent
by both clients and server. The current LKL implementation uses the virtio

device and communicates with the outside world through raw sockets. After
bootstrapping the LKL, the main measurement application can run. It stores
its results in log files. The next subsection elaborates this stage with our
simulated voice-activated application (Fig. 4.3).

4.4.2 Measurements with Voice-activated Applications

Since the implementation of popular voice-recognition systems like Siri, Alexa
or Google Assistant are closed-source and their traffic is encrypted, we use
simulated traffic for our measurements. For this purpose, we modified the
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popular iperf3 measurement software [63] on both clients and server 2. The
original iperf3 software uses a separate control channel between the clients
and the server. We modified this channel to exchange the experiment parame-
ters at the beginning of each test as well as the results after the data transfer.
Given that latency is an important factor in our measurements, we enabled the
TCP NO_DELAY socket option on the clients and the server. We also configured
the Linux stacks with TCP Small Queue and Tail Loss Probe enabled.

The emulated traffic is based on our observations on Siri traffic pattern,
as presented in Section 4.2. As shown in Fig. 4.3, after a client connects to a
server, it starts sending voice data in a series of bursts. Each request consists
of 9 bursts and each burst spans 10 TCP segments (ranging from 50 to 500

Bytes) on average. For every burst, the server may respond with a small
reply corresponding to the HTTP 100 Continue (Intermediate-Response). The
inter-burst time is set to 300 msec. Once the server has received all request
data, it immediately sends back a 750 Bytes response to the client. Our version
of iperf3 uses the enhanced socket API [100] to have more control on the
creation of subflows. For users, the important metric is the request-response
delay, which is defined as the delay between the transmission of the last burst
and the arrival of the first response packet. A similar metric has been used in
previous work [10, 11].

4.5 sample measurement results

In this section we present some results of two measurement campaigns 3. The
first one compares the performance of TCP and MPTCP. The second campaign
evaluates the performance of different configurations of MPTCP.

4.5.1 MPTCP versus TCP

Initially, we ran the client application on 28 different stationary nodes towards
our server. Each node performs five transactions with the server within 60

seconds (which gives five request-response delay samples), and the entire
experiment is repeated three times. For this experiment, Figure 4.4a shows that
Multipath TCP provides much better Request-Response Delays than regular
TCP.

Then, we ran the measurement with similar configuration but this time on
40 mobile nodes. As shown in Fig. 4.4b, it is clear that the average delay in this
case is much higher than that of the stationary nodes, with much longer tails
that are not fully shown here. This is understandable given that the mobility
of nodes likely reduces the connection quality, significantly increasing packet
losses and delays. Notice that for this reason, we plotted this figure with a
different range (0 to 2 seconds) than the previous one (0 to 1 second). We can
see in this case that the difference between the two protocols is not always

2 Source code is available at https://github.com/hoang-tranviet/iperf-siri
3 Measurement scripts and collected data is available at https://zenodo.org/record/1290469

https://github.com/hoang-tranviet/iperf-siri
https://zenodo.org/record/1290469
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significant. Multipath TCP delivers similar performance as TCP when the
delay is good. However, when delay is bad, Multipath TCP with the default
configuration could clearly reduce the tail of delay.

Digging into details, we also collected the Received signal strength indication
(RSSI) of the default cellular interface on each node, as shown in Fig. 4.5 and
Table 4.1. The high correlation between the delay and the signal strength in
the case of TCP shows that the signal quality on the last mile has a significant
impact on the overall perceived delay. For MPTCP, there is no clear correlation
between the user-level delay and the signal strength. This is likely the result
of the Lowest-RTT scheduler decision, which tends to switch the outgoing
packets from the first subflow to the second subflow when the RTT on the
first subflow increases (as explained in Section 2.4.2).

4.5.2 Different MPTCP server configurations

In this campaign, we use two different schedulers on the server: Default
scheduler and Server scheduler. As mentioned earlier in Section 2.4.2, the Default
scheduler of the Linux implementation prefers the subflow with the lowest
round-trip-time. Meanwhile, the Server scheduler [55] was designed for servers
that serve mobile devices. This scheduler always prefers to transmit data over
the last subflow on which it received data or a new data acknowledgement.

On the server side, the default (Lowest-RTT) scheduler may take undesired
decisions in some cases. For example, consider a client that has both WiFi and
cellular interfaces and initially sends data through the WiFi path. If the WiFi
connectivity fails, e.g. because the user moves, then the server still sends traffic
through this path since it does not know about the failed WiFi connection on
the client side. The server scheduler [55] tries to avoid this problem by choosing
the most recently used subflow on which the server has just received client
data. To be concrete, it remembers the timestamp of the latest original packet
received on each subflow. A packet is considered original if it contains new
data based on its Data Sequence Number, or if it contains new Data-ACK that
advances the left edge of data-level send window. More information about
this scheduler can be found in [55].

For any scheduler, the up-to-date information about each subflow should
play an important role in improving data transfer performance. As described
in Fig. 4.1, the Siri server sends an intermediate response (100 Continue) after
each received burst. To reveal the performance impact of these responses,
we run the experiment with two different behaviors: servers send back these
intermediate responses (default behavior) or do not send them back (the tests
with “No-IR” annotation in the figures).

In all situations, there is no clear difference of delay in the first 70 percentiles.
This represents the situations in which the default path is always the best
path, so there is no impact of using different MPTCP configurations. The
main differences are in the last 30% percentiles. In the case of mobile nodes
(Fig. 4.6b), the server scheduler gives better performance for mobile nodes by



56 active measurement : multipath tcp for voice-activated applications

Client Stationary nodes Mobile nodes

TCP -0.34 -0.20

MPTCP Default 0.03 -0.11

MPTCP Server 0.07 -0.10

MPTCP Default No-IR 0.01 0.11

MPTCP Server No-IR 0.01 -0.10

Table 4.1: Correlation between Request-Response Delay and the RSSI
of the default interface

keeping track of the most recent working subflow. However, for stationary
nodes (Fig. 4.6a), the server scheduler gives nearly identical results. This is
expected given that the connectivity status of each client interface is generally
unchanged.

Additionally, when the server does not send intermediate responses, the
delay increases significantly for both schedulers, showing the importance
of up-to-date RTT information on the server side. While the server scheduler
relies passively on the incoming traffic to select the subflow, the intermediate
responses play the role of the active probing on the current status of subflows. A
more effective and generic solution is to let the scheduler conduct these active
probes regularly on unused subflow, independently from the application layer.
This approach has been proposed in several recent works [85, 126], which
reduce the tail delay significantly.

4.6 conclusion

Voice-activated applications are more and more popular and will likely play a
more important role in the future. In this chapter, we have extended iperf3 for
modeling the network behaviour of such applications. We have then proposed
and implemented a measurement methodology that leverages the LKL library
to use a specific networking stack without changing the underlying Linux
kernel. This is key to be able to test new protocols on platforms such as
MONROE or Planetlab. We demonstrate the benefits of this approach on
the MONROE platform. Our measurement results show that Multipath TCP
with a proper configuration could help improving the user-perceived delay
in various network conditions. Moreover, to achieve good performance with
Multipath TCP, it is important to improve the senders’ awareness about the
current state of each subflow.
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Part III

R E I N V E N T I N G T H E L I N U X S TA C K

The previous part has shown that current Multipath TCP imple-
mentations could be improved in several aspects, and should be
customized for realistic scenarios. Unfortunately, Multipath TCP
stacks typically reside in the kernel space, which makes them dif-
ficult to be extended or customized. In this thesis, we focus on
the Linux networking stack due to the popularity of Linux servers
and Android clients. While this thesis is about Multipath TCP, we
realized that the difficulty of extending Multipath TCP stack is a
generic problem. Therefore, in Chapter 5 we start by extending
regular Linux TCP stack. Then, we apply a similar approach to
Multipath TCP in Chapters 6 and 7.





5E X T E N D I N G L I N U X T C P U S I N G E B P F

The Transmission Control Protocol (TCP) remains one of the most important
protocols in today’s Internet. It was designed to be extensible for various use
cases. A client can propose to use an extension over a given TCP connection
by sending an option that identifies this extension during the three-way
handshake, while a few other options such as User Timeout Option [70] can
be sent directly without negotiation. That’s the theory that all networking
students learn in networking textbooks. In practice, deploying a TCP extension
is much more difficult as the maintainers of client stacks often wait until
servers implement a given extension and server maintainers look at clients in
the same manner. It often takes several years to actually deploy an option at a
large scale. In this chapter, we focus on the Linux TCP stack since it is one of
the most widely used TCP stacks, given its utilisation on many servers and
Android devices.

Our goal is to support experimenting and deploying new TCP options in
a quick, simple, and efficient way. This includes inserting new TCP options
at the sender side and parsing them at the receiver side. The implementation
and the interface should be simple, generic, and introduce as few changes to
the kernel code as possible.

5.1 introduction

The designers of TCP did not expect that it would be used by billions of de-
vices, but they did foresee the importance of designing an extensible protocol.
TCP’s extensibility depends on two important factors: (i) the extensibility of
the protocol and (ii) the extensibility of its implementations.

To be extensible, the TCP protocol supports TCP options that can be placed
in the TCP header. A TCP connection starts with a three-way handshake dur-
ing which the client proposes a set of extensions as TCP options placed in the
SYN packet and the server replies with its supported options. The accepted
TCP options can then be attached to the other packets exchanged over this con-
nection. Various TCP extensions have been proposed during the last decades:
TCP Timestamp and large windows [114], Selective Acknowledgements [132],
TCP Fast Open [42], Multipath TCP [80] and so on. However, deploying a
new TCP option takes time. It needs to be defined, accepted by the IETF and
then implemented by major TCP stacks. Measurements show that Selective
Acknowledgements took more than a decade to be widely deployed [87] and
the Timestamp option is still not enabled by the Microsoft stacks [109]. More
recently, middlebox interference became an important concern [68, 107] which
ossifies the Internet infrastructure.

63



64 extending linux tcp using ebpf

The second, and often forgotten, factor is the extensibility of the TCP
implementations. For many years, the Unix 4.x BSD stack has served as the
reference TCP implementation [214]. When Van Jacobson wrote his seminal
paper on congestion avoidance and control [115], his work had a large impact
because his code was quickly integrated inside this reference implementation.
Today, this stack is less popular than the Linux TCP stack that is used by a
large fraction of Internet servers and all Android smartphones. This Linux
stack has been extended to support TCP Fast Open [166], Multipath TCP
[171] and many other TCP extensions. The TCP stack in Linux 1.0 in 1994

contained 3k lines. It grew to 18k lines in version 2.6 (2010). Today’s TCP
implementation spans more than 80k lines of C code in the Linux kernel. Most
of the recent additions to the Linux TCP stack have been driven by the needs
of large content providers.

The Linux TCP stack is highly optimised for the most common use cases,
but it has very limited ability to adapt to a changing environment of network
conditions, workloads or user requirements. It can be tuned through a myriad
of sysctl parameters 1. These parameters allow to tune many TCP aspects
e.g. delayed ACK timeout, ACKing strategy, congestion control scheme. More
importantly, the sysctl interface only allows changing system-wide or per-
network-namespace behaviors, but it does not support per-connection policies.
Some of these parameters and others are exposed as socket options2 or via
socket syscalls that can be set by applications on a per-connection basis.
However, it is difficult and hacky, though not impossible, for the system
administrators to use these socket-level interfaces.

As will be explained in Section 5.2, some researchers have proposed tech-
niques to extend the Linux TCP stack, but these approaches do not allow to
read or write new TCP options. We consider that supporting new TCP options
is a crucial part of a truly extensible framework for TCP. In short, the main
contributions of this chapter are as follows:

1. We propose and implement a light eBPF-based framework that enables
users to easily add support for new TCP options in the Linux TCP stack

2. We propose four use cases that leverage our framework to adapt the
stack to various scenarios or user requirements.

The remainder of this chapter is organized as follows: Section 5.2 discusses
the related work and presents the objectives of this work. We present our
methodology and implementation of our TCP option framework in Section 5.4.
Several use cases for new TCP options are presented in Section 5.5. Finally,
Section 5.6 discusses the insights and future work.

