
Evolving the Internet with Connection Acrobatics

Catalin Nicutar‡ Christoph Paasch∗ Marcelo Bagnulo† Costin Raiciu‡

‡ U. Politehnica of Bucharest ∗ U. catholique de Louvain † U. Carlos III de Madrid

ABSTRACT
The textbook Internet architecture revolves around the end-
to-end principle with smart endpoints and a dumb network,
while the actual Internet is far messier, with middleboxes
pervasively deployed and affecting end-to-end traffic in many
ways. Today’s Internet is fragile as most of the communi-
cations are affected by transparent stateful middleboxes de-
ployed along the path. In this paper we propose an evolution
of the Internet architecture to make the middleboxes an ex-
plicit part of the Internet communications. We do so using
the new Multipath TCP (MPTCP) protocol recently stan-
dardized at the Internet Engineering Task Force. MPTCP
allows us to change the endpoints of the connection and by
extension to explicitly add middleboxes in the middle of an
ongoing communication. We show that the proposed solu-
tion accommodates nicely several widely used use cases in-
cluding load balancing, DDoS filtering and anycast services.
We implement selected use cases as a proof of concept.

Categories and Subject Descriptors
C.2.1[Computer-Comms Nets]: Network Architecture

1. INTRODUCTION
Middleboxes form an integral part of the Internet today

: operators, major content providers and even certain ap-
plications use middleboxes to bypass the shortcomings of
the Internet architecture including security, load balancing,
in-bound connectivity behind NATs, and so forth. However,
middleboxes also make the Internet brittle, difficult to debug
and evolve. There is wealth of research to overcome these
issues by properly including middleboxes in the Internet ar-
chitecture, e.g. [20, 8]. However, these solutions depend on
changes to the IP layer or upgrades to all applications, none
of which seem feasible in the near future.

In this paper we ask the pragmatic question of how to
incorporate middleboxes into the Internet architecture in
a deployable way. We survey existing proposals and find
that deployability severely restricts possible changes. That
is why we restrict ourselves to a) making operator-deployed
middleboxes explicit in the data path (as opposed to trans-
parent), and b) making provider middleboxes’ flow handling
more flexible.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMiddlebox’13, December 9, 2013, Santa Barbara, CA, USA.
Copyright 2013 ACM 978-1-4503-2574-5/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535828.2535834 .

To support these goals, we leverage the newly standard-
ized and recently deployed Multipath TCP protocol
(MPTCP) [7]. To achieve multipath operation, MPTCP im-
plements two key constructs: a per-host opaque connection
identifier (not related to IP addresses), and a way to add new
addresses to existing connections. These two constructs en-
able connection acrobatics: the ability to explicitly redi-
rect connections via a waypoint, and the ability to migrate
the endpoint of a connection. We show that connection acro-
batics are sufficient to achieve both our goals. Further, we
propose the “sticky bit”, an optimization to MPTCP that
can reduce the redirection overheads for short connections.

Flexibility has a cost: attackers can abuse these same
mechanisms to easily hijack connections and move them off-
path, especially when the sticky-bit is used. We discuss these
vulnerabilities and potential solutions to mitigate them. Fi-
nally we explore and implement a number of useful scenarios
that are enabled by connection acrobatics in section 6.

MPTCP has been recently implemented and deployed by
Apple (though only Siri is using it at this point). This gives
us confidence that the acrobatics described here can be de-
ployed in practice. Further, we believe our minor updates
to MPTCP should also be easily deployable.

2. PROBLEM STATEMENT
Most of today’s connections pass via two middlebox do-

mains. First, “eyeball” networks use routing (e.g. OSPF)
and tunneling (MPLS) techniques to steer customer traf-
fic to middleboxes such as firewalls, NATs and performance
enhancing proxies. Unfortunately, routing techniques are
prone to misconfiguration and do not scale well. Addi-
tionally, such middleboxes are transparent to the end-hosts
which makes it difficult to debug connectivity problems and
reason about end-to-end behavior of protocol extensions [9].

