
Improved Path Exploration in shim6-based Multihoming

Sébastien Barré∗, Olivier Bonaventure
Department of Computer Science

Université Catholique de Louvain (UCL), Belgium
{firstname.lastname}@uclouvain.be

ABSTRACT
The shim6 host-based solution to IPv6 multihoming was designed
within the IETF to provide a solution to the multihoming problem
by using several IPv6 addresses per host. In this paper, we briefly
describe our Linux implementation of shim6. One of the novel
mechanisms introduced by shim6 is the REAchability Protocol
(REAP) that allows multihomed hosts to switch to an alternate path
when a failure occurs. We evaluate the performance of this protocol
in a lab environment and show that it performs well in the case
of unidirectional or bidirectional failures. We also show that the
recovery time can be reduced by allowing REAP to send multiple
probes upon failure detection.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-Communi-
cation Networks—Network Protocols; C.4 [Computer Systems
Organization]: Performance of Systems—Fault tolerance

General Terms
Measurement, Performance

Keywords
IPv6, Multihoming, REAP

1. INTRODUCTION
The Internet has been growing since its creation, both in terms

of supported applications and connected networks. As of June
2007, the Internet is composed of more than 25, 000 different Au-
tonomous Systems (AS) and core Internet routers maintain routes
towards more than 200, 000 different IPv4 prefixes [5]. During
the last years, most of the growth in the routing table size of core
routers has been caused by multihoming and Traffic Engineering
∗Supported by a grant from FRIA (Fonds pour la Formation à la
Recherche dans l’Industrie et dans l’Agriculture, rue d’Egmont 5
- 1000 Bruxelles, Belgium). This work was partially supported by
the European-funded 034819 OneLab project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPv6’07, August 31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-790-2/07/0008 ...$5.00.

[12]. The practice of multihoming consists of being connected to
two or more ASes. Multihoming may be done for cost, perfor-
mance or redundancy reasons.

Today, the IPv6 routing tables are much smaller than their IPv4
equivalent, but they will continue to grow as IPv6 becomes more
ubiquitous. Providing a better support for multihomed sites is thus
a key factor for the scalability of IPv6 routing. The IETF evaluated
many solutions to the multihoming problem [7] and decided to fo-
cus on a host-based approach called shim6 [14]. Shim6 changes
significantly the way IPv6 hosts behave. The main modification
is that a multihomed shim6 host will use several IPv6 addresses,
typically one from each of its providers. This brings new oppor-
tunities. A first example is the ability for a multihomed host to
select the path on which packets will be received for a given flow
by selecting the local address that it uses for this flow. A second ex-
ample is the selection of a best path. When two multihomed hosts
exchange packets, they could select the pair of addresses that gives
the lowest delay [8] as all pairs will use different paths with differ-
ent characteristics. A third example is the negotiation of another
address pair to find a new operational path in case of link failure.

The development of shim6 has been inspired by the Host Iden-
tity Protocol (HIP) [13]. HIP relies on cryptography to generate
non routable host identifiers, thus providing authentication capa-
bilities. To the opposite, shim6 was designed to use normal IPv6
addresses as identifiers, while using cryptography to link together
all the addresses associated to a multihomed host [4]. Another dif-
ference is that shim6 includes a new protocol called REAP [1]
to detect failures on the end-to-end path. Upon failure detection,
REAP tries to find another pair of IPv6 addresses that still allow
the two hosts to communicate, by exploring the alternative paths.

Until now, most of the work on the shim6 approach has fo-
cused on discussions related to the development of the protocols
themselves. As a result, a large number of Internet drafts have been
produced [1, 14, 2]. But the ultimate test will come with the de-
ployment of shim6 in the IPv6 Internet. Our first contribution is
the shim6 implementation in the Linux kernel. Our second con-
tribution is a detailed evaluation of the behaviour of the REAP path
exploration in a lab testbed.

This paper is organised as follows. We first briefly describe
shim6 in section 2. Then we present the associated failure re-
covery protocol, REAP. In section 5 we evaluate the performance
of the protocol, in particular the path exploration, using our Linux
implementation. Finally several issues are exposed, as future work
on shim6.

