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ABSTRACT
Initially implemented by Google in the Chrome browser,
QUIC gathers a growing interest. The first stable specifica-
tion for QUIC v1 is expected by the end of 2018. It will deliver
the same features as TCP+TLS+HTTP/2.

The flexible design adopted by the IETF for QUIC enables
this new protocol to support a variety of different use cases.
In this paper, we revisit the reliable transmission mecha-
nisms that are included in QUIC. More specifically, we design,
implement and evaluate Forward Erasure Correction exten-
sions to QUIC. Our design supports a generic FEC frame and
our implementation includes the XOR, Reed-Solomon and
Convolutional RLC schemes. We evaluate its performance
by applying an experimental design with a wide range of
packet loss conditions. In single-path scenarios, RLC delivers
more data than the two other schemes with short loss bursts.
Reed-Solomon outperforms RLC when the bursts are longer.
We also apply FEC to Multipath QUIC with a new packet
scheduler that helps to recover more lost packets.

1 INTRODUCTION
TCP has been the dominant transport protocol on the In-
ternet for the last decades but several factors could reduce
it in the coming years. Firstly, TCP implementations have
been ossified over the years. This ossification has two main
causes. First, the Internet contains a variety of middleboxes
that make some assumptions on specific TCP variants [28].
Second, there are many in-kernel implementations of TCP
and any change requires both engineering effort and negoti-
ations within the IETF. Secondly, the revelations of the util-
isation of pervasive monitoring by Edward Snowden have
caused the IETF to consider them as an attack [? ]. Since
these revelations, we observe a fast growth of the utilisation
of encrypted protocols. The growing popularity of TLS and
HTTPS is one example of this evolution.

Google engineers addressed these two problems by design-
ing the QUIC protocol [37]. QUIC started as an evolution of
SPDY [8], a precursor of HTTP/2. In a nutshell, QUIC com-
bines in a single protocol the mechanisms that are usually
found in three different protocols: TCP, TLS and HTTP. In
constrast with TLS/TCP, QUIC encrypts both the payload
and most of the protocol headers to prevent both pervasive

monitoring and ossification from middleboxes. Another im-
portance difference between QUIC and TCP is that QUIC
runs above UDP. This implies that QUIC implementations
can be included as libraries inside applications. Applications,
are regularly updated and recent measurements about the
deployment of QUIC show that a dozen different versions of
the QUIC protocol were advertised by Google servers during
2017.

Given the positive results obtained by Google with QUIC
[37], the IETF created a QUIC working group in 2016 to stan-
dardise a new protocol starting from Google’s design [26].
This group is one of the most active IETF working groups
and the design progresses quickly. The first stable QUIC spec-
ification is expected by the end of the year and more than a
dozen interoperable implementations are being developed.
Although the first use case for QUIC will be HTTP/2 [10],
the IETF working group will also consider other applications
[29] once QUIC version 1 becomes stable.
Internet measurements and traffic predictions [15] show

that audio and video streaming applications are now the
main traffic sources on the Internet and in mobile networks.
The applications do not require strict reliability guarantees
and could be served by real-time protocols such as RTP [33].
However, given the prevalence of NATs and other types
of middleboxes, some of the most popular ones often rely
on HTTP and thus TCP. Given the flexibility of QUIC, it is
interesting to reconsider the mechanisms that are required
to support such applications.
In this paper, we analyse how QUIC can be extended to

support Forward Erasure Correction (FEC) techniques. These
techniques transmit redundant code to enable the receiver to
recover from packet losses without waiting for retransmis-
sions. FEC techniques have already been used in multicast
applications [13, 42] and even in TCP [17, 22, 52], but deploy-
ing the latter remains difficult. This paper is organised as
follows. We first describe the characteristics of QUIC and the
concepts behind Forward Erasure Correction. We then de-
fine the design and implementation details of QUIC-FEC, our
extension enabling the use of FEC-protected unreliable trans-
fer with QUIC. We finally assess the performances of our
extension, compare our different FEC Schemes and study the
benefits of a multipath communication through experiments
using a wide range of loss configurations.
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2 QUIC AND FORWARD ERASURE
CORRECTION

The QUIC protocol is a newly introduced transport proto-
col built atop UDP already representing more than 7% of
the total Internet traffic [37]. A key element of the QUIC
design is its extensibility. First, it includes a version negoti-
ation procedure allowing both hosts to agree on a specific
QUIC flavour. Second, since all data and control informa-
tion is encrypted, QUIC is most robust towards attacks and
middleboxes, known to slow down the deployment of pro-
tocol extensions [27, 28, 44]. Third, hosts can exchange
connection-specific parameters during the handshake, called
transport parameters, to tune the protocol to the traffic it
carries. Among other main QUIC features, there are 0-RTT
connection establishment saving the TCP 3-way handshake
and stream multiplexing useful for HTTP/2. Using multiple
QUIC streams allows hosts to carry independent data over
a single connection without experiencing TCP head-of-line
blocking [14].

A QUIC packet is divided into two parts: the header, which
is authenticated, and the payload, which is both authenti-
cated and encrypted. The QUIC payload can be seen as a
container for one or multiple QUIC frames, which are all
independently handled by the receiver. There are tens of
types of frames. Among them, the frames containing the
application data are the STREAM frames, while the frames
acknowledging the received packets are the ACK frames.
QUIC integrates flow control, where the receive window is
advertised with WINDOW_UPDATE frames. Using the frame
abstraction allows QUIC to be more modular and extensi-
ble, by defining new protocol behaviours for handling new
frames and letting the remaining of the protocol unchanged.