Content-providers use DNS to attract customer connec-
tions to front-end servers that terminate the connections,
authenticate the customers and load balance each request
to the best server. This setup is inflexible: the front-end
does not need to be on the data path after client authenti-
cation; a better front-end may exist if the client moves.

The research literature has proposed many ways to incor-
porate middleboxes into the Internet architecture including
Delegation Oriented Architecture (DOA) [20] and NUTSS[8].
The key findings are that:

1. Explicit connection signaling is needed to negotiate
connectivity through firewalls; this ensures policy com-
pliance and network evolvability as it decouples the
control traffic needed to setup the connection from the
data traffic (which could use a different protocol).

2. Middleboxes should only process traffic explicitly ad-
dressed to them. Having explicit addressing would re-

(a) A canonical IP Mobility Solution (b) Migrating Connections (c) Connection redirection

Figure 1: Connection acrobatics

duce routing complexity and makes it easier to debug
the network.

Despite their appeal, none of the existing solutions has
been deployed. DOA requires changes to IP, and NUTSS
requires changes to the socket API which implies all apps
must be changed to take advantage.

Our focus is to implement these principles in a deployable
system which has to meet the following two goals: a) ap-
plications should not need changing to take advantage of it,
and b) it has to be compatible with the current network.

A fundamental problem of the current Internet is that the
network does not know with certainty what application traf-
fic it is forwarding. Ideally, port numbers should identify the
end-host application but the trend of consolidating all traffic
on few ports (in particular port 80) reduces accuracy drasti-
cally. However such knowledge is needed to decide whether
traffic should be allowed, or to optimize the traffic, for in-
stance by routing it via application-specific middleboxes.

Ideally, applications should explicitly signal to middle-
boxes what they want to do, but this is impossible with-
out changing applications. Instead, so we have to make due
with the status quo: networks have begun to rely on deep
packet inspection boxes that use various heuristics to cate-
gorize traffic. In many cases, it is impossible to know during
the three-way handshake what app a connection is serving:
only after the DPI box sees enough traffic it can accurately
identify the application and steer the traffic to the appro-
priate middlebox. Today redirection is done transparently,
without the end-host knowing, inflating the round-trip time
and creating mysterious failure modes. Instead, we would
like the connection to be explicitly redirected via the mid-
dlebox, with the end-hosts’ knowledge.

Pragmatically, we need a way to move the middle of
a connection via a specified waypoint (i.e. a middlebox).
This scenario is shown in Figure 1c, where the transparent
box T redirects the established connection C-S via M, ef-
fectively transforming it in two connections: C-M and M-S.
To implement the redirection, box T must change the data
plane by re-routing the flow, and will also need to control
middlebox M to instruct it to proxy the new flow. Note that
the difficulty is in changing the data plane, as the control
plane operations in this case are rather simple: as long as
M trusts T, SNMP, OpenFlow or any other network con-
figuration protocol can be used to configure the forwarding
state at M. Once M sees the traffic, it should be possible to
reroute it via another waypoint if it wishes, and so on.

On the server side, DNS will direct the client’s traffic to a
nearby datacenter where a front-end proxy that will termi-
nate the mobile connection (and maybe TLS) and authenti-

cate the client before passing the request to the real server.
There are two issues with this setup: first, the front-end does
not need be on the data path after the authentication, and
keeping it there increases its load and general complexity.
Second when a front-end needs to be taken offline (e.g. for
maintenance) all the connections it serves will simply die.

We observe that on the server side the limitations come
from TCP’s reliance on a fixed set of addresses: a connection
cannot be efficiently migrated to a different front-end unless
in the same layer 2 domain. Thus, a solution must move
the endpoint of a TCP connection to allow better load
balancing and traffic optimization.

3. SOLUTION SPACE
We have found that explicit signaling cannot be obtained

in a deployable way—it requires application changes. Luck-
ily, the goal of making middleboxes explicit should be achiev-
able as long as we can move both the middle and the “ends”
of a connection.

We start by observing that any mobility solution can also
easily support connection endpoint migration, as long as it
is implemented at layer 4 or below. This is quite surprising,
as mobility solutions were only built to cope with the devices
changing their point of attachment to the network.