2. THE SHIM6 MECHANISM
The shim6 approach to multihoming supposes that each host

in a network owns several global IPv6 addresses, one per provider,

so that selecting an address as a source for a packet implies the
selection of a provider. Similarly, selecting a peer’s address as a
destination implies the selection of the peer’s provider. Of course
other address allocation schemes are possible, so that more gener-
ally we can say that the address pair of a packet determines the path
used by that packet. In order to get the benefit from this new ability
to select a path inside an end host, shim6 splits up the two seman-
tics of an IPv6 address. An IPv6 address can be seen either as a
locator (for IP routing) or as an identifier (known as ULID, Upper
Layer IDentifier) for Upper Layer Protocols. This is a subtle but
important change to the TCP/IP architecture that requires a change
in end-systems implementations. Inside the network stack, shim6
takes the form of a new sublayer, inside layer 3, whose role is to
map ULIDs on locators. This is useful to ensure transport layer
survivability across path changes, that is, across changes of locator
pairs. The typical walkthrough of a TCP connection over shim6
is as follows :

• Host A establishes a TCP connection with host B. This is
done by sending a SYN segment, without shim6 doing any-
thing. Because there is no shim6 context at that moment,
the IPv6 addresses play both roles of ULIDs and locators.

• After some time, host A decides to take advantage of shim6
capabilities, and starts a shim6 initialisation exchange [14].
After that, each host has a shim6 context state associated
with the flow, which contains a list of local and distant loca-
tors.

• The conversation continues, still using identical ULIDs and
locators. The context exists but isn’t really used (except for
accounting purposes).

• For any reason (failure detected, decision taken from appli-
cation layer), new locators can be used. These are chosen
from the context state previously created. After that, ULIDs
remain the same but the locators are changed, so that a map-
ping becomes necessary inside the shim layer.

Figure 1 illustrates the case of a failure detection and recovery by
host A, in an exchange with host B. The communication is initiated
using path c1. After some time, a failure occurs and is detected
by host A. This results in a path switch from c1 to c2. Because
the ULIDs are chosen as the initial locators, the ULID pair remains
ISP1.A,ISPX.B throughout the entire exchange. But after the
failure, locators become ISP2.A,ISPX.B

Internet

’A’

ISP1 ISP2

src : ISP1.A
dest : ISPX.B

src : ISP2.A

c1

dest : ISPX.B

’B’, ISPX.B

ISP1.A
ISP2.AULID : ISP1.A

current peer loc. : ISPX.B
current loc. : ISP1.A

current peer loc. : ISPX.B
current loc. : ISP2.A

c2

initital shim6 context

after change
shim6 context

ULID : ISP1.A

Source

Destination

��
��
��
��
�
�
�
�

��
��
��
��
�
�
�
�

Figure 1: Switch to an alternate path using shim6

3. PATH EXPLORATION : REAP
While the shim6 protocol aims at exchanging locator lists and

mapping locators to identifiers, REAP [1] is the companion pro-
tocol responsible for failure detection and recovery. On a genuine
IPv6 host, failure detection is handled by ICMP and TCP. If the bro-
ken path is never restablished, this results in the connection even-
tually being lost. With shim6 an alternative operational path may
be found, so that TCP (for example) can continue as if the previous
path had been restablished. Moreover, failure detection and recov-
ery is addressed in the shim6 layer, without requiring any change
in the upper layers. Failure detection is possible because REAP
sends keepalives when no data is produced by upper layers. Be-
cause a host should either receive keepalives or data packets, a fail-
ure can be detected on the basis of a timer expiry. Failure detection
triggers a path exploration procedure. Probes are sent with expo-
nential backoff along various paths, each path being determined by
the locator pair used. The probe exchange scheme is designed to
allow detection and use of unidirectional paths.

REAP relies on a state machine [1] that can be in one of three
states : operational, exploring or inbound ok. If the
communication is not experiencing any problem, the state is ope-
rational. This means that end hosts receive either data packets
or keepalives from each other. Keepalives are sent if a host has
not sent any packet during some time defined as keepalive interval
(default is 3 seconds). If data traffic stops for a while, keepalives
are sent every keepalive interval, for the keepalive timeout duration
(default is 10 seconds). Then no more keepalives are sent until data
packets are sent again or the context is destroyed.

The second state defined in [1] is exploring. A context
reaches that state if a failure has been detected due to the expiration
of the send timer (default is 10 seconds). This timer is started when
sending a data packet and only if it was not already running. It is
stopped upon reception of any packet from the peer. Because REAP
ensures that the peer will reply with either data or keepalives, not
receiving anything from him means that a failure occurred. Note
that there are additional ways to detect failures such as indications
from upper layers, lower layers or ICMP error messages [1]. Some
of these indications may be faster than the timer expiry, but they
are not always available.