There are two main designs of QUIC. The original design
of QUIC, currently called Google-QUIC (or gQUIC) [4] was
designed and deployed by Google. Convinced by the results
obtained with gQUIC, the IETF has created a working group
to standardise IETF-QUIC[32].While the Google-QUIC imple-
mentations are supposed to transition towards IETF-QUIC
once the standardised protocol matures, the QUIC implemen-
tation used in this paper has not yet completed this shift.
Furthermore, while IETF-QUIC is still regularly evolving,
Google-QUIC is currently more mature and deployed at a
larger scale on the Google servers [34]. For this reason, we
focus on Google-QUIC in this study. Carlucci et al. [14] show
that Google-QUIC can outperform HTTP/1.1 over TCP with
TLS and reduce the page load times when there are no packet
losses. They also show that QUIC can outperform SPDY [8]
but not necessarily HTTP/1.1 over TCP with TLS when there
are random losses. Megyesi et al. [38] also show in their anal-
ysis that although QUIC can reduce the page load times, the

benefit of QUIC over other protocols is not systematic and
often depends on the network conditions.

2.1 Forward Erasure Correction
Most transport protocols rely on variants of Automatic Repeat-
Request (ARQ) techniques to cope with transmission errors
and losses. This is not the only possible solution. Over the
last decades, researchers have explored a variety of tech-
niques that transmit redundant data to enable the receiver to
recover from errors and losses without having to wait for re-
transmissions. Some of the proposed techniques were tuned
for specific to link layer technologies [9, 35] or targeted for
specific applications [13, 42]. Some of them have even been
proposed for TCP [17, 22, 52]. The IETF also considers these
techniques within the RMT and FECFRAME working groups
and the IRTF NWCRG [6].
Given that most link layer technologies include error de-

tection codes, most of the proposed solutions focus on For-
ward Erasure Correction (FEC), i.e., the ability of sending
redundancy (Repair Symbols) along with the data that will
help to recover the data packets (Source Symbols) that have
been lost. This allows recovering from packets losses with-
out packet retransmission. We use the word FEC Scheme to
refer to the way to handle Source and Repair Symbols and
generate the redundancy using an erasure correcting code.

While FEC was originally part of the QUIC protocol [26],
it has rapidly been dropped due to negative experiments [34].
However, the considered FEC scheme only allowed recover-
ing single packet losses using a XOR code, leading to poor
recovery capabilities with often correlated losses [2]. A wide
range of codes more adapted to those network conditions
have been proposed in the literature. In this work, we con-
sider both block and convolutional codes.

2.1.1 Systematic block codes. A (n,k) block code is an
error correcting code that takes a block A of k M-ary symbols
and maps it to a block B of n M-ary symbols such that k < n.
In a systematic block code, the input codeword is present
in the output codeword unchanged. The n − k remaining
symbols of the output codeword are the Repair Symbols. The
code rate of a (n,k) block code is equal to k

n .
An optimal (n,k) block code can stand the loss ofn−k sym-

bols. An example of optimal block code is the well-known
Reed-Solomon code [45]. When working with a stream of
symbols, the sequence of symbols is split into several blocks
that will be independently protected. Galanos et al. [24]
provide an internet draft for the use of the Reed-Solomon
block codes with the RTP protocol [33]. The Reed-Solomon
block code is currently suggested among the reference cod-
ing schemes to be used with the QUIC protocol, according
to the standardisation effort of the IRTF [30].
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Figure 1: Example of convolutional code.

2.1.2 Systematic convolutional codes. A convolutional code
(a.k.a. sliding window code) is an error correcting code based
on the incremental generation of the Repair Symbols by ap-
plying a sliding window computation on the sequence of
Source Symbols to be sent. Instead of considering blocks
of Source Symbols, we see the Source Symbols as a stream
and perform the coding incrementally. This means that one
Source Symbol can be used multiple times to compute differ-
ent codewords. The window has a length L, performs shifts
of k Source Symbols at each iteration and outputs a code-
word of n symbols for each iteration, implying that the code
rate is k

n . We denote such a code as a (n,k,L) convolutional
code.

Figure 1 shows an example of a (3, 2, 4) convolutional code:
the window of size 4 slides with a step of 2 on the symbol
stream and outputs one Repair Symbol at each step. Note
that the Source Symbols S4 and S5 are used to compute both
R1 and R2. An example of convolutional code is the convo-
lutional Random Linear Code (RLC) [47]. For each window
position, the code generates n − k linear equations (one for
each Repair Symbol) whose constant term is the Repair Sym-
bol and whose variables are the Source Symbols present in
the encoding window. The coefficients of the equations are
randomly generated using a PRNG, reducing the probability
of having co-linear equations.
Roca et al. compare block and convolutional codes using

Reed-Solomon and RLC to represent both families of codes
[49]. They show that while the Reed-Solomon block codes
provide a higher encoding speed, RLC allows to recover the
packets with a reduced latency compared to Reed-Solomon.
We leverage this property with our QUIC extension.

2.1.3 Packet-level coding. In a packet-based transport pro-
tocol like UDP, the packet reception outcome is binary. Either
the packet is received or it is not received at all. We can thus
consider entire packets as symbols, instead of protecting an
arbitrary number of bits in the packets. This is called packet-
level coding. A systematic (n,k) block code using packet-level
coding considers a block of n packets in which k packets are
the k Source Symbols and the n−k remaining packets are the
n − k Repair Symbols. Using packet-level coding allows us to
focus on erasures instead of errors. Indeed, as QUIC already

performs an integrity check on the packets, a packet con-
taining an error will be dropped and considered as a symbol
erasure.

3 INTEGRATING FEC INTO QUIC
Both Google-QUIC and IETF-QUIC provide a fully reliable
data transfer. This is the service required to support HTTP/2
which is the motivating use case for QUIC. However, there
are applications that have strict expiration deadlines. Such
applications include live streaming cases. An unreliable data
transfer can be useful in these use-cases. Indeed, when the
data expiration deadline is over, the retransmission of the
data does not make sense anymore and will imply a waste
of time and bandwidth. We thus introduce the Unreliable
Streams in QUIC. Those streams ensure that the data are
provided in order, potentially with gaps in the data when
the stream is processed. We introduce the QUIC Unreliable
Stream frame that carries the data of an Unreliable Stream.
Unreliable streams are explicitly advertised as such to the
applications.