To understand why mobility can help, consider a canonical
mobility solution as shown in Figure 1a that offers support
for a mobile node to continue connectivity despite changing
its network attachment point from A1 to A2 in the figure.
Endpoint migration is easy to implement using this mecha-
nism as shown in Figure 1b:

1. Transfer state from the origin server (front-end 1 in
the figure) to the destination server (front-end 2) in-
cluding TCP connection state (sequence numbers, IP
addresses, ports, send and receive buffers, etc) and mo-
bility mechanism state (e.g. keys used for the associa-
tion with the remote node).

2. Pretend that the Front-end Server 1 has changed at-
tachment point from A1 to A2, by using the mobility
mechanism. The exact details depend on the mobility
mechanism used.

Moving the middle of a connection (as shown in Figure 1c)
can also be implemented on top of mobility. The middlebox
must trigger two mobility events: to the client, it will ap-
pear that the server has moved to middlebox M, while to the
server the client will appear to move to M. In effect, T has
to fake two mobility events; of course, the protocol mecha-
nisms depend on the mobility solution used, but it should
be feasible to do this with any mobility mechanism.

The one caveat for redirection is that the middlebox T
may not know the keys used by the client and the server to
secure IP mobility. In this case, T has to ask for help from
one endpoint, asking it to fake a mobility event (e.g. client
moves to M). We discuss a few concrete security issues in
more detail in section 5.

3.1 Choosing a mobility mechanism
Mobile IP [15], Locator-ID Separation Protocol (LISP)

[5], Shim6 [12] or Host Identity Protocol (HIP) [11] are only
a few of the technologies that have been devised to support
mobility, so there is a wealth to choose from. More recently,
Serval [13] proposes to use service names instead of IP ad-
dresses in a bid to optimize the Internet for serving content;
Serval also allows connection migration and mobility by de-
sign. All these solutions function (mostly) transparently to
the transport layer. The upshot is they support redirections
for all traffic, not just TCP; the bad part is that, at least
for traditional mobility mechanisms, redirections are done
in bulk, and not for specific connections, but this should be
possible to fix. Even worse, IP-level solutions are oblivious
to the transport protocol which can cause TCP performance
to drop significantly when mobility events are frequent [17].
Crucially, none of these solutions is deployed—or showing
signs of imminent deployment.

There are many proposals that offer mobility at trans-
port level, including SCTP, Migratory-TCP [6] and TCP
Migrate [18]. All of them support mobility by adding a per-
connection unique identifier independent of the endpoints’
IP addresses; this identifier allows the connection to resume
when the address changes. SCTP is a mature and feature-
rich protocol, yet it has not seen deployment because mid-
dleboxes (e.g. NATs) block it. The TCP-based solutions
should be deployable, yet they haven’t seen adoption partly
because of lack of maturity, and partly because of wrong
timing—when they were proposed, mobility problems were
infrequent in practice. Surprisingly, the newly standardized
and deployed MPTCP protocol seems the best bet for an
easily deployable solution.

4. ACROBATICS WITH MULTIPATH TCP
Multipath TCP’s [7] is an extension of TCP that allows it

to efficiently utilize multiple network paths within the same
transport connection in a way that is transparent to appli-
cations and the network [16]. Because of this requirement,
MPTCP allows endpoints to add new addresses to existing
connections: every MPTCP connection is given a unique
identifier by each endpoint upon creation, which is a hash of
a key chosen by that endpoint. The keys are carried in the
initial handshake in new TCP-options.

When a new subflow is being added to an existing connec-
tion, the MP JOIN option in the SYN informs the remote
end that this is a part of an existing connection, rather then
a new one; the option is cryptographically signed using a
concatenation of the connection keys. The aim of these
mechanisms it to ensure that only the endpoints can add
new subflows; however boxes that are on-path for the initial
handshake know the keys and can add subflows at will.

The MPTCP standard also allows endpoints to advertise
addresses by adding an ADD ADDR option to any seg-
ment; the receiving end would then start a new subflow us-
ing the advertised address. Note that ADD ADDR options
are not protected by the connection key: thus anyone on-

path can add an address, not just the endpoints. This can
result in a security breach that we address in Section 5.

