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Preamble

Started as a research experiment, the Internet has evolved into a worldwide
network interconnecting more than 40,000 separately operated networks.
Together, these networks provide Internet access to more than two bil-
lion of hosts [164, 157]. In addition to interconnect an always increasing
number of hosts, the Internet supports more and more mission critical ap-
plications such as e-business, IP television (IPTV), teleconferencing, Voice
over IP (VoIP), or even remote surgery. Networks need thus to be highly
available putting a high pressure on network operators who must avoid
disruption at all costs.

Each network constituting the Internet must be correctly configured.
Configuring a network is similar to programming a distributed infras-
tructure albeit, in a low-level language. Starting from a set of network-
level goals, the behavior of each device is tweaked—most of the time,
manually—by using low-level languages provided by each network ven-
dor (e.g., Cisco CatOS/IOS/IOS-XR, Juniper JunOS/JunOSe, Alcatel TiMOS,
Brocade IronWareOS, Force10 FTOS). The primary goal of these configu-
ration languages is to pass devices the operational settings they need for
their proper operation. The operational settings include the list of network
protocols as well as the set of parameters that govern their behavior. Ob-
viously, these settings must be semantically consistent across all devices
in order for the network to operate correctly.

As configuring a network is still essentially manual and device specific,
it is renowned to be time-consuming and error-prone [39, 87, 44, 66]. Ac-
tually, the configuration problem is so ubiquitous that human errors are
held responsible for the majority (between 50 and 80 percent) of network
downtimes [166, 184].

As a network evolves in time (e.g., in terms of size or services), its
configuration must be adapted. In this thesis, we refer to the process of
modifying the configuration as reconfiguration or migration. Reconfigur-
ing a network consists in applying a set of configuration modifications on
a set of devices. Reconfiguration can bring several benefits to the entire
network infrastructure in terms of manageability (e.g., introducing a hi-
erarchy), performance (e.g., improving the network convergence), stability
(e.g., hiding the visibility of some events), and security (e.g., switching to a
more secure routing protocol). Reconfiguration can also enlarge the port-
folio of services offered by a network. Interestingly, these benefits can be
reaped without buying new hardware.



While configuring a network is known to be hard, reconfiguring a net-
work is even more complex. Indeed, shutting down and restarting the net-
work with the new configuration is not a viable approach as some networks
have to forward traffic 24/7. Therefore, the reconfiguration has to be done
in-place, while the network is running. Since network operators desper-
ately lack configuration tools, they often have no choice but to perform
the live reconfiguration manually, device-by-device. Manual reconfigura-
tion can make sense for highly localized changes, e.g., changing one pa-
rameter on one device. However, when the reconfiguration affects several
devices, manual reconfiguration can break the network-wide consistency
and trigger reconfiguration anomalies as non-reconfigured devices interact
unpredictably with reconfigured devices. Worse yet, such reconfiguration
anomalies can last for a significant percentage of the migration process
and create severe and service-affecting outages.

Given the high availability requirement and the likelihood of creating
reconfiguration anomalies, network operators are often reluctant to recon-
figure their networks unless it is absolutely necessary [13, 175]. Doing so,
they follow the conventional wisdom “If it ain’t broke, don’t fix it”. This
situation hampers network flexibility and evolvability by delaying or even
preventing useful reconfigurations.

In this thesis, we aim at enabling anomaly-free network reconfigura-
tions. In particular, we focus on routing reconfigurations as they typically
require to reconfigure each device in the network. To avoid reconfiguration
anomalies, the key idea is to order the reconfiguration operations such
that every intermediate state guarantees some global correctness proper-
ties. We formulate the reconfiguration problem as follows.

The reconfiguration problem. Given an initial and a final anomaly-free
routing configuration, find a sequence of configuration changes (if any)
such that network anomalies never occur, during any migration step.

The reconfiguration problem raises at least two additional questions:
Does an anomaly-free ordering always exist? and Is this ordering easy to
find? In the following, we will answer these questions and provide several
practical reconfiguration techniques which apply to both intradomain (i.e.,
Interior Gateway Protocol, or IGP) and interdomain (i.e., Border Gateway
Protocol, or BGP) routing protocols. To study each reconfiguration prob-
lem, we apply roughly the same methodology composed of three main
steps. First, we carefully analyze the reconfiguration scenarios to identify
what are the practical problems faced by network operators. Second, we
elaborate a model of the reconfiguration problem so as to study it system-
atically and to discuss its computational complexity. Third, we develop
provable reconfiguration techniques and evaluate them on real-networks.
This thesis should thus be of interest to both the network theoretician and
the network practitioner.

The thesis is divided into five parts. In the first part, we provide the
necessary background material (Chapter 1). In the second part, we study
IGP reconfigurations. We begin by characterizing the types of forwarding



anomalies that can appear in any IGP reconfiguration scenario (Chapter 2).
In particular, we show that two types of forwarding anomalies can ap-
pear: forwarding loops and traffic shifts. Knowing what and when for-
warding anomalies can happen, we then tackle the problem of avoiding
them in two practically relevant reconfiguration scenarios: (i) reconfigur-
ing link-state IGPs (Chapter 3) and (ii) transitioning a network from using
a distance-vector IGP to a link-state IGP (Chapter 4). In the third part, we
tackle the problem of reconfiguring a BGP network. To that extent, we be-
gin by defining what a correct BGP network is (Chapter 5). In particular,
we introduce a new correctness property—the dissemination correctness
property—which models the ability of all the BGP routers to learn at least
one route to each destination. We then study the BGP reconfiguration prob-
lem per se (Chapter 6). In the second and in the third parts, we consider
the IGP and the BGP reconfiguration problems as independent. However,
BGP depends on the IGP to work. In the fourth part, we therefore study the
impact of IGP reconfiguration on BGP (Chapter 7). In the fifth part, we aim
at solving one of the root causes behind reconfiguration problems: the dif-
ficulty of managing network configurations (Chapter 8). Finally, we draw
conclusions and suggest future research directions (Chapter 9).
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Part I

Background





Chapter 1

Internet routing

The Internet Protocol [107, 33] (IP) is a connectionless and unreliable
protocol whose goal is to relay datagrams or IP packets across one or more
networks. Different networks are connected together by intermediate sys-
tems known as IP routers. The role of an IP router is to forward IP packets
from one network to another one based on their destination address. An
IP router is connected to different networks via dedicated hardware known
as network interfaces. An IP packet generated by a end-system (the source)
and destined to another end-system (the destination) residing in another
network is thus first transmitted to a router which forwards it to another
router and so on until the final end-system is reached.

IP routing is the process of computing paths in a network along which
routers forward IP packets to reach other destinations. IP routing is real-
ized by a set of distributed routing protocols running on each router. IP
routing drives IP forwarding which is the action of directing IP packets
received on a network interface to another one.

Traditionally, IP routing is implemented by two families of IP routing
protocols: intradomain and interdomain routing protocols. As their names
indicate, intradomain routing protocols are used to compute forwarding
paths within a routing domain, while interdomain protocols are used to
compute forwarding paths across different routing domains. In the Inter-
net, each routing domain is known as an Autonomous System (AS) and is
operated under the same administrative control.

Intradomain and interdomain routing protocols differ in terms of the
goal and the size of the problem they are facing. The goal of an intrado-
main routing protocol is to find optimal (with respect to some cost func-
tion) routes to all the internal destinations. The goal of an interdomain
routing protocol is to find routes which are compliant with the commercial
agreements that exist between the AS and its neighbors. In an intradomain
routing protocol, all routers usually know the entire topology. In contrast,
given the size of the Internet topology, interdomain routing protocols pro-
vide only a limited view of the topology. Interdomain routing protocols are
thus information hiding protocols. Intradomain routing is implemented by
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Chapter 1. Internet routing

Interior Gateway Protocols (IGP). Examples of IGPs include OSPF [92], IS-
IS [99], RIPv2 [67] and EIGRP [2]. Interdomain routing is implemented by
an Exterior Gateway Protocol (EGP). Currently, only one EGP is used, the
Border Gateway Protocol [118] (BGP).

This first chapter reviews the main concepts behind an IP router, in-
tradomain and interdomain routing.

1.1 IP router

From an architectural point of view, a modern IP router can be divided in
two dedicated planes: the control-plane and the forwarding-plane. A sketch
of an IP router is illustrated in Fig. 1.1.

IGP

Accounting Manager CLI

BGP

RIB

FIB

control-plane

forwarding-plane

updates updates

IP traffic

Routing process

Management process

FIB updates

RIBRIB

Switching
Fabric

IF#1

IF#2

IF#3

IF#0

IF#1

IF#2

IF#3

IF#0 Network interface

Figure 1.1 Sketch of an IP router. Modern IP routers are divided in two dedicated
planes: the control-plane, in charge of IP routing, and the forwarding-plane, in
charge of IP forwarding.

The control-plane is the brain of the router. It runs the management
and routing processes and maintains the global routing table known as
Routing Information Base (RIB). We distinguish between three types of
management processes. The Manager process manages the entire router.
It maintains the router configuration, and starts, stops or restarts routing
processes according to it. The CLI process enables network operators to
modify the router configuration, monitor the router state and troubleshoot
the network. Finally, the Accounting process (e.g., SNMP [22]) enables op-
erators to query the state of the router remotely. The control-plane also
runs the routing protocols processes. Routing processes update the RIB
which stores all the routes known by the router. Among all the known
routes towards a destination, one is elected and is downloaded to the
forwarding-plane. Finally, the control-plane is also responsible for han-
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Intradomain routing

dling “special” IP packets, such as IP packets with options or IP packets
directed to the router itself.

As its name indicates, the forwarding-plane is responsible for IP for-
warding. It is composed of a set of input and output interfaces. Each in-
terface is connected to a different network and is assigned an IP address.
When a packet reaches an input interface, the forwarding-plane performs a
lookup on the destination address in order to determine the output inter-
face on which to relay it. The lookup is performed in a data structure called
Forwarding Information Base (FIB). While the RIB contains all the routes
known by the router, the FIB only contains the ones used for forward-
ing. Also, the FIB contains summarized informations with respect to the
RIB. Once the output interface is determined, the forwarding-plane moves
(“switches”) the packet from the input to the output interface across a
switching fabric (e.g., shared bus, crossbar, shared memory). In addition
to pure forwarding, the forwarding-plane is also responsible of buffering,
filtering and scheduling IP packets.

1.2 Intradomain routing

The role of an intradomain routing protocol is to compute the shortest
path to reach any IP prefix belonging to the domain. In an IGP, the shortest
path minimizes the sum of the link metrics that compose it. If multiple
shortest paths exist towards a destination, traffic is split evenly on the
outgoing links. Link metrics are configured by the network operators, usu-
ally according to the link delay or to its bandwidth. For instance, in the
Internet2 network (Fig. 1.2), link metrics are proportional to the distance
between two adjacent routers. In this network, the shortest path between
HOUS and NEWY is thus HOUS, ATLA, WASH, NEWY.

Two families of IGPs exist: Distance-Vector (DV) and Link-State (LS).
These two families differ mainly by the dissemination mechanisms they
use to propagate routing information and by the algorithm they use to
compute the shortest paths.

In a LS IGP, a router describes its link connectivity in a Link-State Ad-
vertisement (LSA). This LSA is then reliably flooded in the entire routing
domain. Whenever a router receives a LSA, it stores it in a database known
as Link-State Database (LSDB). Based on the LSDB, each router builds a
weighted directed graph representing the routing domain and uses the Di-
jkstra’s shortest path algorithm [34] to compute the shortest paths from
itself towards every other router. Whenever the connectivity of a router
changes (e.g., after a link failure), the router regenerates a LSA to allow
other routers to compute new shortest paths if needed.

In a DV IGP, a router maintains a table containing the distance and the
next-hop to reach each destination. It then periodically exchanges these
entries with its neighbors or immediately after a topology change. To com-
pute its shortest paths, each router implements a distributed version of
the Bellman-Ford algorithm [12, 30]. When a router receives a routing en-
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SEAT

LOSA
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KANS

HOUS

CHIC

WASH

NEWY
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1000
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7001045

1385

Figure 1.2 Topology of the Internet2 network [203].

try from a neighbor, it first increments the distance of each received route
with the cost of reaching this neighbor. It then compares the compounded
distance with the distance that it currently knows. If it is smaller, the
router updates its table and installs the neighbor as next-hop to reach the
destination. Consequently, in a DV IGP, a router does not know anything
about the topology beyond the first hop and is thus completely dependent
on the information provided by its direct neighbors.

In the early days of the Internet, DV IGPs were heavily used since they
are relatively easy to implement and impose lower CPU and memory over-
head than LS IGPs [2]. Unfortunately, in comparison with LS IGPs, DV IGPs
suffer from severe limitations [191, 73, 69].

LS IGPs scale better To lower the overhead induced by flooding LSAs
(bandwidth, memory and CPU), LS IGPs allow a routing domain to be hier-
archically divided into zones. In a hierarchical IGP, the LSA flooding scope
is limited to the zone in which the LSA has been originated. A router is
thus aware of the complete topology of its own zone only. To maintain
inter-zone connectivity, special LSAs summarizing zone connectivity are
sent across zones boundaries. Current LS IGPs implementations can easily
accommodate on the order of 10 000 nodes per routing domain [86]. In
contrast, DV IGPs do not offer the ability to perform hierarchical routing.

LS IGPs converge faster LS IGPs are not prone to well-known conver-
gence issues that plague DV IGPs like RIP’s “count-to-infinity” or EIGRP’s
“stuck-in-active” problems [155]. Regarding convergence time, sub-second
LS IGP convergence is now a fact, even in large networks [52]. Finally, LS
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IGPs enable local protection mechanisms such as Loop Free Alternates [6]
or MPLS Fast Reroute [100, 124] which can provide sub 50 milliseconds
convergence.

LS IGPs enable advanced services The ability of LS IGPs to distribute
information in the entire routing domain enables advanced services such
as traffic engineering (e.g. with MPLS RSVP-TE [7] or with multi-topology
routing [109, 108]).

LS IGPs are standardized LS IGPs are standardized and therefore can be
used in multi-vendor environments. On the contrary, proprietary DV proto-
cols (e.g. EIGRP) mandate the use of a single vendor. Having a multi-vendor
environment is beneficial for at least two reasons: reduced costs and in-
creased reliability. Indeed, different studies have shown that introducing a
second vendor can reduce the capital expenditures by at least 30% [41, 42].
Furthermore, multi-vendor environments also reduce the probability of
having network-wide failure due to software bugs affecting a single ven-
dor [76].

1.3 Interdomain routing

The role of an interdomain routing protocol is to exchange reachability
information between different domains so as to achieve global, Internet-
wide connectivity. In today’s Internet, BGP is the only used interdomain
routing protocol [118]. As such, BGP is commonly known as “the glue that
holds the Internet together”. From an abstract point of view, BGP is a path-
vector protocol. Each BGP route contains, in addition to the destination,
the list of the ASes that the route has traversed. BGP is also a single-path
protocol. Whenever a router learns multiple routes for a given destination,
it selects one of them that it selectively propagates. Finally, BGP is policy-
based. BGP policies allow each BGP router to independently prefer some
routes over others as well as filter them. BGP policies are mainly used
to enforce business relationships. Being a path-vector and a single-path
protocol enables BGP to scale, while being policy-based enables BGP to be
flexible and to implement highly complex policies. We now briefly review
how BGP works.

In BGP, a route consists in one or more IP prefixes along with a set
of attributes related to the path used to reach these prefixes. BGP routes
are exchanged over TCP connections known as BGP sessions. There are
two types of BGP sessions: external BGP session (eBGP session) and in-
ternal BGP session (iBGP session). eBGP sessions are used at the border
of the routing domain, between routers belonging to different ASes. iBGP
sessions are used between routers belonging to the same routing domain.
Two routers connected by an eBGP (resp. iBGP) session are known as ex-
ternal (resp. internal) BGP peers or BGP neighbors.
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Organization of a BGP router A BGP router performs three main tasks
(Fig. 1.3). First, it collects and maintains BGP routes received from neigh-
boring BGP routers in data structures known as Adj-RIBs-In. Second, it
selects one best route for each prefix according to a Decision Process (DP)
and stores it in a data structure known as Loc-RIB. Third, it selectively
announces its best route to neighboring BGP routers and stores the an-
nouncements in data structures known as Adj-RIBs-Out.

All 
acceptable 

routes

BGP Decision Process

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

Neighborn

Output filters

Output filters

Attribute
Manipulation

Output filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

NeighbornBest route 
to each 

destination

Adj-RIB-In Adj-RIB-Out

Attribute
Manipulation

BGP sessions BGP sessions

Loc-Rib

Figure 1.3 A schematic view of a BGP router. The Adj-RIB-In contains the BGP
routes received from neighboring routers. The Loc-RIB contains the best route.
The Ajd-RIB-Out contains the BGP routes announced to neighboring routers.

To control the BGP routes being learned and advertised, network oper-
ators can apply routing filters to each BGP session. Import filters specify
which routes should be accepted, possibly after having changed some of
the BGP attributes. Export filters specify which routes can be advertised,
possibly after modifying some of their BGP attributes. A BGP routing fil-
ter is typically composed of a sequence of rules. Each rule is a couple of
one predicate and a series of actions. The predicate defines which criteria
a route must satisfy in order for the actions to be applied on the route.
Actions can be as simple as accepting or denying the route. They can also
be used to change the attributes of the route.

BGP routing filters are mainly used to: (i) enforce transit policies, (ii)
perform traffic engineering and, (iii) sanitize BGP routes. Transit policies
are used to constraint the propagation of BGP routes according to the busi-
ness relationships between the AS and its neighbors. There are two typical
business relationships [58]: customer-provider and peer-to-peer. The pol-
icy for advertising routes among customers, peers and providers is usu-
ally as follows. Customer routes are distributed to all BGP neighbors. Peer
and provider routes are propagated to customers only. Transit policies
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are not limited to the above business relationships and more specific poli-
cies exist [94, 121]. Traffic engineering policies are used to influence how
BGP ranks and selects routes towards a specific destination. Finally, san-
itization policies are used to prevent some routes to be learned or to be
advertised to BGP neighbors. For instance, every self-respecting network
operator configures BGP routing filters to make sure that routes towards
invalid prefixes are not learned, nor advertised [177].

BGP decision process Best route selection is performed on each BGP
router according to the BGP decision process summarized in Table 1.1. The
BGP decision process consists of a set of rules: whenever there are ties for
a rule, the next rule is applied until there is only one route left. The evalu-
ation of steps 1–4 is the same at every iBGP router since those steps refer
to global attributes. Hence, all routers in the same ISP will eventually se-
lect routes that are equally preferred according to steps 1–4 (provided that
policies are not applied on iBGP links [28]). Conversely, steps 5–9 involve
metrics that have local significance for each BGP router. We now describe
each decision step.

1. Prefer paths with the highest LOCAL-PREF.

The LOCAL-PREF attribute encodes the degree of preference of a
route. It is attached to each eBGP learned route and is announced
only on iBGP sessions. The LOCAL-PREF usually reflects the business
relationship that the AS has with the announcer of the route [20].
Typically, routes announced by a customer AS are associated with a
higher LOCAL-PREF than the routes received from a peer AS which
themselves are set with a higher LOCAL-PREF than the routes re-
ceived from a provider AS.

2. Prefer paths with the shortest AS-PATH length.

The AS-PATH attribute encodes the sequence of ASes traversed by the
route. Consequently, it also indicates through which and how many
ASes IP packets will flow if that route is used.1

3. Prefer paths with the lowest ORIGIN.

The ORIGIN attribute reflects how the route was originated. It can
take three different values: IGP, EGP, and INCOMPLETE. The prefer-
ences are as follows: IGP is preferred over EGP which is preferred
over INCOMPLETE.

4. Prefer paths with the lowest Multi Exit Discriminator (MED).

The MED attribute is used to rank the routes received from the same
neighboring AS. Its role is to perform incoming traffic engineering.
It is set by the neighboring AS to indicate which peering link should
be preferred (provided that multiple links exist) for the prefixes it

1Observe that the AS-PATH encodes the reverse forwarding path only if there is no de-
flection along that path [66].
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announces. Notice that the MED evaluation can lead to unpredictable
network behavior such as routing oscillations [65].

5. Prefer eBGP learned paths over iBGP learned paths.

From a business point of view, all the remaining paths are now equiv-
alent. An AS will thus try to optimize the amount of internal re-
sources it uses to forward traffic. As such, it will try to forward IP
packets to other domains as quickly as possible. This principle is
known as hot-potato routing or early-exit routing [132]. Here, a BGP
router will prefer to use an external path over an internal one which
requires packets to be sent within the AS.

6. Prefer paths with the nearest BGP NEXT-HOP.

This is the second step of the hot-potato routing. Here, when choos-
ing among two equally-preferred iBGP routes (i.e, two egress points),
a BGP router will prefer to send its traffic to the nearest egress point
according to the IGP metric. This step effectively couples the BGP
and IGP control-planes. This coupling is known to be the source of
multiple problems including forwarding loops and routing oscilla-
tions [66]. We will explore some of these problems in Chapter 6 and
Chapter 7.

7-8. Deterministic tie-break.

If there are remaining routes after the evaluation of the above crite-
ria, a series of tie breaking rules are applied until one remains. These
rules encompass preferring routes learned from a peer whose iden-
tifier is the lowest, and the ones learned from the session associated
with the lowest neighbor address. Note that this very last step guar-
antees unicity as each neighbor address is unique.

iBGP organization The original BGP specification [118] prohibited a BGP
router from advertising a route learned over an iBGP session over another
iBGP session. This rule effectively mandated a full-mesh of iBGP sessions
to guarantee route propagation. However, maintaining a full mesh of iBGP
sessions does not scale as it requires O(n2) unique sessions where n is
the number of iBGP routers. To improve scalability, route reflection [11]
was introduced along with the notion of route-reflector. Route-reflectors
are special BGP routers which are allowed to advertise iBGP learned routes
on some iBGP sessions. Actually, the iBGP sessions of each router are split
into three sets: clients, peers and route-reflectors. Each BGP router propa-
gates its best route according to the following rules: routes learned from
a peer or from a route-reflector are relayed to clients only, whereas all
other routes are reflected to all iBGP neighbors. In a fully-meshed iBGP
network, all iBGP routers are peers. A cluster consists of one or more
route-reflectors and all their clients. In addition to changing the origi-
nal propagation rules, route-reflection also added two iBGP attributes: the
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Scope Step Criterion

Prefer routes ...

global

1 with higher local-preference

2 with lower AS-PATH length

3 with lower ORIGIN

4 with lower MED

local

5 learned via eBGP

6 with lower IGP metric to NEXT-HOP

7 with lower ROUTER-ID

8 coming from the BGP neighbor with the lowest IP address

Table 1.1 Whenever a BGP router learns multiple routes for the same destination
(IP prefix), it selects one of them by using its decision process. The decision pro-
cess is a set of rules: whenever there are ties for a rule, the next rule is applied
until there is only one route left.

ORIGINATOR-ID and the CLUSTER-LIST. The ORIGINATOR-ID carries the
identifier of the originator of the route in the local AS. The CLUSTER-LIST
carries the list of clusters through which the route has been reflected. It
is used to avoid routing loops as a route-reflector will discard any route
in which its own cluster is found in the CLUSTER-LIST. Furthermore, the
last steps of the decision process are modified to take into account these
two attributes. Table 1.2 describes the BGP decision process in presence
of route-reflection.

While route-reflection enables an iBGP topology to scale, it does so in
a way that prevents routers from discovering the complete set of eBGP-
learned routes. Consider the network topology depicted in Fig. 1.4. Cir-
cles represent routers having no clients, while diamonds represent route-
reflectors. In this network, four routers learn an equally-preferred route
for prefix p1 and can thus act as egress points. The list along each route
reflector represents the know egresses ranked with respect to the IGP dis-
tance. In an iBGP full-mesh, all the routers would be aware of the four
routes. However, in this route-reflection topology, r3 is only aware of e1

and e3 as it now relies on the previous decisions of its clients r1 and r2 to
learn routes. Previous studies confirm that route-reflection leads to poor
route diversity compared to an iBGP full-mesh [134]. This reduced visi-
bility along with the coupling between BGP decisions and the underlying
IGP (step 6 of the decision process) can create many routing and forward-
ing anomalies, including persistent routing oscillations and forwarding
loops [66]. We will explore these problems and their consequences on the
BGP reconfiguration process in Chapter 5, Chapter 6 and Chapter 7.
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Scope Step Criterion

Prefer routes ...

global

1 with higher local-preference

2 with lower AS-PATH length

3 with lower ORIGIN

4 with lower MED

local

5 learned via eBGP

6 with lower IGP metric to NEXT-HOP

7 with lower ORIGINATOR-ID

8 with lower CLUSTER-LIST length

9 coming from the BGP neighbor with the lowest IP address

Table 1.2 When route-reflection is used, the last steps of the decision process
are modified.

e1

r1

e2

route-reflector

egress point

r3

e3

r2

e4
p1p1p1p1

* e1
e2

* e1
e3

* e3
e4
e1

best path

known paths

Figure 1.4 An iBGP route-reflection topology. With route-reflection, iBGP routers
are hierarchically organized in clients and route-reflectors. Route-reflectors relay
iBGP routes to and from their respective clients. Route-reflection also reduces the
visibility of the BGP routes. In this topology, r3 is only aware of the two routes
announced by its clients while actually four routes are globally known.
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Chapter 2

A general characterization of IGP
reconfiguration challenges

2.1 Introduction

As the network grows or when new services have to be deployed, network
operators often need to perform large-scale IGP reconfigurations [68]. IGP
reconfigurations can indeed improve the behavior of the entire network in
terms of (i) manageability (e.g., introducing a hierarchy), (ii) performance
(e.g, reducing the convergence time), (iii) stability (e.g., reducing the visi-
bility of some events), and (iv) security (e.g., reducing the potentiality of
attacks). Reconfiguring the IGP might also be a pre-requisite to implement
value-added services (e.g., a link-state IGP must run prior to deploy MPLS
traffic engineering as it is used to feed the traffic engineering database).

Despite its usefulness, large-scale IGP migrations are often avoided un-
til they are absolutely necessary, as confirmed by many private commu-
nications with operators. This situation hampers network evolvability and
innovation as some configuration changes are not made even if they could
have improved the performance of the entire network. At least three dif-
ferent reasons explain this reluctance. First, network operators are con-
cerned with the potential disruption of reconfiguring their IGP. Indeed,
the IGP (e.g., IS-IS [99], OSPF [92], EIGRP [2], etc.) plays a critical role in the
network as it enables end-to-end reachability between any pair of devices.
Therefore, any problem happening during the reconfiguration can cause
extensive service-affecting downtimes. Also, many signaling and routing
protocols rely on an IGP to work (e.g. BGP, LDP, RSVP and PIM, etc.) and can
therefore be affected during the IGP reconfiguration leading to even larger
downtimes. Second, network operators typically lack appropriate tools and
techniques to perform large, highly distributed changes to the configura-
tion of their networks. Indeed, best current practices (e.g., [191, 68]) and
even recent research efforts (e.g., [115]) restrict to specific sub-cases or tar-
get specific protocols, respectively. Third, network operators experience
difficulties in understanding what is happening during the reconfiguration
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as complex interactions may arise between upgraded and non-upgraded
devices.

Before aiming at solving the IGP reconfiguration problem, we believe it
is important to characterize precisely what type of anomalies can appear
in any given IGP reconfiguration scenario. Knowing the type of reconfig-
uration anomalies and when they can occur is a critical information for
network operators as it enables them to take preventive counter-measures.
The main goal of this chapter is to answer the following question: Given an
IGP reconfiguration scenario, what types of reconfiguration anomalies can
happen ? To that extent, we propose a general classification which exposes
the unknown relationship between the type of anomalies and the type of
IGPs (namely, Link-State (LS) or Distance-Vector (DV)) involved in the IGP
reconfiguration.

Surprisingly, we prove that forwarding loops can occur during an IGP
reconfiguration only if the initial and the final IGP are LS. Forwarding loops
arise when reconfigured and non-reconfigured routers forward traffic to
each other in a conflicting manner. Henceforth, no forwarding loop can
happen in a reconfiguration scenario which involves a DV protocol. Re-
garding traffic shifts, we show that any type of IGP reconfiguration can
lead to traffic shifts in the intermediate state. Traffic shifts arise when
routers start to use intermediate paths for forwarding packets which cor-
respond neither to the initial forwarding paths, nor to the final ones. Traf-
fic shifts are problematic as they increase the risk of creating conges-
tion. As IGP reconfiguration strategy, we consider the best current prac-
tice [68, 179, 165, 191] which consists in running the initial and the final
IGP configurations in different IGP processes and then switch from one
to the other on a per-router basis. This reconfiguration strategy is usually
referred to as “ships-in-the-night” (SITN).

The rest of the chapter is structured as follows. Section 2.2 presents
our model, the reconfiguration strategy and formally defines the IGP re-
configuration problem. Section 2.3 describes the classification of the re-
configuration anomalies according to the family of the involved IGP. Fi-
nally, Section 2.4 concludes the chapter.

2.2 An abstract model for IGP reconfiguration

In this section, we aim at capturing IGP configurations and forwarding
behavior of routers in a model that abstracts protocol-specific details.

We formally define an IGP configuration as a tuple (p,G,D, c). The tu-
ple reflects configuration knobs available to operators. p is the identifier of
an IGP protocol, e.g., EIGRP, OSPF or IS-IS.m is the mode in which the pro-
tocol is configured, namely flat or hierarchical.m is used essentially when
dealing with IGPs that can be hierarchically organized (e.g. OSPF and IS-IS).
For any IGP p, its logical graph G = (V , E) is a weighted directed graph
that represents the IGP adjacencies among routers participating in p. Each
node in V represents an IGP router, and each edge (u,v) in E represents
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an IGP adjacency between routers u and v . c models protocol-specific con-
figuration. c typically encompasses the link weights. For link-state IGPs, c
can further model if the logical graph G is hierarchically organized or not.
Finally, D ⊆ V is the set of IGP destinations for packets that flow in the
network. A destination is a network prefix which can be originated (i.e.,
initially advertised) by one or more routers in V . In the following, we asso-
ciate each destination to a single node in G, assuming that each IP prefix is
announced by one router only. This assumption is without loss of general-
ity, as we can use virtual nodes and G can be transformed in a multi-graph,
in order to model peculiarities of the considered IGP1. Moreover, we always
consider IGP is configured in such a way that every destination is reach-
able (i.e., G is connected and no arbitrary route filtering is performed),
otherwise obvious forwarding anomalies can happen.

A route from a router r to a destination d learned via a protocol p
is a simple path P = (r . . . d) on G (the logical graph associated to p)
which starts at r and ends at the router advertising d. Packets destined
to one router d ∈ D follow what we call a forwarding path. A forwarding
path, or simply path, P from s to d is a path P = (s r1 . . . rk d) on G
in which ri, with i = 1, . . . , k, are routers traversed by the traffic flow.
Several forwarding paths can simultaneously be used for the same pair
(s, d), e.g., in case of Equal-Cost Multi-Path (ECMP). The weight of a path is
the sum of the weights associated to the corresponding edges. We denote
with dist(s, d) the weight of the shortest path from s to d.

Routers can and often use multiple IGPs [88] at the same time. This
is especially true during the reconfiguration. For each configured IGP, a
router spawns an independent routing process. This process maintains a
protocol-specific routing table, commonly called Routing Information Base
(RIB). A RIB entry is formally denoted by rib(u,d,p, t), which holds the
best-route router u knows from protocol p for destination d at time t.
Whenever two or more routes for the same prefix are available in different
IGPs, a router will select the one with the lowest Administrative Distance
(AD). Table 2.1 lists the default AD values of the major routing protocols
for two main router vendors. AD values can be manually overridden by
network operators, even on a per-destination basis. After being selected,
the route with the preferred AD is installed in the router-wide forward-
ing table, commonly called Forwarding Information Base (FIB). Thus, FIB
entries possibly come from different IGPs. Contrary to RIB entries, FIB en-
tries directly determine packet forwarding. We define the next-hop func-
tion nh(u,d, t) which, given a router u and a destination d, associates the
set of next-hops (i.e., FIB entries) that u uses at time t to send traffic to d.
Notice that |nh(u,d, t)| is not guaranteed to be equal to 1, since routers
can use multiple paths to reach a given destination (e.g., in presence of
ECMP). Fig. 2.1 represents how information coming from different routing
processes are handled by an IP router.

1It is possible to generalize to the case of multiple routers originating the same destina-
tion, by adding to V a single virtual router that announces the destination to those routers
(see Chapter 3).
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routes in
instance 1

routes in
instance 2

routes in
instance 3

RIB 1

RIB 2

RIB 3

FIB

Router

AD

Figure 2.1 Model of a router running multiple IGPs. A specific routing table (RIB)
is maintained for each protocol. The best routes of each protocol are installed in
the router-wide forwarding table (FIB). When a route for a prefix p is available in
more than one protocol, the one with the smallest AD is installed.

Cisco Juniper

Connected interface 0 0

Static route 1 5

EIGRP summary 5 -

OSPF internal - 10

IS-IS L1 internal - 15

IS-IS L2 internal - 18

BGP external 20 -

EIGRP internal 90 -

OSPF all 110 -

IS-IS all 115 -

RIP 120 100

OSPF external - 150

IS-IS L1 external - 160

IS-IS L2 external - 165

EIGRP external 170 -

BGP all - 170

BGP internal 200 -

Table 2.1 Default Administrative Distance (AD) values for two different routing
vendors [200, 185]. Routes learned by a protocol with the lowest AD are preferred.
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To model the AD setting, we say that p = pref(u,d, t) if the config-
uration of router u at time t is such that protocol p has the lowest AD
for destination d. Similarly, we say that p′ = used(u,d, t) if the FIB entry
on router u for destination d at time t was learned via protocol p′. Ob-
serve that pref(u,d, t) depends on the router static configuration while
used(u,d, t) depends on the dynamic information learned by the router.
Hence, it is possible that pref(u,d, t) ≠ used(u,d, t). This happens, for
example, when a protocol has been configured with the lowest AD but does
not offer to u any route to d at time t.

2.2.1 The IGP reconfiguration problem

In this thesis, we consider that the IGP reconfiguration process is carried
out using a known migration technique called “ships-in-the-night” (SITN)
routing [68, 179, 165, 191, 60], widely available on today’s commercial
routers. In SITN, the old and the new IGP configurations are running con-
currently in separate routing processes. Fig. 2.2 depicts the reconfigura-
tion of one router. First, the final IGP is introduced along with the initial
one. The AD value of the final IGP is set such that it is strictly higher than
the AD of the initial IGP. In particular, we set the AD of the routing pro-
cess running the final IGP configuration to 255. This setting ensures that
no route coming from that process is installed in the FIB [8, 200]. Then,
the preference is progressively switched from the old to the new IGP by
adjusting the AD values one router at a time. Once all the routers in the
network have been migrated, the initial IGP is removed as it is not used
anymore.

In the following, we say that a router is reconfigured when it prefers the
new IGP over the initial one for all destinations. While AD can be config-
ured on per-destination basis, we do not discriminate between per-router
and per-destination reconfigurations, unless specified otherwise, as our
main theoretical results apply to both of them.

An IGP reconfiguration carried out with SITN can be seen as a finite
number of reconfiguration steps where each step consists in reconfiguring
a router. For this reason, we consider that the time is discrete. We assume
that the reconfiguration process starts at time t = 0 and ends after f steps
(i.e., at time t = f ).

At each reconfiguration step 1 ≤ i < f , only a subset of the routers has
been reconfigured, hence different routers might prefer different IGPs for
a given destination. To model such inconsistent AD settings, we define the
concept of actual path π(u,d, t) as the path2 actually followed by packets
sent by u towards d at time t resulting from a recursive concatenation
of next-hops entries along the path. When several next-hops are available
to reach a destination (e.g., in presence of more specific or less specific
prefixes), the most specific entry is chosen. Formally, we define the actual
path π(u,d, t) from u to d at time t as the path (v0 v1 . . . vk), such that

2For the sake of simplicity, we assume no ECMP in the rest of the chapter as it has no
impact on our results.
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Figure 2.2 Details of the SITN IGP reconfiguration of one router. (a) The initial
IGP configuration is the only one dictating the forwarding paths being used. (b)
The final IGP configuration is then introduced in another IGP process. (c) Once
the final IGP has converged, the preference is given to the final IGP so that it
starts dictating the forwarding paths being used. (d) Once all routers have been
migrated, the initial IGP is removed as it is not used anymore.

v0 = u, vk = d and ∀i ∈ {0, . . . , k − 1} vi+1 ∈ nh(vi, d, t). Observe that
vk = d only if π(r ,d, t) does not contain a loop.

2.3 A general classification of IGP reconfigurations
anomalies

In this section, we present our general classification in two steps. First,
we define the persistent forwarding anomalies that can occur during an
IGP reconfiguration. Observe that we do not consider transient forwarding
anomalies that could arise during the normal IGP convergence process.
Then, we explain when these anomalies can occur by highlighting the im-
pact of the dissemination mechanisms used by the reconfigured protocols.

2.3.1 IGP reconfiguration anomalies

During an IGP reconfiguration, the possibly mismatching AD values that
each router assigns to a given IGP can result in two kinds of persistent
forwarding anomalies, namely: forwarding loops and traffic shifts.

A forwarding loop occurs when the actual path from a source s to a
destination d contains a loop in which some routers use different pro-
tocols, giving raise to conflicting routing decisions. Fig. 2.3(a) depicts a
reconfiguration scenario in which a forwarding loop can occur. With a
slight abuse of notation, we denote with π(∗, d, t) the actual path used
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Figure 2.3 Abstract examples of (a) a forwarding loop and (b) a traffic shift.

by each router at time t. In this example, the path (s r x d) is used ini-
tially, while the path (r s y d) is used finally. At time k, we have that
used(s, d, k) ≠ used(r ,d, k). Moreover, nh(s,d, k) contains r while, at
the same time k, the nh(r ,d, k) contains s. Hence, the actual path from
both r and s to d contains the loop (s r s).

A traffic shift occurs if, during the reconfiguration, the actual path from
a source s to a destination d changes more than once before reaching its
final value π(s,d, f ). An abstract example of such a traffic shift is rep-
resented in Fig. 2.3(b). Both the initial and the final actual paths of s are
(s r x d). In the example, however, the actual path of s becomes (s y d)
at time t = k. Such traffic shift can occur because the logical graphs of the
reconfigured protocols at time k are different from the final ones as a con-
sequence of the reconfiguration of some routers (e.g., some routers are not
participating in any of the two protocols anymore). Traffic shifts are fun-
damentally different from forwarding loops. Indeed, while multiple traffic
shifts can cause forwarding loops, forwarding loops are not necessarily
caused by traffic shifts.

While forwarding anomalies can happen during IGP reconfiguration,
routing anomalies such as loss of visibility (LoV) and routing oscillations
cannot. LoVs happen when the protocol converges to a state in which some
routers have no route to some destinations. Routing oscillations happen
when the protocol never stabilizes to a stable state. Routing anomalies
cannot happen because IGPs are policy-free protocols which do not admit
arbitrary route filtering and prescribe each router to apply the same de-
cision process. In particular, each router is guaranteed to have a route to
every destination in at least one of the two IGP protocols involved in the
SITN. Also, IGPs (both LS and DV) are known to always converge to a stable
state [63]. Contrary to IGPs, policy-based protocols such as BGP are known
to be subject to routing oscillations [66]. In Chapter 5, we show that, in
given configurations, BGP is also subject to LoV.

21



Chapter 2. A general characterization of IGP reconfiguration challenges

LS DV

LS
forwarding loop no forwarding loop

traffic shift traffic shift

DV
no forwarding loop no forwarding loop

traffic shift traffic shift

Table 2.2 General characterization of the migration anomalies that could hap-
pen in SITN IGP reconfiguration according to the family of protocols (DV and LS)
involved in the migration. Counter-intuitively, forwarding loop can happen only in
the LS to LS reconfiguration scenario.

2.3.2 The impact of the route dissemination mechanism

We now show that the type of forwarding anomalies possibly occurring
during a IGP reconfiguration depends on the route dissemination mecha-
nism adopted by the reconfigured protocols.

The dissemination mechanism of an IGP defines how routes are learned
and distributed by routers participating in the protocol. We distinguish
between the independent route announcement used by LS IGPs and the
dependent route announcement used by DV IGPs. In a LS IGP, routers ad-
vertise the routes independently of whether they are installed in the FIB
or not by the protocol. Indeed, in a LS IGP, routers reliably flood routes
for connected subnets to all the routers in the network3. On the contrary,
in a DV IGP, routers advertise only the routes installed in the FIB by the
DV itself. This fundamental difference in the dissemination mechanisms
can be attributed to the different algorithms used by each family of IGP to
compute its all-pairs shortest path as pointed out in [3]. Indeed, LS IGPs
rely on Dijkstra-like algorithms which require a global view of the topol-
ogy, while DV IGPs rely on Bellman-Ford algorithms in which each router
computation relies on the information propagated by its neighbors.

Property 2.1 is a direct consequence of the dissemination mechanism
used by DV IGPs.

Property 2.1. Let p be a DV protocol. For any router r and any destination
d such that p = used(r ,d, t), then r learns a route to d from nh(r ,d, t).

The general characterization of the anomalies that could happen in an
IGP reconfiguration is reported in Table 2.2. We distinguish between two
cases: (i) when all the protocols involved in the reconfiguration are LS and,
(ii) when at least one of them is DV.

When two LS protocols are involved in an IGP reconfiguration, both
forwarding loops and traffic shifts can arise. Indeed, due to the LS dissem-
ination mechanism, all the routers have complete routing information in
both protocols at any configuration step. However, routers can disagree
on the IGP used to forward traffic, since some of them can be reconfigured

3We consider routes for connected subnets as routes belonging to any routing protocol.
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Figure 2.4 Example of a LS to LS reconfiguration in which a traffic shift occurs
during the migration if r is migrated before s as the actual path of s becomes
π(s,d, t) = (s r x d) which corresponds neither to the initial path, nor to the
final one.

while others cannot. Such disagreements can cause deflections along the
actual path, which in turn are responsible for forwarding loops and traffic
shifts. As illustration, consider again the Fig. 2.3(a) in which a LS protocol
is used both initially and finally. In this topology, any ordering in which r
is reconfigured before s creates the forwarding loop (s r s) towards d. Re-
garding traffic shifts, consider the example depicted in Fig. 2.4 in which a
LS protocol is again used both initially and finally. In this topology, a traffic
shift is generated if r is migrated before s. Let t be the time at which r is
migrated. We have that π(s,d, t) = (s r x d) which is neither the initial
path π(s,d, i) = (s r d), nor the final one π(s,d, f ) = (s y d).