While packets might be lost, they can be recovered by the
reception of Repair Symbols. In this section, we propose a
generic Forward Erasure Correction extension of QUIC. It
supports different FEC Schemes in a transparent manner. The
application can select the FEC Scheme that suits its needs
and recover from losses without waiting for retransmissions.
We first describe our choice of Source and Repair Symbols
representations. We then present our FEC Framework en-
abling the usage of different FEC Schemes and simplifying
their implementation.

3.1 Representation of Source Symbols
In order to use Forward Erasure Correction, one needs to
define the Source Symbols on which the Forward Erasure
Correction will be applied. QUIC offers frames and packets
as data containers.

3.1.1 QUIC packets as Source Symbols. We use unen-
crypted QUIC packets as Source Symbols. While using QUIC
stream frames is an interesting candidate for being a Source
Symbol, using a packet instead guarantees that the loss of a
packet exactly corresponds to the loss of one Source Symbol.
To perform the coding and decoding with packets of different
sizes, some packets may need to be padded with zeros. There
is however no need to encode the packet length to recover
the packet correctly. Indeed, padding is naturally understood
by the QUIC protocol thanks to the padding frame which has
no content and frame type 0x0. The only difference between
a packet and its recovered version is that the latter will poten-
tially contain several padding frames at its end. Nevertheless,
this requires a Data Length field in every stream frame of a
FEC-protected packet.
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F Flags (7)

Connection ID (64) (optional)

Packet Number (8, 16, 32 or 48) (variable length)

Source FEC Payload ID (32) (if F set)

Encrypted payload ...

Figure 2: Modified Google-QUIC Public Header.

Using unencrypted QUIC packets as Source Symbols im-
plies that the Repair Symbols must be sent encrypted and
authenticated. This prevents both adversarial modifications
of the Repair Symbols and recovering of the Source Symbols
by eavesdropping the Repair Symbols.
Encrypting the Repair Symbols could have been avoided

by considering encrypted packets as Source Symbols. How-
ever, the padding is not naturally handled anymore and the
packet length should be added in its clear-text header to
avoid encryption and authentication problems, adding a high
complexity to the solution without concrete benefit.

3.1.2 Distinguishing Source Symbols from regular packets.
Although Forward Erasure Correction allows recovering lost
packets without waiting for retransmissions, it consumes
more bandwidth than a regular, non-FEC-protected trans-
mission. In order to avoid spending additional bandwidth
when it is not needed, our design must allow defining which
QUIC packets should be considered as FEC Source Symbols.
Our design allows explicitly distinguishing the packets being
FEC-protected from the packets that are not.

The Public Header of Google-QUIC has been slightly adapted
to support this distinction. Figure 2 shows the modifications.
We use the unused F flag from the Google-QUIC Public
Header to indicate whether a packet is FEC-protected or not.
If the flag is set, the Source FEC Payload ID field is appended
to the header. Such design, inspired by FECFRAME [50], of-
fers a 32-bits field that can be used by the underlying FEC
Scheme. The field is opaque for the transport protocol.

3.2 Transmitting Repair Symbols
The Repair Symbols must be distinguished from application
data payload in the sense that it should not be transferred
to the application upon reception. The Repair Symbols are
indeed generated by and for the FEC Scheme used by the
transport protocol.
We consider three ways to send Repair Symbols to the

QUIC receiver: (i) using a dedicated packet type, (ii) using a
dedicated stream or (iii) a dedicated frame. Using a dedicated
packet type seems to be the solution with the smallest over-
head, only needing a packet header. However, we need to
define a new packet type and it could be a painful process in
some QUIC implementations to introduce this new change.

Using a dedicated stream has several drawbacks: the stream
abstraction implies an in-order data delivery while the Repair
Symbols could be processed in any order and should be pro-
cessed as soon as possible. Furthermore, reserving a stream
ID for FEC would add an additional corner case for FEC,
increasing the complexity of QUIC implementations with
special streams [3]. For these reasons, we use a dedicated
frame, the FEC frame. Using a new frame type is a natural and
easy way to extend the QUIC protocol with new behaviours.
Furthermore, as QUIC frames sent after the cryptographic
handshake are always encrypted and authenticated, the FEC
frame ensures the Repair Symbol properties required by our
previous choice of taking unencrypted packets as Source
Symbols.
The FEC frame transports Repair Symbols. Each Repair

Symbol is associated with a 64-bits Repair FEC Payload ID.
The Repair FEC Payload ID is an opaque field for the pro-
tocol. It is used by the FEC Scheme to identify the Repair
Symbols and communicate information about the encoding
and decoding procedures to the receiver-side FEC Scheme.
It is preferable to minimize the number of packets that

carry a single Repair Symbol to ensure proper reception of
the whole symbol. However, a FEC Scheme might gener-
ate Repair Symbols that cannot fit in a single QUIC packet.
Our design allows seamlessly splitting Repair Symbols into
several FEC frames.

3.3 The FEC Framework
The IETF has already developed solutions to add Forward
Error Correction codes to several protocols. The most re-
cent solution is the FECFRAME framework [50] which has
notably been applied to RTP and supports different FEC
schemes [12, 46].
Although there exists a wide variety of different FEC

Schemes, we focus in this paper on two main categories:
FEC Schemes using block codes and FEC Schemes using con-
volutional codes. Inspired by FECFRAME [50], we define a
FEC Framework implementing the common behaviour of
these FEC Schemes in order to simplify their implementation.
It provides a structure for the Source and Repair FEC Payload
ID’s that are opaque to the underlying protocol.

Figure 3 shows the interactions between the QUIC proto-
col, the FEC Framework and the FEC Scheme. The protocol
first sends to the FEC Framework the QUIC packets that
must be protected (1). The FEC Framework then transforms
this packet into a Source Symbol (i.e., a QUIC packet with
the header shown in Figure 2) and returns it to the protocol
in order to send it as soon as possible (2). When necessary,
the FEC Framework sends its Source Symbols to the FEC
Scheme to generate Repair Symbols (3). For each Repair
Symbol, the FEC Scheme also generates FEC Scheme-specific
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Figure 3: Interactions between the protocol, the FEC
Framework and the FEC Scheme.

values related to the encoding procedure and gives them to
the FEC Framework along with the Repair Symbols (4). The
FEC Framework then generates the Repair FEC Payload ID’s,
attaches it to the Repair Symbols and passes the Repair Sym-
bols to the QUIC protocol for them to be sent (5). Once the
protocol receives the Repair Symbols, they are sent to the re-
ceiver through the previously mentioned FEC Frames. At the
receiver-side, the received Source Symbols can be processed
immediately. The Repair Symbols are reconstituted from the
FEC Frames and passed to the underlying FEC Scheme to
recover the lost Source Symbols.