The third state is named inbound ok. A host is in this state
if it is receiving packets (either data, keepalives or probes) from its
peer, but there is indication that the peer doesn’t receive anything.
A host may reach the inbound ok state from operational if
it receives an exploring probe from its peer, or from exploring
if it receives anything from its peer.

A probe contains the state of the sender, a nonce used as iden-
tifier and a number of reports. A report is defined as a summary
of a sent or received probe. According to [1] a report contains
the source and destination addresses, the nonce and an option field
(currently unused). As we will see in the following example, re-
ports of received probes are necessary to learn a new operational
path.

Figure 2 shows the case of the failure of the path from locator
B1 to locator A1. {A1,A2,A3} and {B1,B2,B3} are the loca-
tors assigned to A and B respectively. The first few arrows show
the exchange of data packets using locators A1 and B1, when the
first answer from B is lost. This packet lost triggers a send timer
expiry inside host A. The consequence is that A switches to the
exploring state and starts sending probes. The first one, a (with
locators (A1,B1)), goes through, and B learns that its packets no
longer reach host A, with the effect of B going to the inbound
ok state. After that, both hosts are sending probes along every
known path. In our example, all probes from B preceding r are

probe timeout

Locators :
A1,A2,A3

Locators :
B1,B2,B3

(A1,B1)

(B1,A1)

(A1,B1)
(A1,B1)

Operational Operational

Exploring

send
timeout

report : a

probe timeout

Operational

(A1,B1) (B1,A1)

(A1,B1)

Operational
(B2,A3)

probe timeout

probe timeout
id=c

report : a,b

report : a,b

report : r

(A1,B1),exploring,id=a

Inbound ok

(A1,B1)operational,id=d

BA

(A1,B2),id=b
(B1,A1)inbound ok,id=p

(B3,A2)inbound ok,id=q

(B2,A3)inbound ok,id=r

��
��
��
��

��
��
��
��

Figure 2: Example of failure detection and recovery

lost. Upon reception, host A reads the reports and learns that probes
a and b were successful, that is, locator pairs A1,B1 and A1,B2
are eligible as current locators. The first one is chosen, and a fi-
nal probe is sent to host B with this new locator pair to announce
the switch to the operational state. Because this final probe is
sent using a working locator pair, it reaches host B. B learns that
its only successful probe has been the one with id=r. This means
that the only working locator pair is B2,A3. Both hosts update
their shim6 context, for address mapping inside the shim6 sub-
layer, and the conversation continues, without upper layers seeing
anything else than some delay.

4. IMPLEMENTATION : LINSHIM6
LinShim6 first appeared as a result of a master thesis work, which

described the initial design choices and implications on the Linux
Networking stack of the new shim6 layer [15]. While this initial
Linux implementation was fully integrated to the kernel, in the cur-
rent version (0.4.3) we have placed the major parts of the REAch-
ability Protocol in user space so as to reduce as much as possible
the kernel size, as well as maintenance costs, while still preserving
efficiency regarding packet translation. Kernel and user space com-
municate through the Netlink mechanism. To avoid having many
messages exchanged between kernel and user space, we chose to
put REAP related timers inside the kernel, because they must be
modified for each incoming or outgoing packet. This way, there
is no need for kernel to user space exchanges under normal con-
ditions. The kernel is able to detect failures and notify the REAP
daemon. The REAP daemon then performs path exploration and
provides the kernel with a new operational locator pair.

Currently a shim6 context is created for each new network flow
initiated by the local host. A network flow is identified by a pair
of IPv6 addresses. Because ports are not part of the context key,
several transport flows may be aggregated in one network flow, thus
reducing the total amount of memory used by shim6.

LinShim61 fully conforms to the latest REAP specification [1],
and supports the core components of the shim6 protocol, that is,
context negotiation and packet translation [14]. LinShim6 has been
instrumented to log exploration times.

1Our implementation is available from http://inl.info.
ucl.ac.be/LinShim6

5. PERFORMANCE EVALUATION
To our knowledge, no evaluation of the REAP path exploration

has been published yet. An evaluation of the effect of the send timer
has been shown in [6], on the basis of a simulation. In this paper,
we propose an evaluation on the basis of our Linux implementation.