Surprisingly, whenever a DV IGP is involved in the IGP reconfiguration,
no forwarding loop can occur, only traffic shifts. The absence of forward-
ing loop is guaranteed even if the routes in the initial and in the final
configurations are completely different, e.g., if link weights are completely
changed from one configuration to the other.

We prove the statement (see Theorem 2.1) in two steps. Lemma 2.1
proves that in order for a DV route to be propagated over a chain of
routers, every router in the path must consistently use the same DV IGP.

Lemma 2.1. If at a given time t a router r uses a route offered by a DV
IGP p to d, then all the routers in π(r ,d, t) use p.

Proof. Let π(r ,d, t) = (r x)P . If x = d, then P is empty, and the statement
trivially follows. Otherwise, by Property 2.1, r must have learned π(r ,d, t)
from x. Also, by definition of a DV protocol, x must prefer p and use
route P to reach d, otherwise x would not have advertised P to r . Hence,
P = π(x,d, t). The statement follows by iterating the same argument until
the destination is reached.

Intuitively, Lemma 2.1 states that the forwarding path of a router r that
uses a DV IGP to reach destination d contains only other routers which
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also use the same DV IGP to reach d. We can group all routers that use the
DV IGP p to reach d at time t in a set cone(p,d, t) that we call DV-cone.
A consequence of Lemma 2.1 is that the actual path of all routers in the
DV-cone is internal to the DV-cone itself. Moreover, the set of actual paths
of routers in the DV-cone always form a tree thanks to the loop-freeness
property of DV protocol. Consistent routing to the destination is therefore
guaranteed as soon as a router in the DV-cone is reached. Leveraging this
intuition, Theorem 2.1 proves the impossibility of having forwarding loops
when a DV protocol is involved in the reconfiguration.

Theorem 2.1. If a reconfiguration involves a DV protocol, then no forward-
ing loop can occur.

Proof. Consider the migration from p1 to p2 and assume that p1 is DV. For
each router r and each destination d in the network, one of the following
cases applies at every time t.

• r has no route to d.

• all the routers in π(r ,d, t) use p1.

• all the routers in π(r ,d, t) use p2.

• π(r ,d, t) contains at least one router that uses p1 and another router
that uses p2. By Lemma 2.1, since p1 is DV, π(r ,d, t) must be a
concatenation of path PQ, where all the routers in P use p2 and all
the routers in Q use p1.

In all the cases, π(r ,d, t) contains no forwarding loop. Observe that the
proof is symmetric, henceforth it also holds if p2 is DV, yielding the state-
ment.

Theorem 2.1 also holds when route summarization is introduced or
removed during the IGP reconfiguration.

While the presence of a DV IGP guarantees the absence of forwarding
loops during the reconfiguration, it does not guarantee the absence of traf-
fic shifts. For example, consider again the scenario depicted in Fig. 2.3(b),
and assume that the initial IGP p1 is DV. Independently of whether the
final IGP p2 is LS or DV, a traffic shift occurs if r is the first router to
be reconfigured. Immediately after that, s starts using y to reach d (i.e.,
π(s,d, t) = (s y d)). Indeed, s prefers a route propagated via p1 over
the route (s r x d) received via p2 since pref(s, d, t) = p1. Intuitively,
r leaves the DV-cone of d when it is reconfigured. A traffic shift follows
since s was using r and it is still in the DV-cone as it learns another DV
path via y . Also, observe that the reconfiguration ordering (y s r x d)
does not generate any traffic shift. This highlights how the applied recon-
figuration ordering affects the number of traffic shifts that occurs as it
determines the way in which the DV-cone changes during the reconfigura-
tion. We will leverage this intuition in Chapter 4 when we will study the
DV to LS reconfiguration scenario.
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2.4 Conclusions

In this chapter, we have described a general characterization of the type
of anomalies that can happen in any IGP reconfiguration relying on SITN.
Our classification sheds light on the unknown dependency between the
type of anomalies (loops and traffic shifts) and the dissemination mecha-
nisms used by the involved IGPs. Surprisingly, we proved that forwarding
loops can appear only if two LS protocols are involved. We also showed
that traffic shifts can appear in any reconfiguration scenario.

For network operators, knowing in advance the type of reconfigura-
tion problems that could happen in a given IGP reconfiguration scenario
is particularly relevant since it enables them to take preventive counter-
measures. We describe such measures for the two most relevant IGP recon-
figuration in the following chapters. In Chapter 4, we show how to avoid
the creation of forwarding loops in LS to LS reconfiguration. In Chapter 3,
we show how to mitigate the effect of traffic shifts in DV to LS reconfigu-
rations.

Although we considered only existing IGPs in this chapter, the gen-
erality of our classification allows us to support the theoretical study of
reconfigurations between possibly any pair of routing protocols. As such,
we envision the framework to be used for introducing protocols tailored
for the specific needs of network operators [63].
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Chapter 3

Lossless reconfiguration of link-state
IGPs

3.1 Introduction

Nowadays, most network operators choose to rely on link-state (LS) IGPs
and not on distance-vector IGPs, especially the ones working in an Internet
Service Provider [52]. From a practical point of view, LS reconfigurations
are therefore extremely relevant.

Typically, network operators target three aspects of their LS IGP when
they perform large-scale migrations: (i) the protocol itself, (ii) the IGP’s
logical organization and (iii) the IGP’s dissemination mechanism.

Changing the protocol Although belonging to the same family, each LS
protocol provides a different features set [196]. As the network and the un-
derlying requirements evolve, operators may want to change the adopted
IGP to benefit from another features set. For instance, if the adopted IGP
suffers from spoofing or injection attacks, network operators may want
to switch to an IGP which, by design, prevents such attack from happen-
ing [179, 204]. Moreover, network operators may want to move to an IGP
which is independent from the address family (e.g., OSPFv3, IS-IS), so as to
run only one IGP to route both IPv4 and IPv6 traffic [165, 204]. Network
operators may also need to change their IGP in order to integrate equip-
ments which are not compliant with the one originally adopted [163]. Fi-
nally, network operators may change their IGP because of the familiarity
with a given protocol [205] or after a merging of two or more networks in
which a common IGP has to be deployed (see Section 3.10).

Changing the logical organization When the number of routers exceeds
a given critical mass (e.g., the maximum amount of routes maintainable by
the smallest routers), network operators often introduce a hierarchy within
their IGP in order to limit the control-plane stress [32, 133]. By introducing
a hierarchy, operators have also more control on route propagation by
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tuning the way routes are propagated from one portion of the hierarchy to
another [68]. In contrast, operators may also want to remove a hierarchy
in order to ease the support of some traffic engineering extensions [122].

Changing the announcement mechanism Network operators might also
modify the way the IGP learns or announces the prefixes by introducing or
removing route summarization. Route summarization is an efficient way
to reduce the number of entries in the routing tables of the routers as
IGP networks can currently track more than 10,000 prefixes [86]. Route
summarization also helps improving the stability by limiting the visibility
of local events [112].

Some reconfiguration scenarios combine several of these aspects such
as the migration from a hierarchical OSPF to a flat IS-IS [179]. Also, opera-
tors may be forced to revert back to a previous IGP configuration to meet
new technical requirements [202].

In Chapter 2, we proved that LS to LS reconfigurations are subject to
both traffic shifts and forwarding loops. Regarding traffic shifts, their neg-
ative effects can be mitigated by performing the reconfiguration when the
network is lightly loaded (e.g., during maintenance window). In contrast,
forwarding loops must be avoided even when the network is lightly loaded
as they directly translate to traffic losses.

In this chapter, we aim at enabling seamless link-state IGP migrations,
that is, progressive modifications of the link-state IGP configuration of a
running network without losing packets due to forwarding loops. Since we
only consider link-state IGP migrations, we use the terms LS IGP and IGP
interchangeably. Our contribution is manifold. First, we analyze various
scenarios of link-state IGP migrations. We show that long-lasting forward-
ing loops can appear, both theoretically and practically, when changes are
made to the IGP hierarchy and when route summarization is introduced or
removed. Second, we introduce a methodology that enables seamless IGP
migration while minimizing the number of reconfigurations per router.
We show that, in real world networks, it is possible to find an ordering in
which to reconfigure the routers while guaranteeing no forwarding loop.
Although finding such an ordering is a NP-complete problem, we pro-
pose algorithms and heuristics, and we show their practical effectiveness
on several ISP networks. We also show how our techniques can deal with
advanced reconfiguration scenarios by extending them to support link fail-
ures and network merging. Third, we describe the design and the evalua-
tion of a provisioning system that automates the whole migration process
according to our methodology. Our system generates router configura-
tions, assesses the proper state of the network and updates all the routers
in an appropriate sequence. As shown in our evaluation and case study,
such a provisioning system enables faster and seamless IGP migrations,
while avoiding human errors due to manual design and application of new
configurations on routers.
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The rest of the chapter is structured as follows. Section 3.2 provides a
background on link-state IGPs and presents our abstract model. Section 3.3
formalizes the IGP migration problem and describes the migration sce-
narios we tackle. Section 3.4 presents our methodology. Section 3.5 pro-
poses algorithms to compute a loop-free migration ordering. Section 3.6
presents our implementation. Section 3.7 evaluates our migration tech-
niques on both inferred and real world topologies. Section 3.8 explains
how to deal with network failures. Section 3.9 defines design guidelines
that make IGP migrations easier. Section 3.10 describes how our reconfigu-
ration techniques can support complex reconfigurations scenarios such as
network merging. Section 3.11 presents related work. Finally, Section 3.12
concludes the chapter.

3.2 Link-state Interior Gateway Protocols

In this section, we provide additional background on link-state IGPs and
slightly extend the model presented in Chapter 2. More specifically, we
describe and include in the model two additional features provided by LS
IGPs: (i) the ability of organizing the logical graph as a hierarchy and (ii) the
ability to summarize route announcements in a hierarchically organized
IGP.

Link-state IGPs can be configured either in a flat or in a hierarchical
mode. In flat IGPs, every router is aware of the entire network topology
and forwards IP packets according to the shortest paths towards their re-
spective destinations. In hierarchical IGPs, routers are not guaranteed to
always prefer the shortest paths. Hierarchical IGP configurations break the
whole topology into a set of zones (called areas in OSPF and levels in IS-
IS), which we denote as B,Z1, . . . , Zk. B is a special zone, called backbone,
that connects all the other peripheral zones together, such that packets
from a router in the network to a destination inside a different zone al-
ways traverse the backbone. IGP routers establish adjacencies over physi-
cal links, in order to exchange routing information. Each adjacency belongs
to only one zone. By extension, we say that a router is in a zone if it has
at least one adjacency in that zone. We call internal routers the routers
that are in one zone only. The Zone Border Routers (ZBRs) (e.g., ABRs in
OSPF and L1L2 systems in IS-IS) are the routers that are in more than one
zone, among which one must be the backbone. Both internal routers and
ZBRs prefer intra-zone over inter-zone paths. This means that, to choose
the path on which to forward packets towards a certain destination, each
router prefers a path traversing only one zone over a path traversing more
than one zone, no matter what is the length of the two paths.

Moreover, in hierarchical IGPs, ZBRs can be configured to perform route
summarization. In this configuration, ZBRs hide the internal topology of a
zone Z to routers in different zones, advertising aggregated prefixes out-
side Z . In practice, they announce their ability to reach groups of destina-
tions with paths of a certain length. The length announced by a ZBR is the
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same for all the destinations in an aggregated prefix. It is either configured
or decided based on the actual lengths of the preferred paths towards that
destinations (e.g., picking the highest one [92]).

Modeling peculiarities of LS IGPs is possible by adding virtual nodes to
the logical graph G or turning it into a multigraph. For example, consider
how to model the binding of each interface to a given area or the redistri-
bution of external prefixes in OSPF. For each router r that coincides with
a traffic destination, we can add a virtual node rj for each OSPF area j
in which r participates, and a virtual node rext for external destinations
injected by r in the IGP. For each rj , one edge (r rj), belonging to zone
Zj and weighted 1, is added to the graph. One edge ej for each OSPF area
j is also added between r and rext . Each ej is such that it is labeled as
belonging to zone Zj and weighted 1. The destination set D will contain
virtual nodes only. Similarly, virtual nodes can be used to model IP prefixes
announced by more than one IGP router.

By appropriately tuning the next-hop function, the IGP model of Chap-
ter 2 can already capture specific forwarding details of IGP configurations
such as the forwarding rules in hierarchical (resp. flat) mode or route sum-
marization. In Section 3.3.1, we provide some examples of next-hop func-
tions, actual path functions and migration loops in different migration
scenarios.

3.3 The IGP migration problem

In this section, we study the problem of seamlessly migrating a network
from one IGP configuration to another. Both configurations are provided
as input (i.e., by network operators) and, by definition, are loop-free.

Problem 3.1. Given a unicast IP network, how can we replace an initial IGP
configuration with a final IGP configuration quickly, with minimal configu-
ration changes and without causing any forwarding loop?

Assuming no network failures and no congestion, solving this problem
leads to seamless migrations. Observe that our approach reduces the op-
portunities for failures during the migration process, because of its time
efficiency. Further, in Section 3.8, we show how to extend our techniques
to provide guarantees even in case of network failures. Similar extensions
may be used to avoid congestion during the migration. However, we argue
that congestion issues are less critical, as they can be strongly mitigated by
performing the migration during time slots during which the traffic is low.
Also, large ISPs are normally over-provisioned [70, 16], further reducing
the risk of congestion.

In this chapter, we focus on issues generated by the IGPs themselves.
In Chapter 7, we study the issues due to the presence of additional routing
protocols (i.e. BGP) in the network. In the rest of the chapter, we call router
migration the replacement of the initial next-hop function nhinit with the
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scenario IGP configuration changes

protocol protocol replacement

flat2hier zones introduction

hier2flat zones removal

hier2hier zones reshaping

summarization summarization introduction/removal

Table 3.1 IGP Migration Scenarios.

final next-hop function nhfinal on a given router. Formally, we define the
operation of migrating a router r at a certain time t̄ as the act of configur-
ing the router such that nh(r ,d, t) = nhfinal(r , d), ∀d ∈ D and ∀t > t̄.
We call router migration ordering the ordering in which routers are mi-
grated. A network migration is completed when all routers have been mi-
grated. We focus on per-router migrations in which all the destinations
are migrated at the same time in order to limit the number of configura-
tion changes and to minimize the migration duration. However, such an
ordering might not always exist as described in Section 3.3.1. Only in such
cases, we compute and apply separate migration orderings for the trou-
blesome destinations (see Section 3.4). The results of our evaluation (see
Section 3.7) suggest that there are very few troublesome destinations in
realistic topologies.

Throughout the chapter, we focus our attention on migration loops,
i.e., loops arising during an IGP migration because of a non-safe router
migration ordering. Migration loops are not protocol-dependent and are
more harmful than loops arising during protocol convergence as they last
until specific routers are migrated (e.g., see Section 3.3.1). Observe that, if
nhinit = nhfinal, the actual path function π does not change either, hence
any router migration ordering is ensured to be loop-free.

3.3.1 IGP migration scenarios

Table 3.1 presents the IGP migration scenarios we address in this chapter.
We believe that those scenarios cover most of the network-wide IGP migra-
tions that real-world ISPs can encounter. Each scenario concerns the mod-
ification of a specific feature of the IGP configuration. Moreover, different
scenarios can be combined if more than one features of the IGP configu-
ration have to be changed. We do not consider the change of link weights
as a network-wide migration as ISPs typically change the weights of a few
links at a time. Moreover, effective techniques have already been proposed
for the graceful change of link weights [116, 53, 56, 57, 126]. Neverthe-
less, our generalized model and the techniques we present in Section 3.5
are also applicable to reconfigure link weights. Furthermore, since the ad-
dition and the removal of links and routers can be modeled as a change
of some link weights from an infinite to a finite value or vice versa, our
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approach can also be used to guarantee no packet loss during topological
changes.

In the following, we describe the issues that must be addressed in each
migration scenario we target.

Protocol replacement

This migration scenario consists in replacing the running IGP protocol, but
keeping the same nh function in the initial and in the final configurations.
A classical example of such a scenario is the replacement of an OSPF con-
figuration with the corresponding IS-IS configuration [68]. Since the nh
function is the same in both IGPs, routers can be migrated in any order
without creating loops.

Hierarchy modification

Three migration scenarios are encompassed by the modification of the
IGP hierarchy. First, a flat IGP can be replaced with a hierarchical IGP by
introducing several zones. Second, a hierarchical IGP can be migrated into
a flat IGP by removing peripheral zones and keeping only one zone. Third,
the structure of the zone in a hierarchical IGP can be changed, e.g., making
the backbone bigger or smaller. We refer to these scenarios as flat2hier,
hier2flat and hier2hier, respectively.

Unlike protocol replacement, changing the mode of the IGP configu-
ration can require a specific router migration ordering. Indeed, the nh
function can change in hierarchy modification scenarios because of the
intra-zone over inter-zone path preference rule applied by routers in hi-
erarchical IGPs (see Section 3.2). Hence, forwarding loops can arise due to
inconsistencies between already migrated routers and routers that are not
migrated yet. Consider for example the topology depicted on the left side
of Fig. 3.1. In a flat2hier scenario, some routers change their next-hop to-
wards destinations E1 and E2. In particular, the right side of Fig. 3.1 shows
the next-hop function for all the routers when the destination is E2. Dur-
ing the migration process, a forwarding loop arises for traffic destined to
E2 if B1 is migrated before E1. Indeed, B1 reaches E2 via E1 in hierarchical
mode, and E1 reaches E2 via B1 in flat mode. Hence, for each time t dur-
ing which B1 is already migrated and E1 is not, the forwarding path used
by B1 is π(B1, E2, t) = {(B1 E1 B1)}, since nhfinal(B1, E2) = {E1} and
nhinit(E1, E2) = {B1}. Notice that such a loop lasts until E1 is migrated.
A symmetric constraint holds between routers B2 and E2 for traffic des-
tined to E1. A loop-free migration can be achieved by migrating E1 and E2
before B1 and B2.

Nevertheless, there are also cases in which it is not possible to avoid
loops during the per-router migration. Consider, for example, the topology
represented in Fig. 3.2. In this topology, symmetric constraints between B1
and B2 for traffic destined to E2 and E3 imply the impossibility of finding
a per-router loop-free ordering. We refer the reader to the central and the
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Figure 3.1 Bad Square Gadget. When the IGP hierarchy is modified, B1 starts
preferring intra-zone path and forwards traffic destined to E2 via E1. Since initially
E1 forwards traffic destined to E2 to B1, E1 must be migrated before E1 to avoid
forwarding loops.

bottom parts of Fig. 3.2 to visualize the next-hop functions in flat and
hierarchical modes. While a per-router ordering does not exist, it is easy to
see that a per-destination ordering exist for both E2 and E3.

Similar examples can be found for hier2flat and hier2hier migrations.
Observe that problems in hierarchy modification scenarios are mitigated
in protocols such as IS-IS that natively support multiple adjacencies [99]. In
fact, multiple adjacencies belonging to different zones decrease the num-
ber of cases in which the nh function changes during the migration. For in-
stance, in Fig. 3.1, establishing an additional adjacency between B1 and B2
belonging to the peripheral zone would avoid the nh function to change
between the initial and the final configuration. However, multiple adja-
cencies do not solve all the problems and migration loops can still arise
depending on the initial and the final configurations.

Route summarization

Introducing or removing route summarization (i.e., summarization scenar-
ios) in a network can lead to forwarding loops. For example, consider the
topology represented in the left part of Fig. 3.3. The right part of the fig-
ure visualizes the nh functions before and after the introduction of route
summarization. In this case, the introduction of route summarization on
B1 and B2 can lead to a forwarding loop between B3 and B4 for traffic des-
tined to E2. Indeed, before summarizing routes, B3 and B4 prefer to send
traffic destined to E2 via B2. On the other hand, when summarization is
introduced, B1 and B2 propagate one aggregate for both E1 and E2 with
the same weight. Hence, B3 and B4 change their next-hop since the path
to B1 has a lower weight than the path to B2.

As for hierarchy modifications, no loop-free ordering exists in some
cases. An example of such a situation can be built by simply replicating
the topology in Fig. 3.3 so that symmetric constraints on the migration
order hold between B3 and B4.
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Figure 3.2 Loop Gadget. No migration ordering is loop-free for f lat2hier and
hier2f lat scenarios because of contradictory constraints between B1 and B2 for
destinations E2 and E3.
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Figure 3.3 Route summarization gadget. When summarization is introduced or
removed, a specific migration ordering is needed between B3 and B4 to avoid
forwarding loops.

3.4 Methodology

In this section, we describe the main steps of our methodology (see
Fig. 3.4). In the first step, we pre-compute an ordering in which to seam-
lessly migrate routers with no packet loss. When a per-router ordering
does not exist, we first identify the set of problematic destinations for
which contradictory ordering constraints exists. Then, we compute a per-
destination ordering for each of them. Finally, we compute a per-router
ordering for the non-problematic destinations.

Seamless IGP Migration Methodology

1. Compute a lossless router migration order. In case no per-router or-
dering exists, compute a per-destination ordering for the trouble-
some destinations.

2. Introduce the final IGP configuration. The final IGP configuration is
introduced on all the routers in the network. However, routers con-
tinue to forward packets according to the initial IGP configuration.

3. Monitor the final IGP status. Wait for the convergence of the final
IGP configuration.

4. Progressively migrate routers. The pre-computed lossless router mi-
gration order is followed. In case no per-router migration ordering
exists, a per-destination ordering is also applied for the trouble-
some destinations.

5. Remove the initial IGP configuration. The initial IGP is removed from
all the routers in the network.

Figure 3.4 Proposed methodology for seamless IGP migrations.
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The actual migration process begins in the second step. In this step,
we set the AD of the routing process running the final IGP configuration
to 255. Recall that this setting ensures that no route coming from that
process is installed in the FIB (see Chapter 2).

In the third step of the migration, we wait for network-wide conver-
gence of the final IGP configuration. After this step, both IGPs are in a
stable routing state.

In the fourth step, we progressively migrate routers following the or-
dering pre-computed in the first step of the methodology. For this pur-
pose, we lower the AD of the routing process running the final IGP such
that it is smaller than the AD of the process running the initial configu-
ration (see Table 2.1 for the default AD values). Doing so, the router in-
stalls the final routes in its FIB. If a per-destination ordering is required
for some destinations, we prevent them from being routed according to
the final IGP by keeping the AD of these destinations to a high value. This
can be done by using tailored route-maps matching the problematic desti-
nations (see [162, 72]). After, we migrate the problematic destinations one
by one, by lowering their AD following the pre-computed per-destination
ordering. Since a routing entry change could take about 200ms before be-
ing reflected in the FIB [55], we wait for a given amount of time (typically
a few seconds) before migrating the next router in the ordering. This step
ensures a loop-free migration of the network. Notice that switching the AD
and updating the FIB are lossless operations on ISP routers [48].

In the last step, we remove, in any order, the initial IGP configuration
from the routers. This is safe since all of the routers are now using the
final IGP to forward traffic.

3.5 Loop-free migrations

In this section, we present the two algorithms we use to compute a
loop-free per-router ordering. First, we describe a correct and complete al-
gorithm, the Loop Enumeration Algorithm. However, since the problem is
NP-complete [140], this algorithm is also inefficient and can take several
hours to run on huge ISP networks (see Section 3.7). Then, we describe
an efficient heuristic, the Routing Trees Heuristic which is correct but not
complete. Finally, we also describe how to adapt the algorithms to com-
pute a per-destination ordering to use as fallback when a per-router order-
ing does not exist.

In the following, we describe our algorithms in the absence of virtual
nodes (see Section 3.2). The explicit support of virtual nodes is not needed
as virtual nodes never change their respective next-hop function. Indeed,
consider the logical graph on which the algorithms run. By construction,
each virtual node v has only one edge, connecting it to the node u repre-
senting the corresponding physical router. Consequently, the next-hop of
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v is always v when v itself is the destination and it is always u for any
other destination.

3.5.1 The Loop Enumeration Algorithm

The Loop Enumeration Algorithm (Fig. 3.5) enumerates all the possi-
ble migration loops that can arise during a migration. Then, it outputs the
sufficient and necessary constraints that ensure that no loop arises. To
identify all possible migration loops, for each destination d, the algorithm
builds the graph Gd (line 4) as the union of the actual paths in the initial
and in the final configuration. Gd contains all the possible combinations
of paths followed by traffic destined to d for any migration order. Then,
all the cycles are enumerated by using Johnson’s algorithm [71]. For each
cycle, the algorithm outputs the constraint (line 8) of migrating at least
one router that participates in the loop in the initial configuration before
at least one router that is part of the loop in the final configuration (lines
5-8). In the example of Fig. 3.6, indeed, migrating c1 before at least one
among c2 and c3 avoids the loop. In the algorithm, Vinit,L represents the
set of routers that participate in the loop when they are in the initial con-
figuration (line 6), and Vfinal,L contains only routers that participate in the
loop when they are in the final configuration (line 7). The constraints iden-
tified by the algorithm are encoded in an integer linear program (lines 13-
25), where the variables tui represent the migration steps at which routers
can be safely migrated (lines 15-20). The binary variables Yi are used to
guarantee that at least one ui router will be migrated before one vi router.
In particular, whenever a Yi binary variable is equal to 0, the correspond-
ing tui is guaranteed to be less that tvi . Since the sum of Yi is guaranteed
to be less than |Yi| (line 23), at least one Yi will be equal to 0. Additional
constraints (lines 26-35) are also generated to ensure that two routers can-
not be migrated at the same time, i.e. that all tui are distinct. Finally, the
algorithm tries to solve the integer linear program and returns a loop-free
ordering if one exists (line 37).

We now show correctness and completeness of the Loop Enumeration
Algorithm.

Theorem 3.1. The Loop Enumeration Algorithm is correct and complete.

Proof. We prove the statement by showing that the linear program solved
in the Loop Enumeration Algorithm encodes all the sufficient and neces-
sary conditions for any migration loop to not arise. Indeed, let u0 ∨ · · · ∨
uk < v0 ∨ · · · ∨ vl be the ordering constraint that the Loop Enumeration
Algorithm identifies for a given loop L = (c0 c1 . . . ck c0) concerning traf-
fic destined to d ∈ D. We now show that L does not arise at any migration
step if and only if the constraint is satisfied.

If the loop does not arise then the constraint is satisfied. Suppose by
contradiction that the constraint is not satisfied. Then, there exists a time
t̄ such that all the routers in Vfinal,L are migrated while all the routers
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1: loop_enumeration_run(G = (V , E),D,nhinit ,nhfinal)
2: CS ←∅
3: for d ∈ D do
4: Ḡd = (V , Ē), with Ē = {(u v)} such that v ∈ nhinit(u,d) or v ∈
nhfinal(u,d)

5: for each cycle L in Ḡd do
6: Vinit,L = {u ∈ L : ∃v, (u v) ∈ L,v ∈ nhinit(u,d) but v 6∈ nhfinal(u,d)}
7: Vfinal,L = {u ∈ L : ∃v, (u v) ∈ L,v ∈ nhfinal(u,d) but v 6∈
nhinit(u,d)}

8: CS ← CS∪{u0∨· · ·∨uk < v0∨· · ·∨vl}, where ui ∈ Vinit,L ∀i = 0, . . . , k,
and vj ∈ Vfinal,L ∀j = 0, . . . , l.

9: end for
10: end for
11: LP ← new LP problem
12: Vars ←∅
13: for u0 ∨ · · · ∨uk < v0 ∨ · · · ∨ vl ∈ CS do
14: add to LP the following constraints
15: tu0 −MAX_INT × Y1 < tv0

16: . . .
17: tu0 −MAX_INT × Yl < tvl
18: tu1 −MAX_INT × Yl+1 < tv0

19: . . .
20: tuk −MAX_INT × Yl×k < tvl
21: tu0 , . . . , tuk , tv0 , . . . , tvl integer
22: Y1, . . . , Yl×k binary
23:

∑
1<i<=l×k Yi < l× k

24: Vars ← Vars ∪ {tu0 , . . . , tuk , tv0 , . . . , tvl}
25: end for
26: for ti ∈ Vars do
27: for tj ∈ Vars do
28: if ti ≠ tj then
29: add to LP the following constraints
30: ti −MAX_INT × Z1 < tj
31: tj −MAX_INT × Z2 < ti
32: Z1, Z2 binary
33: Z1 + Z2 = 1
34: end if
35: end for
36: end for
37: return solve_lp_problem(LP )

Figure 3.5 Loop Enumeration Algorithm.
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c0

c1

c3 c2

nhinit

nhfinal

Legend

c1 ∈ Vinit,L
c2, c3 ∈ Vfinal,L

Figure 3.6 Abstract representation of a migration loop.

in Vinit,L are not migrated. Consider c0. If c0 ∈ Vfinal,L, then it is already
migrated, i.e., nh(c0, d, t̄) = nhfinal(c0, d), hence c1 ∈ nh(c0, d, t̄), by def-
inition of Vfinal,L. If c0 ∈ Vinit,L, then nh(c0, d, t̄) = nhinit(c0, d) and c1 ∈
nh(c0, d, t̄). Finally, if c0 6∈ Vinit,L and c0 6∈ Vfinal,L, then c1 ∈ nh(c0, d, t)
∀t. In any case, c1 ∈ nh(c0, d, t̄). Iterating the same argument for all the
routers in L, we conclude that ci+1 ∈ nh(ci, d, t̄), with i = 0, . . . , k and
ck+1 = c0. Thus, L arises at time t̄.

If the constraint is satisfied then the loop does not arise. Assume, without
loss of generality, that cu ∈ Vinit,L is migrated at time t′, while at least one
router cv ∈ Vfinal,L is migrated at t′′ > t′. Then, L cannot arise ∀t < t′′,
since nh(cv , d, t) = nhinit(cv , d) implies that cv+1 6∈ nh(cv , d, t) by defi-
nition of Vfinal,L. Moreover, L cannot arise ∀t > t′, since nh(cu, d, t) =
nhfinal(cu, d) implies that cu+1 6∈ nh(cu, d, t) by definition of Vinit,L.
Since t′′ > t′, no time exists such that L arises during the migration.

It is easy to verify that the algorithm requires exponential time. Indeed,
the algorithm is based on the enumeration of all the cycles in a graph, and
the number of cycles in a graph can be exponential with respect to the
number of nodes.

3.5.2 Routing Trees Heuristic

The Routing Tree Heuristic is illustrated in Fig. 3.7. Intuitively, it com-
putes ordering constraints separately for each destination, so that next-
hop changing routers are not migrated before their final forwarding path
to each destination is established (similarly to what was proposed in [57,
53]). A router ordering that satisfies all per-destination constraints is then
computed. As the first step, for each destination d ∈ D, the heuristic ex-
ploits a greedy procedure to compute a set Sd of nodes that are guaranteed
not to be part of any loop (line 4). The greedy procedure (lines 20-32) in-
crementally (and greedily) grows the set Sd, adding a node to Sd at each
iteration if and only if all the next-hops of the node in the initial and in
the final configurations are already in Sd (lines 27-28). After this step, the
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1: routing_trees_run(G = (V , E),D,nhinit ,nhfinal)
2: C ←∅
3: for d ∈ D do
4: Sd ← greedy_run(V ,d,nhinit ,nhfinal)
5: V̄d ← {vi : nhinit(vi, d) ≠ nhfinal(vi, d)}
6: Gd = (V , E′), with E′ = {(u,v) : v ∈ nhfinal(u,d)}
7: for P = (v0 . . . vk), with vk = d, (vi, vi+1) ∈ E′, and predecessors(v0) =
� do

8: last ← Null
9: for u ∈ P ∩ V̄d and u 6∈ Sd do

10: if last ≠ Null then
11: C ← C ∪ {(u, last)}
12: end if
13: last ← u
14: end for
15: end for
16: end for
17: Gc ← (V ,C)
18: return topological_sort(Gc )
19:
20: greedy_run(V ,d,nhinit ,nhfinal)
21: Sd ←∅
22: N ← {d}
23: while N ≠∅ do
24: Sd = Sd ∪N
25: N = ∅
26: for u ∈ V , u 6∈ Sd do
27: if nhinit(u,d)∪nhfinal(u,d) ⊆ Sd then
28: N = N ∪ {u}
29: end if
30: end for
31: end while
32: return Sd

Figure 3.7 Routing Trees Heuristic.
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Routing Trees Heuristic builds directed graph Gd, which is guaranteed to
be acyclic since the final configuration is loop-free. Gd contains only the
actual paths followed by packets to reach d in the final configuration (line
6). Then, it generates a constraint for each pair of routers (u,v) such that
(u . . . v . . . d) ∈ πfinal(u,d), and both u and v do not belong to Sd and
change at least one next-hop between the initial and the final configura-
tion (lines 7-15). In particular, among the routers that change one or more
next-hops during the migration (set V̄d at line 5), each router is forced to
migrate after all its successors in the actual path towards d (line 11). In the
final step, the heuristic tries to compute an ordering compliant with the
union of the constraints generated for all the destinations (lines 17-18).

It is easy to check that the algorithm is polynomial with respect to the
size of the input. We now prove that the algorithm is correct. First, we show
that the routers in Sd can be migrated in any order without creating loops
towards d, hence it is possible not to consider them in the generation of
the ordering constraints. Then, we prove that the constraints are sufficient
to guarantee that the ordering is loop-free.

Lemma 3.1. If the greedy procedure adds a router u to Sd, then u cannot
be part of any migration loop towards destination d ∈ D.

Proof. Suppose, by contradiction, that there exists a router u added to Sd
by the greedy procedure at a given iteration i, such that (u v0 . . . vk u) ∈
π(u,d, t), with k ≥ 0, at a given time t and for a given migration ordering.
By definition of the algorithm, one router is added to Sd if and only if all
its next-hops w0, . . . ,wn (in both the initial and final IGP configurations)
are already in Sd, since each node in {w0, . . . ,wn} is added to Sd at a given
iteration before i. Hence, vk 6∈ Sd at iteration i, because u is one of the
next-hops of vk and it is added to Sd at iteration i by hypothesis. Iterating
the same argument, all routers vh 6∈ Sd at iteration i, ∀h = 0, . . . , k. As
a consequence, the greedy procedure does not add u to Sd at iteration i,
which is a contradiction.

Theorem 3.2. Let S = x1, . . . , xn be the sequence computed by the Routing
Tree Heuristic. If the routers are migrated according to S, then no migration
loop arises.

Proof. Suppose by contradiction that migration is performed according to
S but migrating a router u creates a loop for at least one destination d.
In that case, there exists a set of routers Ṽ = {v1, . . . , vk}, such that C =
(u v0 . . . vk u) ∈ π(u,d, t), at a certain time t. By Lemma 3.1, all vi 6∈ Sd.
By definition of the heuristic, all routers vi are such that nh(vi, d, t) =
nhfinal(vi, d), with i = 0, . . . , k, because either they do not change their
next-hop between the initial and the final configuration or they precede u
in S. Hence, at time t, both u and all the routers vi ∈ Ṽ are in the final
configuration. This is a contradiction, since we assumed that the final IGP
configuration is loop-free.

Note that the heuristic is not complete; while the constraints it gener-
ates are sufficient to guarantee no forwarding loops, they are not neces-
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Figure 3.8 In some migration scenarios, the Routing Trees Heuristic generates
unnecessary constraints.

sary. Indeed, for each destination d, it imposes specific orderings between
all the routers (not belonging to Sd) that change one of their next-hops
towards d, even if it is not needed. For instance, in the scenario of Fig. 3.8,
the heuristic mandates v to be migrated before u and u before z. However,
no loop arises also if v is migrated before z and z before u. Generating un-
necessary constraints prevents the heuristic from identifying a loop-free
migration ordering every time it exists. Nonetheless, in carefully designed
networks [47], such cases are rare. In Section 3.7, we show that the heuris-
tic found an ordering in most of our experiments on realistic topologies.

3.5.3 Per-destination ordering

If a per-router ordering does not exist or the Routing Tree Heuristic
does not find a solution, a per-destination ordering can be computed. The
per-destination ordering is applied to problematic destinations only, that
is, to the destinations for which contradictory ordering constraints exist.
Per-destination orderings can be computed directly from the ordering con-
straints identified by our per-router ordering algorithms. Note that it may
not be necessary to compute an ordering for every problematic destina-
tion, since excluding a destination from the per-router ordering may un-
lock the problem for a set of other problematic destinations. The number
of destinations for which a per-destination ordering is required can thus
be minimized. However, our experimental evaluation (see Section 3.7) sug-
gests that potentially troublesome destinations are few in practice, hence
the need for minimizing problematic destinations is limited.

3.6 The provisioning system

We implemented a system which computes and automates all the required
steps for a seamless migration. The architectural components of our sys-
tem are depicted in Fig. 3.9. We now describe how data flows through the
system (dashed lines in the figure), while stressing the role of each com-
ponent.
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Figure 3.9 Design of the provisioning system. The provisioning system auto-
mates all the reconfiguration process. It computes the ordering, monitors the
network and pushes the intermediate configurations in the appropriate order.

The main purpose of the monitoring component is to assess properties
of intermediate configurations, that is, checking that given routers are cor-
rectly migrated and the expected routing state is reached. The monitoring
mechanism also enables failure detection. However, while we discuss how
to prevent packet loss due to network failures in Section 3.8, we plan to
study effective reactive strategies to unexpected failures in future work.
The monitoring component encompasses an IGP LSA Listener and an IGP
State Asserter. The IGP LSA Listener collects and parses the IGP Link-State
Advertisements (LSAs) exchanged by routers, storing IGP adjacencies, link
weights, and announced IP prefixes in a database. We chose to implement
the IGP LSA Listener by using packet-cloning features available on routers.
Such features have already been proved to be useful in the context of BGP
monitoring [144] as a way to collect all control-plane messages with a low
resource consumption. The IGP State Asserter queries the database and as-
sesses properties of the monitored IGPs state. The current implementation
of the IGP State Asserter can check an IGP for convergence completion. IGP
convergence is deduced by stability, over a given time, of the expected IGP
adjacencies and of the announced prefixes. Moreover, the IGP State As-
serter is able to verify the announcement of a given set of prefixes in an
IGP, and the equivalence of two IGPs, i.e., the equivalence of the logical
graph, and of the forwarding paths towards a given set of destinations.

The IGP State Asserter is triggered at specific moments by the Migration
Controller, which is responsible for tasks’ coordination. Before the actual
migration process starts, it delegates the computation of a loop-free router
migration ordering to the Ordering Component. This component imple-
ments the ordering algorithms described in Section 3.5.1. Then, the Migra-
tion Controller runs the IGP LSA Listener. When needed (see Section 3.4),
the Migration Controller asks the IGP State Asserter to assess whether it is
possible to safely modify the configuration of the devices in the network
without incurring transient states. This boils down to checking the stabil-
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ity of the current IGP. At each step of the migration process the controller
also requires the Configuration Manager to properly update the configu-
ration on the routers as described in Section 3.4. Based on a network-wide
model, the Configuration Manager generates the necessary commands to
be sent to routers for each migration step. The Configuration Manager is
based on an extended version of NCGuard [139].

3.7 Evaluation

In this section, we evaluate the ordering algorithms and the provisioning
system. The system is evaluated on the basis of a case study in which a
network is migrated from a flat to a hierarchical IGP.

3.7.1 Data set and methodology

Our data set contains both publicly available and commercial ISP topolo-
gies. Concerning publicly available topologies, we used the inferred topolo-
gies provided by the Rocketfuel project [129]. Rocketfuel topologies rep-
resent ISPs of different sizes, the smallest one having 79 nodes and 294
edges while the biggest one contains 315 nodes and 1944 edges. In ad-
dition, some network operators provided us with actual IGP topologies.
We now discuss the result of our analyses on all the Rocketfuel data and
on the anonymized topologies of three ISPs, namely tier1.A, tier1.B and
tier2. tier1.A is the largest Tier1, and its IGP logical graph has more than
1000 nodes and more than 4000 edges. tier1.A currently uses a flat IGP
configuration. The other two ISPs are one order of magnitude smaller but
use a hierarchical IGP.

On this data set, we performed several experiments. We considered the
introduction of summarization, as well as flat2hier and hier2hier scenar-
ios. Since most of the topologies in our data set are flat, we artificially built
a hierarchy to consider scenarios in which hierarchical configurations are
needed. In particular, we grouped routers according to geographical infor-
mation present in the name of the routers. Doing so, we built two hier-
archical topologies out of each flat topology. In the first one, zones are
defined per city. In the second one, zones are defined per-continent. In
both topologies, we built the backbone by considering routers connected
to more than one zone as ZBRs and routers connected only to ZBRs as
pure backbone routers. To simulate a hier2hier scenario, we enlarged the
backbone by moving to it a fixed number (from 1 up to 32) of links. Such
links were randomly chosen among the links between a ZBR and a router
that does not participate in the backbone. For the summarization scenario,
we aggregated all the destinations inside the same zone into a single pre-
fix. This was done for all the zones but the backbone. Our hierarchy con-
struction methodology and the way prefixes are summarized follow the
guidelines proposed in [154]. All the tests were run on a Sun Fire X2250
(quad-core 3GHz CPUs with 32GB of RAM).
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3.7.2 Ordering algorithms
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Figure 3.10 CDF of the number of loops that can arise on Rocketfuel topologies.
In the worst case, up to 80 different forwarding loops can be created during the
reconfiguration.

We first evaluate the usefulness and efficiency of the Loop Enumera-
tion Algorithm and Routing Tree Heuristic. Fig. 3.10 shows the cumulative
distribution function of the number of loops that can arise in Rocketfuel
topologies. Different migration scenarios are considered. Each point in the
plot corresponds to a specific topology and a specific scenario. In flat2hier,
up to 80 different loops can arise in the worst case and at least 30 loops
can arise for 4 topologies out of 11. Other scenarios follow similar trends.
Observe that, in the hier2hier scenario (curves “adding x links to the back-
bone”), the number of possible loops significantly increases with the num-
ber of links which change zone. In all the scenarios, almost all the loops
involve two routers, with a few exceptions of three routers loops. Also,
the vast majority of loops concerns traffic destined to routers that do not
participate in the backbone. These routers are at the border of the net-
work (e.g., BGP border routers or MPLS PEs) and normally attract most of
the traffic in ISP networks. Hence, computing an ordering in which they
are not involved in loops can be critical. The number of migration loops
is topology dependent, hence it can be influenced by our design approach.
However, these results clearly show that migrating routers in a random
order is not a viable option in arbitrary networks. Additionally, for prac-
tical reasons, it is desirable that migrations of world-wide networks be
carried out on a per-zone basis, i.e., migrating all the routers in the same
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zone (e.g., a continent) before routers in other zones. We argue that it is
often possible to compute and apply per-zone orderings. Indeed, in both
the Rocketfuel and the real-world topologies we analyzed, all the possible
loops involve routers in the same zone or backbone routers and routers
in a peripheral zone. These considerations further motivate our effort to
find a router migration ordering which is guaranteed to be loop-free. We
found slightly different results on the real ISP topologies we analyzed. For
the two hierarchical ISPs, none or few migration loops can arise in the con-
sidered scenarios. This is mainly due to a sensible design of the hierarchy
by the ISPs. On the other hand, we found that huge number of problems
could arise within tier1.A in the hier2f lat scenario where the hierar-
chy was designed as described in Section 3.7.1. Indeed, more than 2000
loops might arise, involving up to 10 routers. Again, this stresses the im-
portance of the IGP design on the migration outcome. We discuss simple
design guidelines that ease IGP migrations in Section 3.9.
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Figure 3.11 Percentage of routers involved in the ordering in flat2hier (Rocket-
fuel topologies). Results for other scenarios are similar.

