

Voice-activated applications and Multipath TCP: A good match?

Viet-Hoang Tran, Quentin De Coninck, Olivier Bonaventure *UCLouvain, Belgium*

Hajime Tazaki

IIJ Research Lab, Japan

Voice-assistants in thriving

Apple Siri 2011

Google Now 2012

Microsoft Cortana 2013

Amazon Alexa 2014

Google Assistant 2016

Use cases

Cloud-based voice recognition

Network requirements

- High availability
- Low latency
- Energy awareness

- -> TCP is limited to a single path/interface
- -> MPTCP has been deployed for Siri on iOS since 2013

MPTCP for voice-activation traffic

Questions:

- What are the benefits of using MPTCP for voiceactivated traffic?
- What are the factors that impact the performance?

MONROE platform

Platform for measurements in operational MBB networks

Coverage in Norway, Sweden, Spain, Italy

- Stationary nodes
- Mobile nodes: on buses, trucks and trains

Connectivity

- 2 cellular interfaces
- or 1 cellular and 1 WiFi. But not many have accessible WiFis.

Measurement Design

Technical challenge

Docker Container

simulated voice app

Host Linux OS

De-facto MPTCP implementation is in kernel space

But: MONROE nodes require the experiments to be run inside Docker containers – userland!

MONROE Node

Solution: Linux Kernel Library

LKL packs kernel networking stack in a userland library

Authors: Octavian Purdila Hajime Tazaki

https://github.com/lkl/linux

MPTCP stack in user-space

Docker Container

simulated voice app

LKL-MPTCP

- We merged LKL with MPTCP stack [1]
- The LKL-MPTCP library is put inside the Docker image
- Simulated app uses the transport stack of this library instead of the host

Host Linux OS

[1]

https://github.com/hoang-tranviet/mptcp/tree/lkl 4.13-mptcp v0.93 API

MONROE Node

Set-up & Configuration

- 28 stationary nodes
- 44 mobile nodes
- Each node has 2 cellular interfaces
- Server in Belgium (another in Japan, not presented here)
- For each test: 5 runs from every node to server

Siri traffic pattern & Emulation

RESULTS TCP VS. MPTCP

Stationary Nodes

MPTCP is better

Delay vs. Signal strength (Stationary Nodes)

MPTCP reduces delay by switching path when default interface has bad signal

Mobile Nodes

Mobile Nodes

RESULTS DIFFERENT MPTCP CONFIGURATIONS

Multipath TCP: packet scheduling

Default scheduler:

Select the subflow having Lowest RTT

• Server-heuristic scheduler[1]:

Select the subflow on which server received the latest segment from client

[1] Quentin De Coninck and Olivier Bonaventure. Tuning Multipath TCP for Interactive Applications on Smartphones. IFIP Networking 2018

Siri servers send Intermediate Response (HTTP Continue) regularly.

What if there is no Intermediate Response (No-IR)?

Server

Client

Stationary Nodes

No clear difference between default scheduler and server scheduler

Stationary Nodes

Mobile Nodes

Server scheduler gives lowest delay, esp. the tail

Conclusion

- LKL enables experiments requiring customized network stack without changing kernel
- MPTCP generally gives lower delays
- Server-heuristic scheduler is a bit better than default scheduler
- Intermediate Responses play the important role of active probe for the server

Any Question

LKL-MPTCP stack:

https://github.com/hoang-tranviet/mptcp/tree/lkl_4.13-mptcp_v0.93_API

Simulated program: https://github.com/hoang-tranviet/iperf-siri

Client Docker script: https://github.com/hoang-tranviet/lkl-docker-monroe

- Dataset: https://www.info.ucl.ac.be/~tranviet/monroe-voice-dataset.zip
- Contact: hoang.tran@uclouvain.be

Japan server – mobile nodes

Japan server – mobile nodes

Japan server - stationary nodes

Japan server - stationary nodes