1 See https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
2 See http://man7.org/linux/man-pages/man7/socket.7.html

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
http://man7.org/linux/man-pages/man7/socket.7.html
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5.2 state of the art

Transport protocols such as TCP can be implemented inside the operating
systems’ kernel [214] or as a library inside the application. The main motiva-
tion of kernel stacks is that a single stack can support all applications, ensure
that they do not interfere and achieve high performance [48]. A drawback of
in-kernel implementations is that they are more difficult to extend than user
space ones. On the other hand, user space implementations are more flexible,
but they are often less mature than the in-kernel ones. Recent advances have
enabled user space implementations to reach higher performance [117].

5.2.1 In-kernel approaches

Several researchers have proposed solutions to simplify the extension of in-
kernel implementations. STP [154] was an ambitious effort to allow end hosts
to load untrusted code from remote peers to upgrade their transport protocols.
The idea of loading user code into a sandbox in the kernel is similar to the
utilisation of the eBPF virtual machine in today’s Linux kernel.

The idea of exposing and allowing applications to set internal state variables
of TCP connections was proposed earlier [91, 133]. This permits the control
plane of TCP congestion control to be moved from kernel to userland [91,
136]. This also enables adding new non-intrusive features [91], as long as
they do not change the wire format or the internal state of TCP. In terms of
performance, this approach requires costly switching back and forth between
userspace and kernelspace for both reading and writing parameters.

5.2.2 Userland approaches

Besides kernel stacks, there are complete user-space TCP stacks [66, 67, 117].
Their nature makes them be easier to be modified by application developers
than the in-kernel TCP stacks. However, they often lack many crucial features
(e.g. PMTU discovery) or the rich ecosystem of supportive facilities (notably
but not limited to iptables, namespacing, cgroup) and debugging utilities.
New transport protocols such as QUIC [123] were designed with user space
implementations in mind. Several QUIC implementations are being actively
developed3. The QUIC protocol was designed to be easier to extend than
the TCP protocol and its encrypted packets should prevent most types of
middlebox interference. However, a portion of networks currently block (4.4%)
[123] or rate-limit UDP traffic.

The Linux Kernel Library (LKL) [164] (which was mentioned in Section
4.3.2) is a compromise between in-kernel and user space implementations
since it wraps a custom Linux network stack into a user library, allowing
each application to use a different Linux network stack. This approach allows

3 See https://github.com/quicwg/base-drafts/wiki/Implementations.

https://github.com/quicwg/base-drafts/wiki/Implementations
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applications to use new features (e.g. TCP Fast Open, MPTCP) even if updating
the host kernel is not possible or not desirable. However, it currently induces
some memory overhead and the dynamicity of the network stack has not yet
been considered.

5.2.3 Current Linux kernel facilities

The Linux kernel includes several facilities which can be used to extend its
TCP implementation. First, the Linux TCP stack provides the socket option
interface to observe or change the state of the underlying TCP connections. For
example TCP_INFO socket option returns many state variables. Some mobile
applications use it frequently [178]. Second, Netlink [175] establishes channels
between kernel space and user space. It has been used to support user-level
control plane for MPTCP path manager [104]. However, this approach requires
the addition of a lot of code into both kernel and userspace, causing both
memory and processing overhead.

A low-level way to change the kernel execution path is to use kprobes’
capability [118] of changing the register set and instruction pointer. It allows
capturing some information when a specific kernel function is executed.
However, this approach is highly fragile and prone to error, which could lead
to serious consequences such as kernel panics or kernel data leaks.

Another approach is to implement each extension as a loadable kernel
module. For example, multiple congestion controllers are implemented as
kernel modules that are loaded dynamically into the Linux TCP stack. The
active congestion controller can be selected through a sysctl or configured on
a per connection basis once loaded. While we could implement other features
as kernel modules, loading user code directly into kernel without restrictions
is very dangerous in general.

A comprehensive approach is to build a custom sandbox which allows
userspace to load custom code into the kernel and change the behavior of
stack, similar to STP [154]. However, there was no follow-up work since the
date of STP. Recently, extended BPF (eBPF) has emerged as a safe and efficient
way to add programmability into the mainstream Linux kernel. The next
section gives a brief summary of this eBPF infrastructure.

5.3 ebpf execution environment

The Classic BPF (cBPF) virtual machine is a part of the Linux kernel for more
than two decades. It has been mainly used to write filters to capture packets,
which is the core part of famous tools such as tcpdump and Wireshark. Since
the BPF filter runs in the kernel space, it may capture a large amount of traffic
and consume too much system resources. The cBPF virtual machine allows
users to specify a subset of the traffic flows (e.g. only capture TCP traffic
towards a specific IP address on port 80), and to optionally capture the packet
headers instead of the full packets.
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Recently, this virtual machine has been thoroughly extended and renamed
the extended BPF (eBPF). It supports several use cases such as sandboxing
system calls (seccomp), tracing kernel events [89], implement hyperupcalls [7].
Several networking use cases already leverage eBPF. For example, XDP uses
it for fast packet processing [106], IPv6 Segment Routing uses it to support
network programming [215] and it improves the extensibility of Open vSwitch
[201]. Motivated by its success in the Linux kernel, there are ongoing works to
port eBPF to userspace [162] or to the FreeBSD kernel [96].

5.3.1 eBPF Virtual Machine

Classic BPF provides a small number of 32-bit RISC instructions. To take
advantage of modern hardware, the eBPF virtual machine was designed to
closely resemble modern CPU architectures. The most important changes
include using 64-bit registers and increasing the number of user-accessible reg-
isters from two to ten. Nine of them are general-purpose read-write registers,
and one is a read-only stack pointer. Table 5.1 explains the role of these eBPF
registers. The eBPF Virtual Machine also includes a program counter and a
512-byte stack. Additionally, eBPF simplifies the just-in-time (JIT) compilation,
gaining much better performance.

Each eBPF bytecode, called eBPF program, runs inside this virtual machine.
One important remark is that the execution of eBPF programs is event-driven.
Before the Linux 5.1, the size of these eBPF programs was limited at 4096

instructions to make sure its execution could be terminated quickly and avoid
the kernel lock-up.

There are multiple eBPF program types. Each program type cam interact
with only one or a subset of kernel subsystems. Each eBPF program needs to
be associated with a single BPF context object during its execution. Register R1

always stores the pointer to this context object. For example, a BPF program
can directly operate on either a socket context or an skb packet context, but
not both.

5.3.2 eBPF maps

eBPF maps are efficient key-value data storage structures. They are the main
storage for BPF programs. They could be used for sharing data between user-
land and an in-kernel BPF program, or among BPF programs of different types.
eBPF maps are typically created from userspace and are handled by a file de-
scriptor. All maps are defined by a set of four values: a type, a maximum num-
ber of elements, a value size in bytes, and a key size in bytes. The key is used
to store and retrieve data value. There are two kinds of eBPF maps: the generic
ones that store any arbitrary kind of data, while the non-generic ones are
used to store data of a specific type. For example, BPF_MAP_TYPE_PROG_ARRAY
is used to store a list of BPF programs, while BPF_MAP_TYPE_SOCKMAP can only
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Register Purpose

R0 stores return values

R1-R5 stores function call arguments

R6-R9 is preserved on helper function call

R10 points to the per-program stack

Table 5.1: eBPF Registers and their current purposes

store the socket information. Maps of both kinds can be accessed by generic
functions: bpf_map_lookup_elem() and bpf_map_update_elem().

5.3.3 eBPF helper functions

Each eBPF program is sandboxed. By default, it can only access the context
object passed to it. To read and change other in-kernel objects, it has to
call eBPF helper functions. Each helper function is defined with a function
signature, similar to the system calls, allowing the verifier to perform type-
check to make sure the access is safe and secure and allowing these functions
to be JIT compiled efficiently. The eBPF authors decided that all BPF helper
functions are part of the core kernel and cannot be extended via kernel
modules. This is to encourage eBPF developers to merge their internal-used
helper functions into the mainstream Linux. There are many helper functions
in the latest Linux kernel and this number is quickly increasing.

5.3.4 In-kernel verifier

Each eBPF bytecode needs to be verified before being injected inside the
kernel. This job is carried by an in-kernel verifier, ensuring that the eBPF
bytecode cannot harm the running kernel. This task is more critical when a
non-privileged user tries to load an eBPF program. This is possible since some
program types do not require the CAP_SYS_ADMIN privilege.

The verifier performs multiple checks before actually loading an eBPF
program into the kernel. First, it needs to make sure that the program execution
will terminate quickly to avoid kernel lock up. This is done by building a
control flow graph (CFG) of the program and doing a depth-first search. Then,
the verifier simulates the execution of the eBPF program, making sure that
the states of registers and stack are always valid, and the memory accesses
are bounded. Finally, each program type could only use a subset of map type
and is restricted to call a subset of helper functions.
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5.4 methodology

As explained earlier, the standard method to extend TCP is to define a new
TCP option. In the early days, researchers introduced new TCP options and
registered them with the IANA. Then, the IETF took control of most of
the evolution of the TCP stack and most recent TCP extensions have been
discussed within the IETF. Today, researchers willing to deploy a new TCP
option cannot anymore simply register their new option within IANA. The
IETF has defined a format for experimental TCP options [189], which we could
leverage in our work to minimize the possibility of middlebox interference
when using new TCP extensions.

From an implementation viewpoint, a TCP extension can be added to the
Linux kernel as a set of patches. This approach has been used by many
researchers (see e.g. [166, 171]). However, users are forced to recompile their
kernels with those patches to support the proposed extension. This severely
limits their deployment.

A better approach is to leverage as much as possible the eBPF execution
environment that we mentioned above. Thanks to eBPF, any application can
inject code inside the underlying TCP stack to modify its behaviour (as shown
in Fig. 5.1). For example, an interactive application running on a smartphone
could inject a retransmission technique that is optimised for short packets
while a datacenter server could inject another congestion control scheme. This
injection could be done directly by the network application or by a system
daemon in userspace. Before loaded, the eBPF code needs to be passed through
a static verifier to make sure it is both secure and fast. The eBPF code can be
executed in an efficient way thanks to the JIT compiling support.

As explained in the previous section, several use cases have been developed
for eBPF in the Linux kernel. These address various components of the Linux
kernel and many focus on performance monitoring. In 2017, Lawrence Brakmo
proposed the TCP-BPF framework [30] which is specifically built for the TCP
stack and provides basic support to extend the TCP stack. We leverage TCP-
BPF as a starting point for our work.

5.4.1 An overview of TCP-BPF

Before the introduction of TCP-BPF, there were generic built-in eBPF helper
functions in the Linux kernel for directly reading from and writing onto packet
data buffer, notably bpf_skb_load_bytes and bpf_skb_store_bytes. While
this approach may fit with lower layer operations, e.g. replacing source/des-
tination IP addresses, changing ToS value, it is extremely difficult to control
the TCP layer because the BPF programs are not aware of the TCP connec-
tion, nor have any information about the dynamic and internal states of TCP
connections.

TCP-BPF has been gradually added [28, 29, 32] into mainstream kernel in
versions 4.13 through 4.15. It was mainly designed to help network administra-
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Hook Calls a BPF program when

BPF_SOCK_OPS_CONNECT_CB An active connection is initialised

BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB An active connection is established

BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB A passive connection is established

BPF_SOCK_OPS_STATE_CB TCP changes state

BPF_SOCK_OPS_RTO_CB Retransmission timeout happened

BPF_SOCK_OPS_RETRANS_CB A packet is retransmitted

BPF_SOCK_OPS_TIMEOUT_INIT To set per-connection SYN-RTO

BPF_SOCK_OPS_RWND_INIT To set per-connection initial rwind

Table 5.2: Notable TCP-BPF hooks (available in mainline Linux 4.17)

tors to tune the TCP configurations of servers in datacenters at the connection
level. The main objective of TCP-BPF was to optimize the TCP parameters in
a programmable manner. For example, TCP-BPF would configure the stack to
use small buffers and a small SYN retransmission timer for a container that
includes applications running inside a given datacenter. However, a different
eBPF code would be used for applications that perform bulk transfers between
datacenters.