As a second group of experiments, we ran the ordering algorithms on
both the real-world and the Rocketfuel topologies. In the following, we
present results for the f lat2hier scenario but similar results and con-
siderations hold for the other scenarios. Fig. 3.11 shows for each Rock-
etfuel topology the percentage of routers that need to be migrated in a
specific order according to each algorithm (implying that other routers
can be migrated in any order). When a point is missing, it means that
the corresponding algorithm was not able to find a loop-free ordering for
the topology. The enumeration algorithm was always able to find a loop-
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Figure 3.12 Time taken to compute an ordering in flat2hier (Rocketfuel topolo-
gies). Results for other scenarios are similar.

free ordering in all situations (including all the real-world topologies but
tier1.A). In the worst case, the computed ordering involves more than
20% of the routers in the network. We believe that finding ordering con-
straints for such a number of routers is not practical at a glance. This
stresses the importance of our algorithms. The Routing Trees Heuristic,
instead, found a loop-free ordering on 9 topologies out of 11. In the re-
maining two cases, the heuristic was not able to find a solution because of
contradictory (unnecessary) constraints relative to 4 and 6 destinations,
respectively. Because of the limited number of destinations involved in
contradictory constraints, we propose to apply a per-destination ordering
in these cases. Fig. 3.11 also highlights the gain of relying on the greedy
sub-procedure, as the heuristic could find a solution for only 6 topologies
without it.

Finally, we evaluated the time taken by our ordering algorithms. Typi-
cally, time efficiency of ordering algorithms is not critical in our approach,
since a loop-free router migration ordering can be computed before actu-
ally performing the migration. However, it becomes an important factor
to support advanced abilities like computing router migration orderings
that ensures loop-free migrations even in case of network failures (see
Section 3.8). Fig. 3.12 plots the median of the computation time taken by
each algorithm over 50 separated runs. Even if correct and complete, the
Loop Enumeration Algorithm is inefficient, especially for large topologies.
The heuristic is always one order of magnitude faster. In Fig. 3.12, the
low absolute value of the time taken by the Loop Enumeration Algorithm
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can be explained by the relatively small size of the Rocketfuel topologies.
Nevertheless, for the tier1.A topology, the Loop Enumeration Algorithm
did not complete even after of month of computation. To further evalu-
ate the performance degradation of the complete algorithm, we enlarged
tier1.B’s and tier2’s topologies. The operation consisted in replicating
several times the structure of one peripheral zone, and attaching these ad-
ditional zones to the network in order to reach a size similar to tier1.A.
In such experiments, we found that the Loop Enumeration Algorithm took
several hours even if routers can be migrated in any order, while the
heuristics always took less than 1.5 minutes.

3.7.3 Provisioning system

We evaluated the performance of the main components of our provision-
ing system by means of a case study. In the case study, we performed a
f lat2hier migration of Geant, the pan-european research network, that
we emulated by using a major router vendor operating system image. In
particular, we simulated the migration from a flat IS-IS configuration to a
hierarchical OSPF. Geant’s topology is publicly available [168]. It is com-
posed of 36 routers and 53 links. For the case study, we artificially built
zones on the basis of the geographical location of the routers and their
interconnections [169]. In addition to the backbone (12 routers), we de-
fined three peripheral zones: the south west area (6 routers), the north
east area (11 routers) and the south east area (17 routers). We defined the
IGP link weights to be inversely proportional to the bandwidth of the links.
By executing the Loop Enumeration Algorithm (see Section 3.5.1), we found
that 8 different loops towards 5 different destinations could arise on that
topology.

To evaluate the cost of not following a proper migration ordering, we
counted the number of loops appearing in 1000 random orderings. We ob-
served that more than 50% of the orderings show at least one migration
loop for more than 67% of the migration. To further illustrate the effect of
not following the ordering, we ran two experiments. In the first experiment
we relied on the ordering computed by the Loop Enumeration Algorithm,
while in the second experiment we adopted an alphabetical order based on
the name of the routers. The second experiment mimics a naive approach
in which ordering constraints are not taken into account. To minimize the
impact of factors beyond our control (e.g., related to the virtual environ-
ment), we repeated each experiment 50 times.

To measure traffic disruptions due to the migration, we injected data
probes (i.e., ICMP echo request) from each router towards the 5 trouble-
some destinations. Fig. 3.13 reports the median, the 5th and the 95th per-
centiles of ICMP packets lost that arose after each migration step.

The case study showed the ability of our provisioning system to per-
form seamless IGP migrations. Following the ordering computed by the
Loop Enumeration Algorithm, we were able to achieve no packet loss dur-
ing the migration (the few losses reported in Fig. 3.13 should be ascribed to
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the virtual environment). On the other hand, adopting the naive approach
of migrating routers in a random order, forwarding loops arose at step 6
and are only solved at step 34. Thus, the network suffered traffic losses
during more than 80% of the migration process.
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Figure 3.13 Our system guarantees that no packet is lost during migration while
long-lasting connectivity disruptions can happen with a naive approach.

Our system also enables faster migrations than known migration tech-
niques [179, 165]. The IGP LSA Listener is able to process IGP messages
in a few milliseconds. The performance of this module is confirmed by a
separate experiment we ran. We forced the Listener to process messages
from a pcap file containing 204 LSAs (both OSPF and IS-IS). On 50 runs,
the monitor was able to decode and collect each IGP message in about 14
milliseconds on average and 24 milliseconds at most. We evaluated the
performance of the IGP State Asserter on the IS-IS and the OSPF DBs gen-
erated during the case study. The DBs contained information about 106
directed links and 96 IP prefixes. The IGP State Asserter took about 40 mil-
liseconds to assess equivalence of the logical graph, routing stability, and
advertisement of the same set of prefixes in both IGPs. Even if the code
could be optimized, current performance is good, also considering that
the IGP Asserter does not need to be invoked more than once in absence
of network failures (see Section 3.4). On average, the Configuration Man-
ager took 8.84 seconds to push one intermediate configuration on a router.
The average size of an intermediate configuration is around 38 lines. The
entire migration process took less than 20 minutes. On the contrary, a sim-
ilar real-world Geant migration took several days to be completed [165].

All the intermediate configurations that our system generated in the
case study described above are available online [169].
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3.8 Dealing with network failures

In this section, we show how to extend the algorithms described in Sec-
tion 3.3 to deal with network failures.

Figure 3.14 Link failures can change the reconfiguration ordering to be followed.
In a f lat2hier scenario on this topology, a forwarding loop can appear between
E1 and B1 if B1 is migrated before E1 and link (B1 E3) fails.

IGP link and node failures modify the IGP topology which in turn could
affect both the nh function and the migration ordering to be followed.
Consequently, it may be necessary to adapt the migration ordering to be
followed when a failure has been detected in order to not incur long-lasting
migration loops. Consider, for example, the topology in Fig. 3.14 and as-
sume a flat2hier migration. The figure shows the initial and the final nh
functions towards B2, before (left side) and after (right side) the failure
of the link between B1 and E3. Before the failure, any reconfiguration or-
dering is loop-free since nhinit = nhfinal. However, after the failure of
the link between B1 and E3, nhinit is no longer equal to nhfinal, and a
migration loop can be created if B1 is migrated before E1. To prevent for-
warding loops exclusively due to link failures, additional constraints need
to be considered during the computation of the migration ordering. For
instance, in the example of Fig 3.14, E1 should be migrated before B1 to
guarantee loop prevention even in case of failure of link B1–E3.

As a paradigmatic example of how to deal with network failures, we
focus on single-link failures. Other kinds of failures (e.g., node and shared
risk link group failures) can be similarly addressed. Also, note that single-
link failures have been shown to account for the majority of the failures
typically occurring in a network [89]. In the following, we refer to a router
migration ordering which prevents loop for any single-link failure in the
network as a single-failure compliant ordering.

For each IGP topology, we computed the additional set of constraints
for a single-link failure compliant ordering, by iteratively removing single
links from the initial topology and running the constraint generation por-
tion of the Loop Enumeration Algorithm or the Routing Trees Heuristic on
the topology we obtained. Fig. 3.15 shows the 50, 99 and 100-percentiles
of the number of additional forwarding loops that one single-link failure
can trigger. Points that do not appear on the figure are meant to lay on the
x axis (i.e., no additional loop due to single-link failures). Typically, very
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few single-link failures are responsible for the vast majority of the addi-
tional forwarding loops and ordering constraints. Observe that, in some
cases (e.g., AS1239), a single link failure is responsible for more than 500
additional loops. For every network of Fig. 3.15, we also tried to find single-
failure compliant ordering by running the resolver part of either one of the
two algorithms on the union of all the constraints. In 9 out of the 11 stud-
ied networks, we were able to find such a reconfiguration ordering. Also, in
one of the two remaining topologies (namely, AS1239, city), we computed
a migration ordering that prevents loops for 97% of all possible single-link
failures. Results on the real ISP topologies are similar. For tier1.2, we have
been able to find a single-failure compliant ordering, while on tier2.1, we
were able to find an ordering preventing loops for any single-link failure
but one. Our results suggest that finding a single-failure compliant order-
ing is typically possible on small and medium-sized topologies. For huge
networks, finding an ordering is harder as the probability of generating
contradictory constraints is higher given the large number of links. In this
case, a per-destination ordering (see Section 3.4) can be pre-computed for
a subset of the destinations thanks to the efficiency of the heuristic ap-
proach.

Regarding the computation time, it took less than 2 hours to compute
the additional set of constraints on all the topologies but two (namely,
AS1239, {city, continent}). For AS1239, {city, continent}, it took 46
hours. As mentioned earlier, time efficiency is not critical, since a single-
link failure compliant ordering can be computed offline, before performing
the migration. Also, the process can be parallelized as every link can be
treated separately. Once the additional set of constraints was built, it took
less than 1 second in all the topologies to find out an ordering (if any).
Given the size of the problem, we did not run our algorithm on tier1.11.

3.9 Design guidelines

In this section, we state simple design guidelines that can ease the entire
IGP migration process, since all the router migration orderings are loop-
free. In the following, we consider the design of zones in hierarchical IGPs,
since the most problematic migrations involve hierarchies.

Guideline A. For each zone Z , the shortest path from each ZBR to any
destination in Z is an intra-zone path.

Guideline A simplifies f lat2hier and hier2f lat migrations. In fact,
the guideline enforces sufficient conditions to guarantee that the nh func-
tion does not change for any router and any destination in any zone Z ,
since an intra-zone path is preferred in both flat and hierarchical modes.
Since no router in Z changes its path, then nhinit(v,d) = nhfinal(v,d)
also for all routers v 6∈ Z and d ∈ Z . This implies that no loop can arise

1Note that the Routing Tree Heuristic is not usable here as it was not able to find an
ordering in the simple case, i.e. without single-link failures.
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Figure 3.15 Average number of additional forwarding loops created by a single-
link failure in flat2hier reconfiguration scenarios on Rocketfuel topologies. Miss-
ing points are equal to 0.

during the migration. Notice that Guideline A refers only to ZBRs, since
if they use intra-zone paths, then non-ZBR routers cannot use inter-zone
paths. Establishing multiple adjacencies (e.g., L1L2 adjacencies in IS-IS or
using OSPF multi-area adjacency extensions [91]) between ZBRs also guar-
antees that the nh function does not change, but backbone links could be
unnecessarily traversed in this case.

Guideline B. In each zone Z , the weight of the path from any ZBR to any
destination in Z should be the same.

Practically, Guideline B can be enforced by organizing routers in each
peripheral zone Z in three layers: i) a core layer, containing ZBRs in Z ;
ii) an aggregation layer, connecting the access and the core layers; and
iii) an access layer, containing destinations in Z . Each ZBR must con-
nect to at least one router in the aggregation layer, and each router in
the aggregation layer must connect to all destinations in Z . In addition,
all core-to-aggregation links must have the same weight w1; similarly, all
aggregation-to-access layer link weight must be set to the same value w2

(possibly w2 ≠ w1).
Guideline B guarantees easy IGP migrations when route summariza-

tion is introduced or removed. We assume that aggregated prefixes are
announced with a cost equal to the highest weight among the destinations
in the aggregate (as in OSPF, by default [92]). In this case, both with and
without summarization, each backbone router chooses the closest ZBR in
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Z as entry point for destinations in the aggregated prefix. It is easy to
check that, as a consequence, the nh function does not change with or
without summarization, hence no specific migration ordering is needed
during the migration.

3.10 Merging link-state IGPs

Since the early 1990s, the telecommunication industry has consoli-
dated itself trough numerous networks merging and acquisitions [23, 152].
This trend is still ongoing. As an example, in 2011, AT&T tried to buy T-
Mobile USA from Deutsche Telekom [187, 167], while Level3 and Global
Crossing announced a company merging process [188]. While studying all
the reasons behind a network merging is out of the scope of this thesis,
one reason is to lower the operational costs thanks to economies of scale.
However, before being able to reap such benefits, a considerable amount
of work is often needed to integrate heterogenous networks. In this sec-
tion, we make a first step in the direction of seamless network merging. In
particular, we show how our reconfiguration techniques (Section 3.5) can
be extended to perform seamless IGPs merging.

Two different approaches can be pursued when merging IGPs. The first
approach is to keep the two IGPs as separate as possible and only tweak the
interface between them. This approach is extremely easy with respect to
the complexity of the reconfiguration process. However, this approach typ-
ically results in a network composed of a mosaic of different IGPs, which
is hard to understand, maintain, and debug [88, 82, 14]. Also, to connect
these IGPs together, network operators have no choice but to rely on un-
safe primitives, like route redistribution [84] which is known to be prone to
misconfiguration, forwarding loops and routing oscillations [83]. Indeed,
while BGP could be used at the interface, it fails to realize several design
objectives often encountered in enterprise networks [82].

The second approach consists in completely merging the two IGPs, such
that the resulting IGP presents the typical properties of an IGP that would
have been designed from scratch. This approach helps to better match
the network requirements by fully exploiting the available resources and
simplify both its design and management. Unfortunately, a heavy recon-
figuration campaign is often necessary, since the two IGPs are likely to
implement very different design approaches and guidelines. Re-designing
the merged IGP may also involve modifications like reshaping parts of the
network, decommissioning redundant nodes, adding or removing links,
etc.

To make the most of a network merging, seamless approaches to com-
plete network merging are highly desirable in practice. However, just as for
regular reconfiguration scenarios, network operators lack methodologies
and tools to plan and carry a disruption-free merging process. Therefore,
each company facing a merging process has to elaborate its own method-
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ology without guarantees on the impact it will have on traffic [172]. Conse-
quently, severe traffic disruptions can arise during the merging, possibly
resulting in the violations of Service Level Agreements of every involved
networks.

In the following, we study the problem of merging networks from a
routing point of view. Our aim is to guarantee the absence of packet losses
throughout the entire merging process. We first define the network merg-
ing problem. Then, we identify the main building blocks that are required
to enable seamless network merging. We also describe how to implement
them by extending the reconfiguration techniques described in Section 3.5.
Finally, we illustrate the validity of our approach trough simulation.

The network merging problem

We formulate the seamless merging problem as follows: Given n initial net-
works, the associated IGP configurations (I1, . . . , In), and the correspond-
ing next-hop functions (nh1, . . . , nhn). Install the final IGP configuration
Ifin and the resulting next-hop function nhfin in the network resulting
from the merging of these n initial networks. We say that a merging pro-
cess is seamless if no forwarding loop is experienced.

Observe that, even if the physical topology may change during the
merging process, we only consider changes in the IGPs since forwarding is
determined by the IGPs. We also consider that traffic flows in the merged
network (i.e., nhfin) are given as input by the network operators. Indeed,
we assume that operators compute traffic flows according to some capac-
ity planning tool and design best practices. Computing new traffic flows
and optimizing the merged topology for high-level network objectives is
out of the scope of this thesis.

A unified routing for a unified network

To enable seamless IGP merging, we describe a procedure composed of
three main logical steps. Each step is composed of some abstract opera-
tions which we call building blocks.

• Step 1: Render the networks to be merged compatible. In this step,
networks to be merged are kept separated, but they are prepared for
the merging operation by changing and tuning the IGPs running on
them. Traffic flows do not change. We distinguish two sub-steps.

– Compatible protocols and selection process. If needed, the pro-
tocol running in each initial network is changed to match the
routing protocol installed in Ifin. For example, if Ifin is running
IS-IS, OSPF routing instances are moved to IS-IS. In addition to
the protocol, the route selection process of Ifin (i.e. flat or hier-
archical) is imposed on all the networks to be merged.

– Compatible IGP weights. IGP weights are made compatible ac-
cross routing instances (equivalent ranges).
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Figure 3.16 Merging scenario in which network X and Y are merged together

• Step 2: Connect and reshape logical graphs. The logical graphs are
merged into the final logical graph in Ifin. Observe that the final log-
ical graph can differ from the union of the logical graphs built by the
routing instances to be merged. Indeed, adjacencies can be added, re-
placed, or removed to any of the routing instances to be merged. As
a result, a single routing instance is generated starting from several
ones.

• Step 3: Tweak IGP weights in the merged network. If needed, the
IGP weights are changed so as to match Ifin.

We now describe how to implement these building blocks. An example
of network merging between networks X and Y is depicted in Fig. 3.16.
In both networks, a link-state IGP is used to propagate routing informa-
tion for both intradomain and interdomain destinations. R1 and RX act
as gateway to reach external destinations by redistributing a default route
within the IGP. When several networks merge together, it is unlikely that
they use the same IGP or, if they do, the same logical organization. For
instance, a flat OSPF can be deployed in X, while Y can use a hierarchical
IS-IS configuration. Even when the IGPs to be merged share a similar phys-
ical design and the same logical organization (e.g. both networks use a flat
IGP), the weight ranges configured on the links could be very different as
IGP weights are often used to implement traffic engineering objectives [50].
By analyzing three real-world large-size networks, we confirmed that the
weight ranges are quite different, ranging from [1 : 2,000], to [1 : 10,000]
and [1 : 100,000]. In Fig. 3.16, X uses weights ranging from 1 to 20, while
the link weights configured in Y belong to the interval [1 : 500]. Moreover,
we assume that the final weight range is [1 : 500], as it would probably be
if Y acquired X. Final weights, if changed from the initial weights, are in
italics in the figure. In addition to the modified link weights, Figure 3.16
highlights links that are added and removed during the merging process.
In particular, three links are added: (R1, RX), (R3, RX) and (R3, RZ), while
two links are removed: (R1, R3) and (RX,RZ).
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We combine two techniques to implement the three merging steps.
First, we leverage the reconfiguration techniques developed earlier (Sec-
tion 3.5) which enables IGP routing instances to be seamlessly modified.
Second, we develop reweighting techniques for the computation of IGP
weights given a set of constraints (e.g., range of weights or traffic flows
to implement). The reconfiguration techniques implement two building
blocks: compatible protocols and selection process, and connect and reshape
of logical graphs. The reweighting technique implements the remaining
two building blocks: compatible IGP weights and tweak IGP weights in the
merged network.

Regarding the reconfiguration techniques, we extend them to support
the reshaping of the IGP topology. To support the addition of a link in the
final IGP, we assign an infinite weight to this link in the initial IGP while, in
the target IGP, the link weight is set to its final weight. The opposite holds
for removing a link. The final link weight is set to infinity while there is
no weight change in the initial IGP. After the convergence of the IGPs, we
obtain the initial and final next-hop functions. We are then able to compute
an appropriate ordering in which to migrate routers by simply applying
the Loop Enumeration Algorithm (Fig. 3.5) or the Routing Tree Heuristic
(Fig. 3.7). By combining link additions and removals, any reshaping of the
IGP topology is supported, including the addition and the removal of a
node.

We also extend the reconfiguration techniques to avoid the creation of
interdomain loops. Indeed, in addition to intradomain loops, interdomain
loops can arise during the merging process. Consider again Fig. 3.16. Be-
fore merging, R1 is reaching R3 via R2. While, after merging, R1 is reaching
R3 via RX, as the direct link to R3 is removed. Hence, if R1 is migrated be-
fore RX, R1 starts forwarding traffic to RX before RX being able to use the
newly added links. Therefore, RX will send the traffic on its default route.
Eventually, this traffic will reach R1, effectively creating an interdomain
loop. To prevent interdomain loops, we model the Internet connectivity
with a virtual node. The virtual node can be used by routers of one net-
work to reach external destinations including the destinations in another
network to be merged (before new links are added to connect them). By
considering the virtual node as a normal node, our algorithms automati-
cally compute a loop-free ordering encompassing Internet destinations.

Regarding the reweighting techniques, we formulate the problem of
identifying a set of link weights, compliant with given objectives, as an
Integer Linear Program, in which each variable represents the weight as-
sociated to a link. In order to set up compatible routing policies (step 1
of the merging process) in the networks to be merged, we adopted the
same approach proposed in [31], and we modified the Dijkstra algorithm
to identify a set of linear constraints sufficient to preserve the All-Pairs
Shortest Path (APSPT) on the graph to be reweighted. We aim at preserving
the APSPT because, at this step of the merging process, we only need to
impose the same range of weights on all the IGPs to be merged, without
changing the traffic flows.
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We extended the technique described in [31] for (i) supporting integer
weights only, (ii) reweighting the graph by minimizing the weights being
used and, (iii) reweighting the graph using values in a given candidate set.
These improvements are aimed at preserving the semantics that operators
associate to different link weights (e.g., primary, backup, etc.). Keeping this
semantic in the merged network is a relevant objective as link weights are
often used by network operators to reason about traffic flows. In partic-
ular, providing constraints on weights that are configured is desirable in
case of a network acquisition, where it is preferable to use the range of
weights of the acquiring network in the final merged network.

While our reweighting approach is useful to maintain the traffic flows,
it can also be used to tweak the routing policies in the merged network,
in the last step of the merging process. Indeed, traffic flow objectives in
the merged network can be translated into additional linear constraints.
To compute these additional constraints, well-known IP traffic engineering
tools can be used [50].

The full IGP merging procedure follows. Routing instances to be merged
are made compatible and linked together (step 1 and 2) by using the recon-
figuration techniques. In particular, the final protocol is deployed in each
of the networks to be merged. The configuration of the routing instance in
each network is the same as the final one, except for link weights. Indeed,
link weights used in this step are tuned by the reweighting technique, such
that the initial APSPT is preserved, and the same range of values is used.
Links to be added in the merged network are configured with an infinite
weight in the initial protocol.

By using the reconfiguration technique, the initial protocol is progres-
sively replaced by the final one in all the routing instances. As for links to
be added, links to be removed in the merged network are configured with
an infinite weight in the final protocol. If needed, new routing policies are
then imposed in the merged network, by computing the new weights with
the reweighting technique and seamlessly changing them using the recon-
figuration technique. Once the process is over the initial configuration can
be safely removed from all the networks as it is not used anymore.

Evaluation of the merging techniques

We now evaluate the merging techniques and show their practicality. Since
we already evaluated the reconfiguring techniques in Section 3.7, we focus
on the reweighting techniques. Our data set is composed of the IGP topolo-
gies of five networks, namely, Abilene, Geant, and Network1, Network2
and Network3. IGP topologies of Network1, Network2 and Network3 have
been privately provided by network operators, while the others are pub-
licly available. Table 3.2 provides more details about our dataset. Notice
that the number of IGP weights being used is relatively higher in Abilene
and Geant as both of them define their weights based on the measured
delay between the routers.
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Network # of nodes # of links # of distinct weights

Geant 22 68 16
Abilene 9 26 13
Network1 > 550 > 1300 33
Network2 > 150 > 600 54
Network3 > 150 > 350 20

Table 3.2 Dataset characteristics

We evaluated the performance and the scalability of the reweighting
technique by considering the merging of each pair of networks in our
dataset. To simulate the merging of two networks, we interconnected them
with a number of links proportional to the square root of the number of
nodes in the smallest network. We further assigned to each additional link
a random weight ranging between 1 and the maximum weight used in
both networks. Finally, we reweighted each merged network preserving
the APSPT. Notice that more complex scenarios in which operators want
to change traffic flows in the merged network are possible, but we expect
that these scenarios will not have a big impact on the performance of the
reweighting technique.
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Figure 3.17 A few number of weights account for the majority of the links.

Figure 3.17 shows the cumulative distribution function of the number
of links sharing the same weight. In the three real-world networks, 70% of
the links shares 5 weights or less. These few number of weights are likely
to identify the main classes of links (e.g., primary, backup, access, etc.).
Observe that, since our reweighting technique relies on LP, it allows op-
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erators to statically define the translated weights for some initial weights.
This would help in preserving the semantic in different weight assignment.
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Figure 3.18 Translated weights exhibit similar distribution of the original ones.

Figure 3.18 shows the cumulative distribution function of the number
of links sharing the same weight in the merged and reweighted networks.
Even if more weights are typically needed after the merging process, the
total number of weights is still manageable. More importantly, distribution
of final weights is similar to that of weights in the original networks. Thus,
by limiting the number of translated weights, the reweighting technique is
able to keep most of the semantics associated to the links.

Figure 3.19 plots the median (over 30 separated runs) of the compu-
tation time taken by the reweighting technique in function of the num-
ber of links in the merged network. All the tests were run on a Sun Fire
X2250 (quad-core 3GHz CPUs with 32GB of RAM) using Gurobi [161] as lin-
ear solver. In all the cases, the reweighting process was able to find a new
weight assignments and took less than 2 minutes to complete. As a second
group of experiments, we fixed the candidate weights, i.e., a set of weights
that should be preferably used in the translation process and we measured
the computation time when increasing the number of candidate weights.
On average, reweighting is faster when fixing the candidate weights. In-
deed, additional constraints are given to the LP solver, thus decreasing the
size of the search space, at the cost of increasing the risk for not finding a
weight assignment. Also, we found that the number of candidate weights
did not impact the solving time.
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Figure 3.19 All networks can be reweighted in less than 2 minutes.

3.11 Related work

Seamless IGP operation and maintenance have been the focus of several
previous studies. For example, several protocol extensions have been pro-
posed [123, 93, 125] to gracefully restart a routing process. However, few
research effort has been specifically devoted to network-wide seamless IGP
migrations, and current best practices [191, 68] are only rules of thumb
which do not apply in the general case, and do not guarantee lossless re-
configuration processes.

In [116] and [115], Raza et al. propose a theoretical framework to for-
malize the problem of minimizing a certain disruption function (e.g., link
congestion) when the link weights have to be changed. They also propose a
heuristic to find an ordering in which to modify several IGP weights within
a network, so that the number of disruptions is minimal. Although their
work is close in spirit to ours, the migration scenarios we analyzed cannot
always be mapped to a reweighting problem. For example, in hierarchical
IGP configurations, both the weight of a link and the zone to which it be-
longs are considered in the computation of the next-hop from a router
to a destination and a unique link weight assignment that generates the
same next-hop for each router-to-destination pair may not exist. A more
abstract reconfiguration framework on how to transform a feasible solu-
tion of a problem into another solution of the same problem is also studied
from a purely theoretical point of view (e.g., [74]).

In [77], Keralapura et al. study the problem of finding the optimal way
in which devices and links can be added to a network to minimize disrup-
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tions. Beyond addressing topological changes, our techniques can be used
to address several other migration scenarios.

In [112], Rastogi et al. study the problems of (i) selecting the aggregates
to advertise at each ZBR and (ii) assigning weights to these aggregates so
as to to minimize the error in the shortest path computations. The authors
describe an optimal dynamic programming algorithm for the first problem
and describe a randomized search strategy for the second problem after
having proved that it is NP-hard in the general case. When introducing
summarization in an IGP, their techniques could be used in complement
of ours as they allow to limit the amount of changes between the initial
and the final next-hop functions. Limiting the amount of changes in the
next-hop functions can help speeding-up the computation time of finding
an ordering or even allow to find one if none existed originally.

In [27], Chen et al. describe a tool that is able to automate status ac-
quisition and configuration change on network devices according to rules
specified by domain experts. The tool can be used to automate the ships-
in-the-night approach, but not to compute a loop-free ordering. The au-
thors also provide a rule of thumb to avoid problems during IGP migra-
tions, i.e., update edge routers before the backbone ones. However, this
rule does not hold in general. For example, migrating E1 before B1 in
Fig. 3.1 creates a forwarding loop in a hier2f lat scenario.

In [4], Alimi et al. extend the ship-in-the-night approach by allowing
multiple configurations to run simultaneously on a router. They also de-
scribe a commitment protocol to support the switch between configura-
tions without creating forwarding loops. While the technique is promising,
it cannot be exploited on current routers as it requires to duplicate the
entire control-plane.

Recently, some techniques [151, 75] have been proposed to enable vir-
tual routers or parts of the configuration of routers (e.g., BGP session) to
be moved from one physical device to another. Their works differ from
ours as we aim at seamlessly changing network-wide configurations.

In [117], Reitblat et al. study the problem of consistent network updates
in “Software Defined Networking”. They propose a set of consistency prop-
erties and show how these properties can be preserved when changes are
performed in the network. Unlike our approach, this work only applies to
logically-centralized networks (e.g., OpenFlow).

Regarding the problem of avoiding forwarding loops in IGPs during
transient states, some previous work has also been done. Francois et al.
propose protocol extensions that allow routers to update their FIB with-
out creating a transient loop after a link addition or removal [56]. Fu et
al. [57] and Shi et al. [126] generalize the results by defining a loop-free
FIB update ordering for any change in the forwarding plane and consider-
ing traffic congestion, respectively. However, these approaches cannot be
used effectively in practice to perform IGP migrations since they only con-
sider updating the FIB on a per-destination basis. Our approach is different
as it is aimed at minimizing the number of changes applied to the routers’
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configurations by searching for a per-router migration ordering. We only
apply a per-destination ordering when no per-router migration exists.

IGP migrations could also be performed by using route redistribution.
Although new primitives have been recently proposed [84], we believe that
relying on a ships-in-the-night approach (when possible) makes the entire
migration process easier and more manageable.

3.12 Conclusions

Network-wide link-state IGP migrations are a source of concerns for
network operators. Unless carried with care, IGP migrations can cause
long-lasting forwarding loops, hence significant packet losses. In this chap-
ter, we proposed a migration strategy that enables operators to perform
network-wide changes on an IGP configuration seamlessly, rapidly, and
without compromising routing stability. Our strategy relies on effective
techniques for the computation of a router migration ordering and on a
provisioning system to automate most of the process. These techniques
encompass a complete, time-consuming algorithm and a heuristic. The
evaluation we performed on several ISP topologies confirms the practical
effectiveness of both the heuristic and the provisioning system.

In addition to support for regular reconfiguration scenarios, we ex-
plained how to extend the reconfiguration techniques to support two rele-
vant advanced scenarios: (i) the case of reconfiguring an IGP in presence of
single-link failure and (ii) the case of merging two IGPs together. While our
techniques do not currently minimize link congestion, it can be avoided
with similar extensions, i.e., adding constraints to the migration ordering
research space. Our vision is that network-wide migrations could become
a basic operation enabling the seamless replacement or reconfiguration of
any network protocol. To that extent, we believe that the development of
general reconfiguration protocol is an interesting open problem raised by
this work.
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Chapter 4

Towards disruption-free
distance-vector to link-state IGP
reconfiguration

4.1 Introduction

While DV protocols have been progressively abandoned by major ISPs [52,
141], they are still heavily used by enterprise networks [88]. We believe
one explanation of this situation is that migrating from a DV to a LS can
be disruptive. Indeed, while forwarding loops cannot appear during the re-
configuration process, traffic shifts can appear in every intermediate step
(see Chapter 2). Traffic shifts can be disruptive as they increase the likeli-
hood of abruptly raising the traffic sent along a path. Such traffic changes,
in turn, can lead to network congestion and therefore traffic losses when
an under-provisioned path starts to be used. Moreover, slight variations of
the IGP can negatively impact overlaying protocols such as BGP [130].

In this chapter, we develop reconfiguration techniques that limit these
traffic shifts during ships-in-the-night reconfigurations. Our contribution
is threefold. First, we show that a significant amount of traffic shifts can
occur when DV to LS reconfigurations are naively performed. These traffic
shifts can happen even when the initial and the final forwarding paths are
perfectly equivalent. Second, we describe a sufficient and necessary condi-
tion to avoid traffic shifts when a per-destination ordering is followed. Us-
ing this condition, we prove that there always exist a per-destination order-
ing free from traffic shift. Third, since reconfiguring on a per-destination
basis is not practical, we propose a simple heuristic to limit the traffic
shifts when a per-router ordering is followed. Our heuristic is efficient
even if it is not guaranteed to satisfy the sufficient and necessary condi-
tion. Indeed, it avoids the majority of the traffic shifts in all the tested
scenarios.

The rest of the chapter is organized as follows. Section 4.2 quantifies
the amount of traffic shifts that can be created when performing DV to
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LS reconfiguration scenarios. Section 4.3 describes several reconfiguration
strategies to lower and even completely avoid these traffic shifts. Finally,
Section 4.4 concludes the chapter.

4.2 Quantifying reconfiguration problems

In this section, we study the amount of traffic shifts that can appear in
typical DV to LS reconfiguration scenarios. For the sake of simplicity, we
consider reconfigurations scenarios in which the logical graph and the link
weights are equal in the DV and the LS IGPs. Consequently, routers FIB
entries are the same in the initial and in the final configuration.

r2

r1

1

r3

r4

r52

3

1

1

1

ra

rb

1

1

Figure 4.1 In this simple reconfiguration scenario, up to 36 traffic shifts can be
created when replacing a DV IGP by the corresponding LS IGP.

Fig. 4.1 depicts a DV to LS reconfiguration where traffic shifts are likely
to appear. Consider router r1 and destination r5. In both the initial and
in the final IGPs, r1 uses r2 to reach r5. If r2 is the first router to be mi-
grated, it will stop announcing the destination r5 to r1 in the DV as it now
uses the LS route to reach r5. Since r1 is not migrated and still learns the
destination r5 via r3 and r4, it will now send its packets towards r3 (the
shortest remaining DV path). Similar considerations apply if r3 is migrated
next, since r1 will then shift to r4. Finally, when r4 is migrated, r1 does
not receive any DV path to r5 and will start using its final LS path via r2.
Two traffic shifts have thus been generated. Naive reconfiguration strate-
gies are likely to generate a lot of traffic shifts. In this simple example,
following a random ordering creates 22 traffic shifts on average and 36
traffic shifts in the worst case. In contrast, no traffic shift occurs towards
any destination if the order (rb ra r1 r3 r4 r2 r5) is followed.

To evaluate the amount of traffic shifts created in DV to LS migra-
tions, we simulated reconfiguration scenarios using both publicly avail-
able topologies and a commercial network topology. Regarding publicly
available topologies, we considered the inferred topologies provided by
the Rocketfuel project [129]. In the following, we report the results on
AS1221 (104 nodes, 302 edges) and AS3967 (79 nodes, 294 edges), which
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respectively represent the best and the worst case in terms of the num-
ber of traffic shifts. Similar results and considerations hold for the other
topologies. The commercial topology contains approximately 150 nodes
and more than 400 edges. On this data set, we performed several exper-
iments each time considering a different router reconfiguration ordering.
Each router is reconfigured following SITN migration by increasing the AD
of the DV protocol above the AD of the LS protocol, as best current prac-
tices dictate [191, 69, 73]. We repeated each experiment 30 times.
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Figure 4.2 Cumulative distribution function (CDF) of the average amount of traf-
fic shifts created between each pair of routers when performing the migration by
increasing the AD of the initial protocol.

Fig. 4.2 shows, for each pair of routers, the average amount of traf-
fic shifts created during the reconfiguration process expressed as a CDF
(curves labeled random). For AS1221 (resp. AS3967), only 25% (resp. 10%)
of the pairs of routers do not experience traffic shifts, while 50% of them
experience more than 1.5 (resp. 3.2) traffic shifts during the migration.
Similar results hold in the commercial network where only 20% of the pairs
do not experience traffic shifts. Each traffic shift increases the likelihood of
abruptly raising the traffic sent along a path leading to network congestion
when an under-provisioned path starts to be used.

4.3 Limiting routing anomalies

In this section, we describe how the insights provided by our theoreti-
cal classification described in Chapter 2 can be leveraged to limit traf-
fic shifts in DV to LS reconfigurations. We work in two steps. First, we
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present a necessary and sufficient condition for a reconfiguration free
from traffic shifts, and proof that a per-destination ordering free from
traffic shift always exists. Second, since per-destination reconfigurations
are time-consuming and cumbersome, we devise a heuristic to compute a
per-router ordering. We evaluate our heuristic and show that it avoids the
majority of the traffic shifts in all the tested scenarios.

In our formal analysis of the DV to LS scenario, a fundamental role is
played by the DV-cone concept (Section 2.3). The DV-cone for a destination
d at time t corresponds to all the routers that use the DV IGP p to reach
the destination d at time t. During a DV to LS reconfiguration, the DV-
cone progressively shrinks for each destination: in the initial routing state,
the DV-cone of every destination includes all the routers in the network,
while in the final state it is empty. Reconfiguring a single router r removes
it from the DV-cone of several destinations. In addition, reconfiguring r
could remove other routers r ′ from the DV-cone of several destinations,
if r ′ has no other neighbor providing it with a route in the DV protocol.
For instance, r1 is the only router providing a DV route for r2, . . . , r5 to ra
and rb in the network depicted in Fig. 4.1. Therefore, migrating r1 forces
ra and rb to also use a LS path to reach r2, . . . , r5 since they do not learn
a DV path anymore. That is, migrating r1 also removes ra and rb from the
DV-cone towards r2, . . . , r5.

From Lemma 2.1, we know that the actual paths function π in every DV-
cone forms a tree (see Chapter 2). Hence, no traffic shift occurs if the router
reconfiguration order is consistent with the topological order implied by
the tree structures of all DV-cones. This condition is actually a necessary
and sufficient condition (Theorem 4.1).

Theorem 4.1. Let p be a DV IGP and p̄ be an LS IGP such that the shortest
path trees computed by each protocol are equal. Given any destination d, no
traffic shift occurs during a reconfiguration from p to p̄ if and only if each
router r exits the DV-cone of p before any of its successors in π(r ,d,0).

Proof. First, we show that if a router x exits the DV-cone of p after one
router y in π(x,d,0), then we have a traffic shift. Let tx and ty < tx
be the time at which x and y exits the DV-cone, respectively. For each
time t such that ty < t < tx , x is in cone(p,d, t), hence still uses p. By
Lemma 2.1, used(x, t) = p, and π(x,d, t) is completely internal to the
DV-cone. Since y is not in cone(p,d, t) anymore, it is not using p. Hence,
π(x,d, t) ≠ π(x,d,0) and π(x,d, t) ≠ π(x,d, f ) which corresponds to a
traffic shift.

We now prove that if routers are migrated in a consistent order with
respect to the topological order imposed by the DV-cones (i.e., before any
of its successors, for all the destinations), then no traffic shift occurs. Con-
sider that router x is migrated for the destination d at time t. The actual
path π(x,d, t) can be written as PQ, where P is a (possibly empty) path
outside the DV-cone and Q = (y . . . d) is a path inside the DV-cone. By
hypothesis, P must be a sub-path of π(x,d, f ). Also by hypothesis, all
routers in the π(y,d,0) are still in the DV-cone of d, hence Lemma 2.1
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implies that Q = π(y,d,0). Since the initial and final paths are equal,
PQ = π(x,d, f ), yielding the statement.

Corollary 4.1. Given a destination d, if each router is reconfigured before
all the routers in its actual path to d, then no traffic shift occurs for d.

Corollary 4.1 states that if routers are reconfigured on a per-destination
basis, then it is always possible to reconfigure the network without traffic
shifts. Intuitively, the corollary guarantees that whenever a router is re-
configured, the final LS forwarding path is used as all its successors have
already been reconfigured.

While following a per-destination ordering can guarantee the absence
of traffic shifts, it also makes the whole process cumbersome. Moreover,
the network runs in a transient state for a much longer time. An obvi-
ous way to speedup the reconfiguration is to follow a per-router ordering
which is recommended by best current practices [73, 191]. However, the
price to pay is the loss of guaranteed correctness. Indeed, a per-router
ordering might not always exist as ordering constraints for different des-
tinations can be contradictory with respect to each other. As illustration,
an example of network in which no per-router ordering exists is depicted
in Fig 4.3. Since migrating r5 and r6 does not create any traffic shift, we
consider the state of the network at time t where both of them have been
migrated. At time t, reconfiguring any of r1, r2, r3 or r4 creates at least one
traffic shift. Indeed, reconfiguring r1 creates traffic shifts for r5 as routers
start to use the path provided by r3. The same holds when reconfiguring
r4 considering as destination r6. Similarly, reconfiguring r2 creates traffic
shifts for r3 since r1 will start using its direct link with r3 to reach it. The
same holds when migrating r3 considering as destination r2.

r6

r1 r2

r3 r4
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1

100

100

1

1

1

100

100

1

Figure 4.3 Shifty gadget. In this DV2LS reconfiguration scenario, no per-router
ordering is free from traffic shifts. In particular, migrating any of r1, r2, r3 or r4

creates at least one traffic shift.

In addition to not always exist, a per-router ordering is not easily com-
putable since the necessary and sufficient constraints identified from The-
orem 4.1 are likely to be contradictory. Hence, we propose the Minimal
Traverse heuristic defined in Fig. 4.4. The heuristic iteratively computes a
router reconfiguration ordering by picking one router at the time. At each
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iteration, the heuristic tries to select the router with the lowest likelihood
of currently providing DV routes to other non-reconfigured routers.

minimal_traverse_heuristic(G = (V , E))
ordering ← [ ]
H = (V ′, E′)← G
while V ′ ≠∅ do

// min_traverse_node(H) returns one of the node
// of H which is involved in the least amount of shortest paths
u←min_traverse_node(H)
append(ordering,u)
H ← remove_node(u,H)

end while
return ordering

Figure 4.4 Minimal Traverse heuristic.