3.3.1 Negotiating a FEC Scheme. There are different FEC
schemes and a streaming application has different needs than
an a request-response application that wants to cope with
tail loss. The application that uses QUIC-FEC should be able
to negotiate the FEC Schemes that are used to encode and
decode the Repair Symbols in each direction. We carry out
this negotiation during the QUIC cryptographic handshake
using the transport parameters. One FEC scheme is selected
in each direction: the client → server FEC Scheme can differ
from the server → client one. Having different FEC schemes
makes sense in a configuration where the client has lower
computational capabilities than the server. In such a config-
uration, it would be useful to choose a server → client FEC
Scheme whose decoding procedure has a low computational
complexity and a potentially different client → server FEC
Scheme whose encoding procedure has a low complexity on
the client.

Such interfacing also brings interest from the IETF, where
the network coding research group currently works on an
Internet Draft [30]. While core ideas are similar, this draft is
still currently a work in progress, as it only provide guide-
lines. We believe our work will benefit to the standardisation
of such interfacing.

4 IMPLEMENTATION
QUIC-FEC includes both our proposed Forward Erasure Cor-
rection and the Unreliable Streams.We implement QUIC-FEC
on top of quic-go [21]. In total, we added ∼ 5000 lines of

code. ∼ 1500 lines have been added to already existing files
and ∼ 3500 lines have been added to dedicated files. A patch
of ∼ 200 KB has been generated with the Linux diff tool.
The main reason why we opted for this implementation as
the starting point for our work is to be able to also test with
the Multipath QUIC version that was released as patches to
this implementation [16, 18].

4.1 XOR FEC Scheme
The principle of the XOR FEC Scheme is quite simple: the
Source Symbols are simply XORed with each other to gen-
erate a Repair Symbol. Although this scheme is easy to im-
plement and compute, it can only recover the loss of one
Repair Symbol. Experiments carried out by Google show
that this is insufficient on the Internet [53] because losses
can occur in bursts. This is why our implementation uses
interleaving to recover from burst losses with the XOR FEC
Scheme. Sending successive packets in different FEC Blocks
enables simple FEC Schemes such as XOR to better handle
burst loss at the expense of delay.

4.2 Reed-Solomon FEC Scheme
In addition to the XOR FEC Scheme, our implementation
also supports a Reed-Solomon FEC Scheme to generate the
redundancy. We reuse the klauspost/reedsolomon Reed-
Solomon implementation [43]. This implementation provides
a systematic block code that can take up to 256 Source Sym-
bols as input and generate up to 256 Repair Symbols. Com-
pared to the XOR FEC Scheme, the Reed-Solomon can thus
generate multiple Repair Symbols per Source Block, enabling
the FEC Scheme to naturally handle burst losses.

4.3 Convolutional Random Linear Code
FEC Scheme

As convolutional FEC Schemes provide different properties
from Block FEC Schemes, our implementation also enables
their use through the Convolutional RLC FEC Scheme. Our
implementation relies on the alex-ant/gomath linear equa-
tions system solver [5]. Using Gaussian Elimination, recover-
ing from lost Source Symbols is costly from a CPU viewpoint.
In order to avoid performing too many computations, we
only trigger the gaussian elimination process if the equa-
tion system is square or if it contains a square subsystem.
Our implementation is highly inspired from the FECFRAME
RLC FEC Scheme draft [47]. The sender FEC Scheme sends a
FEC Scheme-Specific value to the receiver-side FEC Scheme.
This value is composed of the 16-bits seed used to generate
the random coefficients and the Density Threshold represent-
ing the proportion of non-zero coefficients in the equations.
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Figure 4: The Gilbert-Elliott loss model.

Our implementation uses the Park & Miller PRNG [40] to
generate the random equation coefficients. 1

5 METHODOLOGY
Experiments have been performed to assess the performances
of our implementation and analyse the benefits of Forward
Erasure Correction with real-time applications running over
QUIC. We describe in this section our methodology.
We used network emulation with the Mininet tool [11]

to evaluate the performance of different FEC schemes in
quic-go. The main benefit of using emulation is that it runs
with real code and not a simplified protocol model. On the
other hand, network emulation has limitations when the
throughput is high and/or a large number of nodes must
be emulated on a host with a small number of CPUs. We
mitigate those problems by using sources that send at low
throughput and map each node to its own CPU core.

5.1 Loss model
A wide range of loss models have been proposed in the liter-
ature. Some of them consider either uniform random losses,
short burst sizes or pre-defined uniform loss rate variation
to represent loss bursts, such as those of Carlucci et al. [14],
Cui et al. [17], Dong et al. [19] and Ferlin et al. [22] (which
considers an average loss burst length of 2). Others consider
a burst loss model with potentially long loss bursts like Roca
et al. [49], Tournoux et al. [54] and Badr et al. [7]. While
small burst lengths or uniform losses can already give an
idea on the efficiency of a solution, we advocate for look-
ing at longer burst lengths in order to evaluate our solution.
We thus consider the use of the Gilbert-Elliott model [20],
allowing to represent bursts of lost packets.

The Gilbert-Elliott model is shown in Figure 4. It is a two-
states Markov model. The two states are the Good and Bad
states. In the Good state, a packet is delivered with a probabil-
ity k . In the Bad state, a packet is delivered with a probability
h. p denotes the probability of transition from the Good to
the Bad state, while r denotes the probability of transition
from the Bad to the Good state. As Mininet only provides a
uniform loss model, we patched it to use the Gilbert-Elliott
loss model provided by the netem Linux tool [1].