In this section, we first present the testbed used for all experi-
ments. Then we provide a short validation of our implementation,
which also demonstrates the interest of shim6 for transport layer
survivability. The last two subsections present a detailed evaluation
of the REAP path exploration.

5.1 The testbed

...
80ms

...
0ms

80ms

0ms

2002:1::if_id_B
2002:2::if_id_B
2002:3::if_id_B

Click modular router

2001:1::if_id_A
2001:2::if_id_A
2001:3::if_id_A

Host A Host B

�
�
�

�
�
�

��
��
��

��
��
��

Figure 3: Testbed for REAP measurements

Our testbed is composed of three Linux computers. Two of them
support shim6, and the third acts as a Click router [11], used to
emulate the different paths. The router and one of the end hosts
are Pentium II, 300Mhz with 128MB of RAM and 100baseTx-FD
Ethernet cards. The other end host is a Pentium Pro 200Mhz with
64MB of RAM and 100baseTx-FD Ethernet cards. Both end hosts
run the Linux kernel 2.6.17.11 patched with shim6/REAP release
0.4.3. The Click router runs Linux kernel 2.6.16.13 patched with
Click release 1.5.0. In order to make measurements faster, the send
timer has been set to 3 seconds. The setup is shown in figure 3. The
router runs the Router Advertisement Daemon 2, that distributes the
three prefixes of host A and host B. One Click queue is defined for
each possible pair of addresses. Since each shim6 computer re-
ceives three prefixes, 9 queues are defined for each direction. Each
queue may be configured to be delayed or stopped. Thus we have
a total of 18 configurable queues inside the router. This gives the
flexibility of simulating unidirectional paths in the Internet, with a
configurable delay for each one separately. We may also create a
failure in one direction while keeping the other direction of com-
munication operational.

5.2 Validation
To show the benefits of shim6 for a TCP application, we present

in figure 4 the effect of a path failure on the throughput of an iperf
TCP session. The path is broken approximately 20 seconds after
starting the iperf client. The different curves are obtained by artifi-
cially adding delay to the paths inside the Click router. This figure
shows one of the most important benefits of shim6, that is, trans-
port layer survivability across failures, without any change to TCP.
Note that normal TCP/IP is already able to survive if the broken
path comes back to life quickly enough. The difference here is that
TCP behaves as if the path came back to life, while in fact another
path has been selected thanks to the REAP path exploration. After
the recovery, ULIDs are kept constant, while locators are changed,
as a result of the path change.

The throughput drop of Fig. 4 represents the full recovery time,
including the expiration of the send timer (3 seconds). Now it

2http://www.litech.org/radvd/

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

T
h
r
o
u
g
h
p
u
t

(
M
b
i
t
s
/
s
e
c
)

time (seconds)

With a 2 ms delay
With a 5 ms delay
With a 10ms delay
With a 20ms delay

Figure 4: Evolution of throughput for an iperf TCP session

would be desirable to make this recovery time as short as possi-
ble, that is, the throughput drop of Fig. 4 should be as narrow as
possible.

5.3 Exploration time
We define the exploration time as the duration between leaving

and coming back to the REAP operational state. This is dif-
ferent from the detection time, defined as the interval between the
occurrence of a failure, and failure detection by REAP. Finally, the
recovery time is the sum of the detection and exploration times. The
detection time is mainly influenced by the value of the send timer.
But since this timer is started every time a data packet is sent (if
it is not already running), the detection time is also influenced by
the frequency of outgoing data packets. For example, if one starts
an ssh session, then stops activity during some time, keepalives
will be sent by shim6 until keepalive timeout, but after that no
keepalives will be exchanged anymore until ssh becomes active
again. In that case the failure will be detected up to send timeout
seconds after the first data packet has been sent. This is of course
a worst case. There is also a best case, which may occur if we can
avoid to rely on timers for failure detection.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2

C
D
F

(
%
)

exploration time (seconds)

n=1
n=2
n=3
n=4
n=5
n=6

Figure 5: CDF of exploration times when n paths are broken

The exploration time depends exponentially on the number of
probes sent by each of the peers before finding a working path for
each direction of communication. It is important here to specify
how often a host may send probes. According to [1], four initial

probes are sent with an interval of 500 ms. Then exponential back-
off is started, and the interval is doubled each time a probe is sent.
When the time interval between probes reaches 60 seconds, expo-
nential backoff is stopped and one probe is sent every 60 seconds.