The intuition behind this heuristic directly follows Theorem 4.1. How-
ever, the heuristic is not guaranteed to satisfy the condition expressed in
Theorem 4.1 since there is no one-to-one mapping between the number
of DV route traversing a router r and the number of routers to which r
provides a DV route.

r4r1

r2

r3

r5

1

1

100 100

1

1

Figure 4.5 Unpopular gadget. In this DV2LS reconfiguration scenario, the Min-
imal Traverse heuristic is not able to find a per-router ordering free from traffic
shifts while there exists one (i.e., r2 r5 r3 r1 r4).

To illustrate the sub-optimality of the heuristic, consider the reconfig-
uration scenario depicted in Fig 4.5. In this network, the heuristic fails to
find an ordering free from traffic shifts, while one exists: (r2 r5 r3 r1 r4).
Indeed, the heuristic computes the following ordering: ((r2|r5), (r1|r4), r3)
by ranking the nodes according to the number of paths they are involved
in. While migrating r2 and r5 is perfectly safe, migrating r1 (resp. r4) cre-
ates a traffic shift for destination r2 (resp. r5) as r3 starts using its direct
path instead of the detour path. Although r3 is the most heavily used
router, no traffic shift is created when it is migrated even if it is the very
first router to be migrated. The reason is that r3 is a graph separator for
the DV logical graph. A graph separator is a set of graph vertices whose re-
moval divides the graph into two or more connected components. During a
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DV to LS migration, migrating the routers forming a graph separator is in-
teresting as routers located in the resulting connected components use the
LS path to reach each other. Therefore, it helps speeding up the reconfigu-
ration process by transitioning multiple nodes to their final paths at once.
As another illustration, consider again the network depicted in Fig. 4.1. In
this network, r1 and r5 form a graph separator. Indeed, removing r1 and
r5 implies the DV graph to be completely disconnected, i.e., each resulting
connected component is composed of only one node. Therefore, each node
is using its final path to reach all the destinations after the migration of
only two nodes.

Even if the heuristic is not guaranteed to find a traffic shift ordering
when one exists, it is polynomial with respect to the size of the graph
and performs well (see Fig. 4.2). For AS1221, 73% (resp. 99%) of the pairs
experience 0 (resp. 8) traffic shifts. Similarly, for AS3967, 47% (resp. 99%) of
the pairs experience 0 (resp. less than 34) traffic shifts. For the commercial
network, 70% (resp. 99%) of the pairs experience 0 (resp. less than 3) traffic
shifts.

While the orderings computed by the heuristic are clearly better than
random ones with respect to the amount of traffic shifts created, some
pairs of routers are still subject to a significant number of them. To fur-
ther improve the performance, we refined our approach by slightly devi-
ating from the traditional SITN technique. In particular, we evaluated the
performance of the heuristic when the reconfiguration of a router consists
in completely removing its support for the DV protocol instead of just
tweaking the AD values. Removing the DV is safe since the final protocol
is LS. Therefore, no route loss is ensured as a LS is guaranteed to always
provide a route to all the routers in the network.

While the traditional SITN approach allows network operators to back-
track to the initial state in case of problems happening during the migra-
tion, the modified approach is less prone to traffic shifts. Indeed, when
a router r is reconfigured by increasing the AD value assigned to the DV
IGP, r is removed from the DV-cone of all destinations, except r itself. Con-
versely, when a router r is reconfigured by removing the DV completely, r
is removed from the DV-cone of all destinations, including r itself. By The-
orem 4.1, it is ensured that no traffic shift can occur anymore for traffic
destined to r .

While removing the DV is better from the traffic shifts point of view,
it could create more convergence issues since removing the protocol on a
router is equivalent to a router failure. Depending on the DV protocol, such
a failure can result in a count-to-infinity problem. However, EIGRP—the DV
IGP used in the majority of enterprise networks [88]—does not suffer from
such a problem [59].

Fig. 4.6 reports the improvement obtained by removing the DV protocol
in the reconfiguration of each router. For AS1221, 94% (resp. 99%) of the
pairs experience 0 (resp. 2) traffic shifts. Similarly, for AS3967, 72% (resp.
99) of the pairs experience 0 (resp. 17) traffic shifts. In the commercial
network, almost all the possible traffic shifts are avoided since 98% of the
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Figure 4.6 CDF of the average amount of traffic shifts created between each pair
of routers when performing the migration by removing the initial protocol. Results
for other scenarios are similar.

pairs do not experience any. The number of traffic shifts is similar when
the DV IGP is not removed (see Fig. 4.2) and a random ordering is followed.

Even when performing the migration by removing the DV, a few pairs
of routers still experience a large number of traffic shifts as exacerbated by
the tail of the distributions. To avoid those traffic shifts, a per-destination
ordering could be enforced only for these problematic pairs. Such a hybrid
reconfiguration strategy effectively combines the guaranteed correctness
of the per-destination ordering with the speed and management ease of a
per-router ordering.

4.4 Conclusions

Despite being prone to numerous problems, DV IGPs are still heavily used
today. One explanation is that transitioning a DV IGP to a LS IGP can be
disruptive as traffic shifts can appear during any reconfiguration step. In-
deed, as our simulations show, numerous traffic shifts do happen when
naive reconfiguration strategies are followed.

To limit the occurrence of traffic shifts during the reconfiguration,
we provide network operators with two different reconfiguration strate-
gies. The first strategy consists in performing the migration on a per-
destination basis. Although cumbersome from the network management
point of view, we proved that in per-destination reconfiguration there al-
ways exists a reconfiguration ordering which avoids all traffic shifts. The
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second strategy consists in performing the migration on a per-router ba-
sis. This strategy trades correctness for practical effectiveness. Indeed, a
per-router ordering does not always exist and is harder to compute. To
cope with this situation, we designed a heuristic and confirmed its practi-
cal effectiveness on both inferred and real network topologies.

Regarding the perspectives, quite a lot of work remains to be done.
First, we would like to study the computational complexity of deciding
whether a per-router ordering exists. Also, we would like to leverage the
notion of graph separator in order to speed up the reconfiguration pro-
cess. We also believe that extending the framework to encompass formal
analyses of transient issues is an interesting open problem. Finally, we
would like to study whether the concepts of this chapter could also limit
the traffic shifts in LS to LS scenarios.
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Chapter 5

iBGP configuration correctness

5.1 Introduction

To reconfigure an iBGP configuration such that it remains correct in every
intermediate state, it is first needed to define what a correct configura-
tion is. This is the main goal of the chapter. In particular, we define iBGP
configuration correctness in presence of route reflection, the iBGP scaling
mechanism used in most BGP networks.

With respect to an iBGP full-mesh, route reflection trades scalability
for correctness as it is prone to both routing and forwarding anomalies.
These anomalies are due to reduced visibility and the interaction between
iBGP and the underlying IGP [66]. Routing anomalies consist in routing
oscillations that prevent iBGP from settling to a stable state. Forwarding
anomalies consist in packet deflections in which different routers choose
different egress points for the same destination prefix. By combining mul-
tiple packet deflections, forwarding loops can be created.

In the last decade, the research community has devoted significant ef-
fort to prevent such anomalies from happening. Griffin and Wilfong [66]
formalized the absence of routing and forwarding anomalies by intro-
ducing two fundamental properties of iBGP configurations: signaling and
forwarding correctness. Signaling correctness ensures that a BGP network
will always converge to a stable routing state. Forwarding correctness en-
sures the absence of packet deflections along any forwarding path. More
recently, several authors proposed solutions to guarantee signaling and
forwarding correctness, either by enforcing special properties on the iBGP
configuration (e.g., [114, 17, 18]) or by modifying the iBGP protocol itself
(e.g., [49, 95]).

In this chapter, we show that iBGP route propagation rules also play
a fundamental role in ensuring the correctness of iBGP configurations in
the presence of route reflection. We give simple examples in which traf-
fic blackholes can be created by the combined effect of iBGP route prop-
agation rules and the iBGP route selection algorithm. Our examples show
that distinct destination prefixes cannot always be analyzed separately. To
model the absence of propagation anomalies, we define a new correctness
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property, called dissemination correctness and show how it fills the gap
between signaling and forwarding correctness. Since we find that verify-
ing dissemination correctness is computationally intractable, we propose
sufficient conditions to enforce it and use them to provide network oper-
ators with iBGP design guidelines. In particular, we find that the absence
of a special type of iBGP sessions named spurious OVER sessions guar-
antees dissemination correctness. Although uncommon, spurious OVER
sessions are sometimes added in real-world networks [44, 102, 193, 179].
Indeed, they can be used by network operators to fix forwarding issues
and improve route diversity, as suggested in some recent research works
(e.g., [104, 105]). Spurious sessions are also likely to appear during the re-
configuration process. Trough a thorough review of the state of the art, we
show that most previous work overlook dissemination correctness, incor-
rectly assuming that signaling correctness implies dissemination correct-
ness.

This chapter is organized as follows. Section 5.2 introduces the model
and the notations. Section 5.3 reviews the known correctness properties as
well as the known sufficient conditions to enforce them. Section 5.4 illus-
trates the importance of the iBGP propagation rules. Section 5.5 formally
defines the dissemination correctness property. Section 5.6 proposes two
sufficient conditions for enforcing dissemination correctness. Section 5.7
revises related work. Finally, Section 5.8 ends the chapter.

5.2 A model for iBGP configuration

We now present a tailored version of the well-known “Stable Paths Prob-
lem” (SPP) model [62] that we use to model iBGP topologies in the rest of
the thesis.

To model an IGP (logical) graph, we reuse the model described in Chap-
ter 2 (see Section 2.2). In this model, an IGP graph is a weighted directed
graph I = (V , E) with a weight associated to each edge (u,v) ∈ E. Without
loss of generality, we assume that the IGP graph is symmetric. We model
an iBGP topology as a directed labeled multigraph B = (V , E) where nodes
in V represent routers and edges in E represent iBGP sessions. Each edge
(u,v) is associated with a label which is either UP, DOWN, or OVER. We
use u ← v , u → v , and u ↔ v to indicate that the label of edge (u,v)
is DOWN, UP or OVER, respectively. Because of the way iBGP relationships
are defined, u ← v a v → u, and u ↔ v a v ↔ u. Route reflection
topologies are usually organized in a hierarchy where there are no cycles
consisting of UP sessions only. In a iBGP hierarchy, each BGP router can
be assigned to a layer. We denote the set of routers in the top layer of an
iBGP topology B as TB . A router belongs to the top layer TB if it has no
route-reflector.

Due to the iBGP route propagation rules, not every path can be used
to distribute a BGP route announcement. We define a valid signaling path
as a path (u . . . v) on B that can be used to advertise routes from u
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to v (or vice versa). A valid signaling path consists of zero or more UP
sessions, followed by zero or one OVER session, followed by zero or more
DOWN sessions. This means that a valid signaling path matches regular
expression UP∗OVER?DOWN∗ [18]. Formally, we denote with P = ⋃u∈V Pu
the set of valid signaling paths, and∀u ∈ V , Pu is the set of valid signaling
paths starting at u and ending at an egress point, i.e., a border router of
the ISP. The empty path ε represents destination unreachability, and is
always valid at any vertex in V .

For each u ∈ V , the preference level of paths in Pu is expressed by a
ranking function λu : Pu → N. If P1, P2 ∈ Pu and λu(P1) < λu(P2), then P1

is preferred over P2. We define Λ = {λu|u ∈ V}. For each router u ∈ V ,
λu completely reflects the BGP decision process (see Table 1.1). As in SPP,
unreachability is the last resort, that is, ∀P ∈ Pu, P ≠ ε: λu(P) < λu(ε).
Also, λu respects IGP metrics, hence ∀P1, P2 ∈ Pu, P1 = (. . . e1), P2 =
(. . . e2), then dist(u, e1) < dist(u, e2)⇒ λu(P1) < λu(P2).

The presence of a valid signaling path between u and v is a necessary
condition for u to learn routes announced by v , even if we show in Sec-
tion 5.5 that it is not a sufficient condition. Throughout the chapter, we as-
sume that the iBGP graph B is connected, that is, ∀u,v ∈ B there is a valid
signaling path from u to v , otherwise obvious forwarding anomalies can
arise (routes are not propagated network-wide). Whenever it is clear from
the context, we use a signaling path to refer to the route advertised over
that signaling path (e.g., we say that a router receives a path, or prefers a
path over another).
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r1 r2
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iBGP topology IGP topology

p1 p1
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r1 r2
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e1e2

e2e1
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ranked list of
path preferences
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IGP weight

Figure 5.1 Graphical notations used in the thesis when referring to an iBGP con-
figuration

We now describe the graphical conventions used in the thesis when re-
ferring to iBGP configurations (see Fig. 5.1 for an example). Circles repre-
sent routers having no clients, while diamonds represent route-reflectors.
UP sessions are drawn as lines terminating with an arrow on the side of the
route-reflector, while OVER sessions are represented by lines with an arrow
on both sides. Short dashed arrows entering a router r and labeled with
a prefix p represent the fact that r is an egress point for prefix p. Rank-
ing of valid signaling paths at each router is conveyed by a list of paths,
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ordered from the most preferred to the least preferred, and drawn aside
the router. Whenever it is clear from the context, we will replace the list
of path preferences with a list of egress point preferences, in which each
egress point represents all the paths terminating on that egress point. For
instance, in Fig. 5.1, we denote with the list (e1 e2) the fact that r1 prefers
the path (r1 e1) over (r1 r2 e2). Moreover, in the list besides any router
u, some egress points can be omitted if paths from them are guaranteed
not to be selected from u. In particular, less preferred egress points are
omitted from u’s list if a more preferred egress point e exists from which
u is guaranteed to receive a path, e.g., if e is a direct client or a direct
route-reflector of u. Regarding the IGP topology, lines represent IGP links
and labels represent the IGP weight assigned to a link.

5.3 Known correctness properties and sufficient
conditions

In this section, we review the two best known iBGP correctness properties,
namely: signaling correctness and forwarding correctness [66] as well as
sufficient conditions to enforce them.

5.3.1 Signaling and forwarding correctness
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r3

e3e2

p1

iBGP topology IGP topology

e2

. . .
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e1
e3

. . .e2
e2

. . .e3

iBGP full-mesh

e1

r1 r2 r3

e3e2

5 1 1 5

1

5

Figure 5.2 An example of BGP configuration in which no stable solution exists
(taken from [66]).

A BGP configuration is said to be signaling correct if it is free from
signaling anomalies. Signaling anomalies [62, 66, 65, 64] or routing oscil-
lations occur when BGP routers are unable to converge to a stable rout-
ing state. Oscillations can delay BGP convergence for a possibly indefinite
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amount of time, wasting resources and negatively impacting traffic. A sig-
naling correct configuration guarantees that BGP will eventually converge
to a single predictable stable state. In iBGP, signaling anomalies are due
to the interaction with the underlying IGP, and can be further classified
into two categories: those induced by partial lack of visibility due to the
route reflection topology and those induced by the particular semantics
of the MED attribute. In this thesis, we focus on the former type of oscilla-
tions as techniques similar to those presented in [65] can be used to deal
with MED-induced oscillations. An example of permanent routing oscilla-
tion due to route reflection is depicted in Fig. 5.2. In this network, each
router ri prefers the path propagated by its neighbor Pi+1 over its direct
path Pi where subscripts have to be interpreted modulo 3.

e1

r1 r2

p1

e2

p1

iBGP topology IGP topology

e1

r1 r2

e2

1 1

1

5

Figure 5.3 An example of BGP configuration in which a forwarding loop exists in
the stable state between e1 and e2 (taken from [66]).

A signaling correct configuration is forwarding correct if it is free from
forwarding anomalies. Forwarding anomalies [66, 17] occur when two or
more routers make inconsistent forwarding choices in the stable state.
Besides inducing suboptimal forwarding and overcomplicating network
management and troubleshooting, forwarding anomalies can also disrupt
traffic by causing packet deflections and forwarding loops. An example of
forwarding deflection leading to forwarding loop is depicted in Fig. 5.3.
In this network, e1 (resp. e2) only learns p1 via r1 (resp. r2). A forwarding
loop is created as e1 reaches r1 via e2. However, once the packet arrives at
e2, it is forwarded towards r2 (according to e2’s iBGP information) but, to
reach r2, e2 is using e1, hence causing the loop.

5.3.2 Sufficient conditions for ensuring correctness

The following set of sufficient conditions guarantees that an iBGP topology
B is both signaling and forwarding correct [66]:

1. B does not contain any cycle consisting of UP sessions only ;

2. any route-reflector prefers paths announced by its clients over paths
announced by non-clients ;
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3. for any pair of routers u and v , there exists a valid signaling path
P such that P = sp(u,v), i.e., P coincides with the IGP shortest path
between u and v .

In particular, Conditions 1 and 2 ensure that the iBGP configuration
is signaling correct, while Condition 3 guarantees forwarding correctness.
Although interesting from a theoretical perspective, such conditions are
particularly challenging to be applied in real-world topologies. For exam-
ple, Condition 3 practically forces the BGP topology to be totally congruent
to the IGP one, in such a way that even a full-mesh of iBGP sessions [118]
is not compliant.

Another known sufficient condition for guaranteeing safety and sig-
naling correctness is the absence of cyclic dependencies among routing
preferences, also called Dispute Wheel [62]. Formally, a dispute wheel Π =
( ~U, ~Q, ~R) is a triple consisting of a sequence of k routers ~U = (u0 . . . uk−1)
(pivot nodes), together with two sequences of non-empty valid signaling
paths ~Q = (Q0 . . .Qk−1) (spoke paths) and ~R = (R0 . . . Rk−1) (rim paths),
such that for each i:

1. each rim path Ri goes from ui to ui+1

2. each spoke path Qi goes from ui to an egress point ei for prefix p

3. each pivot node ui prefers path RiQi+1 over Qi

where subscripts are intended modulo k with k = | ~U|. A dispute wheel
is thus such that each node ui prefers the path through ui+1 over its
direct path. In the network depicted in Fig. 5.2, we have ~U = (r1 r2 r3),
~Q = ((r1 e1) (r2 e2) (r3 e3)) and ~R = ((r1 r2) (r2 r3) (r3 r1)). During the
oscillation, each ui alternately selects RiQi+1 and Qi when RiQi+1 is not
available.

5.4 iBGP deceptions: more sessions, fewer routes

In this section, we illustrate the dissemination problem that can arise
in route reflection topologies. As an illustration, consider prefix p1 in the
network depicted in Fig. 5.4. Because of the “prefer eBGP over iBGP” rule of
the BGP decision process (step 5, see Table 1.1), e1, e2 and e3 will all select
their external route as best. These routers will then advertise their best
route to all their iBGP neighbors, namely b (for e1 and e2) and r (for e3).
b will collect routes from its clients, select its best route, and propagate
it to its neighbors. Because of the “prefer closer egress” rule of the BGP
decision process (step 6, see Table 1.1), b will select e2 because it is closer
than e1. Therefore, b will advertise e2 to its route-reflector a. Each router
will keep performing route collection, route selection and route dissemi-
nation until BGP converges and no further messages are propagated. After
convergence, router r will select route e3 and router a will select e2.
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Figure 5.4 An example of BGP configuration which exhibits visibility issues. In-
deed, a prefers e1, but it never learns the route since b only reflects e2.

Although it prefers e1, a has no knowledge of it as it only receives route
e2 (resp. e3) from b (resp. from r ). In fact, route reflection introduces sub-
optimal route visibility and limits the amount of route diversity available at
router a. Another side effect induced by route reflection is the forwarding
deflection that happens when a sends traffic to prefix p1. More precisely,
a believes that the traffic will exit from egress point e2 and forwards it to
e1 because it is the next hop to e2. However, e1 is itself an egress point
for prefix p1, so it will deflect traffic outside the ISP. The combination of
multiple deflections can result in forwarding loops [66].

Whenever issues due to suboptimal route visibility arise, fixing them
by adding additional iBGP sessions may look like an easy and tempting
solution for a network operator. In our example, adding an iBGP session
between routers a and e1 will provide a with increased route diversity and
will make it able to select its optimal egress point. The addition of OVER
sessions to increase route diversity in iBGP has already been proposed
in [104, 105], e.g., to support recently proposed techniques for reducing
iBGP convergence time [48]. Indeed, quantitative studies have shown that
route reflection leads to very poor route diversity [134]. This, in turn, can
cause high convergence time in case of failure or interdomain routing
changes. Moreover, additional sessions can provide better route visibil-
ity to routers, thus making it easier for a network operator to fix its iBGP
configuration in order to comply with state of the art guidelines [17].

Adding OVER sessions to an iBGP topology may have undesirable side
effects. Consider the iBGP network in Fig. 5.5 (OVER-RIDE) which is a sim-
plified version of the one in Fig. 5.4. An additional OVER session exists
between routers a and e. Since e is the only egress point for prefix p, a
will prefer the route that it learns on the OVER session because of the
length of the cluster-list is shorter (step 8 of the BGP decision process, see
Table 1.1). Since its best route is learned from a peer, a does not propagate
it to r , so r end up having no route to prefix p. Either of the two cases can
occur depending on r has a less specific route or not. First, if r knows a
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Figure 5.5 The OVER-RIDE gadget. Due to iBGP propagation rules, a does not
propagate routes that it receives on its OVER session with e to r . Consequently, r
ends up without any route to e while a valid signaling path exists: (e b a r).

less specific route which includes prefix p (e.g., a default route), it will use
that route for traffic destined to p, possibly generating forwarding deflec-
tions and loops. This implies that it is not safe to assume that prefixes are
independent in iBGP. Second, if r has no less specific route for p, it will
create a traffic blackhole. Both kinds of anomalies are only due to the iBGP
topology. Indeed, the IGP topology is irrelevant in this case because there
is only one egress point for p. For this reason, the OVER-RIDE complies
with the conditions of [17], yet it is subject to anomalies. Even worse, such
anomalies could be triggered by external events, e.g., if an egress point
fails.

In general, additional iBGP sessions do not need to be OVER sessions,
i.e., they could be UP sessions as well. However, network operators might
prefer to deploy OVER sessions, in order to lower memory overhead and
update churn, as only a subset of reflected routes is announced on OVER
sessions.

5.5 Unveiling iBGP dissemination correctness

In this section, we introduce the concept of spurious OVER sessions. Also,
we show how their side effects can invalidate simple assumptions that
apparently hold in any iBGP topology, and have been used in previous
research work.

Definition 5.1. Given an iBGP topology B, an OVER session x ↔ y is spuri-
ous if one of the two routers is not in the top layer, i.e., if x 6∈ TB or y 6∈ TB .

Spurious sessions are not frequent in today’s ISP networks. Vendor
guidelines also suggest to not deploy them [156]. Nevertheless, spurious
sessions have been proposed to solve visibility issues [104, 105], and pre-
vious work showed that large ISPs sometimes use them [44, 102]. In fact,
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spurious OVERs will appear in any ISP which defines a full-mesh of iBGP
sessions among the clients of a route-reflector (see [193, 179] for exam-
ples). Another scenario in which spurious OVERs are likely to appear is
iBGP reconfigurations. For example, current best practices to replace an
iBGP full-mesh with route reflection [68] suggest to progressively intro-
duce UP sessions before removing the full-mesh. Hence, OVER sessions
initially in the full-mesh are likely to become spurious in intermediate con-
figurations. Similar considerations hold when reconfiguring from route-
reflection to full-mesh (e.g., to improve path visibility for load-balancing
purposes). As illustration, 100 out of the 120 possible (83%) per-session or-
derings create dissemination anomaly when reconfiguring the OVER-RIDE
gadget without the initial spurious OVER between a and e (Fig. 5.5) to a
full-mesh.

Route dissemination deceptions

As discussed in Section 5.4, the OVER-RIDE provides an example of how
a spurious OVER improves egress point visibility at some routers, but po-
tentially worsens visibility at other routers. In the gadget, the side effect of
adding a spurious OVER is counter-intuitive because it induces a change
in the route dissemination process at router r without affecting the egress
point selected by r . This contradicts the intuition that a connected iBGP
topology guarantees that every router eventually learns at least one route
for any given prefix.

Unfortunately, some previous works are based on that intuition. In par-
ticular, [104, 105] assume that adding an OVER session can only improve
route visibility, while [17, 18] assume that a route-reflector r can “hide”
a route to a neighboring router v only if it has a closer alternative egress
point.

More generally, spurious OVER sessions show that the concept of valid
signaling path is not a good abstraction to study the ability of a router to
learn a route to a given prefix. In order to better understand this property,
we introduce the concept of dissemination correctness.

Definition 5.2. Let B be a signaling correct iBGP topology. Then, B is dis-
semination correct if all the routers in B are guaranteed to receive at least
one route to prefix p in the stable state, for any non-empty set of egress
points for p.

Dissemination correctness does not depend on interdomain routing
nor on the set of egress points currently learning routes for given pre-
fixes. That is, it is a topological property. Dissemination correctness dif-
fers from both signaling and forwarding correctness. Indeed, a signaling
correct topology is not guaranteed to be dissemination correct. As an illus-
tration, the OVER-RIDE gadget is signaling correct, but not dissemination
correct. Also, a dissemination correct topology is not guaranteed to be
forwarding correct. An an illustration, the network depicted in Fig. 5.3 is
dissemination correct (all routers receive a route for p1), but not forward-
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ing correct. The three properties actually complement each other: signal-
ing correctness deals with routing anomalies that can prevent BGP from
converging; dissemination correctness deals with issues in the route prop-
agation process; forwarding correctness deals with forwarding anomalies
caused by the interaction between iBGP and IGP.

Signaling and forwarding correctness deceptions

Besides affecting dissemination correctness, a single spurious OVER can
prevent an iBGP topology to be either signaling or forwarding correct.
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Figure 5.6 Spurious OVER can create routing oscillations.

Consider Fig. 5.6. Every router is equipped with a list of valid signal-
ing paths, sorted in decreasing order of preference. Observe that (u1, e0)
is a spurious OVER session. We now show that iBGP cannot converge in
this configuration. Assume by contradiction that a stable state exists, and
consider the routing choice at router u2. Since u2 receives a route directly
from e2, it is not possible that u2 does not select any route for prefix p1.
Hence, we have the following cases.

• u2 steadily selects (u2 e2). In this case, u1 will use its most preferred
path (u1 u2 e2), preventing u0 from selecting (u0 u1 e0). Thus, u0

will select (u0 x e0), and eventually announce it to u2. Because of
path preferences, u2 should switch to (u2 u0 x e0), yielding a con-
tradiction.

• u2 steadily selects (u2 u1 u0 x e0). This involves that u1 steadily
selects (u1 u0 x e0), leading to a contradiction, since path (u1 e0) is
always available at u1 and is more preferred than (u1 u0 x e0).

• u2 steadily selects (u2 u0 x e0). This implies that u0 steadily selects
(u0 x e0), and u1 is forced to select (u1 e0), since it does not re-
ceive path (u2 e2) from u2. This leads to a contradiction, since u0

will eventually learn and select path (u0 u1 e0), preventing u2 from
steadily selecting (u2 u0 x e0).
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All the cases lead to a contradiction, hence a stable state does not exist in
the topology in Fig. 5.6. Observe that the path preferences highlighted in
the figure can result from the standard BGP decision process (Table 1.1)
if the IGP topology is such that dist(x, e0) < dist(x, e2), dist(u0, e0) <
dist(u0, e2), dist(u2, e0) < dist(u2, e2), and dist(u1, e0) = dist(u1, e2).
In this case, x, u0, and u2 prefer paths based on the closest egress point,
while u1 prefers eBGP routes received from e2 over those received from
e0 for egress-id. Ties are broken by shorter cluster-list and lower
neighbor address criteria.

e0 e2

x

p1p1

e1

y z

p1

iBGP full-mesh

Figure 5.7 Spurious OVER can create forwarding loops.

Forwarding correctness can also be affected by the presence of spuri-
ous OVER sessions. Consider the topology in Fig. 5.7, and assume that x
steadily selects path (x e2), while z steadily selects path (z e0), because
of the IGP distances. Since those paths are learned via an OVER session, x
and z will not propagate their best route to y , hence y will be forced to
select the route from e1. If y is on x’s shortest path to e2 and x is on y ’s
shortest path to e1, then a loop arises for p1.

5.6 Guaranteeing dissemination correctness

In [145], we show that the problem of deciding whether a signaling correct
iBGP topology is dissemination correct is coNP-hard and therefore, com-
putationally intractable. Indeed, a reduction from the well-known 3-SAT
complement problem [101] can be built in polynomial time. We also show
that the problem of deciding if the addition of a single session can affect
the dissemination correctness of an iBGP topology is also coNP-hard.

In this section, we describe how to get around the computational com-
plexity by proposing two different sufficient conditions on the network
configurations that guarantee dissemination correctness. We then discuss
their practical applicability.

5.6.1 Sufficient conditions for dissemination correctness

Each of the following conditions guarantees a signaling correct iBGP topol-
ogy B to be dissemination correct.
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1. prefer-client: all iBGP routers in B prefer routes propagated by clients
(on a UP* path) to any other route.

2. no-spurious-OVER: B contains no spurious OVER.

In order to prove our results, we need the following lemma.

Lemma 5.1. Given a signaling correct iBGP topology B, if for any prefix p
at least one router in the top layer TB selects a route for p that was learned
over an UP* path, then B is dissemination correct.

Proof. Consider any prefix p, and let r̄ ∈ TB be the router that selects a
route R̄ to p which was learned over an UP* valid signaling path (e . . . r̄ )
(possibly e = r̄ ). By iBGP route propagation rules, r̄ propagates route R̄ to
all routers in TB . Since B is signaling correct and all routers in TB receive
at least one route for p, all routers in TB will eventually select a route. In-
dependent of the neighbor from which the best route was learned, routers
in TB will propagate their best route to all their clients, which are then
guaranteed to receive a route for p. These routers, in turn, will announce
their own best route to their clients, and so on until routers in the bottom
layer are reached. Then, we conclude that every router receives at least one
route for prefix p, hence B is dissemination correct.

In the following theorems, we prove that prefer-client and no-spurious-
OVER guarantee dissemination correctness.

Theorem 5.1. Given a signaling correct iBGP topology B, if B complies with
the prefer-client condition, then B is dissemination correct.

Proof. We now prove that for any prefix p at least one router r in TB selects
a route to p over an UP* path. Then, the statement follows because of
Lemma 5.1.

Let p be a prefix and ep be an egress point for p receiving an eBGP route
R. Because of step 5 of the BGP decision process, ep selects R. If ep ∈ TB ,
then r = ep. Otherwise, there must exist a router r1 such that r1 ← ep, by
definition of TB . Because of iBGP dissemination rules, r1 receives at least
route R from ep. Let R′ (possibly R′ = R) be the route that r1 selects in
the stable state. Since r1 receives route R from a client, the prefer-client
condition implies that route R′ is also received from a client. Again, if r1 ∈
TB then r = r1. Otherwise, iBGP dissemination rules force r1 to propagate
route R′ to all its route-reflectors. Let r2 be one of the route-reflectors
of r1, that is, r2 ← r1. Observe that r2 must exist since r1 6∈ TB . Again,
r2 receives at least route R′ from its client r1, so we can apply the same
argument to r2. We can iterate the argument until we reach a router r in
TB that learns a route from one of its clients. Because of iBGP propagation
rules, that route must be learned over an UP* path.

Theorem 5.2. Let B be a signaling correct iBGP topology with no spurious
OVER. B is dissemination correct.
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Proof. We now prove that for any prefix p at least one router in TB selects
a route to p over an UP* path.

Let ep be a router that receives an eBGP route R towards p. Because
of step 5 of the BGP decision process, ep selects R. If ep ∈ TB , then the
statement follows by Lemma 5.1. Otherwise, there must exist a router r1

such that r1 ← ep. Because of iBGP dissemination rules, r1 receives at least
route R from ep. Let R′ (possibly, R′ = R) be the route that r1 selects in
the stable state. We have the following cases.

• r1 ∈ TB and r1 learned R′ from one of its clients. By the iBGP propa-
gation rules, R′ must be learned over an UP* path.

• r1 ∈ TB and r1 learned R′ from a peer r2. In this case, r2 must have
received R′ over an UP* path, otherwise it would not have propagated
it to r1.

• r1 6∈ TB and r1 learned R′ from one of its clients. Then, r1 forwards
route R′ to all its route-reflectors.

• r1 6∈ TB and r1 learned R′ from one of its route-reflectors.

Observe that the no-spurious-OVER condition implies that r1 cannot learn
R′ from a peer if r1 6∈ TB .

In the first two cases, the statement follows by Lemma 5.1. In the last
two cases, there must exist a router r2, with r2 ← r1, such that r2 learns
a route for prefix p. Hence, we can iterate the same argument on r2. Since
the number of layers in B is finite, we eventually find a router in TB for
which one of the first two cases applies, yielding the statement.

5.6.2 Applicability of the sufficient conditions

We now discuss how the sufficient conditions presented above can be en-
forced in real-world iBGP topologies.

In theory, the prefer-client condition can be enforced by carefully de-
signing iBGP topologies. However, we find that this condition is too con-
straining for real-world topologies. In fact, in order to satisfy the prefer-
client condition each router should rank the routes it receives accord-
ing to the first hop in the iBGP signaling path, while the BGP decision
process uses tie-breaking criteria that are based on the last hop in the
signaling path (i.e., egress-id) or on the length of the path itself (i.e.,
cluster-list). In particular, a direct consequence of condition prefer-
client is that, if a router r has a valid signaling path P = (r s . . . e) with
r ← s (possibly s = e), then any other valid signaling path between r and e
must either have a client of r as next-hop or be longer than P . Hence, satis-
fying the prefer-client condition requires a deep evaluation of all the deci-
sion steps in the iBGP decision process. For this reason, it becomes a really
hard task when deploying redundant route-reflectors, even on very simple
topologies. Consider, for example, the configuration in Fig. 5.8, which is
the simplest redundant route reflection topology designed according to
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Figure 5.8 Redundant topologies hardly satisfy the prefer-client condition.

current best practices [156, 198]. Clients e1 and e2 are connected to both
route-reflectors r1 and r2 which belong to different clusters. Both e1 and e2

are egress points for prefix p1. Even in such a simple scenario, the prefer-
client condition does not hold, whatever the IGP topology is: underlined
paths highlight violations of the prefer-client condition. In fact, consider
router r1, and assume that e2 is its closest egress point according to IGP
metrics. In this case, r1 prefers all the routes received by e2 to all the
routes received by e1, because of the “prefer closer egress” rule of the BGP
decision process (step 6, see Table 1.1). Hence, r1 prefers routes learned
over path (r1 r2 e2) to those over path (r1 e1). This violates the prefer-
client condition. A similar violation happen if dist(r1, e1) < dist(r1, e2).
This kind of violations of the prefer-client condition can be solved by a
wiser design of route-reflector clusters. Indeed, if r1 and r2 belong to the
same cluster, then r1 always discards routes propagated by r2 and vice
versa [11].

Guideline A. In redundant iBGP configurations, redundant route-reflectors
must belong to the same cluster in order to be able to enforce the prefer-
client condition.

Observe that current best practices for cluster design [198] do not com-
ply with Guideline A.

The no-spurious-OVER condition is relatively easier to enforce, since it
only imposes constraints on the iBGP topology and does not require to
evaluate the whole BGP decision process at every router. However, there
might be cases in which additional (spurious) sessions are desirable to
locally fix forwarding issues or to improve route diversity, as discussed in
Section 5.5. In such cases, UP sessions can be deployed instead of spurious
OVERs, without adversely affecting dissemination correctness.

Guideline B. Whenever an additional session is needed to solve visibility
issues, an UP session should be deployed, in order to enforce the no-spurious-
OVER condition.

Observe that using UP sessions is not free from possibly undesired side
effects, e.g., shortening the cluster-list of existing signaling paths, change
the layering of the hierarchy, impact router memory, etc. Some of these
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side effects can be mitigated, e.g., by configuring route filters that allow
route propagation in one direction only.

5.7 Related work

In this section, we discuss how dissemination correctness relates to
previous works on iBGP correctness properties and topology design. We
find that dissemination correctness was often overlooked, so extra condi-
tions (see Section 5.6) are needed to keep the validity of the results.

Regarding propagation issues, the recent work from Sobrinho and Quel-
has [128] is probably the closest to ours, even if its focus is different. In-
deed, the authors aim at computing how many links should be removed
in order to disconnect two nodes in a network governed by a policy-based
route vector protocol. To that extent, the authors study the difference be-
tween usable connectivity and route connectivity in the eBGP world. They
show that the existence of a usable path from a to b does not imply that a
has a route to b. This corresponds to our finding that having a iBGP valid
signaling path between two nodes is not a sufficient condition to guaran-
tee dissemination correctness. They also show that adding a link to the
network can reduce the visibility of some of its nodes. The authors ar-
gue that route connectivity differs from usable connectivity because of the
lack of export-isotonicity. Export-isotonicity means that if a node exports
a route to a neighboring node, then it also exports to that same neighbor
any more preferred route. Interestingly, our OVER-RIDE gadget (Fig. 5.5) is
not export-isotonic. Indeed, a exports to r the routes it learns from b, but
not the route it directly learns from e (more preferred). Although similar,
our work differs from theirs as we show that dissemination problems are
not confined to eBGP and can also happen in iBGP. Also, we are interested
in determining the connectivity of a network in the stable state making no
assumption on the iBGP topology. As such, our complexity results as well
as our sufficient conditions could also be applied to their study.

Signaling and forwarding correctness have been introduced and ana-
lyzed by Griffin et al. in [66]. The authors show that checking either of the
two properties is NP-hard and give sufficient conditions to enforce both
of them. While the concept of dissemination correctness is not envisaged
in [66], we find that the proposed sufficient conditions also guarantee dis-
semination correctness, since they encompass the prefer-client condition
as formulated in Section 5.6. However, as discussed in Sections 5.2 and 5.6,
these conditions are very constraining for real-world networks.

In [114], Rawat and Shayman give a set of sufficient conditions that
guarantee signaling and forwarding correctness and also prevent MED-
induced routing oscillations. In particular, one of the conditions in [114]
imposes that, for any router, IGP distances to clients must be shorter than
IGP distances to non-clients. While this conditions is intended to be a vari-
ant of the prefer-client condition, it is not enough to prevent dissemina-
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tion anomalies caused by multiple valid signaling paths to the same egress
point, as the OVER-RIDE demonstrates. Moreover, Fig. 5.7 shows an exam-
ple which matches the conditions of [114] but is not forwarding correct.

In [49], Flavel and Roughan propose to modify the BGP decision process
so that the length of the cluster-list is compared before the IGP weight
towards the egress. Such a variant of iBGP is proved to always converge.
However, no guarantee is given for dissemination correctness. Actually,
the OVER-RIDE is a simple example where the modified iBGP protocol can-
not provide all routers with a route for every prefix. However, by following
the guidelines described in this chapter as well as their iBGP modification,
one can achieve both signaling and dissemination correctness.

In [17, 18], Buob et al. introduce the concept of fm-optimality, which
models the visibility issues that arise when two routers in a valid signal-
ing path disagree on which egress point is the closest one. Fm-optimality is
said to guarantee forwarding correctness. Unfortunately, the fm-optimality
concept does not account for visibility issues caused by iBGP route prop-
agation rules, e.g., in presence of spurious OVER sessions. In other words,
even if all routers on the signaling path agree on which egress point is the
closest one, dissemination correctness is not guaranteed. As an example,
the OVER-RIDE is fm-optimal but not dissemination correct.

In [104, 105] Pelsser et al propose to add spurious OVER sessions to lo-
cally fix visibility issues. Our results show that such a local fix comes at the
cost of potential visibility issues on remote routers. Section 5.6 discusses
alternatives to spurious OVER sessions that provides similar benefits with
no impact on dissemination correctness.

A more general consequence of our work is that the presence of a valid
signaling path P between a router r and an egress point e is not suffi-
cient to ensure that r has visibility of routes announced by e (e.g., in the
OVER-RIDE). In fact, depending on both the IGP and the iBGP topology,
there might be some routers in P that do not propagate to r the route
announced by e. Observe that such a counter-intuitive behavior affects
Lemma 3 of [147], where the presence of an UP*DOWN* path for each pair
of routers is said to guarantee full visibility. On the contrary, since only
best routes are propagated, the iBGP topology design technique proposed
in [147] guarantees signaling and dissemination correctness, but cannot
guarantee forwarding correctness. Also, conclusions drawn in [44] are sim-
ilarly affected. Indeed, configuring a top layer full-mesh (as prescribed by
Theorem 4.1 in [44]) guarantees a valid signaling path for each pair of iBGP
routers, but does not imply dissemination correctness.

Despite the concept of dissemination correctness had not been formal-
ized before, we find that some results in the literature guarantee it as a
side effect.

Modifications to the iBGP protocol as proposed in [95] and fine tuning
of attributes in iBGP messages as proposed in [28] can be leveraged to en-
forced the prefer-client condition. In both cases, however, the likelihood of
incurring suboptimal routing increases, since client routes are preferred,
no matter what are the IGP distances of the corresponding egress points.
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BGP Add-Paths [149] has been proposed to allow routers to propagate
multiple routes. It is important to note that the advertisement of multi-
ple routes guarantees dissemination and forwarding correctness only if
all the routes that are equally preferred according to the first four steps
of the BGP decision process (so called AS dominant routes) are propa-
gated network-wide. However, the higher number of routes handled in
iBGP could cause router memory and update churn penalties [137]. Raszuk
et al. [113] propose to add special route-reflectors in order to distribute
multiple routes. Unfortunately, since this technique relies on additional
route-reflectors, it does not guarantee the advertisement of all the AS
dominant routes, and thus it is not sufficient for dissemination correct-
ness. Packet encapsulation is suggested in both cases to solve forwarding
anomalies when not every AS dominant route is propagated. Observe that
both proposals are still in the development stage.

5.8 Conclusions

iBGP route reflection provides network operators with good scalability at
the cost of possibly introducing routing and forwarding anomalies. In this
chapter, we show that iBGP route dissemination anomalies are also possi-
ble, triggering unexpected side effects like traffic blackholes and forward-
ing loops. Moreover, the ability of iBGP to correctly distribute routing in-
formation within an ISP can be affected by the addition of even a single
iBGP session. This is particularly relevant as prior contributions proposed
to fine tune iBGP by adding extra sessions. Hence, we introduce the con-
cept of dissemination correctness to model visibility issues caused by iBGP
route propagation rules. We study the computational complexity of check-
ing dissemination correctness and provide sufficient conditions to enforce
it in real-world configurations.