1As of writing this article, the fifth version of the draft has been released
and advises to change the PRNG [48]. This will be done in the near future.

5.2 Experimental design
We use the experimental design approach to perform our
experiments [23]. This methodology consists in defining
ranges of possible values for each parameter and performing
a series of experiments with random values chosen within
these ranges. This sub-samples the ranges of values and
gives a global overview of the possible values taken by all
the parameters. In addition to providing a general confidence
concerning the performances of the tested implementation,
it mitigates the bias in the parameters selection by the ex-
perimenter. This bias could have led to selecting unrealistic
parameters values or avoiding special cases in which the
implementation would perform poorly. Using the experimen-
tal design approach also permits to explore edge cases that
would not have been explored otherwise. We use the WSP
algorithm [51] to sample broadly the space of parameters
with a reasonable amount of experiments. Unless otherwise
specified, we run the experiments with 120 different com-
binations of parameters. Each configuration is ran 3 times
and the median run is considered. Table 1 shows the param-
eters ranges chosen for our experiments. We do not limit the
bandwidth on the links as we want to study the loss recovery
capabilities that can be achieved with our solutions. The one-
way delay (OWD) ranges from 0 to 100 milliseconds, leading
to a maximum round-trip-time of 200 milliseconds. This is
not completely in line with the measurement-based study
of Zhang et al. [55]. In this study, although the majority of
the measured round-trip-times is between 0 and 200 millisec-
onds, some of them can reach up to 400 milliseconds. We
further perform in this section a univariate analysis targeted
on the delay to show whether high delays have a negative
influence on our solutions.

When it is not otherwise specified, the chosen FEC Scheme
is the Reed-Solomon FEC Scheme and the level of redundancy
is set to (30, 20). This ensures a code rate of 2

3 and a burst
recovery capability of 10 symbols per block. By looking at
the possible values for the r parameter in Table 1, we can see
that we will often be in configurations where the average
burst length is longer than 10 packets, possibly leading to
poor performances of our solution. This is done on purpose
for multiple reasons. First, with experimental design, we
want to assess the global performances of our solution, even
for the cases that are not in favour of it. Second, when using
the Gilbert-Elliott model, an average burst of n packets in the
Bad state does not imply that the average number of packets
lost in the burst will be n too. We thus want a reasonable
margin to reach the undesirable cases even with a Gilbert-
Elliott model. Finally, having an average burst length longer
than the recovery capabilities of our solution will allow us to
take a look at the benefits of multipath in terms of symbols
recovery. Although the majority of experiments focus on
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Parameter p r k h OWD (ms)
Smallest 0 0.025 0.97 0 0
Highest 0.01 0.5 1 0.4 100

Table 1: Experimental design parameter ranges.

these parameter values, we also explore other values for
some experiments.

5.3 Traffic sources
Our experiment focuses on a real-time data transfer, inspired
from live video streaming applications. We ignore frame
compression and audio to ease the implementation and the
interpretation of the tests. The sender regularly sends ap-
plication messages composed of several QUIC packets at a
constant bit rate. In our experiments, we use 30 messages
per second, with 8 QUIC packets of 1000 bytes per message,
which implies that the application messages are spaced by
∼ 33milliseconds with a bit rate close to 2 Mbps. Each exper-
iment runs during 25 seconds, in order to encounter losses
even with low loss probabilities.
The receiver reads the application messages at the same

rate and reports statistics about the user experience. A mes-
sage is considered well received when all its parts have been
delivered. It is considered as corrupted if one or more parts
are missing. When the receiver cannot read a message on
time (i.e., it has to wait more than 33 milliseconds before
reading a message) either because it is received too late
or corrupted, the receiver considers that some re-buffering
occurred. The duration of the re-buffering depends on the
number of successive messages that could not be delivered
on time.
In order to directly focus on the recovery capabilities of

our solutions, we have disabled the congestion control for
all experiments. Indeed, a pacing-based congestion control
as the one used by QUIC [25] is inappropriate for real-time
communications [41] as it unnecessarily delays packets. Real-
time applications adapt to such congestion by adapting their
sending rate (e.g., by compressing its video frames for a video
application or by reducing the quality of the images), but
this behaviour is outside the scope of this study.
In order for the FEC Scheme to be able to recover from

packet losses, we introduce a fixed playback buffer on the re-
ceiver. This buffer allows the FEC Scheme to receive enough
Source and Repair Symbols to recover the lost Source Sym-
bols. In our experiments, we use a default playback buffer
of 100 milliseconds. We explore other playback buffers in
dedicated experiments.

5.4 Reported metrics
For each test, different metrics are measured and reported.

Fraction of correctly received application data. This metric
reports the fraction of the data sent that has been delivered
to the receiving application. It only considers the amount
of data received though the QUIC Unreliable Stream used
by the application: it does not consider the Repair Symbols,
packet headers or other QUIC frames.

Total re-buffering time. This metric is a good indicator
of the quality of experience perceived by the end-user as
it represents the total wasted time during the connection.
With a rate of x application messages per second, a lost
or corrupted application message will imply a re-buffering
of 1

x seconds (33 milliseconds in our experiments). If the
application only receives a part of an application message,
this part is still taken into account in the amount of data
received but a re-buffering is reported in that case, as the
application message has been corrupted. Having a scenario
where the majority of the sent data has been received and a
high total re-buffering time has been reported indicates that
many application messages have been corrupted with only
a small part of missing data.