TCP-BPF [30] adds several callbacks (also called hooks by the authors) to
call BPF programs at different stages of a TCP connection, as shown in Table
5.2. In this thesis, we use the terms callback and hook interchangeably. There
are two main types of callbacks. The first type is the callback in the slow path
of each connection: e.g. when the client calls connect() or when the server
calls listen() or when the connection is fully established. These callbacks are
always enabled. On the contrary, callbacks of the second type are only enabled
once they have been requested by a BPF program to limit the overhead when
they are unused. These include callbacks triggered when the RTO fires, when
a packet is retransmitted, or when the TCP connection state changes. TCP-BPF
allows BPF programs to read and write to many fields of data structures (the
tcp_sock) maintained by the TCP stack via a mirror structure bpf_sock_ops.
It also provides indirect access to other internal TCP variables via two helper
functions bpf_getsockopt() and bpf_setsockopt(). All these hooks call the
BPF programs by using the same helper function tcp_call_bpf(). Since a BPF
program can be called from different places in the kernel, the hooks are also
associated with an argument (op) to indicate the callback type to let the BPF
program know the current context in the kernel. Additionally, some TCP-BPF
callbacks also affect the connection parameters through their return values, e.g.
BPF_SOCK_OPS_RWND_INIT to set the initial receive window for the connection.

Since TCP-BPF was implemented by Facebook engineers to work in data
center environment, it requires cgroup version 2 to manage various system
resources such as CPU or memory for their containers. For this reason, it
is necessary to attach the BPF program to the same cgroup-v2 of the user
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Figure 5.2: Insert TCP options to outgoing packets

application. However, this is not a permanent requirement, rather it should be
considered as an implementation caveat which can be changed later.

5.4.2 Supporting user-defined TCP options

5.4.2.1 At the sender: Inserting a new TCP option

As an illustration of how it is possible to use eBPF programs to extend the
Linux TCP stack, we first describe the changes that are required to support a
new TCP option. Table 5.3 summarizes the new hooks added by our framework
and their meaning.

Let us first analyse the sender side. When sending packets, the func-
tion tcp_transmit_skb() creates the TCP header and the required TCP
options. TCP options are written in two steps: (i) the stack computes the
size of all provisioned TCP options and (ii) it writes the TCP options in
tcp_options_write(). Therefore, to insert a new TCP option we add two
separate hooks into above places, as illustrated in Fig. 5.2.

We first add into the function tcp_transmit_skb() a hook which calls
the TCP-BPF program to adjust the provisioned size of all TCP options
(tcp_options_size). We also verify that it does not exceed 40 bytes - the maxi-
mum size of the TCP option header section. Then, at the end of tcp_options_write(),
a second hook calls a BPF program which passes the new option data to the
kernel. The kernel is then responsible for writing the new option data at the
current option pointer. To avoid the overhead on the TCP fast path, these
hooks are only activated when the BPF program sets the appropriate flag (per
connection in struct tcp_sock, as explained below).

There is still one thing the framework has to take care of. Since the TCP
stack calculates the current MSS at multiple places, the composed packets
may be too large and could be fragmented on the wire. We update the
tcp_current_mss() function to take the length of to-be-added option into
consideration. This is performed by a hook with the same op type as the above
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Hook In kernel function Passed arguments Purpose

BPF_TCP_OPTIONS tcp_transmit_skb Size of all TCP options BPF prog adjusts the

_SIZE_CALC tcp_current_mss size of all options

BPF_TCP_OPTIONS_WRITE tcp_options_write - actually inserts option

BPF_TCP_PARSE_OPTIONS tcp_parse_options option kind, size, data BPF prog parses option

Table 5.3: New BPF hooks added by TCP option framework

hook (which adjusts tcp_options_size) that is added to tcp_current_mss()

and thus is completely transparent to the BPF programs.

5.4.2.2 At the receiver: Parsing unknown TCP options

On the receiver side, the extension is simpler. Linux TCP parses the options
of incoming TCP packets in tcp_parse_options(), in which all new options
which are unknown to the stack are ignored. At the end of this function,
we added a hook to pass these unknown options to the BPF program, as
shown in Fig. 5.3. This hook, once activated, passed the option data along with
option kind and length to the BPF program. The hook can also pass several
new options of the same TCP packet to one or more BPF programs. The BPF
program reads the option and applies a relevant change to the TCP socket,
e.g. by setting socket values via bpf_sock_ops or bpf_setsockopt().

5.4.3 How to select the desired packets for inserting a new option?

The first question is how to select the relevant connections. A user daemon can
specify the cgroup that the targeted connections are associated with, before
loading the BPF program. At runtime, the BPF program can check the 4-tuple
of IP addresses and ports to only take care of the interesting connections.
These operations are already supported by the vanilla kernel so no kernel
change is required.
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Kernel changes BPF program

TCP Option framework 75 -

Use case: TCP User Timeout 16 76

Use case: Congestion Control 0 92

Use case: Initial Window 0 76

Use case: Delayed ACK 94 77

Table 5.4: Lines of code (LoC) of the framework and each use case

The second question is how to insert new options in the desired packets
only. To mark when the program wants to actually insert new options, we add
a new flag. TCP-BPF already uses a flag array (bpf_sock_ops_cb_flags) in
the tcp_sock struct for enabling and disabling the hooks at different phases
of a TCP connection. We extend this flag array with our flag to minimize the
amount of changes. The BPF program can set the flag at one hook (e.g. when
the connection is fully established) to enable option writing onto all following
skbs of the same TCP connection, and unset the flag at another hook (e.g.
when the RTO fires) to disable option writing from this point.

5.4.4 Code changes

By building on top of TCP-BPF, we can implement our framework with modest
changes to the kernel (75 LoCs). The TCP-option-insertion support requires
around 60 LoCs, while the TCP-option-parsing support requires only 15 LoCs
since it is much simpler as explained above. Table 5.4 lists the size of our
framework and each use case with regards to the number of lines of code
(LoC) changed in the kernel.

We added a minor kernel change to support getting and setting internal
TCP user timeout value directly in eBPF program, while current kernel has
already supported setting and getting Congestion Control algorithm or Initial
Window. The implementation to support configurable TCP Delayed ACK,
which is essentially based on an unmerged RFC patch [88] proposed by Ben
Greear and Daniel Baluta, is reasonably larger.

5.4.5 Performance Overhead

Linux TCP is a high-performance stack. Any proposed extension should
take the performance impact into consideration. To evaluate the performance
impact of our BPF extensions, we run an iPerf3 [63] test between two dedicate
machines over a 10 Gbps link. Each machine is equipped with an Intel Xeon
X3440 2.53 GHz CPU and 16 GB RAM. Our framework is implemented
in Linux kernel version 4.17-rc5. We use different TCP-BPF programs that
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are called to manipulate each transmitted packet. We consider four different
experiments.

1. Baseline, no BPF program is loaded

2. A BPF program inserts a new TCP option on the sender

3. A BPF program on the sender (to insert a new option) and one on the
receiver (to parse this new option)

4. A BPF program on the sender that inserts a new option while the
receiver parses this option and then calls both bpf_setsockopt() and
bpf_getsockopt()

Each measurement lasts 40 seconds and each scenario is repeated 20 times.
Figure 5.4 shows the benchmark results reported by iPerf3 for each situation.
The average throughput is reduced from 9.41 Gbps in the baseline case to
9.38 Gbps in all three BPF-enabled scenarios, mostly because our newly
inserted TCP option has increased the TCP header size. Meanwhile, there
is no statistically meaningful difference of round-trip-time among all cases
(all around 410 microseconds) therefore we do not present them here. The
CPU utilisation overhead is the most noticeable one which is about 10% in the
worst case, as shown in Figure 5.4b and Figure 5.4c.

To push the TCP stack to the limit, we conducted another extreme bench-
mark with the iPerf3 client and server on the same host machine. This bench-
mark tries to send as much data as possible via the loopback interface to
saturate the TCP stack, which is an extreme but unrealistic scenario. As shown
in Figure 5.5, the average throughput obtained with baseline tests is 30.1 Gbps
(about 2.5 Mpps) and the average RTT is 27.1 usecs. Using a BPF program that
inserts a new TCP option introduces a throughput reduction of about 12.7%
and a delay increment of 14.8% (4 usecs). Using a BPF program that parses
a new TCP option reduces further the throughput by 3.8% and increases the
delay by 4.5%. Calling operations such as bpf_getsockopt or bpf_getsockopt
does not have a noticeable impact. These results suggest that most of the
overhead of the framework comes from the call-backs to the BPF program, not
from the execution of the BPF program itself.

5.5 use cases

In this section, we demonstrate a variety of use cases how it is possible to
leverage BPF programs to extend the Linux TCP stack. We start in Section 5.5.1
with the TCP User Timeout Option [70] that has not been implemented in
the Linux TCP stack. We then propose and implement in Section 5.5.2 a TCP
option that enables a client to suggest the congestion control scheme to be
used by a server. We then propose a TCP option to set the initial congestion
window in Section 5.5.3 and finally how eBPF code can be used to tune the
acknowledgement strategy in Section 5.5.4.
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Figure 5.4: Benchmarking results: iPerf3 test over a 10Gbps link
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Figure 5.5: iPerf3 stress test over the loopback interface

5.5.1 TCP User Timeout Option

The TCP User Timeout (UTO) option [70] was proposed to allow a host to
inform its peer of the maximum time that data could remain unacknowledged
before forcing the termination of the associated connection. There are several
use cases for this option. First, an application that wants to survive transient
failures would select an UTO value larger than the default. The second sit-
uation is contrary: many interactive applications on smartphones equipped
with Wi-Fi and cellular interfaces could use a short UTO (e.g. one second) to
quickly detect connectivity problems and switch to the other network interface.
As the third use case, a busy server can also announce a small User Timeout
value to let clients know that it may not keep the connections experiencing
intermittent unavailability.
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The UTO option [70] carries the suggested timeout value. It is sent unreli-
ably, typically inside a TCP ACK. In contrast with most TCP extensions, the
utilisation of this option is not negotiated during the three-way handshake. It
is simply used once the connection has been established. Linux allows appli-
cations to set the maximum value of the retransmission timers through the
TCP_USER_TIMEOUT socket options. However, it does not announce the UTO as
a TCP option. In Linux, when the UTO timer fires, the kernel signals a timeout
error to the user application and changes the connection state to TCP_CLOSE.
However, it is the responsibility of the application to terminate the connection
with TCP RST.

On the client side, we implement the UTO option support with a BPF
program (76 lines of C code) using our option-writing hooks described in the
previous section. On the server side, when it receives a UTO option from the
peer, the kernel stack passes the option to a BPF program that parses the option
and sets the local socket timer value by leveraging the bpf_setsockopt()

helper function. We also extend the bpf_getsockopt() helper function to
query the current User Timeout value of the connection.

5.5.2 TCP Congestion Control Option

The Linux TCP stack supports a dozen of pluggable congestion control mod-
ules [50]. Depending on its configuration, a Linux host may directly support
two to three TCP congestion control schemes, e.g. NewReno [4], CUBIC [93],
or Vegas [27] or BBR [35]. Content Distribution Networks (CDN) often tune
their congestion control scheme to better serve their customers [36]. However,
a given CDN supports a variety of customers and a congestion control scheme
that works well to serve a user connected through an optical fiber might not
work well for a user connected over a slow ADSL link. Some CDNs tune their
TCP stack on a per-prefix basis, but there are many situations where the client
that downloads information from a server has much better knowledge on the
performance of its access network than the server. For example, a smartphone
can easily collect statistics about the amount of reordering and the delay
variations that it has observed recently. Based on this information, it could
suggest a specific congestion control scheme to be used by a given server.

In our implementation, each supported TCP congestion control scheme is
identified by an integer. The mappings between the TCP congestion control
schemes and their identifiers could be distributed together with the Linux
kernel.

Our BPF programs on both the client and the server store the list of conges-
tion control algorithms in an array map. This map contains algorithm IDs as
the keys and the string names as the corresponding values. When the server
receives the congestion control option, the BPF program extracts the identifier
and looks it up in the map to retrieve the name of the requested algorithm. It
then changes the congestion control scheme applied to this connection using
the bpf_setsockopt() helper function.
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To illustrate the utilisation of this congestion control option, we set up the
emulation environment similar4 to Mininet [124]. We set up separate network
namespaces for client and server, a Linux bridge in-between, and using Traffic
Control (TC) with HTB qdisc to set link bandwidth to 8 Mbps and 40 ms delay
per direction. Our emulated client downloads the same large file using the
curl software. We use our BPF program to insert in the third ACK packet the
TCP congestion control option to request the utilisation of a specific congestion
control scheme by the server.