We thoroughly review previous work and discuss how existing results
relate to dissemination correctness, finding that some contributions need
to be revisited. In our opinion, this study shows that iBGP semantics are
actually more complex than what is commonly assumed, and provides new
motivation to recent efforts (e.g., [149, 98, 25]) for decoupling route prop-
agation from route selection in iBGP.
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Chapter 6

Lossless BGP reconfiguration with
BGP Ships-In-The-Night

6.1 Introduction

During the life of a network, iBGP and eBGP configurations evolve. New
iBGP routers are introduced while older ones are either decommissioned
or moved to less data- or control-plane traffic intensive areas. As the net-
work grows, the organization of iBGP sessions may need to be modified,
e.g., by replacing the full-mesh of iBGP sessions dictated by the original
BGP specification [118] with a route reflection [11] configuration. Also,
iBGP configuration changes can be triggered by changes to the underly-
ing Interior Gateway Protocol (IGP) (see Part 2). Unfortunately, IGP con-
figuration adjustments can affect iBGP routing choices, possibly leading
to routing and forwarding inconsistencies [66], as well as undesired side
effects on internal and external traffic flows [9]. IGP changes may thus re-
quire iBGP configuration changes. Similarly, the eBGP configuration need
to be changed. A typical use case is the provisioning of a new customer,
which requires to establish new eBGP sessions on some border routers.
As commercial relationships between ISPs change, operators also need to
modify their eBGP routing policies. In some networks, routing policies are
changed on a daily basis [85]. Recent examples also include the so-called
“peering wars” that led to the de-peering of large ISPs [173].

The impact of changes to either iBGP or eBGP configuration is hard
to predict. The main reason is that local changes on one BGP router can
affect routing information as viewed by remote routers in a domino effect
in which intermediate routers and possibly message timings play a critical
role. Nowadays, network administrators lack methodologies and tools to
perform reconfiguration tasks with minimal impact on the traffic. Only
a few best practices are available (e.g., [198, 68, 156]), but they typically
focus on simple reconfiguration cases. Moreover, current best practices
barely take into account the possibility of creating routing and forwarding
anomalies during the migration process.
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In this chapter, we address the problem of deploying a new BGP config-
uration in an ISP with no negative impact on the traffic. We consider both
eBGP and iBGP configuration changes. The contribution of this chapter is
threefold. First, we show that long-lasting routing and forwarding anoma-
lies can occur during BGP reconfigurations even when the initial and the
final BGP configurations are anomaly-free. We simulated BGP reconfigura-
tions in a Tier-1 network observing that a significant number of anomalies
persists for large parts of the reconfiguration process. Such theoretical
and practical insights expose the fragility of correct BGP configurations,
as different kinds of anomalies can be triggered even by simple changes
on a single BGP session. Second, we study the problem of finding an order-
ing of configuration changes which guarantees an anomaly-free migration
process. Unfortunately, we show that finding such an order is a computa-
tionally intractable problem. We also present simple cases in which such
an order does not exist at all. Third, we propose a generic framework that
enables lossless BGP reconfigurations. Our solution is based on the possi-
bility of current routers to support independent and isolated control and
forwarding planes. We describe a possible implementation of our frame-
work, and we present a working prototype. We show the effectiveness of
our approach through a use case and we study its scalability.

Beyond addressing current needs of the operators, our approach can be
leveraged to achieve additional agility and flexibility, which, in turn, leads
to competitive advantages to ISPs. For example, the ability to frequently
change eBGP configuration enables ISPs to adapt routing policies to ob-
served traffic trends and turn off network devices during idle time (e.g.,
during the night). By rapidly and safely switching preference of routes re-
ceived from their eBGP neighbors, ISPs can also reduce their transit costs,
and take full advantage of services (e.g., Equinix Direct [178]) aiming at
more flexible establishment of upstream connectivity.

The rest of this chapter is organized as follows. Section 6.2 states the
BGP reconfiguration problem, and discusses its practical relevance high-
lighting deficiencies of simple approaches and current best practices. Sec-
tion 6.3 presents examples in which an operational reconfiguration order-
ing does not exist. Section 6.4 explains our proposed solution. Section 6.5
reports results of our case study. Section 6.6 presents related work. Finally,
Section 6.7 concludes the chapter.

6.2 Seamless BGP reconfigurations

In this section, we define the BGP seamless reconfiguration problem.
By analyzing historical configuration changes deployed in a Tier-1 ISP, we
show that the problem has practical relevance. Moreover, we show that ap-
plying incremental approaches and current best practices [198, 68] incurs
the risk of introducing migration-induced anomalies. Finally, by means of
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simulations, we quantify the disruptions generated by existing approaches
in simple migration scenarios.

6.2.1 Problem statement

We define a BGP configuration C as a tuple (B, I,Υ) consisting of an iBGP
topology B (as defined in Chapter 5), an IGP topology I (as defined in Chap-
ter 2), and a function Υ that maps each destination prefix to a set of border
routers receiving an eBGP route to this prefix. In the following, we refer to
border routers receiving an eBGP route to a prefix as egress points for
that prefix. Unless otherwise specified, we always refer to routes that are
equally preferred according to the first four decision steps (see Table 1.1).
Observe that each element of a BGP configuration influences routing de-
cisions taken by routers. Indeed, the iBGP topology regulates what routes
are known by each router, the IGP topology affects route preference at dif-
ferent routers, and Υ determines what routes are available to each prefix.
Observe that function Υ encodes both the eBGP topology and eBGP poli-
cies. We assume that each iBGP topology B complies with current design
best practices:

1. B is a hierarchy where each router is assigned to one layer ;
2. routers in the top-layer have no route-reflectors and are all peers ;
3. routers not in top-layer have at least one route-reflector.

We say that a BGP configuration C is anomaly-free if no signaling, forward-
ing and dissemination anomalies occur for any destination prefix. In this
chapter, we consider that the combination of egress points for any desti-
nation (i.e., Υ) is fixed, and we show that reconfigurations are hard even
when this assumption holds. Note that, in the worst case, each prefix is
learned from a different subset of border routers. In this case, we are con-
sistent with previous work on configuration correctness [66, 145]. Since we
study BGP reconfigurations, we deal with BGP configurations that change
over time. Whenever it is not clear from the context, we will use convenient
indices. For example, Ct is the BGP configuration at time t. We define two
special indices i and f that refer to the initial and the final time in the
reconfiguration, respectively.

We define a migration, or reconfiguration, as a sequence of configura-
tion changes that turn an initial BGP configuration Ci into a final one Cf .
We assume Ci and Cf to be given as input and to be anomaly-free. Also, we
assume that the underlying IGP configuration does not change during the
reconfiguration. We disregard reconfiguration where router configurations
are modified on a per-prefix basis. Indeed, given the size of current BGP
RIBs (around 450,000 prefixes [157]), per-prefix reconfigurations incur se-
vere penalties in the speed and the ease of management of the migration
process.

We further define a reconfiguration as seamless if for any migration
step j, with i ≤ j ≤ f
• Cj is anomaly-free;
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• Cj is not subject to unintended traffic shifts.

An unintended traffic shift is a change in the best path selected by a
router to a given prefix in which the egress point is neither the initial nor
the final one. We also talk about unintended traffic shift when a router
switches between the initial and the final egress points multiple times.
Unintended traffic shifts can be disruptive for at least three reasons: (i)
they can disrupt traffic engineering policies (e.g., forcing traffic to exit
from other continents), (ii) they can adversely impact costs (e.g., swelling
traffic flows on transoceanic links) and, (iii) they increase the likelihood
of congesting some links (e.g., under-provisioned backup links). Personal
communications with operators confirm that avoiding unintended traffic
shifts is one of the most important requirements identified by network
operators. Observe that unintended traffic shifts are peculiar to the recon-
figuration problem which explains why they have not been studied in prior
work.

If a reconfiguration is not seamless, routing and forwarding anoma-
lies occur in intermediate configurations. These anomalies persist until an-
other intermediate configuration is reached, which might require several
additional migration steps. We refer to such persistent anomalies as mi-
gration anomalies. Migration anomalies can cause long-lasting disruptive
effects, among which forwarding deflections and loops, unintended traffic
shifts, traffic blackholes, congestions, unnecessary iBGP churn, and unnec-
essary eBGP updates which increase the risk of route dampening [142].
Migration anomalies contrast with short-lived protocol-dependent issues,
like those occurring transiently during protocol convergence.

6.2.2 Frequency of BGP reconfigurations

To illustrate the frequency of BGP configuration changes, we analyzed the
BGP configurations of approximately 20% of the routers of a Tier-1 ISP,
from April 2010 to July 2011. The considered routers were new generation
routers progressively added to the network during the considered time-
frame. Among those routers, some have been replaced after their introduc-
tion by other routers of a different brand: this happened 17 times. Overall,
we detected 1,337 BGP configuration changes. Among these changes, ses-
sions additions and removals were the most common. Sessions additions
happened 5,828 times, encompassing 976 eBGP sessions and 4,852 iBGP
sessions. Session removals were less frequent but still not rare, as they
happened 236 times for eBGP sessions and 1,440 times for iBGP sessions.
At each router, eBGP sessions were typically added in groups, while iBGP
sessions were mostly added in pairs of redundant sessions with two route-
reflectors. By looking at route-map names, we also registered 41 changes
of inbound eBGP policy and 77 modifications of outbound eBGP policy.

Finally, we collected less frequent miscellaneous changes, encompass-
ing the promotion of a router to the role of route-reflector (11 times), AS
number modification on an eBGP peer (8 times), and address family en-
abling (3 times) and disabling (5 times) on eBGP sessions. These results
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Figure 6.1 An example in which the bottom-up strategy, suggested by the cur-
rent best practices, creates routing oscillations during the reconfiguration.

testify that reconfigurations of already established BGP sessions are also
performed by operators, even if less frequently than the addition or the
removal of BGP sessions.

6.2.3 Current best practices provide no guarantee

Currently, network operators can only rely on a few rules of thumb to per-
form BGP reconfiguration. Such rules of thumb only concern simple topo-
logical changes, like the replacement of a fully-meshed iBGP topology with
a two-layer route reflection hierarchy [198, 68]. In the following, we show
that current best practices to migrate from a full-mesh to a route-reflection
hierarchy provide no guarantee on the absence of migration anomalies. To
be as general as possible, we consider as current best practice an exten-
sion of the procedures proposed in [198, 68] devised according to private
discussions with operators. Such an extension consists in reconfiguring
routers, one at the time, on a per-layer basis, in a bottom-up fashion (i.e.,
starting from the bottom layer up to the top one). Each router r is re-
configured by activating all the sessions r has in the final configuration
before shutting down all the sessions r maintains exclusively in the initial
configuration.

An example of migration oscillation created by following best current
practices is reported in Fig. 6.1. In this network, a cyclic preference of
routes exists among r1, r2, and r3 (i.e., a dispute wheel, see Chapter 5).
However, in the initial configuration, session (e2, r3) ensures that r3 always
receives a route from its most preferred egress point, forcing a stable state
to be eventually reached. The final configuration is also oscillation-free
since rr1 breaks the cycle of route preferences by steadily selecting the
route from e1.

The bottom-up approach mandates to reconfigure e1, e2, and e3, be-
fore all the other routers. However, after the reconfiguration of e2, session
(e2 r3) is removed and the resulting intermediate configuration becomes

97



Chapter 6. Lossless BGP reconfiguration with BGP Ships-In-The-Night

subject to routing oscillations. The problem is fixed only when migrating
middle layer routers. In contrast, a seamless migration can be achieved by
reconfiguring r3 first. Indeed, after its reconfiguration, r3 will never learn
the route propagated by r2 anymore, since r3 has sessions only with e3 and
rr1, which are guaranteed to always select the route from e3 and e1 respec-
tively. This breaks the cycle of route preferences, ensuring no migration
oscillation. Similar examples can be found for other migration anomalies,
like forwarding loops and unintended traffic shifts.

6.2.4 Quantitative analysis

To quantify the anomalies generated by simple migration approaches, we
simulated several BGP reconfiguration scenarios on a Tier-1 network con-
sisting of roughly 100 iBGP routers organized in three layers of route re-
flection. We simulated two kinds of experiments: iBGP topology changes
and eBGP policy modifications.

Study of the effects of iBGP topology changes in a Tier-1

The first kind of experiments consisted in reconfiguring an iBGP full-mesh
into the final route reflection hierarchy used by the Tier-1. We consid-
ered three ordering strategies: (i) random ordering, (ii) random ordering
in which top layer routers are reconfigured at the end and, (iii) bottom-up
ordering as dictated by current best practices. We denote these strategies
as RND (Random), RBT (Random But Top), and BTU (Bottom-Up), respec-
tively. For each strategy, we run 50 different experiments corresponding to
a different ordering. For each experiment, we used C-BGP [111] to compute
all the BGP routing tables in the intermediate configurations.

Fig. 6.2 plots the fraction of experiments during which different types
of anomalies occur. A data point (x,y) in the graph means that (100∗y)%
of the orderings of a given strategy exhibited a given anomaly for at least
x% of the migration steps. RND orderings almost always triggered Loss
of prefix Visibility (LoV) at some iBGP router. This makes random order-
ings clearly not viable in practice. RBT migrations were not subject to
LoVs, however they were responsible for several migration issues. Indeed,
in more than 90% of the experiments, loops occurred during more than
10% of the migration steps. Even worse, unintended traffic shifts occurred
during more than 55% of the RBT migration process in almost all the ex-
periments. BTU performed slightly better than RBT on traffic shifts, but,
surprisingly, BTU creates more forwarding loops than RBT on average on
the considered network. Indeed, in almost 60% of the experiments, loops
were raised during more than 35% of the migration steps. Observe that
the selection of a temporary BGP next-hop counts as an unintended traf-
fic shift. We stress that each of these traffic shifts can potentially affect
several prefixes, among which the prefixes that drive the vast majority of
traffic [80]. Moreover, our experiments show that performance degrada-
tion can be long-lasting. As a rule of thumb, assuming that a migration
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Figure 6.2 Percentage of the migration process affected by anomalies during a
full-mesh to route reflection reconfiguration of a Tier-1.

step takes about 3 minutes (e.g., for ensuring BGP convergence), having a
loop for 35% of the migration process translates to losing traffic for about
100 minutes.

Study of the effects of eBGP policy modifications in a Tier-1

In the second kind of experiments, we measured the amount of unintended
traffic shifts created by changes of eBGP policies. In each of those experi-
ments, we modified the value of the local-preference (LP) assigned to the
routes received by a given neighboring AS. This scenario can arise in the
case of de-peering or after a change of economical relationship. We now
describe the model that we used to measure the unintended traffic shifts.

Let s be the neighboring AS to be renumbered. Let E = {e0 . . . en} be
the set of edge routers that maintain an eBGP session with s. Without loss
of generality, we assume that only one session is defined between every
ei ∈ E and s allowing us to identify the session by the edge router. Let
P = {p0 . . . pk} be the set of the IP prefixes announced by s. Let D be a
function that associates to each prefix p, the set of all edge routers that
receive a route for p. Let T be the set of all edges routers that learn a prefix
in P as T = ⋃p∈P D(p). Notice that E ⊆ T since other egresses than the one
connected to s can learn a prefix in P . We denote with lpinit (resp. lpfinal),
the initial (resp. final) LP value applied on all the sessions e ∈ E. Moreover,
the lp function associates to each ei the current LP value being applied.
We say that ei has been renumbered when lp(ei) = lpfinal. We denote
with (e1 . . . en), the ordering in which the edges are being renumbered
and with 1 ≤ t ≤ n the current step of the renumbering process.
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To represent the concept of traffic shift, we define the utilization func-
tion util(ei, pj) that associates to each edge router ei and to each destina-
tion pj , the percentage of routers u in the network such that nh(u,pj) =
ei in the stable state. For each edge router e ∈ T , we define the aggregated
utilization function as:

aggr(e) =
∑
p∈P

util(e, p)
|P |

During an eBGP renumbering process, the aggregate utilization of each
edge might vary as some eBGP sessions are renumbered but not all of
them. We define the utilization matrix Uij where uij = aggr(ei) at the
renumbering step j where 1 ≤ i ≤ |T | and 1 ≤ j ≤ n. We further de-
note with ∆U the differentiated matrix obtained by differentiating column
(j + 1) and j of U . Each value of ∆U gives the total amount of traffic
that has shifted towards (positive variation) or away (negative variation)
from the corresponding edge between two consecutive renumbering steps.
We further define TheoryTS by differentiating the first and the last col-
umn of U . TheoryTS is the variation of traffic between the initial and
the final state for each edge. We define the TransientTS(A, t) function
which associates to each column t of a differentiated matrix A, the abso-
lute value of the sum of the positive (resp. negative) variations. Applied to∆U , TransientTS returns the percentage of traffic that has shifted due
to each renumbering step. Applied to TheoryTS, TransientTS returns
the smallest percentage of traffic that can be shifted during the renumber-
ing. Notice that the sum of the positive variations always equal the sum of
the negative variations as the traffic being pushed away from a router will
always exit via another one (traffic conservation). We can now define the
total transient TS, TotalTS that has been created during the renumbering
process as:

∑
0≤t≤|E|

TransientTS(∆U, t)− TransientTS(TheoryTS,1)
TotalTS represents the average number of times each router tran-

siently switched next-hop during the entire renumbering process of the
eBGP sessions with AS s.

As an illustration, let’s consider the renumbering scenario described in
Fig 6.3. In this network, all the sessions with AS2 will be renumbered from
lpinit = 120 to lpfinal = 60. More particularly, we have E = {e1, e2, e3},
P = {p1} and T = {e1, e2, e3, e4, e5}. We assume that (e1, e2, e3) is the
renumbering sequence being followed. The values of U and ∆U are given
by:

U =


.40 0 0 .20
.30 .60 0 .20
.30 .40 1 .20
0 0 0 .20
0 0 0 .20

∆U =

−.40 0 +.20
+.30 −.60 +.20
+.10 +.60 −.80

0 0 +.20
0 0 +.20
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Figure 6.3 Lowering the LP applied on the eBGP sessions with s2 (e.g. due to a
change of the peering agreement) triggers significant traffic shifts. Here, 40% of
the traffic destined to p1 transiently shifts to e2 and e3 after having lowered the
local-preference of e1.

Computing the TransientTS on each column of ∆U , we see that 40%
of p1-traffic shift after e1 renumbering (traffic is spitted on e2 and e3),
60% after the renumbering of e2 (as e3 is now the only egress used) and
80% after the renumbering of e3. TransientTS(TheoryTS,1) is equal to
40%. It means that 40% of the traffic will shift in any case. TotalTS is thus
equal to (40%+ 60%+ 80%)− 40% = 140%.

Using this technique, we have quantified the unintended traffic shifts
created in a Tier-1 network during a LP renumbering. Our data set con-
sisted in the C-BGP [111] model of the Tier-1 along with a dump of the
Adj-RIBs-In from the main route reflectors and volume statistics. Based on
the volume statistics, we selected 940 prefixes that together were responsi-
ble for 80% of the traffic [134]. Then, we identified all the neighboring ASes
that were announcing at least one of the 940 prefixes. We further filter the
list of ISPs by excluding those having only one eBGP peering with the Tier-
1. After this process, we end up with 50 ASes and 250 eBGP sessions. For
simplicity, we assumed the Tier-1 to initially apply the same LP on all the
eBGP peerings it keeps with the same neighboring ISPs. We used CBGP to
compute the routing tables of every router in the network before, during,
and after the LP renumbering. We then computed the TotalTS value as de-
scribed above. In each experiment, we considered one among the 50 ISPs
previously selected. For each ISP, we repeated traffic shift measurements
for 5 different orderings in which border routers are reconfigured. Also,
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Figure 6.4 Average number of next-hop changes per-prefix each router in a Tier-
1 sees during the modification of the LP attribute of all the eBGP sessions with a
neighboring AS.

we considered different values for lpfinal. Namely, we set lpfinal to the
minimum, maximum, and an intermediate (median) value among those
found in the Tier-1 configuration. These scenarios correspond to turn a
neighboring ISP into a provider, peer, customer, respectively.

Figure 6.4 shows the complementary cumulative distribution of the av-
erage number of unintended traffic shifts per router (TotalTS). Each point
in the plot corresponds to an experiment involving a different neighbor-
ing ISP, a different value of lpfinal, and a different ordering. On average,
50% (20%, resp.) of the routers experience at least 1 (resp., 1.5) unintended
traffic shifts for each prefix announced by the ISP considered in the ex-
periment when lpfinal is set to the median or maximum value. In some
experiments, we recorded more than 2 and 2.5 unintended traffic shifts on
average per router per prefix when lpfinal is set to the maximum and the
median value, respectively. This means that each router in the network
can change multiple times its egress point to each interdomain destina-
tion, potentially violating load-balancing and traffic engineering policies
(e.g., forwarding packets to other continents over high-cost transoceanic
cables) and creating traffic congestion for many migration steps. Addition-
ally, eBGP churn can increase the likelihood of route damping. We expect
these results to be a source of concerns for network operators, especially
if they have to change eBGP policies applied to ISPs announcing the few
prefixes that drive the vast majority of the Internet traffic [80]. Observe
that lowering the LP to the minimum value creates less traffic shifts on
average. In fact, contrary to the other two scenarios, routes affected by
setting the LP to the minimum value never attract additional traffic, and
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can only be de-selected by routers that preferred them before. Still, in few
experiments, the average number of unintended traffic shifts is more than
2.5 per router per prefix.

6.3 An algorithmic approach is not viable

Given that reconfigurations are frequent and that they can have a sig-
nificant impact on traffic forwarding (see Section 6.2), we would like to
compute a migration ordering that ensures seamless reconfigurations. Un-
fortunately, the results presented in this section show that this is not al-
ways possible.

Indeed, despite our assumption of anomaly-free initial and final con-
figurations, finding an operational ordering that guarantees no migration
anomalies is computationally hard. Indeed, we proved [143] that finding
such an operational ordering is NP-hard in both the iBGP and the eBGP
cases, using a polynomial-time reduction from 3-SAT problem. The reduc-
tion is based on mapping boolean assignments of a 3-SAT instance into
reconfiguration orderings. In Chapter 7, we show that the same reduction
can be used to prove the computational complexity of avoiding anoma-
lies in IGP reconfigurations that also consider BGP. It should be noted that
the complexity of the reconfiguration problem cannot be derived from the
computational intractability of assessing the correctness of a single BGP
configuration (see Chapter 5). For instance, sufficient conditions enabling
seamless migrations might exist, enabling the design of an efficient algo-
rithm that preserves correctness with no need to inspect each intermediate
configuration.

In this section, we present examples in which every operational order-
ing leads to migration anomalies. We consider both iBGP topology changes,
and eBGP policies changes.

6.3.1 iBGP topology changes

From an algorithmic point of view, changing the iBGP topology can be for-
malized as follows. We refer to an ordering in which to reconfigure iBGP
sessions guaranteeing a seamless migration as seamless ordering. Recall
that we do not consider per-prefix reconfigurations as they are too slow.

Problem 6.1 (Session Ordering Computation Problem (SOCP)). Given Bi
and Bf , compute a seamless ordering in which to add sessions in Bf \Bi and
to remove sessions in Bi \ Bf .

To be as general as possible, we allow multiple sessions involving the
same router to be simultaneously added or removed at each migration
step. This closely reflects the degree of freedom that operators have. In-
deed, multiple sessions involving the same router r can be simultaneously
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reconfigured by changing the configuration of r . On the contrary, admit-
ting simultaneous changes on arbitrary sessions is less realistic, since per-
fect synchronism between routers must be assumed for both configuration
commits and processing of BGP updates at multiple devices. Moreover, al-
lowing simultaneous operations on different routers overcomplicates con-
trolling the reconfiguration, e.g., if a commit fails.

Observe that SOCP does not take into account possible changes in the
interdomain routing. Indeed, given an initial configuration Ci = (Bi, I,Υ),Υ is assumed not to change throughout the migration process. In the fol-
lowing, we show that even if eBGP is stable, there are cases in which a
seamless ordering does not exist. Moreover, there are cases in which every
reconfiguration ordering is not:

1. oscillation-free;
2. LoV-free;
3. deflection-free;
4. free of unintended traffic shifts.

It is simple to extend those examples to cases in which no reconfigura-
tion ordering is free from different kinds of anomalies, e.g., some order-
ings create migration oscillations while others forwarding loops. In the fol-
lowing, we show two examples in which migration oscillations and migra-
tion loops cannot be avoided, respectively. We experimentally confirmed
the behavior of each examples by emulating the initial, the final, and the
possible intermediate BGP topologies in a virtual environment.

Control-plane anomalies cannot always be avoided

Fig. 6.5 depicts an example in which every reconfiguration ordering creates
a permanent oscillation at some reconfiguration step. Observe that both
the initial and the final configurations are oscillation-free. Indeed, it is easy
to check that the configurations are guaranteed to converge to the stable
states reported in Fig. 6.5.

However, an oscillation occurs in every migration ordering. Indeed,
since sessions to be added and removed have no routers in common, we
have two cases.

• add(e1, r3) before remove(ex, r2). Immediately after the addition of
(e1, r3), r2, r3, and r4 respectively prefer paths (r2 r4 e4), (r3 r2 ex),
and (r4 r3 e1) for prefix p2.

• remove(ex, r2) before add(e1, r3). Immediately after the removal of
(ex, r2), r1, r2, and r3 respectively prefer paths (r1 r2 e2), (r2 r3 e3),
and (r3 r1 e1) for prefix p1.

In both cases, a cyclic preference of routes prevents iBGP to converge to a
stable state [66] for either p1 or p2.

In addition to routing oscillations, Fig. 6.6 depicts an example in which
all the reconfiguration orderings cause a dissemination anomaly. Observe
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Figure 6.5 Twice-Bad gadget, an iBGP topology change case in which an
oscillation-free reconfiguration ordering does not exist.
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Figure 6.6 Double-Cross gadget.
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that all the routers have a route to p in the initial and in the final config-
uration as highlighted in the bottom part of the figure. However, in any
reconfiguration ordering, one of the following cases apply.

• add(e1, r2) < remove(r1, e2): because of egress point preferences,
r2 selects path (r2 e1) while r1 keeps selecting (r1 e2). Hence, neither
r1 nor r2 propagate their best route further, causing top layer routers
to have no route to p.

• remove(r1, e2) < add(e1, r2): both r1 and r2 are forced to select
the route from their respective clients, and propagate that route to
their route-reflectors and peers. Because of egress point preferences,
rr1 (rr2, resp.) will select the route propagated on the OVER session
(r2, rr1) ((r1, rr2), resp.). Hence, neither rr1 nor rr2 propagate any
route to rr3, causing rr3 to have no route to p.

In both cases, we end up with a dissemination anomaly.

Data-plane anomalies cannot always be avoided

Similarly to control-plane issues, scenarios exist in which forwarding anoma-
lies occur in every reconfiguration ordering, even if the initial and final
configuration are deflection-free. Consider the example in Fig. 6.7. In the
initial configuration, all routers but s sends traffic to e0, since r1 does not
receive the route announced by e1, and r2 prefers routes from e0 over to
those from e1. Similarly, in the final configuration, all routers but s select
the route received from e1, since r2 does not receive the route announced
by e0, and r1 prefers routes from e1 over those from e0. However, one of
the following cases apply to the intermediate configuration in every recon-
figuration ordering.

• remove(e0, r2) before add(e1, r1): r1 and r2 are forced to select
(r1 e0) and (r2 e1) respectively, hence a loop occur between r1 and
r2 (see the IGP topology).

• add(e1, r1) before remove(e0, r2) : because of path preferences, r1

and r2 will select (r1 e1) and (r2 e0) respectively. As a consequence,
rr1 and rr2 will select (rr1 r1 e1) and (rr2 r2 e0) respectively, giving
rise to a loop between rr1 and rr2 (see the IGP topology).

In both cases, a migration loop occur.
In addition to forwarding loops, Fig 6.8 depicts an example in which

router t is subject to unintended traffic shifts for either p1 or p2, what-
ever the reconfiguration ordering is. In the initial configuration, t steadily
selects (t e5) for both p1 and p2. Indeed, t receives no path in Bi from r1

and r2, since they learn their best routes (r1 e2) and (r2 e1) via an OVER
session. On the contrary, in Bf , r1 and r2 steadily select (r1 e1) and (r2 e4)
respectively for p1. Thus, t steadily selects (t e1), because of egress point
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Figure 6.7 Pylon gadget, an iBGP topology change case in which a loop-free re-
configuration ordering does not exist.
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preferences. For p2, r1 and r2 steadily select (r1 e3) and (r2 e2) respec-
tively, hence t will select (t e2), because of egress point preferences. In
any reconfiguration, we have one of the following cases.

• remove(e1, r2) < remove(e2, r1). In this case, consider prefix p1.
Immediately after remove(e1, r2), r1 keeps selecting the route from
e2, but r2 switches to (r2 e4), and starts propagating that path to t.
Because of egress point preferences, t will steadily select (t r2 e4),
that is the route announced by an egress point to which t will not
send traffic in Bi nor in Bf .

• remove(e1, r2) > remove(e2, r1). In this case, consider prefix p2.
Immediately after remove(e2, r1), r2 keeps selecting the route from
e1, while r1 switches to (r1 e3), and starts propagating that path to
t. Because of egress point preferences, t will steadily select (t r1 e3),
that is the route announced by an egress point to which t will not
send traffic in Bi nor in Bf .

In both cases, an unintended traffic shift occurs in an intermediate con-
figuration.

6.3.2 eBGP policy changes

Similarly to the iBGP topology change problem, the eBGP policy change
problem is stated as follows.

Problem 6.2 (Policy Ordering Application Problem (POAP)). Given the ini-
tial and the final routing policies, compute an ordering in which to apply
the new policies on routers while guaranteeing a seamless migration.

POAP boils down to studying how intermediate policies affect the set of
routes injected in iBGP. Indeed, both the IGP and the iBGP topologies are
assumed not to change during the reconfiguration, that is Ci = (B, I,Υi)
and Cf = (B, I,Υf ), with possibly Υi ≠ Υf . In intermediate configurations,
function Υ can also be different from both Υi and Υf . Hence, our formu-
lation of the problem encompasses the cases in which the set of egress
points for a given prefix changes only in the intermediate configurations
and also between the initial and the final configurations. Since we assume
eBGP stability, the Υ function in intermediate configurations depends only
on the BGP reconfiguration ordering.

Changing the eBGP policies potentially unveils control-plane and data-
plane anomalies in intermediate configurations. Again, migration anoma-
lies cannot be avoided in some cases. Fig. 6.9 shows an example in which
a migration loop cannot be avoided, even if the initial and the final con-
figurations are deflection-free. Consider p1. In the initial configuration, e2

and e3 do not select eBGP routes because of the local-preference settings.
Hence, e1 and rr1 are the only two egress points for p1. As a consequence,
r1, r2, e2, and e3 select e1 because of egress point preferences, while r3, r4,
and e4 select rr1 because they are not aware of other egress points. The
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Figure 6.9 Carousel gadget, an eBGP policy reconfiguration case in which for-
warding loops occur in every reconfiguration ordering.
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IGP topology ensures no deflection. In the final configuration, all ei with
i = 1,2,3 and rr1 are egress points for p1. Also, r1 and r2 select e3, and
r3, r4, and e4 select e2, because of egress point preferences. Since r1 and
r2 (resp. r3 and r4) agree on the egress point to use, no deflection occurs.
Similar arguments apply to p2. However, if e2 is reconfigured before e3,
then r2 starts receiving and selecting the route from e2, because of egress
point preferences. However, r1 still selects the route from e1 since it is not
aware of e2. Because of the IGP topology, a loop is generated between r1

and r2. A symmetric loop occurs between r3 and r4 if e3 is reconfigured
before e2.

In addition to migration loops, all the other kinds of migration anoma-
lies can be created by changing the eBGP configuration, unless the BGP
topology is guaranteed to be (signaling, forwarding and dissemination)
correct for any possible set of egress points (see Chapter 5).
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Figure 6.10 Fragile gadget, an eBGP policy reconfiguration case in which unin-
tended traffic shifts occur in every reconfiguration ordering.

In addition, there are cases in which unnecessary traffic shifts cannot
be avoided. The example in Fig. 6.10 represents a scenario in which the
local-preference of the eBGP routes R1 and R2 has to be lowered, e.g., be-
cause a change in the commercial relationship with the neighboring ISP. In
this case, an unnecessary traffic shift occurs in every migration ordering.
Indeed, in both Ci and Cf , traffic towards p1 is load-balanced among e1

and e2, since r1 and e1 use R1, while r2 and e2 use route R2. However, if
e1 is migrated first, then all iBGP routers start preferring R2 because the
route is temporarily assigned a higher local-preference with respect to R1.
Hence, r1 and e1 are subject to an unnecessary traffic shift that holds until
routing policy is changed on e2. A symmetrical traffic shift occurs if e2 is
migrated before e1.
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6.4 A general solution for BGP reconfigurations

Section 6.3 shows that seamless BGP reconfigurations cannot be always
achieved by just adding and removing sessions. Intuitively, the problem is
that local changes can unpredictably impact routing decisions at remote
iBGP routers.

We argue that additional configuration tools are needed to build a gen-
eral approach enabling seamless migrations. We propose to run two dis-
tinct control-planes on all routers in the ISP, as it is normally suggested
for IGP reconfigurations (e.g., [68]). The co-existing control-planes run dif-
ferent configurations, i.e., one control-plane runs the initial configuration
and the other the final configuration. To avoid control-plane anomalies,
the two control-planes are completely isolated, and are already converged
to a stable state when starting the reconfiguration. To avoid data-plane
anomalies, our solution specify what control-plane must be used network-
wide for packet forwarding. We refer to this approach as BGP Ships-In-The-
Night (SITN).

6.4.1 Requirements and challenges for two control-planes

The main advantage of BGP SITN is that it allows us to reconfigure a single
router without affecting routing decisions of other routers. Indeed, run-
ning the initial and the final configurations in separate control-planes en-
ables each router to compute both the initial and the final BGP routing
tables (RIBs). Then, a router reconfiguration just mandates the router to
forward traffic according to the final RIB instead of the initial one. Un-
fortunately, current routers cannot natively support multiple BGP routing
processes on the same set of eBGP routes.

From an abstract point of view, the following functionalities are needed
in order to implement BGP SITN:

• co-existence of multiple isolated routing processes on the router;

• independent propagation of all routes to all routing processes within
each router.

In order to simulate the co-existence of multiple routing processes on
the same router, we can leverage the Virtual Routing and Forwarding (VRF)
feature [159] available on commercial devices. This feature is usually used
as a basis for MPLS L3VPNs and BGP multi-topology. VRF creates isolated
namespaces for prefixes by tagging each set of prefixes with a route dis-
tinguisher. Two routes having distinct route distinguishers cannot be com-
pared, and can co-exist in the routing table. By default, namespaces do not
share any route, though route import and export mechanisms enable leak-
age of best routes to given prefixes from one namespace to another. Each
network interface of the router can be assigned to a single namespace in
such a way that forwarding depends both on the destination prefix and on
the ingress interface. Moreover, each namespace can define its own iBGP
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Figure 6.11 Architecture of our solution.

topology, i.e., iBGP peering sessions and routing policies can be configured
on a per-namespace basis.

To run two control-planes at the same time, we would use an initial VRF
with the initial configuration, and a final VRF with the final configuration.
Unfortunately, because of the one-to-one mapping between interfaces and
VRFs, routes learned from external peers are injected in a single VRF. This
prevents independent propagation of external routes to all the VRFs, since
only the best routes can be leaked from one VRF to another. A workaround
to propagate all the external routes to all the VRFs is to configure multiple
parallel eBGP peerings. However, this solution is unpractical as it requires
coordinated configuration changes on both sides of those peerings.

To ensure correct forwarding, every router on the data path must for-
ward packets according to the same VRF. For this reason, packets need
to be tagged with VRF information. We distinguish between explicit and
implicit tagging. Explicit tagging involves modifying the packet to encode
additional information which is processed at every router. Traffic encap-
sulation mechanisms, e.g. MPLS or GRE, are examples of explicit tagging.
Conversely, implicit tagging requires no change to data packets. Tags are
inferred and assigned to packets on the basis of information at lower
layers in the protocol stack, e.g., the logical interface which receives the
packets. An example of implicit tagging is what is commonly known as
VRF-lite [160]. In a VRF-lite based network, routers are configured with
multiple logical interfaces on the same links and separate IGP instances
are run in each VRF. In this case, the VRF tag is implicitly assigned to each
data packet according to the destination MAC address of the frame.

6.4.2 Proposed solution

The BGP SITN approach requires three key components: a dispatching
mechanism to propagate all the external routes to multiple namespaces,
a front-end interface which propagates iBGP updates from one “active”
namespace to the eBGP neighbor, and a tagging mechanism, either implicit
or explicit. While we can leverage multiple tagging mechanisms (MPLS and
VRF-lite, for instance), we currently lack support for the other two key
components.
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To this end, we propose to interpose a proxy component between each
border router and its eBGP peers, as depicted in Fig. 6.11. The architec-
ture of the proxy is similar to the one of BGP-Mux [136] in that the proxy
maintains an eBGP peering with external neighbors and one iBGP client
session per VRF configured on the border router. However, we extend the
architecture proposed in [136] to support the concept of “active” names-
pace and the selective propagation of iBGP updates to the eBGP neighbor.
Indeed, the proxy distinguishes one active VRF from several passive VRFs.
All VRFs receive external routes from eBGP peers, but only information
in the active VRF is considered when sending eBGP updates to external
neighbors. While the proxy can be implemented as a standalone device,
we envision its functionality to be built directly inside border router to
facilitate reconfigurations.

Since the proxy maintains eBGP peerings on behalf of a border router,
it needs to be properly configured. However, the proxy configuration is
simple as it only needs the following information.

• the address of each eBGP peer;

• for each VRF, the name of the VRF and the address of the interface
on the border router which is assigned to that VRF; and

• the name of the active VRF.

Finally, as tagging mechanism, the proxy exploits the third-party BGP
next-hop feature that implicitly maps packets from external neighbors to
the active VRF. More precisely, whenever the active VRF is changed, the
proxy advertises to its eBGP peers a change of the BGP next-hop, forcing
them to send data packets to the interface bound to the new active VRF.
For this reason, the proxy does not need any packet forwarding ability.

The ability of switching a VRF from active to passive makes it easy to
deploy changes at border routers, e.g., changing eBGP policies. Reconfig-
urations that involve iBGP topology changes need extra care. Whenever a
reconfiguration encompasses addition or removal of an iBGP session, we
run multiple iBGP sessions in parallel. By using route-maps, each router is
mandated to filter out routes belonging to the initial (resp. final) VRF over
iBGP sessions that are not in the initial (resp. final) configuration.

A reconfiguration step in BGP SITN simply consists in switching the ac-
tive VRF at one proxy. This has two important consequences: first, packets
from eBGP neighbors start to be forwarded according to the active VRF;
second, the proxy starts announcing the routes in the active VRF to its
eBGP neighbors. As we have one proxy per border router, the reconfigura-
tion can be performed one border router at a time.

6.4.3 Key benefits

A primary benefit of our solution is that it guarantees seamless BGP
migrations, as proved by the following theorem.
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Theorem 6.1. BGP SITN ensures seamless migrations.

Proof. First, we consider control-plane anomalies. BGP SITN ensures that
the two control-planes run network-wide in isolation, meaning that routes
received by each router in each control-plane coincide with the routes that
the router receive in either the initial or in the final configuration. Also,
the selection of the active VRF on each router has no impact on any of
the two control-planes. Hence, absence of control-plane anomalies follows
from the assumption that both the initial and the final configurations are
correct.

Regarding data-plane anomalies, both deflections and unintended traf-
fic shifts are prevented by the tagging mechanism. Indeed, whatever is the
active VRF on any proxy, the tagging mechanism (e.g., MPLS or VRF-lite)
ensures that every router in the network will use the same VRF to forward
the packet. Hence, any data packet will be forwarded over a forwarding
path which is either the path used in the initial configuration or the one
followed in the final configuration. The correctness of the initial and final
configurations ensures no data-plane anomalies.

Our approach is also suitable to deal with routing and forwarding is-
sues that we have not considered in this chapter for the sake of simplicity.
Primarily, our approach requires no extra logic to adapt to control-plane
and data-plane changes. Indeed, thanks to the proxy and the isolation prin-
ciple, both SITN control-planes react to routing changes independently.
Also, issues due to specific settings of the MED attribute are avoided in
our approach because of the isolation of the initial and the final control-
planes, that are assumed to be anomaly-free. Finally, our approach pre-
vents transient anomalies, like protocol convergence issues, caused in the
incremental approach by the reconfiguration of single routers. Indeed, the
two control-planes running in BGP SITN do not need to converge at each
migration step, but only before starting the reconfiguration and possibly
after external changes like eBGP or data-plane changes.

The main drawback of our approach is the additional load imposed
to routers as they have to support two control-planes. In Section 6.5 we
show that current ISP-targeted routers can sustain this additional load.
For legacy network devices and to narrow the additional iBGP churn due
to two control-planes, we propose to divide the reconfiguration in chunks,
so that each chunk consists in the reconfiguration of a different group
of prefixes. Indeed, the design of the proxy can be easily adapted to sup-
port different active VRFs for different groups of prefixes. We evaluate the
trade-off between quickness and scalability of our approach in Section 6.5.

6.5 Evaluation

In order to show the feasibility and effectiveness of our solution, we imple-
mented a prototype that can perform seamless reconfigurations. We use
our prototype to perform a use case, and we evaluate the scalability our
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solution. Finally, we qualitatively compare our approach with alternative
proposals.

6.5.1 Implementation

The system is based on an extended version of our provisioning system
(see Chapter 8) to which we added support for VRFs and route-maps. At
each migration step, our system reconfigures one border router by inter-
acting with the corresponding proxy and switching the active VRF on it.

We implemented the proxy as a standalone script of about 400 lines in
Perl. Our prototype proxy has some known limitations: first, it requires the
ability to define logical interfaces on the border router; second, it requires
a shared layer 2 infrastructure between the proxy, the external neighbor
and the border router. However, these limitations could be easily avoided
if the proxy component was directly integrated in the router operating
system. Given the simple architecture of the proxy, we believe such an
integration to be possible on commercial routers.

6.5.2 Case study

Based on our prototype implementation, we simulated a full-mesh to route
reflection reconfiguration of Geant, the pan-european research network.
We run the simulation in a virtual environment on a Sun Fire X2250 (quad-
core 3GHz CPUs with 32GB of RAM). Routers were emulated using a major
router vendor operating system image.

In our case study, we assumed Geant to offer MPLS L3VPN services,
with VRFs (one per customer) configured on the border routers, and MP-
BGP running in the core of the network. We built the IGP and the iBGP con-
figurations consistently with the layer 2 topology of Geant [168]. The IGP
configuration consists of a single area where link weights are inversely pro-
portional to their speed. The route reflection configuration was designed
on the basis of the geographical position of the routers, a design practice
commonly used by network operators [156]. The route reflection top layer
is composed of four routers, namely, DE, FR, NL, and UK. The routers
having a fiber link to one top layer router were assigned to the middle
layer. The remaining routers were added to the bottom layer. Each router
in the middle and in the bottom layer has two route reflectors belonging
to the layer immediately above, mimicking redundancy best practices.