Our implementation randomly adds or removes, for each probe,
0 to 20 % of the above described intervals to avoid self-synchro-
nization [9] (the maximum value of 20 % has been fixed arbitrar-
ily). It is also important to note that our implementation selects
address pairs by cycling randomly over all possible paths. One part
of the future work is to evaluate other selection mechanisms.

Figure 5 shows the cumulative distribution of the exploration
times for the testbed described in section 5.1. Because failure de-
tection requires the existence of a data stream, a UDP client and
server have been placed on each host, to establish a UDP bidirec-
tional flow of one packet every second.

Figure 5 shows the measured exploration times for different val-
ues of the number n of broken paths. Broken paths are emulated by
tearing down queues inside the Click router. Note that one queue
inside the Click router corresponds to a unidirectional path from
A to B or from B to A, as shown in Fig. 3. The highest CDF
(n = 1) is made from 200 emulated unidirectional link failures
(100 for each direction of the communication). All the other dis-
tributions represent bidirectional failures, that is, we tear down at
least the currently used queues for each simulated failure. Addi-
tional queues (thus additional unidirectional paths) are selected by
running through the possible queue combinations, without taking
twice the same combination when possible. For each value of n,
200 measurements have been conducted. No artificial delay has
been introduced inside queues for that experiment. Note that n
may have odd values. This means that, although we always break
each direction of the current communication (except for n = 1, ad-
ditional broken paths are chosen on a unidirectional basis, so that
the existence of a path for a given address pair does not imply the
existence of a path for the reverse address pair.

The highest curve in figure 5 is obtained for n = 1. In that case
only one direction is broken. The second highest curve is obtained
for n = 2. We see that if only the active queues are disabled,
keeping 16 queues enabled, the first probe sent is successfull in
86% of the trials. As in the case of n = 1, the second probe is
always successful. We can conclude this because the initial probes
are sent with a 500 ms interval, and 100% of the trials take less than
600 ms (that is, 500 ms plus the 20% jitter).

As we shutdown more and more queues, we decrease the proba-
bility for a randomly chosen path to be successful. This gives lower
curves as n increases, because each exploration has a higher proba-
bility of demanding more probes, thus more time. This is observed
in figure 5, where the curves are lower and lower with increasing
values of n.

Because the testbed has 18 paths (9 in each direction), we have
measured the worst case of breaking 16 paths, letting only one
available path for each direction. Since more then four probes must
be sent in most of the cases, exponential backoff is applied. 50% of
the explorations lasted less than 7 seconds, 80% less than 17 sec-
onds and 95% lasted less than 31 seconds. This is an academic case
however. In the real world, it is indeed very unlikely to have only
two operational paths among 18 available.

5.4 Paths with different delays
After having studied the impact of the number of broken paths on

the exploration time, we now evaluate whether the REAP protocol
is able to choose the path with lowest delay. For that experiment,
we have configured each queue with an increasing delay in Click.
We assigned a delay starting at 0 ms with a 10 ms increment. The

last queue (ninth) has a delay of 80 ms. The 9 queues from A to B
and from B to A have a symmetric configuration. 500 failures have
been simulated. For each failure, we save the path selected after
recovery. Figure 6 shows a histogram that gives the frequency of
selection for each kind of path, sorted by Round Trip Times. For
example, if REAP has selected a path with 10 ms for one direction,
and another one with 20 ms for the other direction, we increment
by one the 30ms histogram bar. On the other hand figure 7 gathers
information about the use of each one-way path. For the above
example of a selection of 10 and 20ms, we would increment by one
both the 10 and 20 ms histogram bars.

 0

 10

 20

 30

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0
1
1
0
1
2
0
1
3
0
1
4
0
1
5
0
1
6
0

%

RTT (ms)

Default REAP
4 probes sent in burst

Figure 6: Proportions of use for pairs of paths with different
delays

 0

 10

 20

 30

0 10 20 30 40 50 60 70 80

%

One-way delay (ms)

Default REAP
4 probes sent in burst

Figure 7: Proportions of use for paths with different delays

The ideal case would be to have 50 % of use for each of the two
best paths. This is because in the case of the 0 ms path being broken
(if it is the current one), an ideal REAP would select the 10 ms path
(that is, the pair of paths with 20ms as RTT). The next trial would
lead to break the 10 ms path and selecting the 0 ms path. Thus,
in a perfect world, this experiment would consist of continously
jumping between the best path and the second best path.