We consider NewReno [4], CUBIC [93], Vegas [27] and BBR [35] in our ex-
periments. These four congestion control algorithms correctly use the 8 Mbps
link, but they differ in the amount of bufferbloat that they cause. Figure 5.6
plots the round-trip-times measured by the server for each congestion con-
trol scheme. We repeated the tests multiple times, but they produced nearly
identical graphs. Vegas and BBR, the delay-based algorithms, have the lowest
Round-trip times (RTT) which are close to the two-way link delays. While
Cubic escaped the slow-start phase early, it does not prevent the RTT from
increasing. Among all, NewReno performs worse in terms of delay.
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Figure 5.6: Congestion Control Option test: RTT on the server (8 Mbps bandwidth,
40 ms link delay)

4 We do not use Mininet directly but use directly built-in facilities in Linux (netns, tc,...) because
Mininet uses cgroup v1 while cgroup v2 is currently required by tcp-bpf framework.
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In this example, we used the congestion control option to exchange the
identifier of the congestion control scheme that the peer should use. The same
option could also be extended to provide some parameters of the congestion
control scheme. For example, Google QUIC [123] uses a variant of CUBIC that
is more aggressive than the standard one. This was motivated by the fact that
a QUIC session is equivalent to several HTTP/1.1 sessions since it supports
streams. The same applies to HTTP/2 running over TCP.

5.5.3 Option to Request Initial Congestion Window

While the congestion control algorithm has a significant impact on the per-
formance of long flows, the selection of the initial congestion window (IW)
decisively affects the flow completion time for short flows. This clearly applies
to web traffic. The standard IW value has increased over the years from 2 MSS
to 4 MSS [5] and later 10 MSS[47, 64] to keep up with typical network speeds
without harming the robustness of the whole system. However, a fixed value
cannot adapt to various network conditions. On long fat networks, the sender
usually takes a lot of time to reach the congestion avoidance state. But the
same IW value may be too large in highly congested networks.

Recent large-scale measurements [173, 174] show that while most web
servers use the default values of their TCP stacks, CDN operators usually
apply much larger values of IW [174]. These measurements also suggest that
some CDNs customize their IW configuration based on the network and/or
content type.

Brakmo suggested [30] to heuristically select the IW based on the IP prefix
using TCP-BPF, with a simple example [31]. We extend this approach by
defining a new TCP option that lets a client specify its desired IW value. In
many deployments, the receivers have more information about the impact
of the IW than the senders by observing packet losses at the beginning of
connections. However, this opens up the possibility that the malicious peers
may use this option to leverage DoS attacks. To deal with this class of attacks,
we use two mitigations. First, we restrict that this option can be sent only in
the SYN-ACK or third ACK of the three-way handshake, but not in the first
SYN packet. This also helps implementing the server side more easily since
the Linux TCP initializes the full socket only after the completion of the 3-way
handshake. Second, the sender needs to verify the peer is from a trusted IP
prefix before setting the requested IW value. This client IP verification could
be done directly in the BPF program. The BPF program can also combine
client requests with local policies, e.g. take the content type into account when
selecting proper IW for the connection.

To demonstrate the impact of tuning the initial congestion window with
web traffic, we use the methodology proposed by Wang et al. [206] with the
epload software [205]. This enables us to emulate real web contents and gather
web page download times.
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We set up a similar testbed to the previous use case in Section 5.5.2. The path
between client and server was configured with 40 Mbps of bandwidth and 40

msec of delay per direction. The server uses nginx to serve the mirrored web
contents of top Alexa 170 websites list. On the client side, we ran the epload

tool that analyses the dependency graph of web objects, which were recorded
with the Chrome browser console, and replays fetching web resources. Every
test with each website is repeated three times.

Figure 5.7 shows the relative Page Load Time (PLT) results for each IW
value, which is the difference of the Page Load Time between the tests with
tuned IW value and the tests with the default IW value (10 MSS) for each
website. For about 70% of websites, the increase of IW yields better Page
Load Time. Looking at the top of the figure, we could see that a few of sites
suffered from a higher value of IW, notably when IW is 40. The reason is,
since the complex pages comprise hundreds or thousands of web objects, large
IW may cause the link to be saturated and congested, therefore the PLT is
increased. With high network capacity in the experiment, we did not observe
much congestion; however, the results could change if the network resource
is more limited. Therefore, these results do not suggest that increasing IW
always produces better performance, but show how flexible the Linux TCP
stack can be. One drawback of controlling the IW is that the optimal value
is dependent on the round-trip-time which is usually not yet available to the
client before the handshaking. Our solution could be easily be modified to let
clients requesting their estimated available bandwidth, instead of requesting
the IW, to the servers. In fact, as early as 2007, the RFC4782 [79] has proposed
an IP option for signaling the optimal initial sending rate. However, the IP
options have more chance to be filtered than the TCP options.

5.5.4 Tuning the acknowledgement strategy

As a reliable protocol, TCP crucially relies on the ACK packets to detect losses
and control the data transfer. Sending ACKs too frequently may impose too
much overhead in wireless networks or on fat pipes. On heavily loaded servers,
the ACK processing may consume as much as 20% of the CPU cycles [39]. On
the other hand, sending too few ACKs could probably harm the performance
of traditional congestion controls like Reno/Cubic: slow down the increase
of congestion window in the slow-start phase, trigger bursty transmissions,
overestimate RTT and RTO, or prevent Fast/Early Retransmit recoveries from
real losses.

For these reasons, the IETF in RFC2525 (section 2.13) [155] recommended
a trade-off: do not delay ACK for more than 500 ms and immediately send
ACK for every second packet. Linux follows this recommendation and has
hard-coded the minimum and maximum values of the delayed ACK timeout
at 40 ms and 200 ms.

However, such fixed values cannot adapt to connections which have very
different delay, bandwidth and loss characteristics. They may be too large for
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Figure 5.7: Initial Window Option test: Page Load Time
relatively to IW=10 (40 Mbps bandwidth, 40 ms link delay)

local connections, but too small for inter-continental connections. The only
customization supported by Linux is to disable the delayed ACK mechanism
for each route [204]. However, there is no way for a sender to know the
acknowledgement strategy used by its peer.

In low-latency environments, the delayed acknowledgement timer causes
too many spurious retransmission timeouts, harming the performance. The
measured RTTs are inflated by the delayed ACK timeout. The RTO calculation
is based on sRTT, so RTO may also be over-estimated by delayed ACKs. There
are two separate reasons for this: (1) the default delayed ACK timeout is
set too high, and (2) the sender has no information about the delayed ACK
behavior on the receiver. For example, in datacenters, the typical RTT is in the
order of a few milliseconds, so the estimated RTO is likely dominated by the
delayed ACK timeout which is 40 ms at minimum in Linux. While Linux tried
to guess delayed ACK to exclude from RTT sampling, there is no reliable way
to do this.

Meanwhile, modern networking stacks have adapted to the stretch ACK
technique. First, popular networking stacks support pacing, which helps to
avoid the bursty transmission issue, a side-effect of the interaction between the
stretched ACKing and the classical congestion controls. Second, the congestion
control implementations were adapted to increase the congestion window
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properly with stretch ACKs [34, 43]. Furthermore, the Recent ACK (RACK) [45]
(subsumed Tail-Loss Probe (TLP) [65]) mechanism which is being standardized
and deployed in Linux and Windows [14]. This allows TCP senders to quickly
detect losses based on a per-packet timer instead of using duplicated ACKs,
reducing the impact of stretch ACK.

Google proposed a TCP Option [208] to negotiate a custom delayed ACK
timeout during the three-way handshake. However, as discussed during the
IETF99 TCPM WG meeting[111], there are several issues with this proposal: (1)
it is an absolute value, which must be defined before the establishment of the
connection, so it cannot adapt to different environments. Even a well-thought
heuristic cannot match all network conditions. (2) A malicious middlebox on
the path could inject weird values to drive the hosts into abnormal states. (3)
The negotiation uses the SYN and SYN-ACK packets, which may have not
enough TCP option space.

We define a similar TCP Option, but with different semantics. Our option
contains two fields: (i) the delayed ACK value as a fraction of the minimum
RTT and (ii) the amount of unacknowledged data (in units of MSS) that
should trigger an immediate ACK. To allow the sender to properly adjust
its congestion window during the slow-start, out-of-order receive or retrans-
mission phases, we still keep the original Linux acknowledgement strategy
during these phases.

eBPF helps us to change the strategy or parameters dynamically based on
the current situation, for example, a client on a crowded wireless network or a
server that is sending heavily.

5.6 discussion

TCP was designed to be extensible by using TCP options. However, the
last decades have shown that it remains very difficult to extend TCP by
defining such a new option. While the IETF has reserved a set of option
types for experimental options [189] to avoid the middlebox interference, TCP
implementations such as the Linux TCP stack are monolithic and difficult to
extend. In this chapter, we have leveraged the eBPF virtual machine in the
Linux kernel to demonstrate that it becomes possible to incrementally extend
the Linux TCP stack. Our work has shown that, with little changes to the
kernel code, it is possible to leverage eBPF programs to quickly implement
a range of new TCP features. The main drawback of this method remains
the limitation of the TCP option space, which cannot be larger than 40 bytes.
On the other hand, it should be considered as a first step to make the Linux
TCP stack truly extensible. The results described in this chapter open different
directions for future work.

A first direction is to actually use eBPF to extend TCP in real deployments.
On the public Internet, adding new TCP options remains difficult given the
prevalence of middleboxes [107]. However, TCP is also widely used inside
enterprise networks, datacenters and in controlled environments where there
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is no middlebox interference. It is also used between proxies such as Hybrid
Access Networks [23] or between edge servers and core servers of CDNs.
Furthermore, there is anecdotal evidence that large content providers use a
tuned version of the Linux TCP stack that has diverged from the mainline
Linux kernel over the years. This implies that either they frequently need to
backport new features of the Linux kernel or do not use these improvements
in their stack. Using eBPF would enable them to both completely tune their
Linux TCP stack and still benefit from the community improvements.

A second and more interesting direction in the long term would be to make
the Linux TCP stack completely modular. It currently contains a wide range
of hard-coded heuristics and optimisations such as congestion control, retrans-
mission techniques, loss detection heuristics, automatic buffer tuning. All these
heuristics could be implemented as eBPF programs to enable applications to
replace or tune them based on their requirements.

Finally, this approach could be applied to extend other protocols that sup-
port an optional field e.g. IP option fields or UDP option fields. However, they
are also susceptible to the middlebox interference. Therefore, the implementers
and the users need to take the middlebox issue into consideration.



6E X T E N D I N G L I N U X M P T C P W I T H U S E R - D E F I N E D
O P T I O N S

6.1 introduction

In the previous chapter, we have presented several use cases of extending
the regular TCP stack with user-defined TCP options. For Multipath TCP,
the ability to use multiple paths enables even more use cases to extend
the protocol/stack than regular TCP. Moreover, Multipath TCP has richer
semantics and a much larger decision space than regular TCP. For example,
path management and packet scheduling are two new tasks that did not exist
with legacy TCP.

The MPTCP Linux kernel implementation [149], which is based on the
regular Linux TCP stack, is considered the reference implementation for the
Multipath TCP protocol and the most complete implementation of RFC6824. It
is being used in various commercial deployments, typically the hybrid access
solutions [119] and WiFi/Cellular aggregation on high-end smartphones [23].
Recently, Apple uses it in the server side to run their services including
Apple Siri, Apple Maps and Apple Music. Usually, for each deployment, the
developers have to modify the MPTCP Linux kernel implementation to suit
their use cases. Implementing, testing, tweaking, forward-porting the out-of-
tree kernel patches are tedious and error-prone. It is desirable to minimize the
code changes to the kernel and to dynamically customize the MPTCP stack
without constantly rebuilding the kernel.

Similar to the TCP option framework in the previous chapter, we implement
a generic eBPF framework to support user-defined MPTCP options. The
methodology and implementation details are presented in Section 6.3. Then
we illustrate the usage of user-defined MPTCP options with four different
use cases in Section 6.4. In the next chapter, we apply the same approach to
support user-defined path managers. But first of all, we present an overview
of the Multipath TCP implementation in the Linux kernel.