To identify the set of sites at which different customers connect to
Geant, we used real-world BGP updates. We found 16 different sets of
egress points that receive BGP routes for the same prefix. We mapped
those sets on different customers of Geant, and we injected through each
of them a different summary prefix, representing all the prefixes for the
customer.

Then, we evaluated two different reconfiguration strategies. In the first
experiment, we reconfigured the network using our system. In particular,
we configured the initial and the final VRFs on each border router, and we
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Figure 6.12 Using our system, no packet was lost when converting the Geant
network from an iBGP full-mesh to a route-reflection hierarchy. On the contrary,
significant traffic losses occurred with current best practices.

added final iBGP sessions to the iBGP configuration. Two route-maps per
router ensured correct propagation of routes on the initial and final iBGP
topologies. Then, we proceeded one border router at a time. To migrate a
border router, we activated the final VRF on the proxy. When the final VRF
is used on all the border routers, we remove the initial iBGP sessions, the
initial VRFs and both route-maps from the routers. In the second exper-
iment, we followed the current best practices [198, 68]. In particular, for
each router to be migrated, we first activated the sessions with its route
reflectors, then we waited for route propagation, and finally we removed
the initial sessions. We applied a bottom-up reconfiguration order. Within
each layer, we picked routers according to the alphabetical order of their
names. We repeated each experiment 30 times to minimize the impact of
factors beyond our control (e.g., related to the virtual environment). To
measure possible traffic disruptions, we injected ICMP echo request from
each router towards each summary prefix throughout the migration pro-
cess.

Fig. 6.12 reports the median, and the 5th and 95th percentiles of ICMP
packets lost during each migration step. The number of migration steps
are fewer in our approach than in current best practices, since the new
configuration is used network-wide after the reconfiguration of the border
routers (only a configuration cleaning step is needed for the other routers
in the network).

Using our framework, no packet was lost, while current best practices
induced forwarding loops between reconfiguration steps 13 and 20. As a
consequence, packets were lost during approximately 30% of the migra-
tion time. We found that 7 routers lost traffic because of forwarding loops
to two summary prefixes. Together, these two summary prefixes corre-
spond to more than 60% of all the prefixes known by routers in Geant.
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Figure 6.13 Scalability evaluation of BGP SITN with respect to FIB size.

Even worse, discovered loops affected Equal Cost Multi-Path (ECMP) traf-
fic, which also overcomplicates possible debugging activities performed by
network operators in a realistic scenario. We think that this use case shows
the advantage of relying on our framework, as it provably avoids packet
losses (see Theorem 6.1) that can affect traffic to a significant portion of
the full routing table during several reconfiguration steps.

6.5.3 Scalability

We now estimate the overhead of our approach in terms of additional
router memory and CPU processing power needed to maintain two control
planes. Regarding memory, we focus on the FIB size as routers’ RIBs can
be easily scaled by adding low cost RAM components. On the other hand,
CPU overhead is mostly due to computing the BGP best path twice (once
for each control plane), which increases the iBGP churn, i.e., the number of
iBGP updates.

Although sharing memory and data structures across multiple VRFs
might be a significant performance improvement, we find that routers cur-
rently store a separate copy of the RIB and the FIB for each VRF. Hence,
activating BGP SITN would double the number of entries in the FIB. This
is not a problem for current routers, as shown in Fig. 6.13. Indeed, the
FIB capacity of routers was estimated in at least 1 million FIB entries in
2009 [8] (see the horizontal dashed and dotted line in Figure 6.13), while
the current FIB size of a typical Internet router is about 425,000 FIB en-
tries as of 28 May 2012 [194]. Moreover, the FIB overhead can be reduced
by dividing the prefixes in n groups and migrating one group at a time,
as described in Section 6.4.3. This way, at each migration step, the total
number of FIB entries will be (1 + 1/n) times the original FIB size, thus
reducing the amount of additional memory needed, at the cost of multi-
plying the number of migration steps by n. The dashed line with circle
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Figure 6.14 Scalability evaluation of BGP SITN with respect to churn.

points in Fig. 6.13 shows that a good trade-off can be achieved for n = 2
or n = 3.

Very similar considerations hold for BGP churn: by grouping prefixes
in n sets, we can trade speed of the migration process for better scala-
bility. We performed the following analysis. Since both the initial and the
final configurations are correct, the number of iBGP updates generated
by a single eBGP update must be finite. To be independent of the given
iBGP topologies, we assumed that the iBGP churn is proportional to the
eBGP churn. Observe that this is a pessimistic assumption as several eBGP
updates could generate no iBGP update in one of the two control planes
or both. Indeed, no iBGP updates are generated when the received eBGP
update does not change the best route selection at the egress point. We
collected all the eBGP updates from [194] during May 2012, and we esti-
mated the additional churn introduced by SITN with respect to the churn
generated in a single control plane. We used a simple greedy heuristic to
divide prefixes in n groups: iteratively, we picked the most “churny” prefix
not yet assigned to any group and we added it to the group having the least
total number of BGP updates. Fig. 6.14 shows the result of such an anal-
ysis for a single route collector from [194] (similar results hold for other
collectors). If n = 1, then the iBGP churn in SITN is the sum of the churn in
each control plane. In the worst case, iBGP churn is equal in the initial and
final control planes, and the churn increase due to SITN is 100%. However,
even such a simple approach can lead to a good trade-off: the red solid
line in Fig. 6.14 shows that the additional BGP churn generated by BGP
SITN quickly drops as n increases.

Our results suggest that BGP SITN can be deployed in today’s networks.
Also, operators providing MPLS VPN services already have most of the ma-
chinery in place to support BGP SITN. Others should weigh the need for
network agility against the cost of configuring two control planes in their
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network. We believe the long term gain in network agility can motivate
operators to bear the initial deployment cost.

6.5.4 Comparison with alternative solutions

A possible alternative to our solution consists in configuring static routes
that match the initial configuration and ensure consistency throughout the
migration. Static routes can be eventually removed when the final config-
uration has been deployed. Unfortunately, this approach has severe draw-
backs. First, detaching the control plane from the data plane makes the
network unable to react to BGP routing changes (e.g., the withdrawal of a
BGP route). Second, our results in Section 6.3 indicate that removing the
temporary static routes after BGP has converged can result in forwarding
anomalies. Finally, adding a significant number of static routes overcom-
plicates management and troubleshooting.

In principle, recently proposed techniques to simplify BGP management
can be leveraged to facilitate the reconfiguration process. For example,
one might think to rely on platforms that centrally compute BGP routes
(e.g., [19]), or mechanisms that separate the control plane from the data
plane (e.g.,[25]). On one hand, this approach simplifies the understanding
of intermediate routing states, and avoids control plane anomalies. On the
other hand, however, it suffers from problems intrinsic to centralized ap-
proaches, especially scalability and resiliency of the centralized platform,
and difficulties to quickly react to data plane changes (e.g., link and router
failures). Moreover, deploying the centralized component while avoiding
routing and forwarding inconsistencies can be seen as just another in-
stance of the seamless reconfiguration problem.

6.6 Related work

Considerable effort has been devoted to BGP configuration correctness [66,
44, 87] and iBGP topology design [18, 114, 147]. However, to the best of our
knowledge, few works are specifically targeted to approaches for modify-
ing the iBGP configuration of a running network without impacting traffic.

A general approach to deal with multiple configurations is proposed
in [4]. In that work, Alimi et al. propose firmware modifications that en-
able routers to manage a shadow configuration beyond the active config-
uration used to data traffic forwarding. Shadow and active configurations
can be switched using an ad-hoc commit protocol. The entire approach
can be seen as a way to implement two BGP control-planes. However, our
solution is more lightweight and easier to implement with respect to [4],
as it requires no ad-hoc protocol for either tagging packets and commit-
ting configuration changes. Also, we justified the need for an additional
control-plane to solve the BGP reconfiguration problem by a thorough the-
oretical study.
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Graceful session reset is tackled in [54]. Also, Route Refresh and BGP
Soft-Reset capabilities are standardized in [24]. In contrast, we aim at en-
abling iBGP and eBGP reconfigurations which are not restricted to single
BGP peerings and can affect several routers in a network.

Recently, some techniques [151, 75] have been proposed to enable vir-
tual routers or parts of the configuration of BGP routers (e.g., BGP sessions)
to be moved from one physical device to another. Their works differ from
ours as we aim at changing network configurations.

In [117], Reitblat et al. study the problem of consistent network updates
in software defined networks. They propose a set of consistency proper-
ties and show how these properties can be preserved when changes are
performed in the network. Unlike our approach, this work only applies to
logically-centralized networks (e.g., OpenFlow).

6.7 Conclusions

Network operators regularly change router configurations. BGP reconfig-
urations are no exception, as confirmed by our analysis of a Tier-1 ISP’s
historical configuration data. Since today’s SLAs are stringent, reconfigu-
rations must be performed with minimal impact on data-plane traffic.

In this chapter, we show that routing and forwarding anomalies, possi-
bly resulting in severe losses, can occur during BGP reconfigurations, even
when MED is not used and simple policies are deployed. Unfortunately,
current best practices do incur in long-lasting anomalies even during com-
mon BGP reconfigurations, as we show by simulating a full-mesh to route
reflection reconfiguration on a Tier-1 ISP.

To avoid routing and forwarding anomalies, we study the problem of
finding an operational ordering so that all intermediate configurations are
anomaly-free. Unfortunately, the problem of deciding whether such an or-
dering exists is computationally intractable. Also, we show several cases
where such an ordering simply does not exist.

To provide a solution in the general case, we propose a solution that
provably enables lossless BGP reconfigurations by leveraging existing tech-
nology to run multiple isolated control-planes in parallel. We describe an
implementation of this framework, evaluate its scalability, and illustrate
its effectiveness through a case-study.

Our findings show that achieving lossless BGP reconfigurations is a
hard problem in the general case. However, there might exist specific cases
that can be performed safely, without relying on multiple control-planes.
Understanding what kinds of reconfigurations can be carried out under
what assumptions is an interesting open problem.
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Chapter 7

Impact of IGP reconfiguration on BGP

7.1 Introduction

In a typical ISP network, several network protocols depend on the IGP to
discover information about the network topology. For instance, signaling
protocols such as the Label Distribution Protocol (LDP) [5] or the Resource
Reservation Protocol (RSVP) [7] depend either entirely, or partially on the
IGP in order to establish MPLS label-switched paths across the network.
Another example is the Protocol Independent Multicast (PIM) [46] used to
route multicast traffic which depends on the IGP to build the multicast
tree.

Any protocol depending on the IGP can be negatively impacted if the
underlying IGP reconfiguration is disruptive. However, even if the underly-
ing IGP reconfiguration is disruption-free, it is not guaranteed that anoma-
lies will not occur in the protocols depending on the IGP. This is especially
true for BGP. When selecting among several equally preferred routes, a
BGP router will prefer the ones whose next-hop is closer in terms of IGP
distance (see step 6 in Table 1.1). Reconfiguring the IGP can thus change
the BGP decisions taken by a router. Given that the IGP reconfiguration is
progressive, migrated routers will base their BGP decisions on the new IGP,
while non-migrated routers will base their decisions on the old IGP. This
can lead to situations in which migrated and non-migrated BGP routers dis-
agree about which BGP path to use to reach some destinations. These dis-
agreements can create BGP-induced routing, dissemination and forwarding
anomalies.

An example of IGP reconfiguration in which a BGP-induced forwarding
loop can be created is depicted in Fig. 7.1. The considered scenario is a
flat2hierarchical reconfiguration where routers rr1 and rr2 become ZBR.
From the BGP point of view, routers rr1 and rr2 act as route reflectors for
e1, e2, and ei. An equally preferred BGP prefix p1 is also learned on e1 and
e2. We adopt the same graphical conventions as in Chapter 6 to describe
iBGP topologies. Regarding IGP topologies, we represent a backbone link
with a dashed line, and an intra-zone link with a plain one. Unless the con-
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Figure 7.1 Myopia gadget. Migrating the IGP can create BGP-induced forwarding
loops. In this flat2hierarchical scenario where rr1 and rr2 become ZBR, reconfig-
uring rr2 before ei creates a BGP-induced loop for destination p1.

trary is explicitly stated, we always assume that the IGP reconfiguration is
performed by following the techniques described in Chapter 3 (i.e., SITN).

First, observe that the BGP configuration is loop-free under the initial
and the final IGP configuration. In the initial IGP configuration, every router
but e2 selects e1 as their best egress point for reaching p1. Indeed, both
rr1 and rr2 prefer e1 over e2 which implies that ei only learns about e1.
In the final IGP configuration, rr1 selects e1 as before, but rr2 and ei now
select e2. Indeed, in a hierarchical IGP, we have dist(rr2, e2) = 6 which is
smaller than dist(rr2, e1) = 10.

Consider now the reconfiguration process. If we consider only IGP des-
tinations, any ordering such that e1 < rr1 is disruption-free. This ordering
is needed to avoid the loop towards rr2. However, this constraint is not
sufficient to prevent the creation of BGP-induced forwarding loops. Indeed,
if the ordering is such that rr2 < ei, a forwarding loop is created towards
p1 as rr2 prefers (rr2 e2) while ei prefers (ei rr1 e1). This forwarding
loop is due solely to the presence of BGP and the fact that a BGP prefix
can be learned from any subset of egress points. This example illustrates
the necessity of taking into account both IGP and BGP destinations when
computing ordering constraints. In this example, it is easy to see that any
ordering such that e1 < rr1 < ei < rr2 is loop-free for both IGP and BGP
destinations.

In this chapter, we study the combined reconfiguration problem which
consists in reconfiguring a link-state IGP in such a way that no anomaly is
created at the IGP and at the BGP levels. Our contribution is manifold. First,
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we show that reconfiguring the IGP can create any BGP-induced anoma-
lies. Such anomalies can happen even if an anomaly-free IGP ordering is
followed and an iBGP full-mesh is used. By simulating different IGP re-
configurations of a Tier-1 network, we found that numerous BGP-induced
anomalies can appear and last for a significant part of the IGP reconfigura-
tion. Unfortunately, we also show that a combined reconfiguration order-
ing does not always exist, even if a per-destination ordering is followed.
Furthermore, we show that deciding if a combined reconfiguration order-
ing exists is computationally intractable (NP-hard). Since an algorithmic
approach is not viable, we discuss how to solve the combined problem by
leveraging configuration guidelines and by extending the reconfiguration
framework presented in Chapter 6.

The rest of the chapter is organized as follows. Section 7.2 formalizes
the combined reconfiguration problem. Section 7.3 evaluates the amount
of BGP disruption that can be created during typical IGP migration sce-
narios. Section 7.4 shows that migrating the IGP can trigger any type of
BGP-induced anomalies unless a proper ordering is followed. It also shows
examples where such an ordering does not exist. Section 7.5 discusses the
use of other reconfiguration techniques beyond SITN and shows that they
are also likely to create BGP-induced anomalies. Section 7.6 discusses the
computational complexity of the combined problem with respect to the
complexity of the constituting sub-problems. Finally, Section 7.7 describes
how IGP design guidelines and the usage of our reconfiguration framework
can help solving the combined reconfiguration problem.

7.2 Problem statement

All the concepts needed for modeling combined reconfiguration were in-
troduced in the previous chapters. In the following, we denote with It
the IGP configuration (as defined in Chapter 3) at step t and with Bt the
corresponding BGP configuration (as defined in Chapter 6) at the same
step. As before, we define two special indices i and f to refer to the ini-
tial and final configurations. We assume Ii, If , and B to be given as in-
put and to be anomaly-free. We refer to a combined IGP and BGP con-
figuration with the couple (I, B). Also, we define a combined reconfigura-
tion scenario as (Ii, Bi) → (If , Bf ). In a pure IGP reconfiguration case, we
have (Ii, B) → (If , B), while in a pure BGP reconfiguration case, we have
(I, Bi)→ (I, Bf ).

Intuitively, the Seamless Combined Migration Problem (SCMP) consists
in progressively reconfiguring the IGP running in a BGP-enabled network
without creating forwarding loops for IGP destinations and, at the same
time, gracefully accommodate the corresponding changes in the BGP path
preferences. We define it as follows:

Problem 7.1 (Seamless Combined Migration Problem). Given an initial and
a final IGP configuration which determine two next-hop functions, compute
a router migration ordering, if any, such that, (i) no forwarding loop arises
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for any IGP destination learned by the IGP, and such that, (ii) for any inter-
mediate migration step, the corresponding BGP configuration is:

– oscillation-free;
– LoV-free;
– deflection-free;
– not subject to unintended traffic shifts.

7.3 Quantifying the impact of IGP reconfigurations
on BGP

In this section, we study the impact of the interactions between grace-
ful IGP operations and BGP by running several experiments on a Tier-1 net-
work. In each experiment, we simulated the reweighting of few IGP links.
The IGP reconfiguration is performed using the per-router reconfiguration
technique proposed in Chapter 3 which provably avoids forwarding loops
to any IGP destination.

The Tier-1 network we considered consists of more than 100 routers
and more than 150 links. BGP route reflection [11] is configured on the
network, and BGP routers are arranged in a three-layer route reflection
hierarchy. In addition to the configurations of all routers, our data set
includes a dump of all the BGP routes received by the route reflectors at
the top layer.

We simulated three reconfiguration scenarios. In the first scenario, we
reweighted 5 links (≈ 3% of all links), in the second scenario we reweighted
10 (≈ 6%) links, and in the third scenario we reweighted 15 links (≈ 10%).
These scenarios are meant to capture typical reconfigurations performed
by network operators to achieve better traffic engineering while minimiz-
ing the number of reweighted links [51]. For each scenario, we performed
30 experiments. In each experiment, we randomly chose the reweighted
links. We also randomly chose the new weight to be assigned to the se-
lected links within the set of weights used in the initial configuration.

We used SimBGP [192] to compute the forwarding tables during the
reconfiguration. To reduce the number of BGP prefixes used in the simu-
lation, we group BGP prefixes into virtual prefixes. Namely, we univocally
map a virtual prefix to a combination of routers that, in our data set, in-
jected BGP routes to the same BGP prefix. We stress that each virtual pre-
fix typically corresponds to several BGP prefixes since several BGP prefixes
can be injected by the same set of routers. Overall, we identified 1500
virtual prefixes. Each of them corresponds to 102 real BGP prefixes on av-
erage, with a minimum of 1 and a maximum value of 13650. After each
router reconfiguration, we waited for BGP convergence and we analyzed
the resulting forwarding tables to identify BGP forwarding loops towards
virtual prefixes.

We found that numerous BGP forwarding loops can appear during the
reconfiguration process. Fig. 7.2 plots the fraction of experiments experi-
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Figure 7.2 Numerous BGP-induced forwarding loops can appear during IGP
changes, even when state of the art techniques are applied.

5 links 10 links 15 links

Average loop duration (% of process) 23.80 17.14 7.61

Average number of routers involved 5.33 5.33 7.90

Total number of routers involved 32.00 42.00 49.00

Maximum size of a loop (# routers) 2.00 2.00 8.00

Average size of RT impacted (%) 1.16 2.48 7.83

Total size of RT impacted (%) 15.00 31.00 97.00

Table 7.1 BGP-induced loops are long-lived, involve multiple routers and impact
a significant part of the BGP Routing Table (RT).

encing a given amount of BGP-induced loops. A data point (x,y) in the
graph means that (100 ∗ y)% of the experiments exhibited x forwarding
loops. When reweighting 5 links, BGP-induced forwarding loops happened
for at most 85 virtual prefixes in the worst case, and for at least 2 vir-
tual prefixes in more than 40% of the experiments. We stress that this is
significant as each virtual prefix can potentially map to a large number
of actual BGP prefix. When reweighting 10 (resp. 15) links, the likelihood
that at least one virtual prefix experienced a BGP-induced forwarding loop
was more than 70% (resp. 90%) of the experiments. In the worst case, we
observed forwarding loops for more than 1800 virtual prefixes, indicating
that several virtual prefixes were affected by different forwarding loops at
different stages of the reconfiguration.
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Besides potentially affecting a large number of prefixes, loops for BGP
destinations can last during several steps of the reconfiguration process.
In our experiments, some loops lasted for more than 20% of the entire
reconfiguration process (Table 7.1). While all the forwarding loops raised
when reweighting 5 and 10 link involved 2 adjacent routers, we found
some cases where as many as 8 routers were involved when 15 links are
reweighted. For each impacted virtual prefix, we also accounted the num-
ber of real prefix impacted. We discovered that a significant fraction of the
routing table can be impacted. Indeed, close to 8% of the RT was subject
to at least one loop on average when 15 links were renumbered. Finally,
we observed that different reconfiguration orderings created BGP loops
toward different prefixes. For example, almost all virtual prefixes (97%)
were impacted at least once in all the experiments we did for the 15 link
reweighting scenario.

7.4 BGP disruptions due to SITN IGP reconfigura-
tion techniques

In this section, we show that migrating the IGP relying on SITN routing can
trigger any type of BGP anomalies unless a proper ordering is followed.
To compute this ordering, we show that it is necessary to consider the IGP
and the BGP destinations at the same time and not separately as we did
previously. Unfortunately, we also show that there are cases in which such
ordering does not exist. In particular, we describe different IGP reconfigu-
ration scenarios in which: (i) any reconfiguration ordering is not deflection-
free (loop-free); (ii) any reconfiguration ordering is not oscillation-free; (iii)
any reconfiguration ordering is not dissemination correct; and (iv) any re-
configuration ordering is subject to unintended traffic shifts. Without loss
of generality, we consider only flat2hierarchical IGP reconfiguration sce-
narios. We experimentally confirmed that the anomalies occurred in all the
following scenarios by performing them in a virtual environment using a
major router vendor operating system image.

7.4.1 Unavoidable BGP-induced deflections and forwarding
loops

The divorce gadget depicted in Fig 7.3 is an example of reconfiguration
scenario in which a safe ordering exists at the IGP and at the BGP level, but
they are incompatible. The reconfiguration scenario is such that rr1, rr2,
rr3 and rr4 become ZBR. The iBGP topology is a full-mesh and e1 and e3

act as egress points for prefix p2. In Ii (resp. If ), every router but e3 (resp.
e1 and rr1) selects e1 (resp. e3) to reach p2.

First, consider the IGP destination ej . To avoid forwarding loop, the
ordering constraint rr2 < ei < rr3 must be respected. Indeed, (i) rr2

switches from using rr3 to reach ej to use its direct link, (ii) ei switches
from using rr3 to use rr2, and (iii) rr3 switches from using rr4 to use ei.
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Figure 7.3 Divorce Gadget. No combined migration ordering is loop-free for
flat2hierarchical scenarios even if there exists a safe ordering at the IGP and at
the BGP level.

However, consider now the BGP destination p2 where the opposite order-
ing constraint rr3 < ei < rr2 holds. Indeed, (i) rr2 switches from using
rr1 to use ei, (ii) ei switches from using rr2 to rr3, and (iii) r3 switches
from using rr2 to use e3 directly. Clearly, these two ordering constraints
are contradicting with each other and cannot be satisfied simultaneously.
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Figure 7.4 Roller-Coaster Gadget. Migrating the IGP can create migration loops
that cannot be avoided at the BGP-level even when a full-mesh of iBGP session is
used.

In the previous example, an ordering was needed at both the IGP and
the BGP level and these two orderings were contradicting. In the following,
we show that the reconfiguring IGP can create contradictory constraints
at the BGP level only. As example, consider the reconfiguration scenario
depicted in Fig 7.4 which is a simplification of Fig 7.3. The IGP reconfigu-
ration scenario is such that rr1, rr2, rr3 and rr4 become ZBR. The iBGP
topology is again a full-mesh. e2 and e4 act as egress points for p1, while
e1 and e3 act as egress points for p2. In Ii, every router but e2 (resp. e3)
selects e4 (resp. e1) to reach p1 (resp. p2).

Consider now the reconfiguration process. At the IGP level, only one
ordering constraint exists: e1 < rr1 to avoid a forwarding loop towards
rr2. However, at the BGP level, one of the following two cases apply:
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1. rr2 < rr3. In this case, rr2 steadily selects (rr2 e3) for reaching
p2, while rr3 keeps selecting (rr3 e1). Depending on the state of ei,
we distinguish two cases. First, if ei is not migrated, then the for-
warding loop (rr2 ei rr2) occurs. Indeed, nhfinal(rr2, p2) = {ei}
while nhinit(ei, p2) = {rr2}. Second, if ei is migrated, the forward-
ing loop (rr2 ei rr3 rr2) occurs. Indeed, nhfinal(ei, p2) = {rr3} and
nhinit(rr3, p2) = {rr2}.

2. rr3 < rr2. In this case, rr3 steadily selects (rr3 e2) for reaching
p1, while rr2 keeps selecting (rr2 e4). Depending on the state of ei,
we distinguish two cases. First, if ei is not migrated, then the for-
warding loop (rr3 ei rr3) occurs. Indeed, nhfinal(rr3, p1) = {ei}
while nhinit(ei, p1) = {rr3}. Second, if ei is migrated, the forward-
ing loop (rr3 ei rr2 rr3) occurs. Indeed, nhfinal(ei, p1) = {rr2} and
nhinit(rr2, p1) = {rr3}.

In both cases, a forwarding loop is created at the BGP-level during the
IGP reconfiguration. Notice that the iBGP topology was a full-mesh. There-
fore, even a proper iBGP design is not enough to guarantee safe combined
reconfiguration.

In Chapter 3, we showed that it always exists a per-destination ordering
guaranteeing the absence of forwarding loop. Unfortunately, in combined
reconfiguration, this property is not verified anymore. As illustration, con-
sider the flat2hierarchical reconfiguration scenario illustrated in Fig. 7.5
where r5 and r2 become ZBR. The iBGP topology consists in a route reflec-
tion hierarchy where r1 acts as the top-level route-reflector. In this topol-
ogy, r1, r2, r7 and r8 receives an equally preferred route for prefix p1. The
destination that we consider in this scenario is r2’s loopback address. Re-
call that, when performing a per-destination reconfiguration, only the final
path for r2 is installed in the FIB. We also assume that each edge router
“rewrites” the next-hop of an eBGP learned route with its own loopback ad-
dress before announcing it in the iBGP topology. A configuration practice
commonly used and known as next-hop-self [37].

In Ii, r5 and r6 receive and steadily select r2, while r3 and r4 only receive
r1 and thus select it. In If , both r5 and r6 prefer the path propagated by
their respective client r7 and r8, r3 and r4 also select r7 as it is closer than
r1. In both cases, there is no BGP-induced loop.

Consider now the reconfiguration process. First, observe that r6 must
be migrated before r5 for avoiding an IGP-induced forwarding loop to-
wards r2. Indeed, r5 uses r6 in If while the opposite holds in Ii. However,
consider what happens on the BGP decisions when r6 is migrated before
r5. r6 starts preferring r8 and sends it to r4 which selects it over r1. r3

does not learn about r8 and selects r1 as it is the only path that it knows.
Since r4 is using r3 to reach r8 and vice-versa to reach r1, a forwarding
loop is created. The loop will be solved only when r5 is migrated as both
r3 and r4 will switch to r7.

Although cumbersome, following a per-destination ordering is the most
flexible way of performing IGP reconfiguration. This allowed us to use it
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as a fallback solution when no per-router ordering existed in pure IGP re-
configuration. The fact that it does not always exist in combined reconfig-
uration further stresses the need for a general solution. In Section 7.7, we
discuss how to extend our reconfiguration framework to take into account
combined reconfiguration.
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Figure 7.5 The horizontal gadget. Migrating the IGP on a per-destination basis
does not guarantee the absence of BGP-induced forwarding loop. In this reconfigu-
ration scenario, r2 is the considered destination and contradictory reconfiguration
constraints exist between r5 and r6.

7.4.2 Unavoidable BGP-induced routing oscillations

In addition to forwarding loops, IGP reconfiguration can create permanent
BGP routing oscillations even if the BGP configuration is oscillation-free
under both the initial and the final IGP configurations. As illustration, con-
sider the IGP reconfiguration scenario depicted in Fig 7.6 where rA and
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Figure 7.6 Revisited Twice-Bad. Migrating the IGP can create routing oscillations
that cannot be avoided at the BGP-level.
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rB are configured as ZBR. This gadget extends the Twice-Bad gadget de-
scribed in Chapter 6 (see Fig. 6.5). In particular, as with Twice-Bad, the
gadget contains two dispute wheels, Π = ( ~U, ~Q, ~R) and Π′ = ( ~U′, ~Q′, ~R′).Π relates to prefix p1, while Π′ relates to p2. Pivot vertices in Π are ~U =
(r1 r2 r3), spoke paths are ~Q = ((r1 e1) (r2 e2) (r3 e3)), and rim paths
are ~R = ((r1 r2) (r2 r3) (r3 r1)). Pivot vertices in Π′ are ~U′ = (r2 r3 r4),
spoke paths are ~Q′ = ((r2 rA ex) (r3 rB e1) (r4 e4)), and rim paths are
~R′ = ((r2 r4) (r3 r2) (r4 r3)).
B is oscillation-free under the initial and the final IGP configuration as

no DW is activated. In the initial IGP configuration, rA steadily selects ex
for both p1 and p2. Indeed, rA is closer to ex than e1 or e2. Since r2 steadily
receives ex and prefers it over e2, the spoke path (r2 e2) is not used andΠ is prevented from oscillating. Similarly, rB steadily selects e4 over e1 for
reaching p2. This prevents Π′ from happening as the spoke path (r3 rB r1)
is not used. In the final IGP configuration, similar considerations hold. rA
starts preferring e2 over eX which in turn prevents Π′ from oscillating as
the spoke path (r2 rA eX) is not used. Also, rB starts preferring e1 over e3,
also preferred by r3. This prevents Π from oscillating as the spoke path
(r3 e3) is not used.

Consider now what happens during the reconfiguration process. One
of the following two cases apply:

1. rA < rB . rA starts preferring e2 for reaching p1. rA steadily selects it
as best and propagates it to r2. In this case, nothing prevents Π from
permanently oscillating. Such an oscillation is interrupted only when
rB is migrated.

2. rB < rA. rB starts preferring e1 instead of e3 for prefix p2. rB steadily
selects it and propagates it to r3. In this case, nothing prevents Π′
from permanently oscillating. Such an oscillation is interrupted only
when rA is migrated.

In any case, a permanent oscillation is created.

7.4.3 Unavoidable BGP-induced dissemination anomalies

In addition to the possibility of creating forwarding loops and routing os-
cillations, IGP reconfigurations can also create dissemination anomalies
in which some BGP routers do not learn any path (see Chapter 5). As il-
lustration, consider the scenario of Fig. 7.7 where r1 and r2 become ZBR.
This gadget extends the Double-Cross gadget described in Chapter 6 (see
Fig. 6.6). The reconfiguration scenario is such that both r1 and r2 prefer e2

(resp. e1) in the initial (resp. final) case.
It is easy to verify that each router has a path towards p1 in both the

initial and in the final IGP configuration. In the initial configuration, r1

and r2 steadily select e2. r2 further propagates e2 to rr1 and rr2. Since
rr2 learns the path from a client, it will propagate it to rr3. In the final
configuration, r1 and r2 steadily select e1. Similarly, rr1 and rr2 learn
about it from r1 and rr1 propagates it to rr3.
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Figure 7.7 Heavy-Cross gadget, an IGP reconfiguration scenario
(flat2hierarchical) in which a dissemination-free reconfiguration ordering
does not exist.
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Figure 7.8 Go-With-the-Flow gadget. No IGP reconfiguration ordering can prevent
BGP traffic shifts in intermediate configurations.

Consider what happens during the reconfiguration process. We have
two possible cases.

1. r1 < r2. Both r1 and r2 prefer the route propagated by their client.
They propagate that route to the top-layer. Because of egress point
preferences, rr1 (resp. rr2) selects route (rr1 r2 e2) (resp. (rr2 r1 e1)),
learned over an OVER session. This prevents rr3 from learning p1.

2. r2 < r1. r2 starts preferring e1, while r1 still prefers e2. As both prefer
the path they receive over the OVER session, none of them will reflect
that path, causing top layer routers to have no route to p1.

In any case, a dissemination anomaly arises. Again, we experimentally
verified the intended behavior of the gadget by performing the reconfigu-
ration scenario in a virtual environment.

7.4.4 Unavoidable BGP-induced traffic shifts

Finally, some IGP reconfiguration can create unintended BGP traffic shifts,
no matter the ordering being followed. Consider the IGP reconfiguration
scenario depicted in Fig. 7.8 where rr1, rr2, and rr3 become ZBR.
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Under the initial IGP configuration, rr1, rr2 and rr3 steadily select e3 to
reach p1. Since ei and ej do not learn any other path, they will steadily se-
lect e3 as well. Under the final IGP configuration, rr1, rr2 and rr3 steadily
select the path propagated by their direct clients. Consequently, ei and ej
learn all the available paths and steadily select e1 and e2, respectively.

Consider now the reconfiguration process. One of the following case
applies.

1. rr2 < rr1. In this case, rr2 selects e2 and propagates it. Because of
egress point preferences, ei will steadily select e2, that is, a route an-
nounced by an egress point to which ei does not send traffic neither
in the initial IGP configuration, nor the final.

2. rr1 < rr2. In this case, rr1 selects e1 and propagates it. Because of
egress point preferences, ej will steadily select e1, that is, a route an-
nounced by an egress point to which ej does not send traffic neither
the initial IGP configuration, nor the final.

In both cases, an unintended traffic shift occurs. Remember that in ad-
dition of being detrimental for the traffic per se, unintended traffic shifts
increase the risk of route dampening [142] as edge routers may have to
propagate the path changes outside of the AS via eBGP UPDATES.

7.5 BGP disruptions due to other IGP reconfigura-
tion techniques

So far, we have only considered SITN reconfiguration techniques. How-
ever, other reconfiguration techniques exist beyond SITN (see Chapter 3).
Most of these techniques consists in progressively changing routers’ for-
warding tables so as to minimize or to avoid disruptions (e.g., [56, 57, 126,
4, 116]).

In this section, we show that such techniques are also prone to induce
BGP anomalies. In particular, we focus on the metric-increment [56] tech-
nique as it is a representative technique which does not require modifica-
tion to current router implementation. Moreover, we restrict our attention
to forwarding anomalies. This assumption is without loss of generality as
corresponding reconfiguration scenarios can be created considering sig-
naling or dissemination anomalies.

Metric-increment [56] is a technique that avoids transient loops during
link reweighting. As an illustration, consider the IGP topology depicted on
the left side of Fig. 7.9 where the link (r4, r6) has to be shut down for main-
tenance reasons. To reduce convergence delay, network operators usually
prefer to first reroute traffic out of the link by increasing its weight to
a pseudo infinite value before actually shutting down the link [131]. How-
ever, if a network operator simply modifies the link weight in a single step,
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Figure 7.9 Scissors gadget. Applying the metric-increment technique to avoid
transient IGP loops cause forwarding loops to BGP destinations.

transient loops for IGP destinations might appear. For instance, depend-
ing on the message timing, a transient loop can arise between r5 and r6

for packets destined to r3. Indeed, as soon as r6 becomes aware of the link
weight change, it starts forwarding to r5 all the packets destined to r3. If
r5 still relies on the old topological information, it will bounce back these
packets as r6 was on the shortest path from r5 to r3 before the link was
reweighted.

The metric-increment technique consists in iteratively incrementing the
link weight. At each intermediate step, the metric on the link is incre-
mented in such a way that some of the routers that have shortest paths
traversing the link will be able to select a better alternative without causing
any loops. At the end of the sequence, no shortest path traverses the link
and the reweighting process is complete. Interestingly, a loop-free weight
increment sequence always exists [56]. In Fig. 7.9, the minimal sequence of
weight assignment that prevents transient loops is {1 � 31 � 51 � ∞}.
For example, setting the weight of link (r4, r6) to 31 prevents the pre-
viously described loop between r5 and r6. Indeed, this step forces r5 to
change its next-hop to r3 before r6 starts forwarding packets to r5 as the
shortest path from r6 is still (r6 r4 r3).

Unfortunately, iteratively incrementing link weights can create loops
for BGP destinations. Even worse, this can happen even when both the ini-
tial and final configurations are known to be free from anomalies. Consider
the iBGP topology on the right side of Fig. 7.9. The iBGP topology is a route
reflection hierarchy in which r1 is the top-layer route reflector, while r1, r2

and r6 are egress points for prefix p1.
We now describe the impact of the IGP reconfiguration process on BGP

prefix p1. As soon as the link weight is incremented to 31, a BGP-induced
forwarding loop is created between r3 and r4. Indeed, r4’s best egress point
for p1 is now r2. In contrast, r3 does not learn r2 due to iBGP propagation
rules, hence it still uses r6 as its egress point. Therefore, r3 will forward
packets to r6 via r4, while r4 will send packets to r2 via r3, causing a for-
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warding loop. This loop disappears when the link weight is incremented
from 31 to 51 as r3 starts preferring r1 over r6. Observe that a BGP-induced
packet deflection persists in the final state as r4 will send traffic to r2 via
r3, while r3 will deflect traffic to r1. However, as this situation does not
disrupt traffic, operators could be willing to tolerate it during the mainte-
nance of link (r4, r6).

7.6 Problem complexity

In this section, we study the computational complexity of one decision
problem associated to SCMP: oscillation-free migration. Indeed, a com-
bined migration cannot be seamless if it is not free of BGP oscillations
(see Section 7.2). In particular, we consider the following problem:

Problem 7.2 (Avoid Oscillation Problem - AOP). Given a BGP topology and
two IGP topologies, decide if any IGP reconfiguration guarantees no BGP
oscillations in all the intermediate configurations.

Unfortunately, we show that AOP is computationally hard (i.e., NP-
hard). Moreover, as our proof can be adapted to dissemination and for-
warding issues, deciding if an IGP reconfiguration raises any type of BGP
anomalies is also computationally hard.

Our proof is divided in two parts. In the first part, we show that specific
IGP reconfigurations can induce the change of the most preferred egress
point on some iBGP routers. In the second part, we show that deciding
if such changes can lead to BGP oscillations during the reconfiguration is
NP-hard.

7.6.1 IGP reconfigurations can cause BGP preference changes

Let E be the set of egress points of a given iBGP network. Let λri (e) (λrf (e))
be the position of egress point e in the initial (final) preference list of
router r , where the most preferred egress point has position 1.

We now describe an IGP reconfiguration problem in which, at each step,
a single BGP router swaps the positions of the two most preferred egress
points. Namely, the IGP reconfiguration has three properties:

1. the initial (final) IGP topology is consistent with the initial (final)
egress point preferences;

2. at each reconfiguration step, a single router r changes its prefer-
ences from λri to λrf . Any other router r ′ ≠ r is not affected by the
reconfiguration step; and

3. for some router r and egress points e1 and e2, λri (e1) < λri (e2) a
λrf (e2) < λrf (e1) if e1 and e2 are the two most preferred egress points
of r , and λri (e1) < λri (e2)a λrf (e1) < λrf (e2) otherwise. All the other
routers have the same egress point preferences in the initial and final
configurations.
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Figure 7.10 Basic structure for our reduction.

We define the initial and final IGP topologies as follows. In both topolo-
gies, we have a link (r , e) between any router r 6∈ E and any egress point
e ∈ E. The weight of link (r , e) in the initial configuration is wi(r , e) =
λri (e) + 3|E|. In the final configuration, wf (r , e) = 1 + 2|E| if λrf (e) = 1,
and wf (r , e) = wi(r , e) otherwise. This weight assignment directly en-
sures Property 3.

Also, such IGP topologies ensure that the shortest path between any
router r and any egress point e is (r e) in any intermediate configura-
tion (including the initial and the final ones). Indeed, consider any path
P ≠ (r e) between r and e. By definition, P must contain at least two
links, hence its weight in any configuration i is wi(P) ≥ 2 + 4|E|. Thus,
wf (r , e) ≤ wi(r , e) ≤ 4|E| < 2 + 4|E| ≤ wi(P), which also ensures Prop-
erty 1.

Finally, Property 2 holds since there is a one to one mapping between
each edge and one shortest path, hence changing the weight of an edge
affects the preferences of a single router.

7.6.2 AOP isNP-hard

To prove that AOP is NP-hard, we now reduce the 3-SAT problem [101]
to AOP. Fig. 7.10 and 7.11 depict the reduction from a boolean formula F
to a reconfiguration instance B(F). Observe that B(F) can be the result of
an IGP reconfiguration, as described in the previous section.

The base BGP topology used in our reduction is represented in Fig. 7.10.
Observe that a Bad-Gadget [64] Π′ exists among a, b, and c. However, a’s
preferences are such that Π′ is prevented from oscillating whenever a re-
ceives a route from ep or ez. Thus, Π′ cannot oscillate in the initial nor in
the final configuration. However, if z is reconfigured and p is not reconfig-
ured yet, then a will not receive the routes to neither ez nor ep, and Π′ will
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ē3

em
e2

. . .
e2

em
ē1
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Figure 7.11 Example of the translation of a 3-SAT clause.

oscillate indefinitely. The presence of Π′ hence forces any oscillation-free
ordering to be such that p is reconfigured before z, which we denote as
p < z.

The remaining part of B(F) depends on the boolean formula F provided
as input in the 3-SAT problem. Refer to Fig. 7.11. For each variable Xi in
F , with i = 1, . . . , n, we add one variable router xi and two egress points
ei and ēi. Egress point preferences are such that each xi prefers ēi in
the initial configuration and ei in the final one. For each clause Ci, we
add a clause gadget consisting of three literal routers vij , with j = 1,2,3,
representing the three literals in the clause. Observe that, since routers
p and z can always reach one of their two most preferred egress points,
literal routers belonging to different clauses cannot exchange paths. This
allows us to consider clause gadgets separately.

For each clause Ci, a Bad-Gadget Πi might exist among routers vij .
Indeed, the following property holds.

Property 7.1. For each clause Ci, Πi only exists if the variable routers corre-
sponding to positive literals use their initial preferences, while the variable
routers corresponding to negative literals use their final preferences.

Moreover, since all literal routers prefer em over any other egress point,Πi is prevented from oscillating when p is using its initial configuration or
z is using its final configuration.

Intuitively, assigning Xi =TRUE (FALSE, resp.) corresponds to reconfig-
uring xi before (after, resp.) p.

We now prove that the reduction is correct.
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Theorem 7.1. F is satisfiable if and only if an oscillation-free ordering exists
on B(F).

Proof. We prove the statement in two steps.