Multipath TCP’s address management mechanisms are
sufficient to implement the needed redirection mechanisms.
For redirection, the ADD ADDR functionality can be used
to redirect traffic as follows. Say an MPTCP connection is
setup between C and S (see Figure 1c). T sets up a forward-
ing rule at M instructing it to proxy all traffic it receives from
C. Then, T sends an ADD ADDR message to C advertis-
ing M’s address. As a result, C will send a SYN+MP JOIN
message to initiate the three way handshake. M receives the
SYN+MP JOIN message, it changes the source address to
M and the destination address to S and forwards the mes-
sage to S. An analogous processing is applied to subsequent
packets of the three way handshake. The result is that Both
C and S have a new subflow with M, which acts as an explicit
middlebox for the MPTCP connection. T can now close the
C-S subflow, effectively forcing the endpoints to use only the
path via M. Once M sees the traffic, it can direct the traffic
to S or D via another proxy by simply using ADD ADDR
and setting up the appropriate proxy rules. We have im-
plemented this type of redirection and tested it in practice.
The experimental results are discussed in Section 6.

The IOS implementation of MPTCP does not implement
ADD ADDR as it perceives it as a security threat [4]. How-
ever, redirection with MPTCP is still possible by having the
middlebox explicitly initiate two subflows to the endpoints,
as follows: M learns the connection keys from T and then
sends a SYN+MP JOIN message to S, mimicking standard
subflow creation with MPTCP. S will reply, finalizing the
handshake. Similarly, M has to setup a subflow to C by
sending a SYN+MP JOIN. As long as C is not behind a
NAT, this type of redirection works equally well.

Connection migration. Connection migration is easy to
implement by migrating the MPTCP connection state and
opening a new subflow from the new location. However mi-
grating the related application logic is quite difficult. Here,
we distinguish two cases: in the first case, the application
itself is migrated to the new machine, either by process mi-
gration or virtual machine migration, and it just keeps run-
ning. In the second case, the connection alone is migrated
from one instance of an application to another. If the con-
nection is moved mid-stream, synchronizing the application
state obviously requires non-trivial application updates in
the general case, and service continuations could be used for
this purpose [19]. However, such application changes defeat
our deployability goal.

We observe that there are scenarios were connection mi-
gration does not require application changes: one example is
migrating just after connection startup and before the appli-
cation receives notification that the connection is ready (i.e.
before connect or accept returns). In this case, it is safe to
migrate as the application hasn’t had the chance to change
its state. This functionality can be useful to implement any-
cast, for instance: the initial handshake is terminated by
the load balancer, which then selects a target server and mi-
grates the whole connection there. We have implemented
this functionality and show experiments in Section 6.

Another example targets applications that use TLS with
the TLS API (ssl connect, ssl accept): it is safe to migrate
the connection after the SSL handshake completes but be-
fore any data is sent by the application. This use-case re-

quires changes to the TLS library, though, so that the con-
nection keys are migrated too. It can be used to offload
the expensive TLS handshake (because of public-key oper-
ations) to specialized boxes, and then move the connection
to the actual servers.

Optimizations. Redirection with MPTCP requires setting
up an additional subflow, which incurs a non-negligible over-
head and also delays application traffic. In practice, once a
redirection has been made, it is quite likely that traffic to
the same server and port will be redirected in the same way
in the future—for instance, a large number of HTTP con-
nections are made to the same server in a short period of
time, so they should be redirected in the same way.

We can exploit such “connection-locality” by adding a
sticky bit to the ADD ADDR option. Upon reception of
such an option, the receiver will save the address in its local
connection cache and use it for future connections: in effect
the client remembers to directly use the “optimal” connec-
tion. This optimization has security implications that we
discuss next.

5. SECURITY ANALYSIS
Connection acrobatics allow redirecting MPTCP connec-

tions to middleboxes located anywhere in the Internet, so
their implications need to be carefully considered from a se-
curity perspective. The design of MPTCP took into account
a wide range of security threats [1]. More recently a residual
threat analysis of the final MPTCP specification [2] identi-
fied a few remaining potential threats as well as the required
countermeasures to prevent them.