We can observe in figure 7 that REAP, with the default param-
eters [1], gives an almost uniform distribution, due to the random
selection of paths. We have also tried to slightly modify REAP, re-
placing the 500ms initial inter-probe delay with a 0 ms delay. That
is, sending four probes in burst. The solid bars show the same mea-
surements performed with the modified REAP. While the two best

paths have a total selection proportion of 21.5% with legacy REAP,
we obtain a proportion of 46.1% when sending 4 probes in burst.
This is due to the fact that if probes are sent in burst, the first re-
ceived answer is taken as the new current path. But that answer is
the one corresponding to the path with the lowest round trip time
among the four tried. If we increase the size of the burst, we will get
a higher proportion of selection for the best paths, at the expense of
more control packets being sent.

The comparison between figures 6 and 7 clearly shows the undi-
rectional nature of path exploration : Figure 7 says us that for de-
fault REAP, each unidirectional path has an equal probability to be
chosen, regardless of the path used in the other direction. Figure 6
shows that it is frequent to have different address pairs for the two
directions of communication. Since we configured the same delay
for a given address pair and its reverse combination, bidirectional
path selection would have implied an absence of bars for RTTS
such as 30ms, since we have no 15ms queue in the lab. Actually
the 30ms RTT is the highest bar for the modified REAP.

Now, one could wonder why not to send actually more probes in
burst, so as to obtain a better chance of getting a good path in terms
of delay. We need to find a tradeoff in order to avoid a signalling
storm in the case for example of the main access link of a campus
network becoming broken. Solutions to mitigate this kind of prob-
lem are part of the future work as explained in the next section.

6. FURTHER WORK ON SHIM6
Based on our experience with the first shim6 implementation,

we have identified several problems that need to be solved to effi-
ciently deploy shim6 in the IPv6 Internet.

First, the shim6 specification states that hosts may either start
immediately a locator exchange or use some heuristic to defer con-
text establishment. Implementations will need to include heuristics
to decide when to establish a shim6 context. For example, if the
hosts prefer a path with a low delay for a given flow, a context may
be established as soon as the flow is started, so that all locators are
known and a lower delay path can be selected. It could also be use-
ful to prevent shim6 from being enabled in some cases. This may
be decided by the application layer. For example, it would not be
useful to pay the cost of a context establishment for a DNS query.
Our further work will be to study, with help of real traffic traces,
which kinds of flows would benefit from shim6 support.

A second issue is the selection of paths. There is a path choice
to make at the beginning of an exchange with a new peer, nor-
mally not under shim6 control, as previously explained. There is
also a similar decision upon failure. Additionally, a shim6 host
may want to change the currently used path if a better one becomes
available. A possible approach for this path selection would be
to use an Internet coordinate system such as the one proposed in
[8]. Such a system could provide an ordering of locator pairs, so
that, while exploring, probes can be sent first on low delay paths.
However, proposed Internet coordinate systems are still mainly a
research proposal. Security issues such as those discussed in [10]
will need to be solved before all shim6 hosts can depend on a sta-
ble Internet coordinate system. Another possible approach to find
low delay paths is to use the REAP protocol itself. The previous
section showed that REAP can prefer low delay paths if probes are
sent in burst. We have observed that sending several initial probes
in burst helps in discovering a new path faster, and also increases
the probability of choosing a low delay path. But there is a trade
off between the benefit of having fast discovery of low delay paths
and the packet overhead of REAP. Delays may be learned also from
the round trip times of probes. The problem then is that we need to
explore all paths before knowing the best one. A solution could be

to send probes from time to time also when we are not exploring.
This would allow to maintain a dynamic ordering of address pairs,
adapted each time a new probe is received. The accuracy of such an
ordering would be directly dependent on the frequency of probing.
At the cost of (tunable) signalling load, we would get the benefit
of switching not only upon failure detection, but also upon better
path detection. Moreover, address pairs would be already ordered
when a failure occurs, so that the heavy exploration could be made
shorter.