6 SINGLE PATH EXPERIMENTS
We first assess the performance of our solution in a single-
path configuration.

6.1 Comparing QUIC-FEC to UDP and
QUIC

Figure 5 compares the Experimental Cumulative Distribution
Function (ECDF) of the amount of application data received
for QUIC, QUIC-FEC and UDP. The curves are computed
from the median experiment over three runs of 25 seconds
on 120 configurations, each using a different combination of
parameters in the ranges defined in Table 1. As expected, the
reliable QUIC received all the sent application data: all the
points of the reliable QUIC curve are on the 100% line. QUIC-
FEC receives a lot more data than UDP: QUIC-FEC receives
all the sent application data in more than 35% of the cases
while UDP never receives all the sent data (no point of the
UDP curve lies on the 100% line). This shows the advantage
of sending Repair Symbols along with the data. However, we
can see that QUIC-FEC recovers less data than reliable QUIC.
Figure 6 shows the ECDF of the total re-buffering time for the
three solutions. Although the reliable QUIC solution receives
all the data in all our experiments, we can see that it generally
encounters a higher total re-buffering time than QUIC-FEC:
the reliable QUIC encounters a total rebuffering time of more
than 2500 milliseconds in more than 50% of our experiments
while QUIC-FEC encounters a similar total rebuffering time
in less than 10% of our experiments. Furthermore, the curves
of reliable QUIC and UDP cross at some point in Figure 6.
After taking a closer look at our results, the samples on the
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Figure 5: UDP VS Reed-Solomon VS
Reliable QUIC: amount of applica-
tion data received.

Figure 6: UDP VS Reed-Solomon
VS Reliable QUIC: total re-buffering
time.

Figure 7: QUIC-FEC VS reliable
QUIC: total rebuffering time w.r.t.
the one-way delay.

Parameter p r k h OWD (ms)
Value 0.005 0.25 0.98 0.05 0 to 200

Table 2: Parameter ranges for the univariate analysis
on the delay.

reliable QUIC curve that are to the right of the UDP curve
concern parameters configurations with a high delay. A high
delay implies a high retransmission timeout for the QUIC
sender. In that case, the playback buffer of 100 milliseconds
used by the application may not be sufficient to receive the
retransmission of the lost data on time. On the other side, the
UDP receiver simply skips the lost frames without blocking,
which gives a smaller re-buffering compared to reliable QUIC
when the delay is high. QUIC-FEC tries to recover the lost
data on time with FEC and skipping the data that could not
be recovered. This shows the advantage of an unreliable
data transfer combined with Forward Erasure Correction
compared to a retransmission-based reliable data transfer.

6.1.1 The impact of the delay on a retransmission-based
protocol. Thanks to the experimental design, we have seen in
the results of the previous experience that the reliable QUIC
solution performs badly when the one-way delay (OWD)
is large. In order to better analyse the impact of the delay
on reliable QUIC and QUIC-FEC, we perform a univariate
experiment. All parameters have been fixed except the delay.
The value of the parameters are shown on Table 2.

Figure 7 shows the total re-buffering time of reliable QUIC
and QUIC-FEC in function of the one-way delay. We can see
that when the delay is low, both reliable QUIC and QUIC-
FEC have a low re-buffering time. When the delay becomes
larger than 45 milliseconds, the total re-buffering time of
reliable QUIC increases a lot. quic-go considers by default
that a packet has been lost after waiting 9

8 ∗ RTT since its

transmission without receiving an acknowledgement for it,
which was in line with the IETF recommended values until
December 2017 [31]. This means that the quic-go receiver
will have to wait an additional time of 9

8 ∗RTT to receive a the
retransmission of a lost stream frame. With a delay higher
than 45 milliseconds, the receiver will thus have to wait more
than 100 milliseconds before receiving the retransmission
of the lost data. With a playback buffer of 100 milliseconds,
it will imply rebufferings at the receiver side. We can see
that QUIC-FEC does not suffer from this problem as it does
not rely on retransmissions to recover lost data and skips
the lost data that could not be recovered. It is thus robust
against long delays. There is however a slight increase in the
total re-buffering time for QUIC-FEC with high delays. This
is due to the QUIC flow control. With long delays, the sender
will be blocked at the beginning of the connection, as the re-
ceive window of the receiver is full. TheWINDOW_UPDATE
frames that extend the receive window will take more time
to arrive to the sender with high delays, which increases the
time during which the sender cannot send anything. This
problem can be mitigated by increasing the initial receive
window of the QUIC receiver depending on the expected de-
lay. However, it will still remain vulnerable to longer delays.
The only way to avoid this problem completely would be to
disable the flow control, which is undesirable as it protects
the receiver from being overwhelmed by the received data
[32].

6.2 Exploring FEC schemes
In this section, we compare our different FEC Schemes: a
(30, 20) Reed-Solomon, a (3, 2, 20) convolutional RLC and a
(3, 2) XOR FEC Scheme with 10 interleaved Source Blocks.
Figure 8 shows the total re-buffering time using the three
solutions. While Reed-Solomon and RLC seem to behave
similarly, the XOR FEC Scheme recovers a lot less data.
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Figure 8: Reed-Solomon VS RLC VS
interleaved XOR: total re-buffering
time.

Figure 9: Reed-Solomon VS RLC VS
UDP: total rebuffering time with low
desynchronisation.

Figure 10: Reed-Solomon VS RLC
VS UDP: total rebuffering time with
low desynchronisation and uniform
losses ranging from 0 to 3%.

This is because even when using interleaving, the XOR FEC
Scheme has poorer recovery capabilities.When lookingmore
closely at our results, the Reed-Solomon FEC Scheme seems
to encounter fewer rebufferings in the majority of the cases
compared to RLC, especially with a long mean burst loss
length. This is a drawback of convolutional FEC Schemes,
they need a longer latency to recover from long bursts than
block FEC Schemes. The convolutional RLC FEC Scheme
however seems to encounter fewer rebufferings when the
mean loss burst is shorter.