The design goal for MPTCP security is simple: an on-
going connection can only be redirected by the connection
endpoints or other parties explicitly authorized by the con-
nection endpoints to do so. This is achieved by securing the
messages that add a new address in the ongoing connection
using cryptographic material generated at the beginning of
the connection lifetime.

In the current MPTCP specification, the cryptographic
material is exchanged in clear during the connection set up.
All forthcoming control messages that are used to divert
traffic are protected with keys generated from this crypto-
graphic material The result is that MPTCP is vulnerable to
attackers that are located along the path during the connec-
tion establishment phase. This is similar to the protection
SCTP has and it is acceptable as long as only one MPTCP
connection is at stake.

The notable shortcoming in the current MPTCP specifi-
cation identified in [2] is that the ADD ADDR message
is not protected and can be used by an off-path attacker to
blindly divert the communication to an arbitrary address in
the Internet (basically using the same approach we propose
for a middlebox to redirect the traffic). The solution to this
security breach is to include an HMAC protection using the
security token negotiated during the MPTCP connection es-
tablishment phase. This would enable the safe operation of
the techniques we propose in this paper. The implication
is that the middlebox must know the security token in or-
der to generate an ADD ADDR message, but this can be
conveyed using the control protocol used to create the for-
warding rule in the middlebox as described earlier.

However, when we consider the ”sticky” bit as described
earlier, it is not only the ongoing connection that is pro-

tected by the initial cryptographic material, but also all fu-
ture MPTCP connections. Thus, the use of the ”sticky” bit
requires stronger security. This can be achieved by gener-
ating the keys used to secure the redirection messages in a
more secure way. In particular, it is possible to use SSL
keys to do that as described in [14]. Indeed, many data-
transfers nowadays rely on TLS/SSL to secure the connec-
tion. TLS/SSL negotiate between the two end-hosts a key
that is not sent in clear over the network and through server-
certificates it is not even possible for a Man-in-the-Middle
attacker to interfere with the connection. MPTCP could
use the key from TLS to authenticate new subflows which
would greatly increase the security of MPTCP as the keys
are no longer sent in clear. A proposal to reuse the TLS key
to secure MPTCP is described in [14].

In summary, as long as the ”sticky”bit is not used, security
can be achieved by HMAC-ing the ADD ADDR options.
The “sticky” bit is only safe to use when MPTCP’s keys are
truly secret (e.g. reuse TLS keys).

6. CONNECTION ACROBATICS AT WORK
Using the MPTCP kernel code as basis, we have imple-

mented connection acrobatics. The implementation required
very few changes to the MPTCP stack itself, and no changes
whatsoever to the network boxes or to the application code,
giving us confidence that the changes should be easily de-
ployable. In this section we explore the usefulness of acro-
batics by experimenting with three key use-cases and dis-
cussing their implications for the Internet at large.

6.1 Connection Redirection
To move the “middle” of a connection, we use a setup

where the client and the server have an established long-
running TCP connection. Explicit redirection is impossible
with vanilla TCP 1, but it is trivial with MPTCP and re-
quires no protocol or kernel changes. Our transparent mid-
dlebox T (see figure 1c) runs on a plain Linux box, where our
simple user-space program monitors interfaces using pcap
and records connection details (sequence numbers, IP ad-
dresses, ports). To redirect the connection via middlebox
M , the program takes these steps:

• T sends connection details to M , which installs for-
warding rules to handle the traffic.
• Once M acknowledges the rules have been setup, T

injects a TCP keep-alive for the client, carrying an
ADD ADDR option advertising the address of the
second middlebox.
• The client will open a new subflow to M which uses

simple netfilter rules to proxy the packet. This ensures
M will be on the path of the new subflow.
• T closes the initial subflow by injecting TCP RST seg-

ments in both directions, effectively forcing the client
and the server to use the other subflow.

Using this setup, an operator could dynamically redirect
traffic to different middleboxes as required by policy. For
instance, traffic containing certain keywords could be redi-
rected to a full-blown intrusion detection system for more
detailed checks.