6.2 multipath tcp implementation in the linux kernel

In this section, we present how the specifications of Multipath TCP (which
were briefly presented in Section 2.4) is implemented in the Linux kernel.
More details of this implementation can be found in Chapters 5 and 6 of
Christoph Paasch’s thesis [145]. However, many details of the implementation
have been changed since then, notably on the server side.

85
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Figure 6.1: Main data structures of the Multipath TCP implementation
in the Linux kernel
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6.2.1 Data structures

Following the architectural design of the Multipath TCP protocol, its imple-
mentation in Linux is also logically divided into two sublayers (Figure 6.1). At
the subflow layer, each subflow is handled by a subflow socket which interacts
directly with the IP layer. These subflow sockets are transparent to the appli-
cations and only controlled by the kernel. In the MPTCP layer, subflows of an
Multipath TCP connection are aggregated in a meta socket that represents the
state-machine of the MPTCP connection. The meta socket serves the applica-
tion via the regular socket API. The implementers reused the socket structure
tcp_sock of legacy TCP to represent both subflow sockets and meta sockets.
Additionally, for both types of sockets, each tcp_sock instance is associated
with a dedicated structure mptcp_tcp_sock which contains MPTCP-specific
information of the socket. The reason for this design is to limit the amount of
code changes to the vanilla TCP stack, while avoiding the increased memory
footprint of generic structure tcp_sock used by regular TCP connections.

6.2.2 Connection setup

From the implementation viewpoint, the connection setup is the process
of creating the data structures and states which represent an MPTCP con-
nection and its subflows. A straightforward implementation may initiate all
MPTCP-specific structures at the beginning of the connection. However, since
regular TCP is still the de-factor standard and Multipath TCP is the exception
but not the rule, the above design would harm the performance of all TCP
traffic. Therefore, the implementers decided that the host initializes most
MPTCP-specific structures only after determining that its peer also supports
Multipath TCP. To be concrete, this happens once the client receives a SYN-
ACK packet with an MP_CAPABLE option or when the server receives a third
ACK packet with an MP_CAPABLE option. In both cases, the kernel calls the
function mptcp_create_master_sk() which creates the master subflow socket
(tcp_sock), the multipath control block (mptcp_cb), mptcp_tcp_sock and links
them with the meta socket. The function call chain is shown in Figure 6.2.

All meta sockets (representing MPTCP connections) on the host are tracked
by a hashtable which uses the connection tokens as the keys for looking up.
The hashtable structure also allows host to quickly verify the uniqueness of
newly created tokens.

6.2.3 Subflow setup

After the initial subflow established and some data has been exchanged, hosts
are allowed to create additional subflows. As mentioned in Section 2.5.2,
additional subflows are initiated from the client side only. The path manager
makes this decision based on the user objectives and various parameters,
typically the type and status of local network interfaces. Unlike the master
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Figure 6.2: On both the client and server, MPTCP control block and master subflow
socket is created only after 3-way handshake finished
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Figure 6.3: On the client side, a new subflow socket is created and added to the
MPTCP connection before the 4-way JOIN handshake

sockets, the subflow sockets are added to the MPTCP connection by the
mptcp_add_sock() function before the handshake, as shown in Figure 6.3. The
reason is that, additional subflows do not fall back to regular TCP if the
negotiation fails. For example, if the SYN-ACK responding from the server
does not contain an MP_JOIN option or has the MP_JOIN option but with the
wrong HMAC then the client would send a TCP RST and immediately close
the subflow.

On the server side, the receiver needs to check if the incoming SYN
packet corresponds to any existing MPTCP connection. If it is true, the
server creates the light-weight request socket as usual and links it to the
MPTCP connection. Later, when the third ACK packet arrives, the function
mptcp_check_req_child() checks the MP_JOIN option and verifies the HMAC.
If they are valid then a full subflow socket is created to replace the request socket
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and is added to the MPTCP connection by the function mptcp_add_sock()

(Figure 6.4).

tcp_v4_rcv()

tcp_check_req()

tcp_v4_syn_recv_sock()

mptcp_check_req_child()

mptcp_add_sock()

Take	packet	from	IP	layer

Process	third	ACK	packet

Create	the	full	child	socket

Check	MP_JOIN	option,
verify	HMAC

Link	new	subflow	socket
to	the	MPTCP	connection

User	space

Kernel	space

Figure 6.4: On the server side, a full subflow socket is created and added to the
MPTCP connection after the third JOIN ACK packet arrives

6.2.4 Data transfer

Data sending process starts with the application passing some amount of
data to the kernel stack by one socket API system call (e.g. send(), sendmsg(),
sendmmsg()). For the regular Linux TCP stack, this data is splitted into separate
segments stored in the skb structures. This skb also contains a control block
structure (tcp_skb_cb) which stores the sequence numbers, acknowledging
status of this segment and other information. For Multipath TCP, there are two
sequence number spaces handled by two separate layers. First, the continuous
stream of data is passed from the application to the meta socket layer. Then, it
is also splitted into small segments which are managed by the skb structures
and are queued in the meta send-queue. The tcp_skb_cb control block now
stores the data sequence number. These segments are pushed to the different
subflows in the mptcp_write_xmit() function. At this step, the packet sched-
uler takes charge of selecting the best subflow for data dispatching. Then, the
mptcp_skb_entail() function pushes each segment into a subflow send-queue
and switches from the DSN to the subflow sequence numbers. Later, packets
are actually sent by the __tcp_push_pending_frames() function.

On the receiving path, the packet processing is cleanly separated between
the subflow layer and the Multipath TCP layer. The receiver handles incoming
packets on individual subflows just like regular TCP connections. Out-of-
order packets are stored in the subflow out-of-order queue. When an incoming
segment arrives in order, it (and out-of-order packets whose sequence numbers
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Figure 6.5: MPTCP sending path
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Figure 6.6: MPTCP receiving path

next to it) is passed to the function mptcp_data_ready() to carry various
checks. If the sender’s NIC has splitted outgoing segments or the receiver’s
NIC has merged incoming segments, the DSN mapping will be broken. The
MPTCP stack must undo this effect by rebuilding the mapping. Then, the
function mptcp_queue_skb() passes these segments to the meta layer, either
in the receive queue or the out-of-order queue, depending on whether their
DSNs are in order or not. Finally, when valid and in-order data is ready
for the application to read, the sock_def_readable() function wakes up the
application just like regular TCP.

6.2.5 Connection teardown

A subflow is shut down in a fashion similar to a regular TCP connection,
involving 4-way FIN negotiation. The closure of the regular TCP connection
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includes executing tcp_close() in the process context, since it is initiated
by the application. However, the closure of a subflow is triggered by the ker-
nel which is usually in the interrupt context. Therefore, the kernel has to
schedule the task into a workqueue so that tcp_close() of the subflow could
be run in the process context. On the other hand, the multipath connection
is closed by the DATA-FIN option exchange as discussed in Section 2.4.6.
When the application issues a close() syscall, the mptcp_close() function is
executed to close the meta socket. However, the meta socket has to remain
available until all subflows are closed. After the subflow socket transitions
to the TCP_CLOSED state, the subflow’s data structures are destroyed in the
mptcp_sock_destruct() function. Similarly, when the meta socket transitions
to the TCP_CLOSED state and all subflows are closed, all data structures belong-
ing to the connection are destroyed in the same function above.

6.3 methodology

To support user-defined MPTCP options, we need to extend TCP-BPF to be
aware of Multipath TCP. We add to TCP-BPF the ability of tracking MPTCP
connections, subflows, and passing MPTCP-specific information. The MPTCP-
connection-level event tracking is not discussed here because our four use cases
do not use it. Instead, it will be elaborated in Section 7.2.1 since event tracking
is important for the path management operation. Section 6.3.1 describes how
we track the MPTCP subflows and Section 6.3.2 discusses how to access
MPTCP-specific information from BPF programs. The implementation details
of the MPTCP options handling are presented in Section 6.3.3 and 6.3.4.

6.3.1 Tracking MPTCP subflows

To track the subflows in Linux, one might think of reusing the TCP-BPF
callbacks which are already available in the recent Linux kernel. However,
these callbacks do not pass the subflow ID information to the BPF programs,
so it is hard for the BPF programs to make any MPTCP-wise decision. For
this reason, we need to add new callbacks with MPTCP-specific information
at the right places. Since these callbacks are located in the MPTCP-specific
code path, they are not called against the regular TCP traffic and, therefore,
have zero overhead in this case. Currently, we focus on two events: a newly
created subflow socket is linked with the MPTCP connection, and the subflow
is established. In the future, we may also want to track when a subflow is
switched to backup mode or closed by the kernel.

On both the server and the client sides, when a new subflow socket is
created, the Linux stack initializes its meta-level information and links the
subflow socket with the MPTCP connection in the function mptcp_add_sock().
On the server side, this happens when the third ACK arrived as mentioned in
Section 6.2, marking that the subflow has been established. By adding a hook
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in this mptcp_add_sock() function we can start tracking the subflow with the
sock structure, along with accompanying MPTCP-level metadata.

On the client side, the master subflow is established when an MP_CAPABLE

SYN-ACK arrives, while a joined subflow is established when an MP_JOIN

SYN-ACK arrives. In both cases, the same mptcp_rcv_synsent_state_process()

function is called to finish the subflow establishment. Therefore, we only need
to add one hook (MPTCP_SYNACK_RCV) to track the establishment of both master
subflow and joined subflows. The subflow ID is passed as an argument to the
BPF program, so that the BPF program knows it is the master subflow or a
joined subflow.

Callbacks Events Passed arguments

MPTCP_ADD_SOCK A subflow socket is added, and subflow ID

the subflow is estab. (server side)

MPTCP_SYNACK_RCV A subflow is estab. (client side) subflow ID, dev type

Table 6.1: New TCP-BPF callbacks for tracking MPTCP subflows

6.3.2 Accessing MPTCP metadata

One issue is that the TCP-BPF callbacks only support at most three arguments
accompanying each call. This limits the amount of MPTCP metadata that
could be passed through these calls. For this reason, we extended the object
context of the TCP-BPF programs (the bpf_sock_ops structure) to keep track
of common metadata per MPTCP session as shown in Listing 6.1. This brings
more MPTCP metadata to BPF programs and also simplifies new MPTCP
callbacks. Moreover, this approach provides better performance since the
extended fields of the bpf_sock_ops structure are mirrored directly from that
of tcp_sock structure without any data copy operation.

struct bpf_sock_ops {

...

/* fields below are mapped directly from tcp_sock */

+ __u32 mptcp_flags;

+ __u32 mptcp_loc_token;

+ __u32 mptcp_rem_token;

+ __u64 mptcp_loc_key;

+ __u64 mptcp_rem_key;

};

Listing 6.1: Context object is extended with MPTCP metadata,
allowing TCP-BPF programs to directly access
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6.3.3 At the Sender: Inserting New MPTCP Options

To actually insert new MPTCP options, we may reuse our facilities for TCP (in
Section 5.4.2). However, for a cleaner design, we add an MPTCP-specific hook
in the function mptcp_options_write() instead of tcp_options_write(), as
in Figure 6.7. This also simplifies the BPF programs since they only need to
handle the sub-option part, not the whole MPTCP option. Since these hooks
are on the fast path, the overheads of calling these hooks are non-negligible
even when the BPF program does nothing. Therefore, we disable these hooks
by default and only enable them when needed. We store the option_write

flag in the per-connection structure bpf_sock_ops_cb_flags. This flag array is
used by TCP-BPF to control its expensive callbacks. If we pass the TCP subflow
sock as the main BPF context, the BPF program will control the option-writing
action per subflow basis. Furthermore, to make sure these conditional checks
in the fast path do not cause the CPU branch mispredictions, the C-macro
likely and unlikely are used to instruct the compiler to generate optimized
assembly code.