6.2.1 Impact of the playback buffer. In order to see the
impact of the playback buffer on convolutional and block
FEC Schemes, we performed tests with a playback buffer of
33 milliseconds instead of the default 100 milliseconds. We
use Reed-Solomon to represent the block FEC Schemes as
it provides better recovery capabilities than the XOR FEC
Scheme. We use the convolutional RLC FEC Scheme to rep-
resent the convolutional FEC Schemes. We also analyse the
performances of UDP in each experiment to see if the per-
formances of QUIC-FEC come close to those of UDP because
of the small playback buffer. Figure 9 shows the total re-
buffering time with a desynchronisation of 33 milliseconds.
In that configuration, the RLC FEC Scheme encounters fewer
rebufferings than the Reed-Solomon FEC Scheme. This is due
to the fact that with convolutional FEC Schemes, the Repair
Symbols are interleaved with the Source Symbols while in
our (30, 20) block FEC Scheme, the Repair Symbols will be
received after receiving the 20 Source Symbols. When the
loss bursts are shorter, it needs less time to recover the lost
packets. With a block FEC Scheme, it always takes the same
amount of time to recover losses if they start at the same
symbol: the FEC Scheme needs to wait for the end of the
block to receive the Repair Symbols and be able to recover
the packets. Reducing the de-synchronization will thus have

a lower impact on convolutional FEC Schemes: the short
loss bursts will still be recovered on time, while this will not
necessarily be the case anymore for block FEC Schemes.

In order to better see the difference between convolutional
and block FEC Schemes, we performed experiments with
uniformly distributed losses. We use a loss rate in the range
[0, 0.03], in line with the range proposed by Paasch et al.
[39]. As there are now two dimensions in the parameter
space when using the uniform loss model, we run the exper-
iments with 40 different combinations of parameters instead
of 120. It reduces the time needed to perform our experi-
ments while subsampling sufficiently the parameter space.
Figure 10 shows the total re-buffering time when using the
uniform loss model. We can see that the RLC FEC Scheme
encounters fewer re-bufferings in the vast majority of the
cases. This is an advantage of convolutional FEC Schemes:
they are able to nearly instantly recover from isolated losses.
On the other hand, the block FEC Schemes always have to
wait for the reception of the end of the block to be able to
recover lost packets.

7 MULTIPATH EXPERIMENTS
In this section, we perform experiments using the Multipath
QUIC implementation in quic-go [18] to explore the possi-
bilities brought by a multipath transfer when using Forward
Erasure Correction. More specifically, we explore an inter-
esting property linking block FEC Schemes and multipath
interleaving. Figure 11 represents the multipath topology
used for the experiments. This configuration offers two net-
work interfaces to the client and only one for the server. This
results in two different possible paths, the path Client-R1-R3-
Server that we call path1 and the path Client-R2-R3-Server
that we call path2. The single-path client always contacts the
server using path1. Unless stated otherwise, the FEC Scheme

9



Figure 11: Multipath topology used in the experi-
ments.

used in the experiments is the (30, 20) Reed-Solomon block
FEC Scheme of the previous sections.
In this section, since there are twice more dimensions in

the parameter space, all the experiments are performed with
a simplified Gilbert-Elliott model with h = 0 and k = 1.
The remaining parameters are still randomly selected in the
ranges described in Table 1. We consider similar delays for
both paths. The loss models are applied independently on
links R1-R3 and R2-R3.

7.1 The Potential Benefits of Multipath
with FEC

When considering burst losses, sending the data on different
paths can help to recover more packets with the same level
of redundancy compared to single-path transmission. An
example is shown in Figure 15. In a single-path configuration,
a burst of 3 symbols will be recovered if the burst begins at
R1, R2, R3 or R4 and will be lost in every other cases (if the
burst begins at any of the 8 other symbols). It will thus be
recovered in 1

3 of the cases. With a multipath configuration
using a round-robin scheduler and considering that losses
occurring on both paths at the same time are rare, a burst loss
of 3 symbols on Path 1 will be recovered if the burst begins
at P3, R1, P7 or R3 and will be lost if the burst begins at P1 or
P5. It will thus be recovered in 2/3 of the cases. Indeed, when
a burst loss affects on one path the packets of one Source
Block, some packets of the Source Block are still received
as they are sent on the other path. Interleaving the packets
thus spreads the losses on multiple Source Blocks that are
handled independently.

7.1.1 Comparing round-robin with single-path with ho-
mogeneous paths. We first perform experiments using ho-
mogeneous paths to verify these properties. As the paths
use a simplified Gilbert-Elliott model and are homogeneous,
we run the experiments with 60 different combinations of
parameters. Figure 12 directly compares the amount of data
received with the round-robin scheduler and the single-path
case. As expected, the total amount of received data is often
higher in the multipath case. When looking at our results,
we saw that for all the cases where single-path performed
better with a ratio above 1.001, it was either with parameter

configuration with a high value for the r parameter (≥ 0.3)
or a low value for both the r and p parameters, making both
approaches having quite similar results. On the other hand,
we can see in Figure 13 that the total re-buffering time can
be longer with multipath compared to single-path. By look-
ing at our results, the multipath scenario has a smaller total
re-buffering time when the mean burst loss is short and a
longer total re-buffering time when the mean loss burst is
long. This is the drawback of interleaving the packets on the
paths. When interleaving the packets of two paths, a loss of
n packets will be spread on more application messages than
in the single-path case. If these bursts are not recovered, this
will imply the corruption of more application messages and
thus more rebufferings.

The benefits of multipath are thus not completely clear in
our use-case in terms of the total re-buffering time. However,
the amount of data received is still an interesting metric as
it can be important for applications whose messages are not
longer than one packet.
We also analyse the benefits of performing interleaving

with our convolutional RLC FEC Scheme. Figure 14 shows
the ratio of the amount of data received between the single-
path RLC FEC Scheme and the same FEC Scheme used with
a round-robin scheduler. We can see that compared to the
Reed-Solomon FEC Scheme, the advantage of multipath is
less visible. Indeed, interleaving the packets during a loss
burst virtually increases the length of the burst. While it
spreads the burst in several independently decoded blocks
for block FEC Scheme, it implies a longer burst among inter-
dependent equations in the case of the RLC FEC Scheme. On
the other hand, it needs to receive fewer Repair Symbols after
the end of the burst, as Source Symbols are received during
the loss burst. This mitigates the drawback of spreading the
burst on a longer period. Based on this result, we will thus
focus on the Reed-Solomon FEC Scheme in the remaining
experiments.