1 An operator can always use routing or tunneling for redi-
rection, but this is both limited in scope and inefficient.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 2 4 6 8 10 12 14 16

S
e

q
u

e
n

c
e

 n
u

m
b

e
r

Time (s)

(a) End-to-end traffic is not affected as
the connection is redirected from T to M

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 20 40 60 80 100 120 140F
ile

 D
o

w
n

lo
a

d
 T

im
e

 (
m

s
)'

Time (s)

(b) Using Connection Migration for Load
Balancing

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

T
C

P
-p

in
g

 R
T

T
 (

m
s
)

Time (s)

(c) Live Migrating a Virtual Machine
from Romania to Germany

In our experiment, T scans the TCP payload for the word
“secure”, and redirects the connection when a match is found.
Figure 2a plots the sequence number progression at the re-
ceiver, showing that redirection has a negligible effect of per-
formance. Redirection is quick: it takes two round trip times
between the middleboxes plus the time needed for creating
the subflow; in this example the total redirection time is
around 200ms.

Connection redirection enables explicit middleboxes and
allows arbitrary middlebox chaining, but it can do more than
that. It also enables a few interesting features that are dif-
ficult to implement today:

• Destination Routing Control: load-balancing for
inbound traffic is notoriously difficult to implement in
the Internet, leading to hacks such as BGP path poi-
soning [10]. With redirection, any box receiving traf-
fic can choose to redirect it via a waypoint. In figure
1c, M could choose to further redirect the traffic if it
wishes, by sending ADD ADDR itself.
• Load balancing. Using redirection, operators can

load balance their networks in a fine grained man-
ner, by targeting only long-running connections and
redirecting them to proxies in different parts of the
network. Alternatives include Equal Cost Multipath
Routing (not good when routes are not equal cost) or
MPLS-TE, which works on traffic aggregates.
• Transition to IPv6. IPv6 deployment is sluggish de-

spite widespread OS support and major network up-
grades. The problem is that it’s difficult to know
whether the IPv6 path works fine. Using redirection,
an operator could advertise IPv6 addresses in its own
network to make clients send traffic over IPv6. If the
server supports IPv6, the connection can continue on
IPv6 until the destination; otherwise the hop between
M and the server could use IPv4. The advantage of
this solution over Happy Eyeballs [21] is that traffic can
be migrated back if the IPv6 network is overloaded.

6.2 Migrating connection endpoints
To support endpoint migration (Fig. 1b) we have changed

the MPTCP stack, but not the protocol itself. The client
connects to an MPTCP-enabled server F1 which completes
the three-way handshake but does not pass the connection to
the application. Instead, F1 transfers the crypto material—
the 2 keys exchanged at connection setup—to F2. At this
point F2 has enough information to accept a new subflow
from the client; once the new subflow is setup it can pass
the new socket to the waiting process, by returning from the
accept syscall. Most importantly, our implementation does
not require any application changes. Clients do a normal

connect(2) to the first server which decides to redirect the
connection without involving the application; in turn, the
second server uses a simple accept(2) as if the client had
connected directly.

This simple setup could effectively be used as a low-cost
method of coping with flash-crowds. Consider a small web
provider that suddenly becomes very popular. Once its
server detects it is under load, a copy of the server could
be spawned by renting a VM from a public cloud provider
such as EC2. To balance the load across the two servers, the
traditional approach is to use DNS-based redirection. Un-
fortunately, it takes a long time for the new DNS records to
propagate because of caching in the DNS hierarchy. The web
provider could choose very small TTL to limit the amount
of caching, but this is costly as it would unnecessarily and
permanently increase the load on the provider’s DNS server.

Instead, the provider can use acrobatics to perform short
term load balancing: with only a few CPU cycles per connec-
tion it can complete the three-way handshake; then it will
immediately redirect a fraction of the incoming connections
to the other server.