Support Inserting Custom MPTCP option

Hook 1: allow
BPF program     to adjust 

tcp_options_size

Hook 2: allow
 BPF program    to actually

write new option

BPF VM

Figure 6.7: New hooks to insert user-defined MPTCP options

6.3.4 At the Receiver: Parsing New Options

To allow BPF programs to parse new MPTCP options, we cannot reuse our
TCP parsing hook (which is mentioned in 5.4.2) since it only processes regular
TCP options. Instead, the Linux reference implementation handles all MPTCP
options in the function mptcp_parse_options(). In this function, we add a
new TCP-BPF callback when encountering an unknown MPTCP option. The
option subtype, the length and the option data are passed to the BPF program
via three arguments of the callback function (Figure 6.8). Similar to the option-
insertion callback above, this option-parsing callback is disabled by default
and is activated on demand by the BPF program.
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Figure 6.8: New hook to parse user-defined MPTCP options

6.4 use cases

In this part, we leverage the MPTCP option framework to implement four
use cases and collect the experiment results. The first option allows a client to
request the server to limit the sending rate on a subflow (Section 6.4.1). The
second option enables a host to request its peer to select a packet scheduler
for the connection (Section 6.4.2). The third one is a delay-threshold option for
MPTCP hosts to specify that the peer should use the backup subflow when
the delay is above a threshold (Section 6.4.3). Finally, a host may request its
peer to set a desired timeout to remove the MPTCP connection state after the
last subflow closed (Section 6.4.4).

6.4.1 Subflow Rate-Limit Option

Motivation: Most of the mobile clients do not have an unlimited cellular data
subscription. Even if this is the case, mobile network operators may still
silently throttle the bandwidth of those customers who have used up a large
amount of cellular data. A good LTE or 5G connection running at full speed in
a few hours could consume the entire monthly budget cellular quota of many
users. A common scenario is that the mobile users want to limit the monetary
cost of using cellular networks or to avoid running out of the mobile data
quota. Clients could limit its upstream traffic, however, most of the traffic are
downstreamed. For these applications, rate-limit should be controlled on the
server side. For this, the clients would desire the servers to limit the maximum
throughput on the cellular network subflow. This is more important when
the mobile clients are roaming abroad where the monetary cost for cellular
data is usually very high. The rate-control mechanism could be exchanged
and enforced at the application layer, however, applying the mechanism at the
transport layer would be more generic and could be done automatically by
the system itself.
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of the cellular subflow
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Client

20 Mbps

Server 20 Mbps

Figure 6.10: Emulated topology for the MPTCP options experiments

As discussed on the multipathtcp IETF mailing list [148], this rate-control
mechanism can also be used when a client wants to tell a sender to close a
subflow gracefully by requesting a zero transfer rate. Though the client may
send a TCP-RST on this subflow instead, in-flight data would be lost and must
be reinjected over other subflows. Another solution is to send an MP_PRIO

option to the sender to put the cellular subflow into backup mode, but this
request could be overridden by the sender’s local policy.

After using a certain amount of cellular data, for example 80% of the
monthly quota, the client could request to reduce the usage of the cellular
paths. The detailed solution is described as below.

At first, on the client side, the BPF program needs to select which subflow
to send the MPTCP option to cap the maximum throughput. For that, the
kernel stack needs to pass the type of interface (e.g. WiFi or Cellular) to the
BPF program. We can retrieve the device type (net_device.type) from the
sock structure when a new subflow socket is linked to an MPTCP session in
the kernel function mptcp_add_sock(). However, this will not work, since at
this point the subflow join SYN has not even been sent (as shown in Figure
6.3), and the device type is not yet determined. Our solution is to get the
device type when the SYN-ACK packet arrives (extracted from the sk_buff

packet structure). We pass this information via the hook MPTCP_SYNACK_RCV as
mentioned in subsection 6.3.1.

If the BPF program sees that this subflow is on the cellular interface, it
activates the option_write flag on this subflow. Afterwards, for each outgoing
packet of the marked subflow, the BPF program inserts an MPTCP option.
This new MPTCP option signals the server to cap the transfer rate to a desired
value on this subflow.

When the server receives this TCP packet, the BPF program parses the
MPTCP option. Combined with the current smoothed RTT and MSS val-
ues collected from the socket structure tcp_sock, it calculates the maximum
congestion window (cwnd_clamp) needed to apply on this subflow.

As a side note, an alternative technique to apply the rate-limiting policy
on a subflow is to rely on the TCP pacing feature. Linux networking stack
supports two TCP pacing mechanisms. The first one, qdisc-based TCP pacing,
works very much the same way as ours, but it relies on the fair-queuing (FQ)
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Figure 6.11: Throughput on the second path
before and after capping at 4 Mbps

scheduler in the tc qdisc layer. The second one is the internal TCP pacing
which has lower precision than the qdisc-based one, and only works with
BPF out-of-the-box since Linux 5.1 [44]. On the other hand, on newer kernel
versions, our server-side BPF program could be easily adapted to use the TCP
pacing directly for rate limiting.

To illustrate the usage of this option, we set up a simple emulated experi-
ment using built-in facilities in Linux (netem, tc, network namespaces, etc.)
similar to the ones in Section 5.5. The topology consists of two hosts that
communicate through two paths as shown in Figure 6.10. The bandwidth
capacity of each path is 20 Mbps and the one-way delay is 20 ms. Figure
6.11 shows the transfer rate on the second path before and after using this
capping option. We observe that our throughput capping mechanism based
on adjusting cwnd_clamp works well enough for this use case.

6.4.2 Scheduler-Request Option

Motivation: It is well known that the selection of the packet scheduler has a
significant impact on the performance of the MPTCP protocol [75, 84]. But nor-
mally receivers cannot control it. Most of the web traffic is in the downstream
direction. It is desirable that the clients could request the scheduler algorithm
on the server side. E.g. if the client wants to reduce the bufferbloat issue, an
optimized scheduler like BLEST [75] could be used. Or if the client wants to
reduce the latency as much as possible, even at the cost of more redundant
traffic, it could request the redundant scheduler [86].

At the moment, the Linux MPTCP stack supports multiple packet sched-
ulers, but it only allows the users to select the scheduler before the connection
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Figure 6.12: MPTCP-level Round-trip Time: the redundant scheduler achieves
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is established. To implement this feature, we have tweaked the MPTCP stack
so that the sender could replace its scheduler on the fly, even after the connec-
tion has been established. The exact signaling mechanism is similar to the way
we requested the TCP congestion control algorithm in Section 5.5.2. Due to the
limited TCP option space, the MPTCP option does not carry the name string
of the scheduler. Instead, we assume that the server pre-shares to the client
the list of its available schedulers. Then, the client specifies in the MPTCP
option the ID number of the desired scheduler.

To verify the idea, we use a test scenario similar to the subflow-rate-limit
option use case above. Two hosts are connected through two symmetric paths
as in Figure 6.10. Each path also has the capacity of 20 Mbps but the delay
varies in the range of 20 ms to 150 ms. A bulk transfer is conducted in the
direction from the server to the client. We experimented with two scenarios:
(1) the server always uses the default scheduler, and (2) the server changes
the scheduler to the redundant one as per requested by the client. Figure 6.12

shows the MPTCP-level RTT in these two cases, since this metric represents
most of the latency observed by the application. The redundant scheduler
delivers better latency than the Lowest-RTT scheduler for most of the time.
The exception is the spike at the beginning of the connection in the case of
redundant scheduler. This RTT increment is due to the host sending bursts in
the slow start phase and filling the buffers on both paths. The RTT increases
quicker with redundant scheduler because it sends more traffic per path than
the default scheduler.
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6.4.3 Delay-Threshold Option for Thin Streams

Motivation: For many mobile applications, e.g. voice recognition applications,
it is important to maintain a low latency for the network connection. Recent
cellular technologies e.g. 4G and 5G provide a lower latency than the Wi-Fi in
many cases. However, mobile users do not want to consume cellular traffic
as long as the delay on the Wi-Fi path is still good enough. The basic idea is
that an additional subflow is created on the cellular path but it should not be
used unless neccessary. Several flavours of this use case have been discussed
on the IETF mailing list by Paasch et al. [147]. While the rate-limiting option
which we mentioned above 6.4.1 focused on the heavy streams, this use case is
mostly about the thin streams. The detailed mechanism is explained as below.

At the beginning of the MPTCP session, the client creates an additional
subflow on the cellular path and sets it to back-up mode. The client signals
the server to put the additional subflow in inactive state by setting the backup
flag in the MP_JOIN option in the SYN packet. We allow the BPF program
to do this by using the bpf_setsockopt() helper function. As per protocol
definition, the receiver seeing this flag sets the joined subflows into the backup
mode.

Then, on the master subflow, the client sends an MPTCP option which
includes an RTT value in milliseconds. This is the maximum delay threshold
that the server should keep the RTT below. Only when the RTT on the master
subflow surpasses this theshold, the server would start sending data over the
second subflow. Since the server needs to keep track of the delay threshold
per MPTCP connection, we store this value in the mptcp_cb structure, which
was designed to store metadata of each MPTCP connection.
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For illustration, we set up an experiment that emulates a mobile client
connecting to the server via two paths: Wi-Fi and cellular. The topology
remains the same as in Figure 6.10 but the one-way delay is 5 ms. At the
beginning, the client sets up two subflows on both paths, but only uses the
Wi-Fi path, as shown in Fig. 6.13. Then when the network condition on the Wi-
Fi becomes worse (RTT surpasses the 100 ms threshold), the server switches
to the cellular path to satisfy the low latency requirement.

6.4.4 MPTCP Inactivity Timeout Option

Motivation: Hosts need to maintain the state of Multipath TCP connections
for some time after all established subflows has been closed, as mentioned in
RFC 6824 [80]:

“If all subflows have been closed with a FIN exchange, but no
DATA_FIN has been received and acknowledged, the MPTCP con-
nection is treated as closed only after a timeout. [...] This permits
"break-before-make" scenarios where connectivity is lost on all
subflows before a new one can be re-established.”

However, the document does not specify how long an implementation
should maintain this state. Therefore, hosts may have their own timing-out
policy for inactive Multipath TCP sessions. In practice, the current Linux
kernel implementation keeps these inactivity MPTCP sessions forever. It
leaves to the applications the responsibility to check and terminate these
sessions. However, it is difficult for the system administrators to control the
lifetime of these sessions. On the other hand, it does support configuring the
keepalive timer at the meta level. Once it is enabled, the host sends keepalive
packets regularly when the session is idle to keep at least one subflow alive.
Nonetheless, this mechanism does not control how an MPTCP session without
subflow should be kept locally. For this reason, we implement the MPTCP
session inactivity timeout (ITO) support in the Linux kernel. The ITO timer
is scheduled when the last subflow is removed from the MPTCP session (in
the function mptcp_del_sock()) and is cleared when a new subflow is added
(in the function mptcp_add_sock()). Since adding a new kernel timer would
impose a lot of overhead, we instead reuse the existing keepalive timer facility
to handle the ITO. Users or BPF programs could control the ITO via a new
socket option (SOCK_KILL_ON_IDLE). After the idle timeout fired, the stack
would close the MPTCP session and report the timeout error to the user.

In several cases, it is necessary to communicate the inactivity timeout
value. A host that wants to extend the lifetime of a connection through the
transient failures may request its peer to apply a high session timeout value.
On the other hand, by reducing this value, a highly-loaded server can quickly
terminate currently unused MPTCP connections. It can send this reduced
value to signal its peers that the connections will be closed shortly. For regular
TCP, extending the connection lifetime by increasing the inactivity timeout on
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both ends is usually not enough since it is common that the NAT/middleboxes
on the path could explicitly or silently terminate the connection. For Multipath
TCP, this is a much lesser problem since the closure of all subflows does not
terminate the multipath-level session. With ITO support, the TCP keepalive
mechanism may be not necessary for Multipath TCP.

For evaluation, we set up a local testbed in which the client and the server
are two dedicate machines connected via intermediate routers. The server
machine is equipped with 8 GB of memory and a 4-core Intel Xeon X3440

2.53 GHz CPU. In our experiment, curl tool on the client initiates an MPTCP
session to download a file which is served by nginx server. A BPF program on
the client sets an ITO value of 4 minutes on the session locally and inserts an
MPTCP option with this ITO value into an outgoing TCP segment. Another
BPF program on the server parses this MPTCP option and applies this ITO
value on its side. Then, we use the tcpkill program to terminate the subflow
on both sides with the TCP_RST packets but the MPTCP session still persists.
The client creates 20000 instances of such sessions in one hour. Figure 6.14

shows the server resource usage comparison between this case and the default
case where no inactivity timeout is set. The number of established MPTCP
connections is collected by an extended version [46] of netstat utility which
understands MPTCP. The memory usage is reported by the free utility in the
procps-ng suite and the system file /proc/meminfo. Kernel memory usage is
inferred by substracting the total memory usage from the user one (AnonPages
field in /proc/meminfo). We can observe a clear difference between the two in
the both number of existing MPTCP sessions and the memory usage after the
experiments running for 4 minutes. For the ITO test case, this is the moment
that the inactivity timers of the first MPTCP sessions start to expire. From this
point, newly-created sessions and expired sessions are coming and leaving at
the same rate, therefore, the number of sessions and the memory usage are
stable. Meanwhile, in the default case, inactive sessions never expire, so that
the resource usage keeps increasing on the server.