• If F is satisfiable, then letM be a boolean assignment which satisfies
F , and let T (F , resp.) be the set of the variables that are set to TRUE
(FALSE, resp.) inM. Consider the ordering where we first reconfigure
the routers corresponding to variables in T (in arbitrary order), then
p, then z, and then the routers corresponding to variables inF (in ar-
bitrary order). We now show that such an ordering is oscillation-free.
Since p < z, Bad-Gadget Π′ in Fig. 7.10 is prevented from oscillating.
Also, for any migration step s, one of the following two cases applies:
i) if p is not reconfigured yet or z is already reconfigured, then either
p or z selects a path from em, preventing all Bad-Gadgets Πi from
oscillating; ii) s is the step in which p is reconfigured and z is still
not. Consider any clause Ci and let l be one of the literals that satis-
fies Ci inM. By construction of the reconfiguration ordering, if l = Xi
then router xi is already migrated at step s. Otherwise, l = X̄i and
router xi has not yet been migrated. In both cases, no Bad-GadgetΠi exists at step s, because of Property 7.1. The same argument can
be applied to all the clauses, so no oscillation can occur at s. Hence,
an oscillation-free ordering exists.

• If F is not satisfiable, assume by contradiction that an oscillation-free
ordering exists. The presence of Π′ implies p < z in the ordering.
Consider any clause Ci and the migration step s immediately after
the migration of p. Since neither p nor z select the route from em
preventing Πi from oscillating and we assumed that the migration
ordering is oscillation-free, we conclude that Πi does not exist at step
s. Therefore, by Property 7.1, there must exist a router xk such that
either i) xk corresponds to literal Xk in Ci and xk is already migrated;
or ii) xk corresponds to literal X̄k in Ci and xk has not been migrated
yet. In the first case, we have xk < p which maps to Xk = TRUE. Oth-
erwise, we have p < xk which maps to Xk = FALSE. In both cases, we
are able to assign a truth value to Xk that satisfies Ci. Since the same
argument can be applied to all the clause gadgets, then we are able to
build a boolean assignment that satisfies F , yielding a contradiction.

Observe that by replacing all the Bad-Gadgets in the reduction with
gadgets that trigger a dissemination anomaly or a forwarding loop, we
derive similar reductions. This implies that guaranteeing that an IGP mi-
gration is free from any kind of BGP anomaly isNP-hard.

Further, observe that Bad-Gadget Π′ is used just to force p < z. How-
ever, it is easy to force p < z by means of an IGP constraint rather than on
a BGP constraint (e.g., by adding an IGP destination for which z < p cre-
ates an IGP loop). Hence, with a similar proof we can show that avoiding
IGP anomalies and BGP anomalies during an IGP migration isNP-hard.
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Finally, similarly to [143], we conjecture that AOP is PSPACE-hard as
checking whether an ordering is seamless cannot be done in polynomial
time. Indeed, checking the correctness of a BGP configuration is known to
be aNP-hard problem (see Chapter 5).

Conjecture 7.1. AOP is PSPACE-hard

7.7 Towards BGP-aware IGP reconfigurations

In this section, we investigate viable approaches to perform reconfigura-
tions that are disruption-free for both IGP and BGP destinations. First, we
prove that anomaly-free reconfigurations can be achieved provided that
the initial and the final configurations are correct and respect some con-
ditions. Then, we show how to solve the problem in the general case by
extending the techniques proposed in Chapter 3 and in Chapter 6.

7.7.1 Configuration guidelines

A first condition enabling graceful reconfigurations for both IGP and BGP
consists in ensuring that the egress point preferences in the initial and
final configurations are the same.

Theorem 7.2. If each router has the same egress point preferences in the
initial and in the final configurations, no IGP reconfiguration can trigger
BGP anomalies.

Proof. In SITN, reconfiguring a router cause it to directly switch from con-
sidering the initial IGP topology to the final one. Hence, at each reconfig-
uration step, the egress point preferences at each router coincide either
with those of the initial or the final configuration which are the same by
hypothesis. Since the BGP topology does not change, a BGP anomaly at
a reconfiguration step implies that the same anomaly occurs in both the
initial and the final configurations, contradicting our assumption on their
anomaly-freeness.

As Theorem 7.2 applies in few practical cases, we now develop less
constraining conditions.

Interestingly, the two main sufficient conditions for routing correct-
ness, i.e. the prefer-client condition and the no-spurious-over condition
(see Chapter 5), are robust to IGP reconfigurations. Indeed, if the initial
and final configuration comply with the sufficient conditions, then no IGP
reconfiguration can invalidate them.

The prefer-client condition [66] requires that each route reflector prefer
routes from its clients over routes from its iBGP peers or route reflectors.
We now show that the prefer-client condition is robust to IGP reconfigura-
tions. In a sense, this means that the prefer-client condition is so strong
that it constrains the impact that IGP topology changes have on the BGP
decision process.
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Theorem 7.3. If the initial and final configurations satisfy the prefer-client
condition, then no IGP reconfiguration can trigger BGP routing anomalies.

Proof. At each reconfiguration step, each router relies on either the ini-
tial or the final IGP weights independently from the configuration of the
other routers. As the iBGP configuration does not change, each router has
the same set of clients throughout the reconfiguration. Hence, a violation
of the prefer-client condition at any intermediate step would result in a
violation of the prefer-client condition in either the initial or the final con-
figuration. The statement follows by noting that the prefer-client condition
guarantees the absence of BGP routing anomalies.

The theorem applies to cases in which both the initial and the final
configurations enforce the prefer-client condition by conveniently set IGP
weights. Also, if the prefer-client condition is enforced at the BGP level
(e.g., as proposed in [95, 28]), then IGP and BGP are decoupled enough to
guarantee no BGP oscillations during IGP reconfigurations.

The following theorem holds when the initial and the final BGP con-
figurations comply with the no-spurious-over condition. As explained in
Chapter 5, the no-spurious-over condition guarantees the absence of dis-
semination anomalies. This condition requires that only top-layer route re-
flectors have iBGP peering relationships, while every other pair of routers
must have a client-reflector relationship.

Theorem 7.4. If both the initial and the final configurations comply with
the no-spurious-over condition, no IGP reconfiguration can trigger BGP dis-
semination anomalies.

Proof. The statement follows by noting that no IGP reconfiguration adds
nor removes any iBGP session, hence it cannot invalidate the no-spurious-
over condition at any reconfiguration step.

Unfortunately, sufficient conditions for forwarding correctness are less
robust. Intuitively, this is because they impose strong congruence between
the IGP and the iBGP topologies, hence changing IGP can lead to temporary
violations. However, forwarding issues can be avoided by relying on packet
encapsulation (e.g., using MPLS or IP tunnels). Intuitively, packet encap-
sulation breaks the dependency between IGP and BGP in the forwarding
plane. Encapsulation mechanisms like MPLS are commonly deployed in
many ISP networks.

Theorem 7.5. If packet encapsulation is used network-wide, no IGP recon-
figuration can trigger BGP forwarding anomalies.

Proof. If packet encapsulation is deployed, then each packet from any
source router r to any BGP destination is guaranteed to reach the egress
point e that r selects in BGP. Because of the BGP decision process, e will
forward the packet outside the network (provided that eBGP routes are
stable), hence the statement.
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BGP1 BGPn

IGP1 IGPn. . .

. . .active BGP process

active IGP process

Figure 7.12 Abstract view of a combined ships-in-the-night framework. To grace-
fully accommodate combined reconfiguration scenarios, ships-in-the-night tech-
niques should be available at any levels. Also, it should be possible for a protocol
A depending on a protocol B to choose which instance of B it wants to depends
on.

7.7.2 Extending the BGP Ships-In-The-Night framework

While the previous configuration guidelines provide correctness guaran-
tees, they are not always achievable, nor desirable in some networks. For
instance, network operators might have very good reasons to change the
preference of the paths (e.g. to achieve traffic engineering objectives).

To solve combined reconfigurations when the previous configuration
guidelines do not apply, we propose to extend the BGP reconfiguration
framework we described in Chapter 6. In particular, in addition to hav-
ing multiple isolated IGP and BGP routing processes, we need each BGP
process to base its decisions on potentially different IGP processes (see
Fig. 7.12). Some adjustments are required to realize that with the current
implementation of our framework based on BGP MPLS/VPN techniques.
Indeed, the decisions in each BGP namespace are done according to the
common global routing table. To force a BGP namespace to consider only
the routes of a given IGP process, we should ensure that when a BGP route
is advertised in a namespace, the associated next-hop is reachable only via
that IGP process. As illustration, consider the flat2hierarchical reconfigu-
ration scenario described in Fig. 7.13 in which our reconfiguration frame-
work is used. The IGP reconfiguration scenario is such that B1 and B2
become ZBR. Moreover, the IGP configurations are such that e1 and e2
are reachable in the flat IGP only, while e1′ and e2′ are reachable in the
hierarchical IGP only. From the BGP point-of-view, B1 and B2 act as route-
reflectors. A prefix p is learned on E1 and E2. E1 and E2 are configured to
set e1 (resp. e2) as BGP next-hop when they propagate a route in the initial
namespace. Similarly, E1 and E2 set e1′ (resp. e2′) as BGP next-hop when
they propagate a route in the final namespace. Therefore, in the initial VRF,
BGP decisions will be made according the flat IGP while in the final VRF,
BGP decisions will be made according to the hierarchical IGP. This config-
uration effectively decouples BGP from the IGP as migrating the IGP will
have no impact on the overlaying BGP.

While the previous technique decouples BGP from the IGP, it still re-
quires an ordering to be found for the IGP destinations. Moreover, it also
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Figure 7.13 Extension of the reconfiguration framework to support for com-
bined reconfigurations. To make two different BGP namespaces (i.e. VRFs) de-
pend on two different IGPs, BGP next-hops can be rewritten according to the
namespace such that each next-hop is only reachable via a particular IGP. In this
flat2hierarchical reconfiguration, e1 and e2 are only reachable via the initial IGP
and will be set as next-hops for the routes announced in the initial namespace.
Similarly, e1′ and e2′ are only reachable via the final IGP and will be set as next-
hops for the routes announced in the final namespace.

requires to duplicate next-hop announcements. Another way to implement
a combined reconfiguration framework is to use the Multi-topology routing
(MTR) mechanisms that are available on today’s routers [201, 186]. MTR
allows for the creation of multiple logical topologies running on the same
underlying physical infrastructure. Each topology can run a different set
of routing protocols (e.g. IGP and BGP) along with different configurations.
Each BGP router performs a best-path calculation individually for each
class-specific topology. To support for combined reconfiguration scenar-
ios, we would define two logical topologies, running respectively the initial
and the final IGP configurations along with the BGP configuration. As with
the current framework, the migration would be performed by switching
the topology responsible for forwarding on a per-router basis.

7.8 Conclusions

In this chapter, we highlighted the importance of considering the depen-
dency between network protocols even for problems that seem to be re-
stricted to a single protocol. In particular, we showed that state of the art
IGP reconfiguration techniques should be revisited in the presence of BGP.
Indeed, such techniques can create any type of unavoidable BGP routing
and forwarding anomalies even when a few changes are made.
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From the previous chapters, we know that achieving disruption-free
reconfiguration of IGP and BGP is highly complex. Not surprisingly, the
combination of the two problems is by no means easier (we conjecture
the problem is PSPACE-hard). Therefore, we advocate the need to rely on
additional configuration guidelines and reconfiguration tools. To this end,
we have shown how to extend our reconfiguration framework (initially de-
scribed in Chapter 6) to support combined reconfigurations scenarios.

As future works, we think that understanding the different types of
protocol interactions, especially during a reconfiguration process, is an
interesting open problem. We also plan to extend our study to other pro-
tocols like multicast protocols.
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Chapter 8

Provisioning validated network
configurations with NCGuard

8.1 Introduction

Since the 1970s, IP networks have evolved into highly complex distributed
systems. This complexity results from at least two factors. First, IP net-
works can be extremely large. Indeed, some networks are now composed
of more than 10,000 devices [180]. Second, IP networks can be highly
heterogenous. This heterogeneity materializes itself both in terms of the
number of different vendors providing devices (up to ten in large net-
works [183]) and in terms of the different roles played by these devices
(more than 70 in some networks [180]).

To realize the operators’ high-level objectives, these complex networks
have to be configured. Configuring an IP network consists in adjusting the
behavior of each device in a consistent manner so as to satisfy end-to-end
requirements. Unfortunately, configuring every single device is complex,
time consuming and error-prone. Indeed, IP networks rely on a myriad
of different distributed protocols (e.g., routing and signaling) and mecha-
nisms (e.g., access-list, QoS, SNMP, etc.). Each of these protocols and mech-
anisms comes with numerous and often, vendor-dependent, tunable pa-
rameters. To tune these parameters, each vendor provides a different low-
level configuration language containing thousands of commands. Having
to rely on these languages, network operators cannot completely automate
their work and have often no other choice but to configure every device
manually. Actually, the methodology used by most network operators to
configure their networks is very simple [175]. Since vast part of the con-
figuration is usually redundant, network operators often use a wiki or a
set of text files to store small configuration templates for the most com-
mon management tasks [21]. When a configuration must be changed, the
network operators update the configuration by cutting and pasting from
the template, after having tweaked a few parameters like IP addresses. In
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some cases, if the same operation has to be performed frequently, a small
script is written and stored on the wiki.

Manual network management can cause a lot of potentially disruptive
errors. Several surveys [166, 184] have shown that human errors are re-
sponsible for the vast majority (up to 80%) of network downtime and de-
vices outages. Misconfigurations resulting from manual configuration are
usually referred to as “fat fingers” as pressing a single wrong key on the
keyboard is sufficient to create a global outage. For instance, in 2002,
the misplacement of a single bracket in a complex route filter caused
service disruption for approximately 20 percent of the US customers of
UUNET [197]. Actually, numerous other misconfigurations had negative
consequences on end-to-end Internet connectivity [208, 206, 207, 174,
210, 176, 197, 150]. Other misconfigurations even caused entire networks
(among which two hospitals) to melt down [171, 195, 135]. In fact, net-
work misconfigurations are so ubiquitous that, in 2002, 1% of the BGP
table size was suspected to suffer from misconfigurations [87]. Several re-
searches on the reasons behind downtimes in IP backbones consistently
cite misconfiguration as the major culprit [79, 97, 89]. In addition to being
disruptive, misconfiguration are also expensive. As an illustration, large
(resp. medium) businesses lose an average of 3.60% (resp. 1.00%) in annual
revenue due to network downtime [119, 120]. Worse yet, the cost of net-
work downtime can escalate up to millions of dollars [170, 166] in the case
of mission critical business like brokerage institutions.

In contrast to network management, software management has vastly
improved in the last fifty years. Indeed, several methods to improve soft-
ware quality have been proposed and are being used [138]. Most of these
methods share common steps. First, the requirements of each application
is analyzed and documented in details. Second, the software is divided
in modules which are then implemented, usually in a high-level language.
Third, the functional behavior of each module is carefully tested, or even
validated for the key ones.

In this chapter, we describe NCGuard (the Network Configuration safe-
Guard), a novel software-based configuration framework which leverages
several software-engineering techniques. NCGuard is structured around
three building blocks: (i) a high-level model, (ii) a validation engine and, (iii)
a generation engine. The high-level model defines the network-wide config-
uration while abstracting away low-level details. The validation engine ver-
ifies that the high-level model complies with the operators’ objectives. The
generation engine translates the model into actual configurations (possibly
written in different languages) and provisions them automatically on the
appropriate devices. In addition to these three building blocks, NCGuard
also provides a programmatic interface to enable automation.

NCGuard provides network operators with numerous benefits includ-
ing: manageability, consistency and scalability.

NCGuard improves network manageability. Thanks to NCGuard high-
level model, network operators do not have to bother with low-level details
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anymore. Multiple vendors are implicitly taken into account by the gener-
ation engine. NCGuard also simplifies network maintainability and orches-
tration where human interaction is minimized. Indeed, NCGuard enables
released-based network upgrades as well as automated rollout (resp. roll-
back) of new (resp. old) configurations. Moreover, NCGuard takes care of
the management of network-wide parameters such as IP addresses.

NCGuard enforces network consistency. NCGuard enforces configura-
tion standardization. Standardization reduces the overall complexity of
the system [180] and simplifies network troubleshooting. The NCGuard
model also acts as a clear and up-to-date network documentation which
most networks often simply lack. Moreover, NCGuard validation engine
limits the apparition of mistakes in the model and helps ensuring that the
high-level intent of the operator is always respected.

NCGuard enables network scalability. Deploying a new device in NC-
Guard boils down to instantiating the appropriate part of the model. More-
over, thanks to NCGuard’s programmatic interface, multiple devices can be
added in a few lines. Similarly, the NCGuard model is extensible and can
easily accommodate new devices.

The rest of the chapter is structured as follows. Section 8.2 provides
an overview of NCGuard design. Section 8.3 describes the high-level rep-
resentation. Section 8.4 describes how NCGuard is able to validate the
high-level representation. Section 8.5 describes NCGuard generation en-
gine. Section 8.6 describes a NCGuard extension to support network recon-
figuration. Finally, Section 8.7 reviews related work and Section 8.8 ends
the chapter.

8.2 NCGuard design

NCGuard design is described in Figure 8.1. In addition to the network
model, NCGuard relies on two engines: a validation engine and a gener-
ation engine. The validation engine verifies that the network model is com-
pliant with a set of rules representing the configuration objectives of the
network operator. Both the model and the rules are provided by the net-
work operator. If the model does not comply with the rules, the validation
engine produces meaningful errors (e.g., a counter-example) and warnings.
If the model does comply with the rules, the generation engine generates
the configuration of each device in the appropriate language by using ven-
dor templates. A vendor template defines the translation steps required to
transform the high-level representation into an actual configuration file.

153



Chapter 8. Provisioning validated network configurations with NCGuard

Validation engine

Generation engine

Network model Rules

Vendors templates

Device#1 configuration ...

input

input

output

output

Device#2 configuration Device#N configuration

Errors & Warnings

Figure 8.1 NCGuard Design. With NCGuard, network management follows a top-
down approach. First, the validation engine validates the network model against
the configuration rules provided by the operator. Once the network model is val-
idated, the generation engine translates it into actual device configurations by
using different vendors templates.
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8.3 NCGuard high-level representation

Instead of dealing with a set of per-device configurations, NCGuard uses
a single high-level XML representation of the network configuration. We
chose XML as it is a highly flexible and self-describing metalanguage which
can easily accommodate hierarchical structures such as network config-
urations. Relying on a high-level representation brings several benefits.
First, it completely removes the need for redundancy by factorizing iden-
tical parts of a configuration in a single entity and by only detailing the
differences in the specific parts. For instance, instead of configuring each
router with a logging server, that value is represented once in the high-level
representation and then automatically replicated on all the devices. Actu-
ally, all errors due to symmetry incoherence can be avoided by following
this simple principle. Second, relying on a high-level representation allows
NCGuard to be totally vendor-independent and to represent heterogenous
networks under a common entity. Third, it allows to leverage numerous
XML tools and libraries. Detailed explanations of the XML representation
are available in [209].

To produce the high-level XML representation, network operators can
either write it manually or generate it by using NCGuard’s programmatic
interface. NCGuard’s programmatic interface is implemented in Python us-
ing object-oriented programming. Each concept of the network configura-
tion is represented by a class (e.g., Network, Router, BGPConfiguration,
IGPConfiguration, etc.). In addition to these classes, helper classes are
also available, for instance, to automatically manage the allocation of IP
addresses. Based on this object-oriented representation, a Translator ob-
ject generates the XML representation that NCGuard uses as input. As an
example, Listing 8.1 illustrates how to represent the Internet2 IGP (see
Fig. 1.2) and BGP configuration using NCGuard’s programmatic interface.

8.4 NCGuard validation engine

While relying on a high-level model reduces the likelihood of making some
types of mistakes (e.g., duplication mistakes), some of them can still hap-
pen. Even worse, these mistakes could be mirrored in every single device
as the model gets translated into low-level configurations. Therefore, the
model should be validated prior to the generation phase so as to ensure
that it complies with the configuration objectives of the operator. In this
section, we first characterize the objectives (or intents) pursued by net-
work operators when configuring a network, then we describe how to rep-
resent them in NCGuard by using validation rules.

8.4.1 Characterizing configuration objectives

To identify the configuration objectives pursued by operators, we studied
the network-wide configuration of two research networks, the Belgian Re-
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� �
1 ################# Abilene ######################
2 abilene = Network("Abilene", 11537)
3
4 ################# Prefix Defintion ######################
5 abilene.addInternalPrefix([IPv4Network(’100.0.0.0/8’)])
6 abilene.setInternalLoopbackPrefix(IPv4Network(’100.0.0.0/16’))
7 abilene.setSecondaryInternalLoopbackPrefix(IPv4Network(’50.0.0.0/16’))
8 abilene.setInternalLinksPrefix(IPv4Network(’100.1.0.0/16’))
9 abilene.setExternalLinksPrefix(IPv4Network(’100.10.0.0/16’))

10
11 ################# Routers Definition ######################
12 SEAT = Router(’SEAT’)
13 LOSA = Router(’LOSA’)
14 SALT = Router(’SALT’)
15 KANS = Router(’KANS’)
16 HOUS = Router(’HOUS’)
17 CHIC = Router(’CHIC’)
18 ATLA = Router(’ATLA’)
19 NEWY = Router(’NEWY’)
20 WASH = Router(’WASH’)
21 abilene.addRouter(SEAT, LOSA, SALT, KANS, HOUS, CHIC, ATLA, NEWY, WASH)
22
23 ################# Intra-Links Definition ######################
24 abilene.addIntraLink(SEAT, LOSA, attributes={’ospf_weight’:1342})
25 abilene.addIntraLink(SEAT, SALT, attributes={’ospf_weight’:913})
26 abilene.addIntraLink(LOSA, SALT, attributes={’ospf_weight’:1303})
27 abilene.addIntraLink(LOSA, HOUS, attributes={’ospf_weight’:1705})
28 abilene.addIntraLink(SALT, KANS, attributes={’ospf_weight’:1330})
29 abilene.addIntraLink(KANS, CHIC, attributes={’ospf_weight’:690})
30 abilene.addIntraLink(KANS, HOUS, attributes={’ospf_weight’:818})
31 abilene.addIntraLink(CHIC, NEWY, attributes={’ospf_weight’:1000})
32 abilene.addIntraLink(CHIC, WASH, attributes={’ospf_weight’:905})
33 abilene.addIntraLink(NEWY, WASH, attributes={’ospf_weight’:277})
34 abilene.addIntraLink(WASH, ATLA, attributes={’ospf_weight’:700})
35 abilene.addIntraLink(CHIC, ATLA, attributes={’ospf_weight’:1045})
36 abilene.addIntraLink(ATLA, HOUS, attributes={’ospf_weight’:1385})
37
38 ################ IGP Configuration ##################
39 abilene.igp.enableOSPF()
40 abilene.igp.setOSPFOptions([’AllInternalLinks’, ’Flat’])
41
42 ############### BGP Configuration ##################
43 abilene.bgp.enableBGP()
44 abilene.bgp.createIBGPFullMesh()� �

Listing 8.1 By using NCGuard’s programmatic interface, only 45 lines of code
are needed to describe the Internet2 IGP and BGP configuration.
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search Network and the Abilene network. We also analyzed several ven-
dors recommendations such as [35, 36, 78, 60] as well as the configu-
ration problems found by tools such as rcc [44], minerals [81] and oth-
ers [87, 103, 45, 10].

Typically, configuration objectives can be hierarchically decomposed
into high-level objectives and low-level objectives. High-level objectives
correspond to general decisions concerning the network organization. Ex-
amples of high-level objectives include: ensuring the distribution of inter-
domain routes to all BGP routers, ensuring the distribution of intradomain
routes to all routers or, ensuring sub-second convergence upon any IGP
link failures. In contrast, low-level objectives are more specific and imple-
ment high-level objectives. Usually, the same high-level objective can be re-
alized trough different combinations of low-level objectives. For instance,
to ensure the distribution of interdomain routes, three different realiza-
tions exist: (i) use an iBGP full-mesh, (ii) use route reflectors and, (iii) use
confederations. Each of these objectives further depends on others. For
example, an iBGP full-mesh requires the IGP to advertise reachability for
the endpoints of all iBGP sessions. This IGP objective is usually realized by
using OSPF or ISIS. If OSPF is used it further requires the OSPF areas to be
connected.

Most configuration objectives, in particular the low-level ones, can be
classified into three different objective patterns: (non-)presence, uniqueness
and symmetry. The last two patterns were already mentioned in [45].

The presence pattern represents objectives in which some configura-
tion command must be present on a set of devices. For instance, [35] rec-
ommends to define an identifier on all routers to avoid letting them select
a different one after a reboot. Another example is the passive keyword
which should appear on the interfaces that connect an OSPF router to a
different network to avoid creating OSPF adjacencies with a neighboring
peer [35]. The non-presence pattern is the dual of the presence pattern.
For instance, it can check that stub areas in OSPF do not contain virtual
links [36].

The uniqueness pattern represents objectives where several network
elements must have a unique value for a given configuration parameter.
One example is the IP addresses assigned to different physical interfaces
that must be different [35]. Another example is that, for security reasons,
all eBGP sessions must use a different MD5 password.

The symmetry pattern represents objectives where two configurations
must contain related or identical parameters. We distinguish two types of
symmetry patterns. The first type is the simple equality pattern in which
some configuration parameters in two different network elements must be
equal. For example, two routers attached to the same physical link must
use the same layer-2 encapsulation. As another example, the same OSPF
timers must be configured on two adjacent routers. A third example could
be that the same OSPF weights must be used on both sides of a link (to
enforce symmetrical routing). The second type of symmetry pattern is the
cross equality pattern in which the equivalence has to be ensured across
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multiple parameters. For instance, in order to establish an iBGP session
between routers A and B, router A has to configure B as its neighbor, and
B has to configure A as its neighbor [36, 35].

Finally, the custom pattern represents more complex configuration ob-
jectives that do not belong to any of the previous patterns. Usually, these
configuration objectives relate to the entire network. One example of such
objective could be that the network should remain connected after any
single link failure or after the simultaneous failure of any pair of routers.
Another example could be that at least two disjoint equal-cost-paths must
exist between any routers.

8.4.2 Modeling and verifying configuration objectives

In NCGuard, a configuration objective is expressed as a rule. A rule veri-
fies that a given property is satisfied by the high-level representation. As
with the high-level representation, we chose to represent the rules with
XML elements. Since rules are hierarchically organized, the XML elements
representing the rules are organized as a tree, where the root corresponds
to a very high-level rule such as “the network is correct” (see Fig. 8.2).
Each rule can define one or more dependencies (i.e., branches in the tree).
Depending on the rule, all the dependencies must be verified (and depen-
dencies) in order for the high-level rule to be verified or only one of them
(or dependencies).� �
<rules rootid="CORRECT_NETWORK">
<rule id="CORRECT_NETWORK">
<description>This is the main rule.</description>
<dependencies type="and">
<depends>CORRECT_CONFIGURATION</depends>
<depends>CORRECT_IP_CONNECTIVITY</depends>
<depends>CORRECT_VLAN</depends>
<depends>CORRECT_OSPF</depends>
<depends>CORRECT_BGP</depends>

</dependencies>
</rule>
...

</rules>� �
Listing 8.2 NCGuard hierarchically organizes validation rules

NCGuard uses three techniques to verify rules. First, rules can be ver-
ified by constraining the syntactical structure of the high-level XML rep-
resentation. For instance, forcing each XML node representing a router to
have exactly one child node containing its identifier. Typically, such con-
straints are expressed by associating the high-level representation with
a grammar which precisely defines the syntax of the high-level XML rep-
resentation. In NCGuard, this grammar is implemented by using a XML
Schema [43]. Rules implemented with this technique are called structural
rules. Second, rules can be checked by executing queries on the network
representation. These rules are called query rules. In NCGuard, the queries
are implemented with XQuery, an XML query language [148, 127]. Third,
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Structural Query Language Total

Uniqueness 14 6 - 20

Symmetry 10 - - 10

Presence 82 15 - 97

Custom - 6 3 9

Total 106 27 3 136

Table 8.1 More than 100 rules have been defined to check Abilene’s configura-
tion objectives. Most of them are implemented with structural rules, as syntactic
constraints expressed on the high-level representation.

rules can be checked by using a programming language (Java in our proto-
type). These rules are called language rules. Depending on the rule, one
verification technique is typically more appropriate. For instance, pres-
ence and uniqueness rules are easily implemented using a structural or a
query rule. Conversely, custom rules usually require a query rule or a lan-
guage rule as they require more expressiveness. Finally, symmetry rules
are implicitly verified since redundant informations are factorized in the
high-level representation. For instance, the symmetry of the MTU defini-
tion is ensured by defining it directly on the link and not on the inter-
faces connected to the link. As an illustration, we developed a high-level
representation of the Abilene network by reverse-engineering their router
configurations. Based on these configurations, we also inferred 136 config-
uration objectives. We represented most of these configuration objectives
by using structural and query rules. Table 8.1 details the distribution of
the techniques used to validate the configuration rules.

In the following, we provide four examples of NCGuard rules imple-
mented with different techniques.

Rule#1: All routers have a unique router id This combined rule (pres-
ence and uniqueness) is expressed by two structural constraints inside the
XML schema (see Listing 8.3).

Rule#2: A loopback interface is present on all nodes This presence
rule is expressed by a query rule. As described earlier, NCGuard imple-
ments query rules by using XQuery expressions. To simplify the addition
of query rules, we abstracted them in a XML element composed of a scope,
a descendant, and a condition sub-elements (see Listing 8.4). The scope
element identifies the set of XML nodes in the high-level representation
on which the rule applies. The descendant element identifies (if needed)
specific children nodes of the scope node. Finally, the condition element
states a property that must be respected by at least one descendant node
for each scope node. Consequently, the rule depicted in Listing 8.4 gets
translated by NCGuard into a XQuery which checks that for all routers
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� �
<xs:complexType name="router">

<xs:sequence>
...
<xs:element name="rid" type="InetAddressIPv4" minOccurs="1" maxOccurs

="1"/>
...

</xs:sequence>
</xs:complexType>

<xs:key name="nodeIdKey">
<xs:selector xpath="topology/routers/router"/>
<xs:field xpath="@id"/>

</xs:key>� �
Listing 8.3 Presence and uniqueness rules are implemented with syntactical
constraints expressed on the high-level representation by using a XML schema.
In this excerpt, the first constraint mandates a router element to have a rid, while
the second constraint mandates the rid to be unique.

(scope), there is at least one interface (descendant) for which the id is a
loopback id (condition).� �
<rule id="LOOPBACK_INTERFACE_ON_EACH_NODE" type="presence">
<presence>
<scope>ALL_ROUTERS</scope>
<descendant>interfaces/interface</descendant>
<condition>substring(@id,1,2)=’lo’</condition>

</presence>
</rule>� �

Listing 8.4 Presence rule: Loopback interface on each node

Notice that the distinction between scope and descendant, although
not technically needed, allows to reuse scope definitions in different rules,
which happens frequently. Examples of frequently used scopes include:
the set of all routers, the set of all border routers, the set of all loopback
interfaces, etc.

Rule#3: Loopback addresses are advertised in OSPF This presence rule
(see Listing 8.5) is also verified by a query rule. Notice that this rule is
perfectly equivalent to the previous one except for the scope definition.� �
<rule id="LOOPBACK_ADVERTISED_OSPF" type="presence">
<presence>
<scope>OSPF_NODE</scope>
<descendant>interfaces/interface</descendant>
<condition>substring(@id,1,2)=’lo’</condition>

</presence>
</rule>� �

Listing 8.5 Loopback addresses must be announced in OSPF
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Rule#4: OSPF areas must be directly connected to the backbone area
This rule is an example of a custom rule as it belongs to none of the pat-
terns identified above. However, it can be implemented with a tailored
XQuery query. To report useful errors and warnings, NCGuard queries
should always identify the elements that do not respect the rule. In List-
ing 8.6, the query identifies the OSPF areas without an area border router
connected to the backbone area.� �
<rule id="AREAS_CONNECTED_TO_BACKBONE_AREA" type="custom">
<custom>
<xquery><![CDATA[

for $area in /domain/ospf/areas/area[@id!="0.0.0.0"]
let $backbone_nodes :=
/domain/ospf/areas/area[@id="0.0.0.0"]/nodes/node
where not(exists($backbone_nodes[@id=$area/nodes/node/@id]))
return <result><area id="{$area/@id}"/></result>]]>

</xquery>...� �
Listing 8.6 OSPF areas must be directly connected to the backbone area

To actually validate the representation, the validation engine proceeds
in two steps. First, it checks if the XML representation is syntactically cor-
rect. If it is the case, the validation engine recursively verifies the rules
located in the tree, starting at the root. Whenever a rule is not verified, an
error containing a counter-example is printed (see Listing 8.7 for an exam-
ple). Indeed, as noted by [39], meaningful error messages are important
to help network operators troubleshoot the model. Regarding its imple-
mentation, the validation engine was written in about 1500 lines of Java,
leveraging the saxon XML libraries.� �
Node NY does not have the ’next-hop-self’ option enabled.
Therefore, routes announced on eBGP session ’NY-GEANT’
might be unreachable inside the AS.
Activate ’next-hop-self’ or put interface ’ge-4/0/0.102’ inside OSPF (as passive).� �
Listing 8.7 Excerpt of NCGuard output. To help debugging, meaningful errors
are important for network operators. To that extent, NCGuard prints counter-
examples whenever it is possible.

8.5 NCGuard generation engine

Just as a high-level language must be compiled to machine code, a high-
level model must be compiled or translated into low-level configurations,
possibly written in different languages. The generation engine performs
this translation in two steps.

The first generation step consists in transforming the high-level repre-
sentation into an intermediate representation (also XML-based) whose goal
is to facilitate the overall translation process. The translation process is
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simplified because the intermediate representation is closer to the config-
urations of real routers. For example, while the MTU is defined directly on
the link in the high-level representation, it is specified on each interface
in the intermediate representation. The intermediate representation also
contains characteristics of each target router (vendor, OS, memory, types
of interfaces, etc.). These characteristics are crucial as some configuration
parameters are only valid on some specific platforms.

The second generation step consists in translating the intermediate
representations into actual vendor configurations by applying XSLT tem-
plates [29]. One XSLT template is used for each configuration language
to be supported. Currently, NCGuard generates both Cisco IOS and Ju-
niper JunOS configurations. In addition to configuration languages, tai-
lored XSLT templates could be provided to generate appropriate input for
simulators such as C-BGP [110] or traffic engineering tools [10, 45]. A snap-
shot of the high-level representation is depicted in Listing 8.8 along with
the translated Juniper configuration in Listing 8.9.� �
<interface id="so-0/0/0">
<unit number="0">
<ip mask="31" type="ipv4">64.57.28.11</ip>

</unit>...� �
Listing 8.8 Snapshot of the high-level representation

� �
interfaces {

so-0/0/0 {
unit 0 {

family inet {
address 64.57.28.11/31;

...� �
Listing 8.9 Juniper configuration corresponding to Listing 8.8

Regarding its implementation, NCGuard generation engine was written
in about 800 lines of Java. The XSLT style sheets used to generate the BGP
and OSPF JunOS configurations contain about 1200 lines.

8.6 Automating network reconfiguration

In this section, we show how to extend NCGuard’s programmatic inter-
face (see Section 8.3) to support and pilot an entire network reconfigura-
tion process.

In NCGuard programmatic interface, a reconfiguration process is en-
coded as a directed acyclic graph G = (V , E), or reconfiguration graph.
The reconfiguration graph is either computed automatically, for instance,
by using the ordering techniques described in the previous chapters or is
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manually fixed by the network operator. Each node Ci in V represents a
high-level network representation, where Cinit and Cfin represent the ini-
tial and the final representation, respectively. Each edge e = (Ci, Ci+1) in
E represents two consecutive high-level representations of the reconfigu-
ration process. Observe that consecutive representations can differ com-
pletely or differ by only one line on one router. Each edge in the graph
is further associated with a list configuration statements and a predicate.
When applied to the network, the list of configuration statements trans-
form Ci into Ci+1. A predicate is a condition that must be satisfied before
executing the reconfiguration operation. Currently, we have identified four
predicates which can be combined to form more complex conditions:

#1 WaitForProtocolConvergence This predicate assesses that a protocol
instance has converged. Assessing the convergence of a protocol can
be done by monitoring the state of the routers either by using “show
commands” or by directly collecting the routing updates. Among oth-
ers, assessing the convergence is important to avoid the problems re-
lated to transient states. This predicate can also be used to monitor
the stability of a protocol instance. Notice that the implementation
of the predicate must be particularized depending on the protocol.

#2 WaitForProtocolCompleteness This predicate assesses that a protocol
instance contains required routing information. The required routing
information should be provided beforehand by the network opera-
tor. For instance, this predicate can verify that a IGP has propagated
a route for all the internal prefixes. This predicate is important to
avoid loss of visibility during the reconfiguration. With respect to
the WaitForProtocolConvergence predicate, this predicate checks the
presence of routing information, not its stability.

#3 WaitForTimerExpiration This simple predicate assesses that a given
amount of time has elapsed before executing the associated transi-
tion. It is useful as in most reconfiguration scenarios each intermedi-
ate step takes a bounded time to finish (e.g. a few minutes).

#4 WaitForManualInput This predicates waits for a manual input from
the network operator. It is useful when the operator wants to keep
full control of some critical reconfiguration steps (e.g., the launching
time).

An actual migration corresponds to a path Cinit . . . Ck . . . Cfin in the mi-
gration graph. If multiple paths exist between Cinit and Cfin, one path is
chosen before the migration. Several criteria can be used to discriminate
among several paths. For instance, an operator might prefer the path with
the minimal amount of intermediate states or a path in which the recon-
figuration steps are kept as local as possible.

As illustration, we consider a reconfiguration scenario performed in the
Internet2 network (see Fig.1.2) where an iBGP full-mesh is replaced with a
three-level route-reflection hierarchy. As reconfiguration strategy, we use
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Cinit Cfin

CA CL

CZ. . .network-wide

add UP(SEAT,SALT)
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add UP(NEWY,ATLA)

WaitForManualInput

remove all SEAT OVER

WaitForBGPConvergence

CV

remove all NEWY OVER

WaitForBGPConvergence

. . .configuration

migration of the bottom-layer

Figure 8.2 Snapshot of a migration graph.

the best current practices [156, 198, 68] which consist in migrating routers
in a bottom-up manner. Each router is migrated in two steps. First, the final
UP sessions are established along with the initial OVER sessions. Once the
duplicated routes have been propagated on the UP sessions, the initial
OVER sessions are removed. Regarding the final route-reflection topology,
it also follows the best current practices by closely following the physical
topology. In particular, routers KANS and HOUS form the top-layer, routers
SALT, LOSA, CHIC and ATLA, the intermediate one, while routers SEAT,
NEWY and WASH form the lowest one. For redundancy purposes, each
router is connected to the two route-reflectors located immediately above
it.

A snapshot of the corresponding reconfiguration graph is depicted in
Fig. 8.2. Also, Listing 8.10 shows how NCGuard can represent the entire
migration scenario in less than 30 lines (lines 69–98). In this example, NC-
Guard generates first all the intermediate configurations and associates
each of them with an intermediate node in the reconfiguration graph (lines
72–77). The nodes are then linked together and each transition is associ-
ated with a predicate (lines 79–92). A timer based predicate of five seconds
is used between each transition. In addition to pilot the reconfiguration,
NCGuard is also able to gather statistics during the migration, e.g., by log-
ging the output of “show commands”. In this particular example, a “show
ip bgp all” is performed on all routers after each migration step. The ac-
tual migration process is finally launched (line 95). During this process,
NCGuard uses the Command Line Interface (CLI) to interact with the net-
work equipments. Since configuration changes often concern only specific
parts of the configuration, only the changes are pushed on the devices. On
average, the complete Internet2 migration process took less than 10 min-
utes to complete (15 repetitions). Such a time efficiency enables operators
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to migrate an entire network within a single maintenance window (which
typically lasts for a few hours only [199]).

Finally, a network operator will probably want to test its migration pro-
cess beforehand, even when NCGuard is used. One way to do that is to
perform the migration in a virtual environment. Thanks to NCGuard’s pro-
grammatic interface, generating and provisioning virtual environments is
really easy. At the time of writing, NCGuard supports the generation of
dynamips [158] labs, which allow to virtualize Cisco routers. To further
help network operators, NCGuard provides the ability to inject tailored
(IGP or BGP) routes or routes feed collected from the existing network or
from Routeviews [190]. The ability to generate a virtual lab out of a high-
level representation is also useful for researchers. Indeed, it enabled us to
validate the intended behavior of all the gadgets described in this thesis.� �

1 ################# Migration ######################
2 # We create the Lab
3 ucl_lab = Lab("UCLab")
4
5 # Add servers to the lab (multiple server support)
6 ucl_lab.add_server(Server(name="nostromo"))
7
8 # Generate the initial network-wide configurations
9 translate([abilene], lab=ucl_lab)

10
11 ################ Migration graph definition ########################
12 network_states = []
13
14 # Generate the network-wide configuration of each intermediate state
15 for rid in compute_migration_order(final_ibgp, randomize=True):
16 print "Generating configuration for router %s" % (rid)
17 migrate_router(abilene.routers[rid], final_ibgp, lab=ucl_lab)
18 translate([abilene], lab=ucl_lab)
19 network_states.append(MigrationState(name="ITER#"+str(i))
20
21 # Link the state together and associate the transitions with a predicate
22 migration_process = MigrationProcess(name="ABILENE_FM2RR", network=abilene)
23
24 for (head_state, tail_state) in zip(network_states, network_states[1:]):
25 migration_process.add_transition(
26 MigrationTransition(head_state, tail_state, TimerPredicate(5),
27 options = {’show_commands’ :
28 {
29 ’internal_routers’ : {
30 ’commands’: [’show ip bgp all’],
31 ’routers’ : abilene.routers.values()
32 }
33 }
34 }))
35
36 # Start the migration process !
37 migration_process.start()� �

Listing 8.10 Thanks to NCGuard’s programmatic interface, it is possible to
describe the complete full-mesh to route-reflection scenario of the Internet2
network. On average, less than 10 minutes are required to complete the migration
scenario.
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8.7 Related Work

Numerous works have been proposed to improve network configuration
management. This section briefly surveys the most relevant of them with
respect to NCGuard.

The closest work with respect to NCGuard is probably Metaconfigura-
tion [90]. Metaconfiguration also uses a XML-based representation of the
network and validates it trough a set of rules. However, Metaconfigura-
tion validation is not as detailed and as extensible as NCGuard’s validation
techniques. For instance, it does not allow rules to be hierarchically orga-
nized.