To emulate such a scenario, we ran a simple experiment
where an Apache server with a gigabit link serves the same
25MB file to two customers that download it over and over
again. The plot in figure 2b shows the file download times
as time progresses. At around 70s, the server decides to
load balance half of its requests to another similar server
by migrating connections after the three-way handshake is
finalized. The graphs shows that load balancing reduces
both the average download time as well as the variance.

Connection migration also enables a few features missing
in the Internet architecture today, including:

• TLS Handshake Offloading. A more secure version
of endpoint migration is to use TLS keys to secure
MPTCP, and to migrate a connection after the TLS
handshake has finished. This would allow offloading
the expensive TLS handshake to specialized boxes, and
the connection would be then redirected to the final
servers.
• Off by default! By using TLS Handshake Offloading,

servers could become effectively off by default [3]: only
successfully authenticated clients would be allowed to
contact the destination server. Once a new connection
is allowed and thus migrated, the destination firewall
will be configured to accept SYN packets with the cor-
rect tokens, filtering out all other traffic; the token is
similar to a capability in [3]. The TLS infrastructure
needs be distributed to ensure it can withstand large
scale attacks; however, such a deployment could be
from a third party (e.g. Akamai).

• Anycast. Load-balancing proxies can move the con-
nection to the chosen server, removing themselves out
of the data path after the initial handshake. This al-
lows a (two-stage) anycast that is friendly to TCP;
the alternative of using BGP anycast is brittle as TCP
connections will break when routing tables change.

6.3 Wide Area Virtual Machine Migration
Virtual machines help increase server utilization while iso-

lating potentially distrusting users. They are one of the key
enabling technologies in public clouds, and we are witnessing
a shift to also have on-demand general purpose processing in
operator networks, in the form of micro-datacenters. Con-
tent providers could rent VMs running in micro-datacenters
to run frontend proxies as close to the customer as possible.

Virtual machine migration is widely used inside datacen-
ters because it allows load balancing and planned hardware
maintenance operations. Migration is great as long as the
VM can keep its IP address: otherwise ongoing TCP connec-
tions will break. That is why today migration is restricted
to the same L2 domain. It would be nice if providers could
seamlessly migrate VMs between micro-datacenters in re-
sponse to changing user behavior.

MPTCP allows wide-area VM migration out-of-the-box:
we have successfully migrated an MPTCP virtual machine in
the wide-area without any changes to Xen or to the MPTCP
stack; we only needed to implement a simple user-space pro-
gram that installs a Xenstore watch and monitors a key spe-
cific to the current Hypervisor. We monitor the Domain ID,
which (typically) changes when migrating to a different hy-
pervisor. When the machine is migrated, the monitored
key changes and the program triggers an address renewal (a
DHCP request). Upon receiving a new address, the MPTCP
stack automatically opens a new subflow for each of the on-
going MPTCP connections.

Fig. 2c shows the application level round-trip as measured
by a client running in Germany that sends periodic requests
over a TCP connection to a virtual machine in Romania.
25 seconds into the experiment, the virtual machine gets
migrated to Germany, and the RTT drops from 50ms to
around 4ms. The perturbation induced by the migration
lasts for a few seconds, increasing RTTs to 1.2s.

Wide area VM migration enables a number of interesting
use-cases including the ability to take down an entire dat-
acenter, and the ability to shift processing to follow cheap
electricity in diurnal patterns (i.e. follow-the-sun load bal-
ancing). Crucially, it allows content-providers to migrate
their middleboxes (i.e. front-end servers) when needed with-
out breaking connectivity.

7. CONCLUSIONS
This paper takes a pragmatic step towards embedding

middleboxes into the Internet architecture, be they transpar-
ent operator-deployed machines or explicit proxies deployed
by the content provider. To ensure deployability, we have
limited ourselves to data-path changes—in particular, what
can we do to make middleboxes explicit and more flexible?

We find that, surprisingly, any mobility solution can be
used to solve our problem. Of the plethora of mobility solu-
tions available we use Multipath TCP, a recently standard-
ized protocol now available on IOS devices.