6.5 discussion

In this chapter, we have implemented an MPTCP option framework which
allows extending the Linux MPTCP stack with new features to match various
use cases, as shown in Section 6.4. We have written two IETF draft proposals to
standardize the SRL option [196] and the ITO option [195]. Additionally, this
framework could also be used to implement One-Way-Delay (OWD) option
proposed at IETF 101 [219]. Supporting this OWD option is an important
step [184] to optimize MPTCP performance issues such as packet scheduling,
reinjection mechanism, or shared bandwidth detection.

For the use cases in Section 6.4, we implemented each MPTCP option
using a different option subtype. However, the issue is that current version of
Multipath TCP supports only 16 different option subtypes at maximum, and
12 of them have already been assigned in RFC 6824bis. To avoid the subtype
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Kernel changes BPF program

MPTCP Option Framework ∼100 0

Use case: Suflow Rate Capping 8 ∼65

Use case: Scheduler Request ∼70 ∼95

Use case: Delay Threshold ∼80 ∼150

Use case: Inactivity Timeout ∼130 ∼150

Table 6.2: Lines of code (excluding comments)
of MPTCP Option Framework and each Use Case
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usage exhaustion and conflicts, one solution is to leverage the experimental
Multipath TCP option [21] which supports up to 65536 different MPTCP
option types.

One current limitation of our framework is that it now only supports
MPTCP options of four bytes. This is because we pass the option data directly
through the TCP-BPF callbacks. Instead, we can implement dedicated helper
functions to write and parse the option and keep the temporary option data
in the socket context. This approach will both remove the above restriction of
the option size and allow better validity checking of new options.

Another challenge comes from the current limitations of the eBPF infras-
tructure in the Linux kernel. For the Linux version 4.17 that we have used,
eBPF programs are limited by several technical constraints which are imposed
to guarantee the performance and responsiveness of the kernel. BPF programs
cannot contain more than 4096 instructions, BPF functions cannot have more
than 5 arguments, loops are not allowed, global-scope data is supported, and
there are no built-in queue and stack structures. These restrictions make it
difficult to implement complex features, forcing the utilization of workarounds
such as using multiple BPF programs that are linked together by BPF tail calls.
Most of them are not architectural or design flaws but temporary caveats.
For example, a map-based implementation of queues and stacks [202] was
added in Linux kernel since 4.20. After several efforts [73], BPF subsystem
maintainers have recently implemented constrained loops support [185], sup-
ported global data [25] and extended the program size limit to one million
instructions [186]. While eBPF was designed to work over different platforms,
it may be an issue to deploy the same eBPF program on different Linux kernel
versions which do not support some map types or helper functions needed
by the eBPF program. There are several implemented methods to make eBPF
programs to be compile-once run-everywhere, e.g. allowing userspace to query
the list of supported features [134], using BTF type information and layout
[135], or embedding kernel header within the running kernel image [77].
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7.1 motivation

Two important tasks of a Multipath TCP stack are managing the subflows (i.e.
path management) and choosing which subflow(s) for sending each packet
(i.e. packet scheduling). The current MPTCP implementation in the Linux
kernel was designed following a modular approach. These functionalities are
implemented as kernel modules, allowing different algorithms to be used.
However, there are several issues with this approach. First, this task should
be controlled by applications which have a wide range of requirements, or
by the system administrators who know the characteristics of the network
environment and want to enforce specific policies. User applications can
select one among the available algorithms in the kernel, but cannot deploy a
new one. Second, system administrators could implement new algorithms as
kernel modules and load them into the kernel, but this is dangerous because it
lacks of the protections against memory corruption, invalid memory accesses,
deadlocks, race conditions and others.

Several efforts have proposed to give users more control over Linux MPTCP.
Frömmgen et al. [84] proposed an eBPF-based programming model for users
to write packet schedulers in high-level languages and then the custom in-
kernel verifier validates and compiles them to eBPF native code running inside
the kernel. Hesmans et al. [100] extend the socket option interface to allow
MPTCP-aware applications to query subflow status information, to directly
create and remove each subflow.

The path managers decide which subflows should be created or removed,
and which addresses are announced based on the current situation and the
user requirements. The enhanced socket API [100] allows MPTCP-aware appli-
cations to directly manage the subflows. However, it does not allow building a
generic path manager that could be used by multiple applications and it is dif-
ficult for the system administrators to control it. A netlink-based framework
has been introduced to support generic path managers with the control plane
in user space [104]. It has been recently merged in the mptcp-trunk branch
[13]. Using the netlink communication channel is a natural approach that
provides a clean separation between control plane and data plane. However, it
is not without issues. It introduces overhead due to context switches between
user and kernel space as well as due to netlink channel handling. But the
most important issue is that the netlink channel is unreliable. Under high load,
netlink messages may be lost. Additionally, this approach requires separate
facilities to support various but maybe necessary features, most notably get-
ting/setting subflow socket options (e.g. access subflow-level info) and TCP
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state change notification. Additionally, it is difficult to enforce the policy to
accept or refuse the establishment of a subflow.

For these reasons, we have investigated and implemented an alternative
approach based on eBPF. The motivation for this approach includes:

• Performance: Once a BPF program is loaded into the kernel, it could
avoid switching between user space and kernel space for every operation
like a netlink-based approach. We can also avoid the overhead due to
sending and receiving netlink messages. The performance of eBPF is
one major reason for its quick adoption in the Linux community.

• The BPF approach does not rely on message passing so it does not suffer
from the message loss issue.

• TCP-BPF has built-in support for TCP state tracking.

• TCP-BPF has built-in support to read and change many values of the
TCP socket.

• It is straightforward to enforce accepting/refusal policies on the subflow
establishment.

This approach also supports multiple path managers running in parallel,
one per cgroup. This may be necessary, for example, when MPTCP proxies
want to use different path managers for upstream and downstream traffic.
Another use case is in the container-based virtualized environments, in which
each container uses a custom path manager. While the netlink-based solution
may support different path managers isolated by network namespaces, the
eBPF approach relies on cgroups which are more flexible than the network
namespaces.

However, it is expected that this approach would have its own limitations.
First, eBPF programs are restricted by current eBPF limits. For example, until
Linux 5.2 each BPF program cannot have more than 4096 instructions, loops
were not supported until Linux 5.3. Second, since BPF programs can be
called from different contexts, the locking mechanism is probably trickier than
userspace solutions like the netlink one.

7.2 ebpf-based framework for path managers

We have implemented a prototype of a generic path-manager framework
based on eBPF. The next three subsections explain its basic design: how to
track events, how to store addresses and subflows, how to send signals to the
remote peer and how to open a new subflow.

7.2.1 Tracking events

In order to give decisions, the path managers must know when and which
MPTCP-related events happen, as well as the associated information. It is
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theoretically possible to perform these operations using BPF programs of
the BPF_PROG_TYPE_KPROBE type which dynamically inserts kprobe without
requiring any kernel code change. However, we also need to carry actions
on the connection (e.g. create or delete a subflow) which should requires
TCP-BPF programs of the BPF_PROG_TYPE_SOCK_OPS type. This means that we
need two BPF programs of two different types to fulfill the task. Connecting
these two BPF programs and synchronizing shared data would be complicated
if not ugly.

For this reason, we add new TCP-BPF callbacks to track important events
for the path managers (Table 7.1). Since these callbacks are inserted at the
same places as the netlink-based Path Manager solution does [13], we do not
present these locations in the table. At the moment, to track the subflow-level
events we reuse the available TCP-BPF hooks for regular TCP stack (as shown
in Table 5.2), and new subflow-specific hooks (as described in Section 6.3.1).
The way we pass MPTCP-specific metadata to the BPF programs has been
mentioned in Section 6.3.2.

Callbacks Events Passed arguments

BPF_MPTCP_NEW_SESSION A new MPTCP session is created -

BPF_MPTCP_FULLY_ESTABLISHED An MPTCP session is established master_sk flag

BPF_MPTCP_CLOSE_SESSION An MPTCP session is closed -

(including fallback to legacy TCP)

BPF_MPTCP_ADDR_SIGNAL Call PM to send an ADD_ADDR -

or RM_ADDR option

BPF_MPTCP_ADD_RADDR A remote IP address is added IP, port, address ID

BPF_MPTCP_REM_RADDR A remote IP address is removed address ID

Table 7.1: New TCP-BPF callbacks for generic PM framework

7.2.2 Storing local addresses and remote addresses

The path managers must know the local addresses, as well as remote addresses
and subflows for established MPTCP sessions. We use BPF maps - the standard
BPF way - to store this information. Local addresses are retrieved and loaded
to a BPF map when the BPF program is loaded. This is done by the same user
daemon which loads and attaches BPF programs, because this daemon has
enough privileges and cgroup context information.

7.2.3 Sending the MPTCP ADD_ADDR and RM_ADDR option

An interesting feature of the MPTCP protocol is that it allows a host to signal
its peer about its local IP addresses on which it would like to accept additional
subflows. In principle, it could be done with our BPF-based option frame-
work mentioned in the previous chapter. However, the ADD_ADDR option size
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is variable and may be larger than 16 bytes - the maximum data structure
size supported by current TCP-BPF. Meanwhile, there are equivalent facilities
which already implemented and optimized for the similar jobs in the MPTCP
Linux kernel. Therefore, we created an helper function to reuse these facilities,
which considerably simplifies the BPF-based path manager. This helper func-
tion (bpf_mptcp_addr_signal()) is called when the kernel stack prepares the
MPTCP options.

7.2.4 Opening a subflow

Since opening subflows is an action that changes the state of the kernel stack,
BPF programs can not directly create a subflow. We follow the eBPF common
practice by implementing it via a new helper function (bpf_open_subflow()).
This helper function takes five arguments as input:

• BPF socket context (bpf_sock_ops): The helper function uses this context
structure to retrieve both subflow-level and mptcp-level information.

• The pointers to source sockaddr and destination sockaddr of new sub-
flows to be created: Each sockaddr includes the IP address and the
port number. When any field in the 4-tuple is absent, the function
bpf_open_subflow() uses the existing or kernel-assigned values when
creating the subflow.

• The associated lengths of the above sockaddrs, as required by eBPF
when passing memory regions.

However, there is one subtle issue here: BPF programs can be called from
different contexts. If we are in the user context, we can immediately open a
new subflow. However, the helper function is usually called in softirq context,
in this case we cannot open subflows directly. The reason is that this task
requires allocating kernel memory and may sleep which is not possible in
the softirq context. Our solution is to delegate the actual subflow creation to a
workqueue. First, we create a custom global workqueue when the meta socket
is initialized. Every time this helper function is called, it schedules a work into
this workqueue to delegate the actual task in the future. Since we cannot add
our custom parameters into the work structure itself, we need to embed the
work and four tuples in a wrapping structure bpf_pm_priv to keep track of the
subflow request. We store the list of all subflow requests per MPTCP session,
which are implemented as a linked list of the structures bpf_pm_priv and
linked to the multipath control block (the mptcp_cb structure). Then, when
the kernel scheduler wakes up the worker thread, the work handler actually
opens the requested subflow by calling function mptcp_init4_subsockets()

(or function mptcp_init6_subsockets() for IPv6 subflow).
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7.3 use cases

To illustrate the usage of this path manager framework, we have implemented
four path managers as BPF programs (Table 7.2). Two first path managers are
ndiffports (Section 7.3.1) and fullmesh ((Section 7.3.2)), whose kernel-module
versions have been included in the Linux MPTCP implementation. The third
path manager is designed to recreate a subflow on the same 4-tuple when
needed (Section 7.3.3) and the fourth path manager can delay the additional
subflows to avoid the overhead of unused subflows (Section 7.3.4).