PRESTO [39] is a configuration management system which is built upon
a database and a series of composable active templates. An active tem-
plate is basically a text-file, written in the low-level configuration language,
which supports for loops, conditional logic and access to the database.
Other works follow the same template-based philosophy whether they
are research initiatives (e.g. [61]), open-sources tools (e.g. [175]) or pro-
prietary tools (e.g. [189, 181, 180]). Compared to NCGuard, these tools
still require the network operators to know every single configuration lan-
guage. Moreover, they do not support the validation of the model. Another
network management system which abstracts the network as a relational
database is DECOR [26]. However, DECOR goes one step further by in-
corporating in the database other network management aspects, such as
dynamic properties and network operations (e.g., reconfiguration). With
respect to DECOR, NCGuard better supports network reconfiguration as it
can encompass the reconfiguration techniques developed in the thesis (see
Section 8.6). PACMAN [27] is another management system which enables
automation and abstraction while not requiring operators and network de-
signers to adopt a completely new network management paradigm. While
PACMAN improves network management by automating the low-level ac-
tions, it does not increase the level of abstraction at which it is performed,
as such it cannot reap the same level of benefits as the ones provided by
NCGuard and its top-down approach.

Recently, Autonetkit [96] simplified the configuration of complex, large-
scale emulated networks by relying on a high-level view of the network
written in Python. Based on a high-level view, Autonetkit automatically
provisions a Netkit lab [106] with the appropriate Quagga router configu-
rations. While sharing a lot of common features with NCGuard, including
the ability to generate virtual labs automatically, Autonetkit has fewer ver-
ification capabilities and does not support live reconfigurations.

Several works have aimed specifically at improving the configuration of
BGP and its associated routing policies. BGP configuration is indeed known
to be one of the most complex and changing part of the global configura-
tion [85]. The Routing Policy Specification Language [1] was designed to
allow network operators to document their routing policies in the whois
databases. Some network operators, notably in Europe, rely on these RPSL
databases to automatically configure their route filters by using the IRR
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toolset. Tools proposed by Maennel et al. [182] and Gottlieb et al. [61] also
automate the configuration of BGP sessions. Nettle [146] abstracted away
the problem of configuring BGP. Nettle is a domain-specific embedded lan-
guage based on Haskell for configuring BGP networks. Nettle separates
the specification of the configuration from its actual representation in the
router. Also, Nettle allows to prevent anomalies such as oscillations from
happening.

Instead of producing correct configurations, other approaches have
tried to detect configuration errors. Two main approaches exist. The first
approach is to apply data mining techniques (e.g.,[21, 38, 81]) to the con-
figuration files in order to detect statistical deviations that are likely to be
errors. While these techniques require no input from the operators, they
generate a lot of false positives as some configurations tend to be highly
specialized. Operators are often reluctant to analyze all the warnings re-
ported by these tools. Moreover, machine learning techniques do not work
on heterogenous networks in which different languages are used. The sec-
ond approach to detect misconfigurations is to use static analysis [44]
which checks that configurations comply with some predefined rules. NC-
Guard also relies on static analysis, but it is used to validate the model,
not the actual configurations.

Most router vendors now provides XML-based APIs and the Internet
Engineering Task Force (IETF) is developing NETCONF [40] to provide a
standardized interface to router configuration. Along with NETCONF, the
IETF standardized YANG [15], a XML-based data modeling language used to
model configuration and state data manipulated by NETCONF. Being XML-
based, YANG configurations could also benefit from NCGuard validation
techniques. Moreover, NCGuard can be easily extended to produce YANG
configurations and use NETCONF as provisioning mechanism.

8.8 Conclusions

Nowadays, most IP networks are still configured manually, which is both
error-prone and costly. In this chapter, we argued for a radically differ-
ent approach inspired by software engineering techniques. To support our
approach, we developed NCGuard, the Network Configuration SafeGuard.
The philosophy behind NCGuard can be summarized in three key points.
First, NCGuard encourages the network operator to formally specify the
objectives of his network. These objectives are defined as a set of rules
that must be met by the configuration. Second, NCGuard abstracts away
low-level configuration language by proposing a high-level XML-based rep-
resentation to the operator. Third, NCGuard validates the high-level repre-
sentation and generates the router configurations in their respective con-
figuration languages. In addition to these three points, NCGuard also pro-
vides a programmatic interface which enables it to support automated pro-
visioning but also disruption-free reconfiguration by combining it with the
reconfiguration techniques we developed in this thesis.
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While being an important first step, our work is far from being finished.
First, our model must be extended to support other routing protocols and
mechanisms. Also, it could be made more modular by decomposing the
model into different abstraction layers. Second, the coverage of NCGuard
validation should be improved. We see two ways of achieving this objec-
tive: (i) release a library of validation rules so that it could be extended by
other people (provided that they use a compatible high-level representa-
tion) and (ii) combine NCGuard rule-bases validation with other verification
techniques, for instance, model checking. Third, regarding the generation
of the configuration, NCGuard could leverage the ability of new routers to
support for standardized languages like YANG [15].

Regarding the reconfiguration process, an important open problem is
how to deal with failures or unplanned events that happen during the re-
configuration. Indeed, in case of such event, it might be better to abort the
reconfiguration process and undo some of the changes so as to recover an
operational state. The problem of backtracking the reconfiguration pro-
cess is known to be complex [153] and is still largely unsolved. In our
opinion, different strategies exist depending on the sensitivity of the net-
work operator to failures. For instance, the operator could pinpoint special
nodes in the reconfiguration graph that can act as milestones. If an error
is detected, NCGuard can automatically backtrack the network to the pre-
viously encountered milestone. Another strategy, more automated, could
be to precompute backtrack edges linking a node to a previous one known
to be correct according to different types of failures. We believe that de-
veloping techniques and tools to automatically compute milestones and
backtrack edges is a promising area of research.
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Conclusions and open problems

Network-wide reconfigurations, although beneficial, are often avoided or
delayed as they can introduce numerous anomalies. In view of our ex-
perimental findings, this is not surprising as we repeatedly showed that
poorly executed reconfigurations can create long and service-affecting out-
ages. Indeed, in contrast to network failures where the disruption is usu-
ally limited to a short time period [89] (e.g., a few minutes), reconfiguration
anomalies can last for a substantial time period (e.g., a few hours in the
case of a large network reconfiguration).

In this thesis, we developed techniques and tools to enable anomaly-
free routing reconfiguration for both intradomain and interdomain rout-
ing protocols. To avoid routing and forwarding anomalies, our approach
was to order the configuration changes so that every intermediate step
maintains network correctness. We started this thesis by asking ourselves
two questions: Does an anomaly-free reconfiguration ordering always ex-
ist? and Is it easy to compute? Unfortunately, the answer to both of these
questions turned out to be negative. Indeed, we systematically discovered
reconfiguration cases in which no ordering exists. Moreover, we proved
that deciding if an anomaly-free reconfiguration ordering exists is com-
putationally hard (NP-hard). Despite the inherent complexity of the re-
configuration problem, we managed to enable disruption-free reconfigura-
tions (or at least reduce the anomalies) in most reconfiguration scenarios.
We now review our contributions.

In Chapter 2, we provided a general characterization of the forwarding
anomalies that could happen in an IGP reconfiguration scenario. Thanks
to that characterization, a network operator knows precisely what types
of forwarding anomalies he/she can face when performing a given IGP re-
configuration. Our main result was to show that forwarding loops can only
happen in pure link-state IGP reconfiguration scenarios, while traffic shifts
can happen in any IGP reconfiguration scenario. In Chapter 3, we studied
how to avoid forwarding loops in link-state IGP reconfigurations. To com-
pute a per-router ordering (when it exists), we developed a correct and
complete algorithm and a correct but not complete heuristic. Even though
the algorithm is theoretically inefficient, it was able to find an anomaly-
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free ordering for all networks, but one. Regarding the heuristic, its time
efficiency allowed us to make the ordering resilient against single-link fail-
ures. In Chapter 4, we developed an effective heuristic which reduces the
amount of traffic shifts created during distance-vector to link-state recon-
figurations.

After our study of IGP reconfigurations, our next target was to enable
anomaly-free BGP reconfigurations. However, when we started our work,
we realized that the known correctness properties related to iBGP con-
figuration (i.e., signaling and forwarding correctness) were not complete.
Indeed, the impact of iBGP route propagation was overlooked. We explored
that problem in Chapter 5. Counter-intuitively, we showed that adding
iBGP sessions can reduce the overall amount of BGP routes globally known
in the network. The reduction can be such that some routers can end up
learning no route to reach some destinations. Unfortunately, checking for
dissemination correctness is computationally-hard, however we provided
two sufficient conditions to enforce it as well as design guidelines.

In Chapter 6, we studied BGP reconfigurations. With respect to IGP re-
configurations, avoiding BGP routing and forwarding anomalies is harder
for at least three reasons. First, local changes can unpredictably change
routing decisions at remote routers. These remote changes must therefore
be considered when computing the ordering. Second, the number of routes
carried by the IGP and BGP usually differs by at least two orders of mag-
nitude. Third, network operators do not control where BGP destinations
are originated (i.e., a BGP destination can be originated from any subset
of routers) while IGP destinations are usually originated from well-known
routers (usually one). This additional complexity spurred us to develop
additional tools. In particular, we developed a reconfiguration framework
in which the initial and the final network-wide BGP configurations coexist.
With that framework, reconfiguring a router consists in switching the BGP
configuration which is responsible for packet forwarding. We proved that
this switching was safe. Our framework leverages existing technologies
and can work on today’s routers.

In Chapter 7, we considered the impact of IGP reconfiguration on BGP.
We showed that IGP configuration can create any routing and forward-
ing anomaly for interdomain destinations even if the reconfiguration is
anomaly-free at the IGP level. The interactions between the protocols must
therefore be taken into account during the reconfiguration. Unfortunately,
these interactions complicate even more the reconfiguration problem. To
solve combined IGP and BGP reconfigurations, we extended the reconfigu-
ration framework originally designed for BGP reconfigurations by allowing
multiple IGP and BGP processes to coexist.

Finally, in Chapter 8, we presented a top-down approach to network
management along with a working implementation named NCGuard (Net-
work Configuration safeGuard). Our approach encourages the network ar-
chitect to first specify formally the objectives of his/her network. These
objectives are defined as a set of rules that must be met by the config-
uration. Then, the network architect writes a high-level representation of
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his/her network. NCGuard validates the high-level representation against
the rules defined by the architect and generates the routers configurations
in their respective languages. In addition to drastically reduce the likeli-
hood of misconfigurations, software-based network management allowed
us to completely automate the reconfiguration process including the live
provisioning of device configurations.

Open problems

Research on network reconfiguration is still in its infancy and, as pointed
out in each chapter, there is plenty of room for further research activi-
ties. Regarding IGP reconfigurations, the algorithms of Chapter 3 can be
extended to limit the creation of traffic shifts during the reconfiguration.
While we argued that the reconfiguration process can be performed when
the network is lightly loaded, such periods might not exist (e.g., in the
case of a worldwide content-provider). Also, the ability of migrating sev-
eral routers almost simultaneously can be leveraged to speed up the recon-
figuration process or to use it as a fallback approach when no per-router
ordering exists. Regarding DV to LS reconfigurations (see Chapter 4), a
further work would be to integrate the support of graph separator in the
heuristic. Leveraging graph separator would allow to speed up the recon-
figuration process without sacrificing correctness.

Regarding BGP reconfigurations, we only assumed the initial and the fi-
nal configurations to be free from anomalies. However, in many networks,
common design guidelines are followed. These guidelines could therefore
be taken into account to develop smart “in-place” reconfiguration tech-
niques that do not require to rely on the framework. Regarding the re-
configuration framework, we have chosen to deliberately rely on existing
technologies so as to support incremental deployment. However, relaxing
that constraint would allow the framework to scale better, e.g., by sharing
common entries in the RIB and in the FIB. We also believe that studying
the interactions between routing protocols is an interesting open problem
raised by the thesis.

Finally, another interesting area of research would be to develop a dis-
tributed reconfiguration protocol. With such a protocol, routers would be
aware that a reconfiguration will take place and could react accordingly
(e.g., by cleverly ordering the updates in the control- and in the forwarding-
planes).

Concluding remarks

Overall, this thesis has shown that large and network-wide reconfigura-
tions can be tackled without having to reboot the network or to suffer
from losses. By using safe reconfiguration techniques, network operators
are now in a position to move at anytime to whatever is the best configu-
ration for them according to their needs.
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While we believe our work is an important leap towards more flexible
network management, it is just a first step. In particular, multiple networks
aspects beyond routing rely on configuration and could thus benefit from
tailored reconfiguration techniques, e.g., data-link layer (switches), security
policies (firewalls) or load-balancers.

Finally, we envision network reconfiguration to be a building block of
future network management paradigms, fostering the development and
the deployment of new technologies, protocols and devices without dis-
rupting existing services.
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Routing design in operational networks: A look from the inside. In
ACM SIGCOMM Computer Communication Review, volume 34, pages
27–40. ACM, 2004.

[89] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, Y. Gan-
jali, and C. Diot. Characterization of failures in an operational IP
backbone network. Trans. on Netw., 16:749–762, 2008.

[90] M. Matuska. Metaconfiguration of the computer network. Technical
Report 27/2004, CESNET, 2004.

178



Bibliography

[91] S. Mirtorabi, P. Psenak, A. Lindem, and A. Oswal. OSPF Multi-Area
Adjacency. RFC 5185, 2008.

[92] J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998.

[93] J. Moy, P. Pillay-Esnault, and A. Lindem. Graceful OSPF Restart. RFC
3623 (Proposed Standard), November 2003.

[94] W. Muhlbauer, S. Uhlig, B. Fu, M. Meulle, and O. Maennel. In Search
for an Appropriate Granularity to Model Routing Policies. In Pro-
ceedings of ACM SIGCOMM, 2007.

[95] R. Musunuri and J.A. Cobb. A complete solution for iBGP stability.
In Proc. ICC, 2004.

[96] H. Nguyen, M. Roughan, S. Knight, N. Falkner, O. Maennel, and
R. Bush. How to Build Complex, Large-Scale Emulated Networks. In
TRIDENTCOM, pages 3–18, 2010.

[97] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do internet
services fail, and what can be done about it? In Proceedings of the
4th conference on USENIX Symposium on Internet Technologies and
Systems - Volume 4, USITS’03, pages 1–1, Berkeley, CA, USA, 2003.
USENIX Association.

[98] I. Oprescu, M. Meulle, S. Uhlig, C. Pelsser, O. Maennel, and
P. Owezarski. oBGP: an Overlay for a Scalable iBGP Control Plane.
In Proc. IFIP Networking, 2011.

[99] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142 (Infor-
mational), February 1990.

[100] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE
for LSP Tunnels. RFC 4090 (Proposed Standard), May 2005.

[101] C. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[102] J. H. Park, P. Cheng, S. Amante, D. Kim, D. McPherson, and L. Zhang.
Quantifying i-BGP Convergence inside Large ISPs. Technical report,
UCLA, 2011.

[103] H. Peine and R. Schwarz. A multi-view tool for checking the security
semantics of router configurations. In ACSAC ’03: Proceedings of the
19th Annual Computer Security Applications Conference, page 56,
Washington, DC, USA, 2003. IEEE Computer Society.

[104] C. Pelsser, T. Takeda, E. Oki, and K. Shiomoto. Improving route di-
versity through the design of iBGP topologies. In Proc. ICC, 2008.

[105] C. Pelsser, S. Uhlig, T. Takeda, B. Quoitin, and K. Shiomoto. Providing
scalable NH-diverse iBGP route redistribution to achieve sub-second
switch-over time. Comput. Netw., 54(14):2492–2505, 2010.

179



Bibliography

[106] M. Pizzonia and M. Rimondini. Netkit: easy emulation of complex
networks on inexpensive hardware. In Proceedings of the 4th Inter-
national Conference on Testbeds and research infrastructures for the
development of networks & communities, TridentCom ’08, pages 7:1–
7:10, 2008.

[107] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.
Updated by RFC 1349.

[108] T. Przygienda, N. Shen, and N. Sheth. M-ISIS: Multi Topology (MT)
Routing in Intermediate System to Intermediate Systems (IS-ISs). RFC
5120 (Proposed Standard), February 2008.

[109] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault. Multi-
Topology (MT) Routing in OSPF. RFC 4915 (Proposed Standard), June
2007.

[110] B. Quoitin. BGP-based interdomain traffic engineering. PhD thesis,
Université catholique de Louvain, August 2006.

[111] B. Quoitin and S. Uhlig. Modeling the Routing of an Autonomous
System with C-BGP. IEEE Network, 19(6), November 2005.

[112] R. Rastogi, Y. Breitbart, M. Garofalakis, and A. Kumar. Optimal con-
figuration of OSPF aggregates. IEEE/ACM Trans. Netw., 11(2):181–
194, April 2003.

[113] R. Raszuk, R. Fernando, K. Patel, D. McPherson, and K. Kumaki. Dis-
tribution of diverse BGP paths. Internet Draft, 2011.

[114] A. Rawat and M. A. Shayman. Preventing Persistent Oscillations and
Loops in IBGP Configuration with Route Reflection. Comput. Netw.,
50:3642–3665, December 2006.

[115] S. Raza, Z. Yuanbo, and C.-N. Chuah. Graceful Network State Migra-
tions. Trans. on Netw., 19(4):1097 –1110, 2011.

[116] S. Raza, Y. Zhu, and C.-N. Chuah. Graceful Network Operations. In
Proc. INFOCOM, 2009.

[117] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent Updates
for Software-Defined Networks: Change You Can Believe In! In Proc.
HotNets-X, 2011.

[118] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard), January 2006.

[119] Infonetics Research. The Costs of Enterprise Downtime, North Amer-
ica. White paper, 2004.

[120] Infonetics Research. The Costs of Downtime: North American
Medium Businesses. White paper, 2006.

180



Bibliography

[121] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and R. Bush. 10
Lessons from 10 Years of Measuring and Modeling the Internet’s Au-
tonomous Systems. Selected Areas in Communications, IEEE Journal
on, 29(9):1810 –1821, october 2011.

[122] J.-L. Le Roux, J.-P. Vasseur, and J. Boyle. Requirements for Inter-Area
MPLS Traffic Engineering. RFC 4105 (Informational), June 2005.

[123] A. Shaikh, R. Dube, and A. Varma. Avoiding instability during grace-
ful shutdown of multiple OSPF routers. Trans. on Netw., 14:532–542,
June 2006.

[124] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714 (In-
formational), January 2010.

[125] M. Shand and L. Ginsberg. Restart Signaling for IS-IS. RFC 5306,
2008.

[126] L. Shi, J. Fu, and X. Fu. Loop-Free Forwarding Table Updates with
Minimal Link Overflow. In Proc. ICC, 2009.

[127] J. Siméon, J. Robie, D. Florescu, D. Chamberlin, M. Fernández, and
S. Boag. XQuery 1.0: An XML query language. W3C recommendation,
W3C, January 2007.

[128] J. L. Sobrinho and T. Quelhas. A Theory for the Connectivity Discov-
ered by Routing Protocols. Networking, IEEE/ACM Transactions on,
PP(99):1, 2011.

[129] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with rocketfuel. In Proc. SIGCOMM, 2002.

[130] R. Teixeira, N. Duffield, J. Rexford, and M. Roughan. Traffic matrix
reloaded: Impact of routing changes. In Proc. PAM, 2005.

[131] R. Teixeira and J. Rexford. Managing Routing Disruptions in Internet
Service Provider Networks. IEEE Comm. Mag., 44(3):160 – 165, 2006.

[132] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynamics of hot-
potato routing in ip networks. In Proc. SIGMETRICS, 2004.

[133] T. M. Thomas. OSPF Network Design Solutions, Second Edition. Cisco
Press, 2003.

[134] S. Uhlig and S. Tandel. Quantifying the BGP routes diversity inside a
tier-1 network. In Proc. Networking, 2006.

[135] B. Ujcich, K. Wang, B. Parker, and D. Schmiedt. Thoughts on the Inter-
net architecture from a modern enterprise network outage. In Net-
work Operations and Management Symposium (NOMS), 2012 IEEE,
pages 494 –497, april 2012.

181



Bibliography

[136] V. Valancius and N. Feamster. Multiplexing BGP sessions with BGP-
Mux. In Proc. CoNEXT, 2007.

[137] V. Van den Schrieck, P. Francois, and O. Bonaventure. BGP Add-
Paths : The Scaling/Performance Tradeoffs. IEEE Jour. on Sel. Areas
in Comm., 28(8):1299 – 1307, October 2010.

[138] A. van Lamsweerde. Requirements Engineering: From System Goals
to UML Models to Software Specifications. Wiley, March 2009.

[139] L. Vanbever, G. Pardoen, and O. Bonaventure. Towards validated net-
work configurations with NCGuard. In Proc. INM, pages 1–6, 2008.

[140] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure.
Lossless Migrations of Link-State IGPs. IEEE/ACM Transactions on
Networking, 2012. (To appear).

[141] J. Vasseur, M. Pickavet, and P. Demeester. Network Recovery: Protec-
tion and Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[142] C. Villamizar, R. Chandra, and R. Govindan. BGP Route Flap Damp-
ing. RFC 2439 (Proposed Standard), November 1998.

[143] S. Vissicchio. Governing Routing in the Evolving Internet. PhD. The-
sis, 2012. http://www.dia.uniroma3.it/~compunet/www/docs/
vissicchio-thesis-text.pdf.

[144] S. Vissicchio, L. Cittadini, M. Pizzonia, L. Vergantini, V. Mezzapesa,
and M. L. Papagni. Beyond the Best: Real-Time Non-Invasive Collec-
tion of BGP Messages. In Proc. INM/WREN 2010, 2010.

[145] S. Vissicchio, L. Cittadini, L. Vanbever, and O. Bonaventure. iBGP
Deceptions: More Sessions, Fewer Routes. In Proc. INFOCOM, 2012.

[146] A. Voellmy and P. Hudak. Nettle: A Language for Configuring Routing
Networks. In Walid Taha, editor, Domain-Specific Languages, volume
5658 of Lecture Notes in Computer Science, pages 211–235. Springer
Berlin / Heidelberg, 2009.

[147] M. Vutukuru, P. Valiant, S. Kopparty, and H. Balakrishnan. How to
Construct a Correct and Scalable iBGP Configuration. In Proc. INFO-
COM, 2006.

[148] P. Walmsley. XQuery. O’Reilly Media, Inc., 2007.

[149] D. Walton, A. Retana, E. Chen, and J. Scudder. Advertisement of
multiple paths in BGP. Internet Draft, July 2011.

[150] T. Wan and P. C. van Oorschot. Analysis of BGP prefix origins during
Google’s may 2005 outage. In Proc. IPDPS. IEEE Computer Society,
2006.

182

http://www.dia.uniroma3.it/~compunet/www/docs/vissicchio-thesis-text.pdf
http://www.dia.uniroma3.it/~compunet/www/docs/vissicchio-thesis-text.pdf


Bibliography

[151] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford.
Virtual routers on the move: live router migration as a network-
management primitive. In Proc. SIGCOMM, 2008.

[152] D. Wilcox, K. Chang, and V. Grover. Valuation of mergers and acquisi-
tions in the telecommunications industry: a study on diversification
and firm size. Information & Management, 38(7):459 – 471, 2001.

[153] Y. Yemini, A.V. Konstantinou, and D. Florissi. NESTOR: an architec-
ture for network self-management and organization. Selected Areas
in Communications, IEEE Journal on, 18(5):758 –766, may 2000.

[154] J. Yu. Scalable Routing Design Principles. RFC 2791 (Informational),
July 2000.

[155] A. Zaheer, L. Johnson, M. Abe, and S. Faraz. Troubleshooting IP Rout-
ing Protocols. Cisco Press, 1 edition, 5 2002.

[156] R. Zhang and M. Bartell. BGP Design and Implementation. Cisco
Press, 2003.

183





Webography

[157] BGP Routing Table Analysis Reports. http://bgp.potaroo.net/.

[158] Cisco 7200 Simulator. http://www.ipflow.utc.fr/index.php/
Cisco_7200_Simulator.

[159] Configuring Virtual Routing and Forwarding. Official Cisco Docu-
mentation, Cisco Systems, Inc. www.cisco.com.

[160] Configuring VRF-lite. Official Cisco Documentation, Cisco Systems,
Inc. www.cisco.com.

[161] Gurobi. http://www.gurobi.com/.

[162] IP Routing Protocol-Independent Commands. Cisco IOS IP Command
Reference, Volume 2 of 3: Routing Protocols, 2006. www.cisco.com.

[163] OSPF -vs- ISIS. http://www.merit.edu/mail.archives/nanog/
2005-06/msg00406.html. NANOG thread, 2005.

[164] World Internet Usage and Population Statistics. http://www.
internetworldstats.com/stats.htm.

[165] Results of the GEANT OSPF to ISIS Migration. GEANT IPv6 Task Force
Meeting, 2003. http://www.geant.net/eumedconnect/upload/
pdf/GEANT-OSPF-to-ISIS-Migration.pdf.

[166] As the Value of Enterprise Networks Escalates, So Does the
Need for Configuration Management. The Yankee Group.
White paper Enterprise Computing Networking, 2004.
http://www.cs.princeton.edu/courses/archive/spring12/
cos461/papers/Yankee04.pdf.

[167] AT&T Ends Bid To Add Network Capacity Through T-Mobile USA
Purchase, 2011. http://www.att.com/gen/press-room?pid=
22146&cdvn=news&newsarticleid=33560&mapcode=corporate%
7Cwireless-networks-general.

[168] GEANT Backbone Topology, 2011. http://www.geant.net.

[169] Seamless Network-Wide IGP Migrations, 2011. http://inl.info.
ucl.ac.be/softwares/seamless-network-migration.

185

http://bgp.potaroo.net/
http://www.ipflow.utc.fr/index.php/Cisco_7200_Simulator
http://www.ipflow.utc.fr/index.php/Cisco_7200_Simulator
www.cisco.com
www.cisco.com
http://www.gurobi.com/
www.cisco.com
http://www.merit.edu/mail.archives/nanog/2005-06/msg00406.html
http://www.merit.edu/mail.archives/nanog/2005-06/msg00406.html
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.geant.net/eumedconnect/upload/pdf/GEANT-OSPF-to-ISIS-Migration.pdf
http://www.geant.net/eumedconnect/upload/pdf/GEANT-OSPF-to-ISIS-Migration.pdf
http://www.cs.princeton.edu/courses/archive/spring12/cos461/papers/Yankee04.pdf
http://www.cs.princeton.edu/courses/archive/spring12/cos461/papers/Yankee04.pdf
http://www.att.com/gen/press-room?pid=22146&cdvn=news&newsarticleid=33560&mapcode=corporate%7Cwireless-networks-general
http://www.att.com/gen/press-room?pid=22146&cdvn=news&newsarticleid=33560&mapcode=corporate%7Cwireless-networks-general
http://www.att.com/gen/press-room?pid=22146&cdvn=news&newsarticleid=33560&mapcode=corporate%7Cwireless-networks-general
http://www.geant.net
http://inl.info.ucl.ac.be/softwares/seamless-network-migration
http://inl.info.ucl.ac.be/softwares/seamless-network-migration


Webography

[170] Smart Management for Robust Carrier Network Health and Reduced
TCO! NANOG54 Panel, 2012. http://www.nanog.org/meetings/
nanog54/abstracts.php?pt=MTkwMyZuYW5vZzU0&nm=nanog54.

[171] A. Barnard. Internal glitches shut down Boston hospital for four
days. Boston Globe, 2002.

[172] N. Bargisen and M. Lyngbol. Integrating Networks. NANOG41
Presentation, 2007. http://www.nanog.org/meetings/nanog41/
presentations/integrating-network-TDC.pdf.

[173] M. Brown, C. Hepner, and A. Popescu. Internet captivity and de-
peering. NANOG45 Presentation, 2009. http://www.nanog.org/
meetings/nanog45/presentations/Tuesday/Brown_Internet_
Peering_N45.pdf.

[174] M. A. Brown. Renesys: Pakistan hijacks YouTube, 2008.
http://www.renesys.com/blog/2008/02/pakistan_hijacks_
youtube_1.shtml.

[175] B. Chapman. Automating Network Configuration. NANOG49
Presentation, 2010. http://www.nanog.org/meetings/nanog49/
presentations/Sunday/Automating_Configuration_n49.pdf.

[176] J. Cowie. Renesys: China’s 18-Minute Mystery, 2010. http://
www.renesys.com/blog/2010/11/chinas-18-minute-mystery.
shtml.

[177] D. Deitrich. Bogons and Bogon Filtering. NANOG33 presen-
tation, Feb 2005. http://www.nanog.org/meetings/nanog33/
presentations/deitrich.pdf.

[178] Equinix Direct. http://www.equinix.com/solutions/
regional-solutions/americas/equinix-direct/.

[179] V. Gill and J. Mitchell. AOL Backbone OSPF-ISIS Migration. NANOG29
Presentation, 2003. http://www.nanog.org/meetings/nanog29/
presentations/gill.pdf.

[180] V. Gill and D. Schmidt. Automated configuration management.
NANOG55 Presentation, 2012. http://www.nanog.org/meetings/
nanog55/presentations/Tuesday/Gill_Schmidt.pdf.

[181] V. Gill and M. Shields. Programatic networks - autogen. NANOG44
Presentation, 2008. http://www.nanog.org/meetings/nanog44/
presentations/Monday/Gill_programatic_N44.pdf.

[182] O. Maennel, A. Feldmann, C. Reiser, R. Volk, and H. Böhm. AS-Wide
Inter-Domain Routing Policies: Design and Realization. NANOG34
Presentation, 2005. http://www.nanog.org/meetings/nanog34/
presentations/feldman.pdf.

186

http://www.nanog.org/meetings/nanog54/abstracts.php?pt=MTkwMyZuYW5vZzU0&nm=nanog54
http://www.nanog.org/meetings/nanog54/abstracts.php?pt=MTkwMyZuYW5vZzU0&nm=nanog54
http://www.nanog.org/meetings/nanog41/presentations/integrating-network-TDC.pdf
http://www.nanog.org/meetings/nanog41/presentations/integrating-network-TDC.pdf
http://www.nanog.org/meetings/nanog45/presentations/Tuesday/Brown_Internet_Peering_N45.pdf
http://www.nanog.org/meetings/nanog45/presentations/Tuesday/Brown_Internet_Peering_N45.pdf
http://www.nanog.org/meetings/nanog45/presentations/Tuesday/Brown_Internet_Peering_N45.pdf
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml
http://www.nanog.org/meetings/nanog49/presentations/Sunday/Automating_Configuration_n49.pdf
http://www.nanog.org/meetings/nanog49/presentations/Sunday/Automating_Configuration_n49.pdf
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml
http://www.nanog.org/meetings/nanog33/presentations/deitrich.pdf
http://www.nanog.org/meetings/nanog33/presentations/deitrich.pdf
http://www.equinix.com/solutions/regional-solutions/americas/equinix-direct/
http://www.equinix.com/solutions/regional-solutions/americas/equinix-direct/
http://www.nanog.org/meetings/nanog29/presentations/gill.pdf
http://www.nanog.org/meetings/nanog29/presentations/gill.pdf
http://www.nanog.org/meetings/nanog55/presentations/Tuesday/Gill_Schmidt.pdf
http://www.nanog.org/meetings/nanog55/presentations/Tuesday/Gill_Schmidt.pdf
http://www.nanog.org/meetings/nanog44/presentations/Monday/Gill_programatic_N44.pdf
http://www.nanog.org/meetings/nanog44/presentations/Monday/Gill_programatic_N44.pdf
http://www.nanog.org/meetings/nanog34/presentations/feldman.pdf
http://www.nanog.org/meetings/nanog34/presentations/feldman.pdf


Webography

[183] J. Moran. Smart Network Management. AOL’s Take. NANOG54
Presentation, 2012. http://www.nanog.org/meetings/nanog54/
presentations/Tuesday/Moran.pdf.

[184] Juniper Network. What’s Behind Network Downtime? White pa-
per, http://www.juniper.net/solutions/literature/white_
papers/200249.pdf, 2008.

[185] Juniper Networks. Default Route Preference Values. http:
//www.juniper.net/techpubs/software/junos/junos94/
swconfig-routing/default-route-preference-values.html.

[186] Juniper Networks. Multi-topology routing. White paper, 2010.
http://www.juniper.net/us/en/local/pdf/whitepapers/
2000308-en.pdf.

[187] NetworkWorld. AT&T says its needs T-Mobile spec-
trum. http://www.networkworld.com/news/2011/
060911-att-says-its-needs-t-mobile.html.

[188] NetworkWorld. Level 3’s Global Crossing buyout could save carriers,
though challenges remain. http://www.networkworld.com/news/
2011/041111-level3-global-crossing.html.

[189] NetYCE. Whitepaper: Enabling Network Services Provision-
ing. http://www.netyce.com/images/downloads/whitepaper%
20yce%20-%20v1_final.pdf.

[190] University of Oregon. Route Views Project. http://www.
routeviews.org/.

[191] I. Pepelnjak. Changing the Routing Protocol in Your Network, 2007.
http://stack.nil.com/ipcorner/ChangingRoutingProtocol/.

[192] J. Qiu. SimBGP: Python Event-driven BGP simulator. http://www.
bgpvista.com/simbgp.php.

[193] R. Raszuk. To Add-Paths or not to Add-Paths. NANOG48
Presentation, 2010. http://www.nanog.org/meetings/nanog48/
presentations/Tuesday/Raszuk_To_AddPaths_N48.pdf.

[194] RIPE Routing Information Service (RIS). http://www.ripe.net/ris.

[195] S. Chapman. Computer outage leaves hospital in
chaos. Computer World UK, 2008. http://www.
computerworlduk.com/news/it-business/12162/
computer-outage-leaves-hospital-in-chaos/.

[196] F. Shamim and K. Raza. Which routing protocol ? Compar-
ison between OSPF ISIS. NANOG49 Presentation. http:
//www.nanog.org/meetings/nanog49/presentations/Sunday/
Shamim_Which_Routing_N49.pdf.

187

http://www.nanog.org/meetings/nanog54/presentations/Tuesday/Moran.pdf
http://www.nanog.org/meetings/nanog54/presentations/Tuesday/Moran.pdf
http://www.juniper.net/solutions/literature/white_papers/200249.pdf
http://www.juniper.net/solutions/literature/white_papers/200249.pdf
http://www.juniper.net/techpubs/software/junos/junos94/swconfig-routing/default-route-preference-values.html
http://www.juniper.net/techpubs/software/junos/junos94/swconfig-routing/default-route-preference-values.html
http://www.juniper.net/techpubs/software/junos/junos94/swconfig-routing/default-route-preference-values.html
http://www.juniper.net/us/en/local/pdf/whitepapers/2000308-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000308-en.pdf
http://www.networkworld.com/news/2011/060911-att-says-its-needs-t-mobile.html
http://www.networkworld.com/news/2011/060911-att-says-its-needs-t-mobile.html
http://www.networkworld.com/news/2011/041111-level3-global-crossing.html
http://www.networkworld.com/news/2011/041111-level3-global-crossing.html
http://www.netyce.com/images/downloads/whitepaper%20yce%20-%20v1_final.pdf
http://www.netyce.com/images/downloads/whitepaper%20yce%20-%20v1_final.pdf
http://www.routeviews.org/
http://www.routeviews.org/
http://stack.nil.com/ipcorner/ChangingRoutingProtocol/
http://www.bgpvista.com/simbgp.php
http://www.bgpvista.com/simbgp.php
http://www.nanog.org/meetings/nanog48/presentations/Tuesday/Raszuk_To_AddPaths_N48.pdf
http://www.nanog.org/meetings/nanog48/presentations/Tuesday/Raszuk_To_AddPaths_N48.pdf
http://www.ripe.net/ris
http://www.computerworlduk.com/news/it-business/12162/computer-outage-leaves-hospital-in-chaos/
http://www.computerworlduk.com/news/it-business/12162/computer-outage-leaves-hospital-in-chaos/
http://www.computerworlduk.com/news/it-business/12162/computer-outage-leaves-hospital-in-chaos/
http://www.nanog.org/meetings/nanog49/presentations/Sunday/Shamim_Which_Routing_N49.pdf
http://www.nanog.org/meetings/nanog49/presentations/Sunday/Shamim_Which_Routing_N49.pdf
http://www.nanog.org/meetings/nanog49/presentations/Sunday/Shamim_Which_Routing_N49.pdf


Webography

[197] W. F. Slater. The Internet Outage and Attacks of October 2002.
Whitepaper. Chicago Chapter of the Internet Society, 2002. http:
//www.isoc-chicago.org/internetoutage.pdf.

[198] P. Smith. BGP Techniques for Service Providers. NANOG50
Presentation, 2010. http://www.nanog.org/meetings/
nanog50/presentations/Sunday/NANOG50.Talk33.
NANOG50-BGP-Techniques.pdf.

[199] Sprint. Standard Maintenance Windows. https://www.sprint.
net/index.php?p=support_maint_window.

[200] Cisco Systems. What Is Administrative Distance? http:
//www.cisco.com/en/US/tech/tk365/technologies_tech_
note09186a0080094195.shtml.

[201] Cisco Systems. Multi-Topology Routing Configuration Guide, Cisco
IOS Release 15.1S, 2011. http://www.cisco.com/en/US/docs/
ios-xml/ios/mtr/configuration/15-1s/mtr-15-1s-book.
pdf.

[202] P. Templin. Small Network Operator - Lessons Learned. NANOG45
Presentation, 2009. http://www.nanog.org/meetings/nanog45/
presentations/Tuesday/Templin_lessonslearned_N45.pdf.

[203] The Internet2 Observatory Data Collections. http://www.
internet2.edu/observatory/archive/data-collections.
html.

[204] NANOG thread. IPv6: IS-IS or OSPFv3. http://mailman.nanog.
org/pipermail/nanog/2008-December/006194.html, 2008.

[205] NANOG thread. OSPF vs IS-IS, 2011. http://mailman.nanog.org/
pipermail/nanog/2011-August/039016.html.

[206] T. Underwood. Renesys: Internet-Wide Catastrophe-Last Year,
2005. http://www.renesys.com/blog/2005/12/internetwide_
nearcatastrophela.shtml.

[207] T. Underwood. Renesys: Con-Ed Steals the ’Net, 2006. http://www.
renesys.com/blog/2006/01/coned_steals_the_net.shtml.

[208] I. van Beijnum. Large ATT outage, 2002. http://www.bgpexpert.
com/archive2002q4.php.

[209] L. Vanbever and G. Pardoen. NCGuard,
2008. http://inl.info.ucl.ac.be/softwares/
ncguard-network-configuration-safeguard.

[210] E. Zmijewski. Renesys: Reckless Driving on the Inter-
net, 2009. http://www.renesys.com/blog/2009/02/
the-flap-heard-around-the-worl.shtml.

188

http://www.isoc-chicago.org/internetoutage.pdf
http://www.isoc-chicago.org/internetoutage.pdf
http://www.nanog.org/meetings/nanog50/presentations/Sunday/NANOG50.Talk33.NANOG50-BGP-Techniques.pdf
http://www.nanog.org/meetings/nanog50/presentations/Sunday/NANOG50.Talk33.NANOG50-BGP-Techniques.pdf
http://www.nanog.org/meetings/nanog50/presentations/Sunday/NANOG50.Talk33.NANOG50-BGP-Techniques.pdf
https://www.sprint.net/index.php?p=support_maint_window
https://www.sprint.net/index.php?p=support_maint_window
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094195.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094195.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080094195.shtml
http://www.cisco.com/en/US/docs/ios-xml/ios/mtr/configuration/15-1s/mtr-15-1s-book.pdf
http://www.cisco.com/en/US/docs/ios-xml/ios/mtr/configuration/15-1s/mtr-15-1s-book.pdf
http://www.cisco.com/en/US/docs/ios-xml/ios/mtr/configuration/15-1s/mtr-15-1s-book.pdf
http://www.nanog.org/meetings/nanog45/presentations/Tuesday/Templin_lessonslearned_N45.pdf
http://www.nanog.org/meetings/nanog45/presentations/Tuesday/Templin_lessonslearned_N45.pdf
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html
http://www.internet2.edu/observatory/archive/data-collections.html
http://mailman.nanog.org/pipermail/nanog/2008-December/006194.html
http://mailman.nanog.org/pipermail/nanog/2008-December/006194.html
http://mailman.nanog.org/pipermail/nanog/2011-August/039016.html
http://mailman.nanog.org/pipermail/nanog/2011-August/039016.html
http://www.renesys.com/blog/2005/12/internetwide_nearcatastrophela.shtml
http://www.renesys.com/blog/2005/12/internetwide_nearcatastrophela.shtml
http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml
http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml
http://www.bgpexpert.com/archive2002q4.php
http://www.bgpexpert.com/archive2002q4.php
http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard
http://inl.info.ucl.ac.be/softwares/ncguard-network-configuration-safeguard
http://www.renesys.com/blog/2009/02/the-flap-heard-around-the-worl.shtml
http://www.renesys.com/blog/2009/02/the-flap-heard-around-the-worl.shtml

	Preamble
	Bibliographic notes
	Acknowledgments
	Table of contents
	I Background
	Internet routing
	IP router
	Intradomain routing
	Interdomain routing


	II Reconfiguring intradomain routing protocols
	A general characterization of IGP reconfiguration challenges
	Introduction
	An abstract model for IGP reconfiguration
	A general classification of IGP reconfigurations anomalies
	Conclusions

	Lossless reconfiguration of link-state IGPs
	Introduction
	Link-state Interior Gateway Protocols
	The IGP migration problem
	Methodology
	Loop-free migrations
	The provisioning system
	Evaluation
	Dealing with network failures
	Design guidelines
	Merging link-state IGPs
	Related work
	Conclusions

	Towards disruption-free distance-vector to link-state IGP reconfiguration
	Introduction
	Quantifying reconfiguration problems
	Limiting routing anomalies
	Conclusions


	III Reconfiguring interdomain routing protocols
	iBGP configuration correctness
	Introduction
	A model for iBGP configuration
	Known correctness properties and sufficient conditions
	iBGP deceptions: more sessions, fewer routes
	Unveiling iBGP dissemination correctness
	Guaranteeing dissemination correctness
	Related work
	Conclusions

	Lossless BGP reconfiguration with BGP Ships-In-The-Night
	Introduction
	Seamless BGP reconfigurations
	An algorithmic approach is not viable
	A general solution for BGP reconfigurations
	Evaluation
	Related work
	Conclusions


	IV Combining intradomain and interdomain routing protocols reconfiguration
	Impact of IGP reconfiguration on BGP
	Introduction
	Problem statement
	Quantifying the impact of IGP reconfigurations on BGP
	BGP disruptions due to SITN IGP reconfiguration techniques
	BGP disruptions due to other IGP reconfiguration techniques
	Problem complexity
	Towards BGP-aware IGP reconfigurations
	Conclusions


	V Practical network reconfigurations
	Provisioning validated network configurations with NCGuard
	Introduction
	NCGuard design
	NCGuard high-level representation
	NCGuard validation engine
	NCGuard generation engine
	Automating network reconfiguration
	Related Work
	Conclusions


	Conclusions and open problems
	Bibliography
	Webography