We show how MPTCP can be used to implement connec-
tion acrobatics, offering a degree of flexibility that is badly

needed in the Internet. Our implementation and exper-
iments show connection redirection, connection-migration
and virtual machine migration are efficient and perform well
in practice. These tools can help fix other problems of the
Internet today including the difficulty of load balancing traf-
fic and can help protect against DDoS attacks.

Acknowledgements
This work was partly funded by Trilogy 2, a research project
funded by the European Union’s Seventh Framework Pro-
gramme FP7/2007-2013, (grant agreement number 317756),
and the by IAP Bestcom network.

8. REFERENCES
[1] M. Bagnulo. RFC 6181: Threat Analysis for TCP Extensions

for Multipath Operation with Multiple Addresses, 2011.

[2] M. Bagnulo, C. Paasch, F. Gont, O. Bonaventure, and
C. Raiciu. Analysis of MPTCP residual threats and possible
fixes. Internet-Draft draft-bagnulo-mptcp-attacks-00, 2013.

[3] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and
S. Shenker. Off by default. 2005.

[4] P. Eardley. Survey of MPTCP Implementations. Internet-Draft
draft-eardley-mptcp-implementations-survey-02, 2013.

[5] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Rfc 6830: The
locator/id separation protocol (lisp), January 2013.

[6] Florin Sultan and Kiran Srinivasan and Deepa Iyer and Liviu
Iftode. Migratory TCP: Highly Available Internet Services
Using Connection Migration. Rutgers University Technical
Report DCS-TR-462.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. RFC
6924: TCP Extensions for Multipath Operation with Multiple
Addresses, January 2013.

[8] S. Guha and P. Francis. An end-middle-end approach to
connection establishment. In SIGCOMM, SIGCOMM ’07,
pages 193–204, New York, NY, USA, 2007. ACM.

[9] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda. Is it still possible to extend tcp? In Proc.
ACM IMC, 2011.

[10] E. Katz-Bassett, D. R. Choffnes, Í. Cunha, C. Scott,
T. Anderson, and A. Krishnamurthy. Machiavellian routing:
improving internet availability with bgp poisoning. In Hotnets,
page 11. ACM, 2011.

[11] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Rfc
5201: Host identity protocol, April 2008.

[12] E. Nordmark and M. Bagnulo. Rfc 5533: Shim6: Level 3
multihoming shim protocol for ipv6, June 2009.

[13] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y.
Ko, J. Rexford, and M. J. Freedman. Serval: an end-host stack
for service-centric networking. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, NSDI’12, pages 7–7, Berkeley, CA, USA,
2012. USENIX Association.

[14] C. Paasch and O. Bonaventure. Securing the MultiPath TCP
handshake with external keys. Internet-Draft
draft-paasch-mptcp-ssl-00, 2012.

[15] C. Perkins. RFC 2002: IP Mobility Support, October 1996.

[16] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How hard can it
be?... In NSDI, NSDI’12, pages 29–29, Berkeley, CA, USA,
2012. USENIX Association.

[17] S. Schuetz, N. Koutsianas, L. Eggert, W. Eddy, Y. Swami, and
K. Le. TCP Response to Lower-Layer Connectivity-Change
Indications. Internet-Draft draft-schuetz-tcpm-tcp-rlci-03, 2008.

[18] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to
host mobility. In Mobicom, MobiCom ’00, pages 155–166, New
York, NY, USA, 2000. ACM.

[19] F. Sultan, A. Bohra, and L. Iftode. Service continuations: An
operating system mechanism for dynamic migration of internet
service sessions. In SRDS. IEEE Computer Society, 2003.

[20] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,
and S. Shenker. Middleboxes no longer considered harmful. In
OSDI, OSDI’04, pages 15–15, Berkeley, CA, USA, 2004.
USENIX Association.

[21] D. Wing and A. Yourtchenko. RFC 6555: Happy Eyeballs:
Success with Dual-Stack Hosts, April 2012.

	Introduction
	Problem Statement
	Solution Space
	Choosing a mobility mechanism

	Acrobatics with Multipath TCP
	Security Analysis
	Connection Acrobatics at Work
	Connection Redirection
	Migrating connection endpoints
	Wide Area Virtual Machine Migration

	Conclusions
	References