7.3.1 ndiffports path manager

SEC("sockops")
int bpf_ndiffport(struct bpf_sock_ops *skops)

{

int rv = -1;

skops->reply = rv;

if (skops->op == BPF_MPTCP_FULLY_ESTABLISHED) {

/* if this is not master sk, skip it */

if (!skops->args[1])

return 0;

/* when passing (NULL, 0):

* existing addresses is used to set up new subflows.

* Call twice to open two new subflows */

rv = bpf_open_subflow(skops, NULL, 0, NULL, 0);

rv = bpf_open_subflow(skops, NULL, 0, NULL, 0);

}

skops->reply = rv;

return 1;

}

Listing 7.1: ndiffports path manager as a BPF program

ndiffports path manager creates multiple subflows towards the same source
and destination IP addresses, only differing in their source port numbers. It
is designed to exploit the path diversity to avoid the bottlenecks in ECMP-
enabled datacenters [168]. Due to its simplicity, we implemented ndiffports
program using only around 20 LoCs, as shown in Listing 7.1. We start creating
subflows when the MPTCP session is fully established. Notice that for an
MPTCP session, this state can be triggered several times, not only on the
master subflow, but also on the additional subflows. To reduce the overhead
of calling bpf_open_subflow() multiple times, it is desired to also pass the
number of new subflows as an argument to this function and call it only once.
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However, current eBPF infrastructure has the upper limit of five arguments
for each helper function, therefore, no available argument left to pass this
information to the helper function.

7.3.2 fullmesh path manager

The second one, fullmesh PM, is more complex since it tries to establish a
full mesh of subflows using all IP addresses between the two hosts. It is
neccessary to store the local and remote addresses. The local addresses are
loaded into an array map (local_addr_map) by a user daemon. They are global
to all connections. Meanwhile, add_addr_map stores the remote addresses per
connection, with the MPTCP tokens as keys. The map value is a data structure
that contains remote IP addresses and their corresponding address IDs. The
remote address list is updated every time the host receives an ADD_ADDR or
REM_ADDR from the remote peer. Upon the MPTCP session closing event, the
remote address list of that session is removed from add_addr_map. Due to its
complexity, we implemented the fullmesh program in more than 200 LoCs
(Table 7.2).

7.3.3 Subflow-Refreshing path manager

There are certain cases where the clients want to recreate a current subflow,
due to either performance or security reasons. Carrier-Grade NATs (CGNs)
are commonly used by the ISPs to deal with the exhaustion of their public
IPv4 address pools [172]. Usually, the idle connections would be terminated
by CGNs after some timeout duration, e.g. to reduce the memory usage of
CGN equipment. The recommended minimal timeout value is two hours for
TCP [90]. However, the timeout in practice could be as low as 30 seconds
- the default value on Juniper equipments [137]. This short timeout could
disrupt many services. For example, Internet banking applications may need
to re-authenticate and to restart the transactions. In these cases, Multipath
TCP could help avoiding session interruption by recreating a new subflow
when the current subflow is closed due to receiving TCP RST or timeout.

Another scenario is when the network operators deploy transparent mid-
dleboxes for traffic shaping. For example, they could apply the throughput
throttling on connections which last more than a certain duration, causing
performance degradation of long connections. To deal with this issue, clients
may create a new subflow to replace the under-performing one.

To illustrate our approach, we use the TCP-BPF framework to monitor
when a subflow is closed, but the MPTCP-level session is still alive. The usual
reasons for this transition typically are (1) the host has just received a TCP RST
or (2) experienced a TCP connection timeout. Since the TCP-BPF framework
already supports monitoring TCP states, no kernel change is needed. Once
the BPF program observes this event, it can open a brand new subflow. To
emulate the CGN timeout events, we use the tcpkill program (in the dsniff



7.3 use cases 111

0 2 4 6 8 10 12 14
Time lapsed (s)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sf

er
 R

at
e 

(M
bp

s)

Subflow 1
Subflow 2
Subflow 3

Figure 7.1: Subflow-Refreshing path manager opens a new subflow
if the current subflow is abruptly closed

networking tool suite [183]) to regularly inject TCP RST on existing TCP
connections. As shown in Section 7.1, every time the current subflow is closed,
the client quickly creates a new subflow to replace the old one.

7.3.4 Subflow-Delaying path manager

Measurements in Section 3.3.5 have indicated that MPTCP hosts create ad-
ditional subflows, but they do not transfer any data when the connections
are small. The creation of these subflows is useless, but consumes system re-
sources and cellular energy. Therefore, it is often desirable to create additional
subflows only for large enough flows. A similar use case has been mentioned
in [100], though it uses the HTTP header Content-Length for signaling.

To support this use case, it is necessary to regularly check the amount of
received data in the BPF program. We can add a new TCP-BPF hook to call
the BPF program for every incoming TCP packet, however, it would be very
expensive. To reduce the cost of switching context on the fast path, instead
we conduct this check only when the user applications make a syscall to
get received data. We insert one BPF hook in the tcp_recvmsg() function,
which is called along with all flavors of receiving syscalls: read(), recvmsg(),
recvmmsg() and recvfrom(). To further avoid the overhead of this check, we
disable this hook by default and only enable it when necessary. With this
solution, the BPF program is called in the user context. Therefore, we do not
need to defer the subflow opening task to a workqueue, instead a new subflow
can be established immediately.

To change the threshold of connection size, we can replace this BPF program
by another one, or simply make it available via BPF map so that the user space
could set it on demand. The path manager could rely on other metrics to
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decide opening new subflows, e.g. the duration since the connection started,
or when the target bandwidth is not reached after some duration.

Kernel (LoCs) BPF program (LoCs)

Generic PM Framework ~300 0

ndiffports PM 0 20

fullmesh PM 0 ~200

Subflow-delaying PM 5 45

Subflow-refreshing PM 0 50

Table 7.2: The implementation size (Lines of Code) of generic eBPF PM framework
and each path manager

7.4 discussion

Our framework prototype allows custom path management mechanisms to
be deployed or replaced on the fly. At the moment, however, several features
have not been implemented in this prototype.

First, we need to handle the events when a local IP address status changes.
Since these events are global, we can use a userspace daemon to track the
status changes of local IP addresses. Once detecting the IP address status
changes, the daemon will update the map of local addresses and trigger all
relevant TCP-BPF programs. However, there is one technical caveat in this
step. Since the current TCP-BPF implementation is based on cgroup-v2, it
is necessary to send the same address-change events to each BPF program
in each cgroup-v2. For the TCP-BPF program type, we need to pass the
appropriate sock struct which contains the cgroup information. A possible
but ugly solution is to create and store a dummy socket per cgroup when we
start loading path-manager BPF program, then use these dummy sockets to
trigger the corresponding BPF programs.

Second, the framework currently does not support the subflow removal
operation. This feature could be implemented as a helper function, in a similar
way to the function bpf_open_subflow(). In fact, for the common case when
receiving a REMOVE_ADDR option, current Linux MPTCP implementation has
already closed automatically the impacted subflows in the kernel. On the
other hand, this feature may be needed in other cases. One use case is to close
bad subflows e.g. those causing repeated retransmissions and reinjections.
Another use case is to close the cellular subflows when cellular traffic quota is
being reached. This may require to store the list of active subflows (e.g. in a
sockmap) or to query the subflow list on demand (e.g. by using the MPTCP_INFO
socket option). The implementation of this function may be similar to the
bpf_open_subflow() function.
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Third, only IPv4 is supported in the function bpf_open_subflow() so far. In
the mainline Linux, dual-stack support has been implemented in the helper
function bpf_bind() which is used to customize the bind() syscall. The dual-
stack handling in the function bpf_open_subflow() could be implemented in
a similar way.

We expect that there will be new use cases of Multipath TCP in the future.
For example, 5G technology supports different operating modes, e.g. multiple
radio links that may be exposed via single or multiple IP addresses per client.
This creates an opportunity but also set new challenges [83] for Multipath
TCP to exploit last-mile path diversity in 5G networks. An eBPF approach may
allow deploying sophisticated yet flexible subflow management strategies.
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Multipath TCP is more than simply a TCP extension. By decoupling TCP from
IP and enabling resource pooling, it brings several benefits. It allows seamless
handover, aggregates the bandwidth of multiple paths, increases resiliency,
can help to reduce latency and so on. However, Multipath TCP is significantly
more complex than regular TCP. It is important to understand how it currently
works in practice. In Part II, we gathered new understandings of Multipath
TCP by analysing its traffic in both fixed and wireless networks.

In Chapter 3, we revealed general insights of Multipath TCP traffic from
passive measurements on the server side. Multipath TCP works correctly
through a large portion of Internet paths, with a small number of connections
falling back to legacy TCP. Looking at the data exchanges, there could be a
large difference of RTTs among the concurrent subflows, which is a challenge
for the packet schedulers. We also showed that the path managers need to be
improved to avoid creating subflows unnecessarily.

In Chapter 4, we focused on a typical use case of Multipath TCP: cloud-
based voice recognition service. We leveraged the MONROE platform to
run experiments with simulated traffic over multiple wireless interfaces. Our
results show that Multipath TCP brings benefits to this service, but the per-
formance varied with different configurations of Multipath TCP. The sender
should have up-to-date information about the current state of each subflow.

Our experiences with the Linux kernel implementation of Multipath TCP
have shown that it is difficult to customize the stack. This is a generic problem
for in-kernel stacks, notably the Linux vanilla TCP stack which is highly stable
and optimized but hard to extend. In Part III, we explored the possibility
of dynamically extending the TCP and MPTCP stacks in the Linux kernel.
The eBPF virtual machine has been used since it provides a safe and efficient
execution environment of user code inside the kernel. In Chapters 5 and 6,
we leveraged this eBPF execution environment to support user-defined TCP
and MPTCP options - the standard way to extend the protocol. We illustrated
the usage of these option frameworks with several practical use cases in each
chapter. Then, as presented in Chapter 7, the eBPF infrastructure also allowed
us to support user-defined path managers. Four path managers have been
implemented as eBPF programs. Compared to the existing Netlink-based
solution, it avoids the cost of switching context between user space and kernel
space and does not rely on unreliable message passing.

A similar work to ours has been proposed by Frömmgen et al. [84] that
based on eBPF to support application-defined packet schedulers, showing
again that using eBPF for extending the Linux MPTCP stack is a promising
approach. The principal difference of this work to ours is that they proposed
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a highly-abstracted programming model. This allows application developers
to easily describe the scheduler logic using a high-level syntax. However, this
pushes more complexity into the kernel. In contrary, we implement basic,
low-level facilities in the MPTCP stack to minimize code modifications in the
kernel.

open problems

In Part II, we have revealed some inefficiencies of Multipath TCP implemen-
tations. We believe that it is important to build a functional and performance
test suite to automatically detect potential issues and ensure the quality of
each implementation. This is a step towards improving the protocol and its
implementations so that it can reach the same level of stability and efficiency
that TCP reached after decades of usage.

In Part III, our work has not yet made the TCP and Multipath TCP stacks
fully extensible, but rather a step towards this ultimate goal. While the eBPF
virtual machine is currently available only in Linux, its proven benefits have
motivated some efforts to port it into other operating systems, e.g. FreeBSD
[96].

At the time of this writing, a team of kernel developers are actively working
to implement a clean-slate version of Multipath TCP for upstreaming to the
mainline Linux kernel [151]. This implementation is expected to introduce
fewer changes to the regular TCP stack and provide a much cleaner separation
between the subflow layer and the multipath layer. Therefore, it is expected
that adding eBPF-based extensions to this new implementation will be more
straightforward than in the current one.

The standardization of the second version of Multipath TCP at the IETF
has been finalized and is expected to be ratified soon. This version proposed
several reliability and security improvements that protect Multipath TCP from
various types of attacks. However, the protocol is still relying on plain TCP
options, raising privacy concerns. This will be more important when the
protocol becomes popular and MPTCP-enabled hosts are the norm. It may
be necessary to design and experiment a security-enhanced version [116] of
Multipath TCP which uses TLS crypto context to encrypt the MPTCP options.
An eBPF-based approach could potentially be used to implement and test
such a new prototype.

The eBPF approach could also be applied to extend other protocols. For
example, De Coninck et al. [57] have recently proposed to extend the QUIC
protocol and its implementations using a fork of the eBPF virtual machine in
user space.
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