A third aspect that should be studied is the behaviour of shim6
in a campus or enterprise network. Most of the work on shim6 has
been based on the hypothesis of independent hosts. This hypothe-
sis is valid for end-user hosts having two different active physical
interfaces (e.g. an Ethernet and a WiFi interface), but in enterprise
networks this is less clear. When a link between an enterprise router
and a provider fails, all paths using the provider prefix will fail at
the same time. If thousands of shim6 flows are using this link at
that time, they will all start a path exploration by using the REAP
protocol. This is probably not the most efficient mechanism. In that
case, it should be possible to coordinate the behaviour of all hosts.
In the above example, it should be possible for the access router to
inform all enterprise hosts about the failure of its link. This concern
could be addressed by the use of a middle box that would take the
responsibility of finding a best path, detecting and recovering from
failures. Such a middle box could be a shim6 proxy as proposed
in [3], where the proxy manages the whole shim6 protocol on
behalf of end hosts.

7. CONCLUSION
The shim6 and REAP protocols have been developped within

the IETF to solve the multihoming problem in a scalable host-based
manner. In this paper, we have briefly described our implementa-
tion of shim6 and REAP on Linux. To our knowledge, this is the
first publicly available implementation of shim6.

We have evaluated its behaviour in a lab environment. We have
first shown that shim6 allows TCP connections to survive par-
tial path failures with a limited impact. We have then studied the
parameters of the REAP protocol that affect the path recovery per-
formance. When a small number of paths are broken, exploration
always lasts less than 2 seconds and usually less than 1 second.
When a large number of paths are broken, the duration of the ex-
ploration increases due to the exponential backoff mechanism used
by REAP.

Our second evaluation has shown that, without information about
the quality of the paths, every working path has an equal probabil-
ity of being selected. Paths with lower delays may be chosen by
simply allowing REAP to send several probes in burst. Our fur-
ther work will be to perform measurements with real failures in the
IPv6 Internet and develop techniques to improve the performance
of shim6 in enterprise networks.

Acknowledgements
We would like to thank Bruno Quoitin and the anonymous review-
ers for the careful comments provided on this paper.

8. REFERENCES
[1] J. Arkko and I. van Beijnum. Failure Detection and Locator

Pair Exploration Protocol for IPv6 Multihoming. Internet
draft, IETF, December 2006.
draft-ietf-shim6-failure-detection-07.txt, work in progress.

[2] M. Bagnulo. Hashed Based Adresses (HBA). Internet draft,
IETF, October 2006. draft-ietf-shim6-hba-02.txt, work in
progress.

[3] M. Bagnulo. Proxy Shim6 (P-Shim6). Internet draft,
draft-bagnulo-pshim6-01.txt, work in progress, January
2007.

[4] M. Bagnulo, A. García-Martínez, and A. Azcorra. Efficient
security for IPv6 multihoming. SIGCOMM Comput.
Commun. Rev., 35(2):61–68, 2005.

[5] T. Bates, P. Smith, and G. Huston. CIDR Report. available
from http://www.cidr-report.org/, June 2007.

[6] A. de la Oliva, B. Donnet, I. Soto, and T. Friedman.
Multihoming Architecture Document. OneLab deliverable
D4C.1, February 2007.

[7] C. de Launois and M. Bagnulo. The paths towards IPv6
multihoming. IEEE Communications Surveys and Tutorials,
8(2), 2006.

[8] C. de Launois, S. Uhlig, and O. Bonaventure. Scalable route
selection for IPv6 multihomed sites. In Proceedings of
Networking 2005, Waterloo, Ontario, Canada, May 2-6th
2005.

[9] S. Floyd and V. Jacobson. The synchronization of periodic
routing messages. IEEE/ACM Trans. Netw., 2(2):122–136,
1994.

[10] M. Kaafar, L. Mathy, and T. Turletti. Real attacks on virtual
networks: Vivaldi out of tune. In SIGCOMM Workshop on
Large Scale Attack Defence (LSAD), Pisa, September 2006.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems, 18(3):263–297, August 2000.

[12] D. Meyer, L. Zhang, and K. Fall. Report from the IAB
Workshop on Routing and Addressing. Internet Draft, IETF,
April 2007. <draft-iab-raws-report-02.txt>, work in progress.

[13] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP)
Architecture. RFC 4423 (Informational), May 2006.

[14] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming
Shim Protocol for IPv6. Internet draft,
draft-ietf-shim6-proto-08.txt, work in progress, May 2007.

[15] S. Barré. Développement d’extensions au Kernel Linux pour
supporter le multihoming IPv6. Master’s thesis, UCL, 2006.
(written in French).