7.2 The Need for an Adapted Scheduler
The previous section compared the round-robin scheduler to
the single-path case with homogeneous paths. Figure 17 com-
pares the amount of application data received using paths
with potentially different values for the parameters of their
loss models. As the paths are now heterogeneous, adding
new dimensions to the parameter space, we now run the
experiments with 120 different combinations of parameters.
In that case, the advantage of the multipath interleaving with
round-robin is not clear anymore compared to single-path.
By looking at our results, we see that for the cases where the
round-robin scheduler received more data, the p parameter
of path1 is greater than the p parameter of path2 by 0.0018
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Figure 12: Round-robin VS single-
path with Reed-Solomon: ratio of
the amount of application data re-
ceived.

Figure 13: Round-robin VS single-
path VS HIGHRB scheduler: total re-
buffering time with homogeneous
paths.

Figure 14: Round-robin VS single-
path scheduler with RLC: ratio of
the amount of application data re-
ceived.

Figure 15: Bursts with single-path VS multipath with
a round-robin scheduler

and the r parameter is lower by 0.19 on average. This im-
plies more packet losses and longer loss bursts, leading to
more unrecoverable losses on average. This explains why
the round-robin scheduler performs better in these cases.
When path2 is better than path1 in terms of losses, using
both paths is better than only using the worse. We also have
the same phenomenon for the cases where the single-path
scenario received more data: in these cases, the p parameter
of path1 is lower by 0.0019 and r is greater by 0.15 on average
compared to path2, meaning that only using path1 is better
than using both paths. This means that we need an adaptive
scheduler, using the best path when the paths are different
and performing interleaving when the paths are similar.

7.3 The HighRB Scheduler
In this section, we propose a new scheduler whose purpose
is to perform path interleaving when possible, and use only
one path when using both could be harmful. We define the
HighRB scheduler as a scheduler that selects a path randomly,
using the number of remaining bytes of the congestion win-
dow computed by a congestion control scheme as weights
of the random selection. The scheduler is described in Algo-
rithm 1.

Algorithm 1 HighRB scheduler
Require: P, the set of available paths
Require: BytesInFliдht(p), the number of sent, non-

acknowledged bytes of p , ∀p ∈ P
Require: Cwin(p), the congestion window of p , ∀p ∈ P
1: RB(p) ← Cwin(p) − BytesInFliдht(p) , ∀p ∈ P
2: Total ← ∑

p∈P RB(p)
3: if Total , 0 then
4: w(p) ← RB(p)

Total , ∀p ∈ P
5: else
6: w(p) ← 1

|P | , ∀p ∈ P
7: end if
8: select p∗ randomly from P with weightsw
9: return p∗

The purpose of this scheduler is to gather information
from a loss-based congestion control algorithm. The conges-
tion window of lossy paths will be smaller than the conges-
tion window of other paths, implying a lower number of
remaining bytes on average and a lower probability to select
this path. Our implementation of HighRB in quic-go relies
on the congestion window provided by the OLIA congestion
control algorithm [36]. HighRB uses a weighted random se-
lection instead of always selecting the path with the highest
number of remaining bytes since we focus on the real-time
use-case and real-time applications do not often use all the
available bandwidth. Selecting always the path with the high-
est number of remaining bytes could thus lead to use only
one path instead of doing interleaving if the sending rate
of the application is not large enough. Finally, the random
selection also allows continuing to regularly probe the non-
preferred paths to check if it could become an interesting
path to use.
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Figure 16: Round-robin VS single-path VS HighRB
scheduler: amount of application data received with
loss-homogeneous paths.

7.3.1 Performances of HighRB. Figure 16 shows the per-
formance of HighRB when the paths are homogeneous. We
can see that HighRB seems to perform quite similarly than
the round-robin scheduler. When looking more closely at our
data and comparing HighRB and the round-robin scheduler,
HighRB however received more data in every configuration
with a low delay (≤ 15ms). This is an advantage of using the
remaining bytes of the congestion window as a metric to
choose a path. As we send one application message every
33 milliseconds, a long loss burst that spans two application
messages will be taken into account by the congestion con-
trol before its end when the round-trip-time is short. It will
thus lower the congestion window and the number of re-
maining bytes before the end of the burst. The scheduler will
choose the other path on average to avoid to loose additional
packets, while the round-robin scheduler will continue to
use both paths.
Finally, we take a look at the performances of HighRB

when the paths can have different loss parameters. Figure 17
shows the ECDF of the amount of data received compared to
single-path and the round-robin scheduler. We can see that
HighRB seems to outperform both other alternatives. We
found however some cases where the single-path solution
performed sensibly better than HighRB. These cases were
cases for which the r parameter of path1 was strongly higher
than for path2. In that case, although HighRB is adaptive,
only using the first path gives better results.

8 CONCLUSION
While QUIC was initially designed for the HTTP/2 use case,
we believe that other applications can benefit from this new
transport protocol. One of such applications is traffic with

Figure 17: Round-robin VS single-path VS HighRB
scheduler: amount of application data received with
loss-heterogeneous paths.

strict deadlines, such as live video streaming. In this pa-
per, we presented QUIC-FEC as an extension of the current
QUIC protocol. It provides unreliable service delivery and
connection-defined Forward Erasure Correction while keep-
ing desirable QUIC features like encryption and protocol
extensibility. We implemented QUIC-FEC on top of quic-go
and used it to evaluate three FEC schemes. Through exten-
sive evaluation with emulations covering a wide range of
networks parameters with bursty and uniform losses, we
demonstrated the benefits of applying FEC to unreliable traf-
fic. Our results indicate that block and convolutional based
FEC schemes are more adapted than XOR-based ones in such
configurations. We also explored how the usage of multiple
paths can help in increasing the delivery rate without increas-
ing the generated traffic, and proposed a packet scheduler
aiming to achieve this goal. Although we observed that the
delivery delay can increases, we showed that spreading sym-
bols over several paths can effectively provide higher data
delivery rates.

We believe our workwill benefit to both transport protocol
and FEC communities. Our future work includes exploration
of other FEC schemes and in-the-wild experiments.

ARTEFACTS
To ensure the reproducibility of our work, we will make the
sources of our implementation available publicly. Currently,
these are accessible by contacting the authors.
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