Some of the note pages contain hypertext links to web pages. You can obtain an HTML or OpenOffice version of this tutorial with the hypertext links by sending an email to the author. This work is licensed under a Creative Commons License http://creativecommons.org/licenses/by-sa/2.0/. The updated versions of the slides may be found on http://totem.info.ucl.ac.be/BGP.

General references on BGP include:
Y. Rekhter and T. Li and S. Hares, , A Border Gateway Protocol 4 (BGP-4)}, Internet draft, draft-ietf-idr-bgp4-20.txt, work in progress, 2003

A List of the internet drafts related to BGP may be found in
E. Chen, Y. Rekther, List of the Current BGP Documents, Internet draft, draft-chen-bgp-reference-03.txt, work in progress, 2002
See also: http://www.ietf.org/html.charters/idr-charter.html

A more readable textbook description of BGP may be found in
J. Stewart, BGP4 : interdomain routing in the Internet, Addison Wesley, 1999
Vendor oriented books include:
• I. van Beijnum, BGP : Building Reliable Networks with the Border Gateway Protocol, O’Reilly, 2002
• D. McPherson, S. Srihari, R. White, Practical BGP, Addison Wesley, 2004

Tim Griffin maintains a very long and up to date list of references on BGP, see http://www.cambridge.intel-research.net/~tgriffin/interdomain/
Outline

- Organization of the global Internet
- Example of domains
- Intradomain routing

- BGP basics
- BGP in large networks
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks
How to route IP packets in the global Internet?

A map of the global Internet in 2000 ...

Source http://research.lumeta.com/ches/map/gallery/index.html
Organization of the Internet

- Internet is composed of more than 10.000 autonomous routing domains

- A domain is a set of routers, links, hosts and local area networks under the same administrative control
 - A domain can be very large...
 - AS568: SUMNET-AS DISO-UNIRA contains 73154560 IP addresses
 - A domain can be very small...
 - AS2111: IST-ATRIUM TE Experiment a single PC running Linux...

- Domains are interconnected in various ways
 - The interconnection of all domains should in theory allow packets to be sent anywhere
 - Usually a packet will need to cross a few ASes to reach its destination
Types of domains

• Transit domain
 • A transit domain allows external domains to use its own infrastructure to send packets to other domains

 ![Diagram showing network connections between different types of domains]

• Examples
 • UUNet, OpenTransit, GEANT, Internet2, RENATER, EQUANT, BT, Telia, Level3,...
Types of domains (2)

- **Stub domain**
 - A stub domain does not allow external domains to use its infrastructure to send packets to other domains
 - A stub is connected to at least one transit domain
 - Single-homed stub: connected to one transit domain
 - Dual-homed stub: connected to two transit domains

- **Content-rich stub domain**
 - Large web servers: Yahoo, Google, MSN, TF1, BBC,...

- **Access-rich stub domain**
 - ISPs providing Internet access via CATV, ADSL,...
Source: http://www.belnet.be

Other maps of ISPs may be found at:
A transit domain: Easynet

http://www.easynet.be/home/index.cfm?id=15&l=1
A transit domain: GEANT

Source http://www.dante.net
A transit domain: BT/IGnite

Source: http://www.ignite.net/info/maps.shtml
A large transit domain: UUNet

Source http://www.uu.net
Outline

- Organization of the global Internet
 - Example of domains
 - Intradomain routing
- BGP basics
- BGP in large networks
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks
Architecture of a normal IP router

The "best" paths selected from the routing table built by the routing protocols are installed in the forwarding table.

Forwarding decision based on longest match
Update of TTL and checksum fields in IP packets
Internet routing

- **Interior Gateway Protocol (IGP)**
 - Routing of IP packets **inside each domain**
 - Only knows topology of its domain

- **Exterior Gateway Protocol (EGP)**
 - Routing of IP packets **between domains**
 - Each domain is considered as a blackbox
Intradomain routing

- **Goal**
 - Allow routers to transmit IP packets along the best path towards their destination
 - *best* usually means the shortest path
 - Shortest measured in seconds or as number of hops
 - Sometimes *best* means the less loaded path
 - Allow to find alternate routes in case of failures

- **Behavior**
 - All routers exchange routing information
 - Each domain router can obtain routing information for the whole domain
 - The network operator or the routing protocol selects the cost of each link
Three types of Interior Gateway Protocols

- **Static routing**
 - Only useful in very small domains

- **Distance vector routing**
 - **Routing Information Protocol (RIP)**
 - Still widely used in small domains despite its limitations

- **Link-state routing**
 - **Open Shortest Path First (OSPF)**
 - Widely used in enterprise networks
 - **Intermediate System-Intermediate-System (IS-IS)**
 - Widely used by ISPs
Distance vector routing

- **Principle**
 - Router configuration
 - Cost associated with each link
 - Each router sends *periodically* a distance vector containing, for each known prefix, :
 1. The IP prefix
 2. The distance between itself and the destination
 - The distance vector is a summary of the router's routing table
 - Each router receives its neighbor's distance vectors and builds its routing table based on those vectors
Issues with distance vector routing

- How to deal with link failures?
 - Routers should send their distance vector when they detect the failure of one of their links

- How to avoid the count-to-infinity problem?
 - Utilize a non-redundant star shaped network

- Limit the maximum distance between routers
 - For RIP, $\infty = 16$

- Split horizon
 - Router A does not advertise to router B the routes for which it sends packets via router B
 - Split horizon with Poison reverse
Link state routing

- **Principle**
 - Each router builds link state packet containing its local topology
 - Link state packets are created at regular intervals and when the local topology changes
 - Link state packet is reliably flooded to all routers inside the domain
 - Each router knows the complete domain topology
 - Computes routing tables by using Dijkstra
 - The best path is the path with the smallest cost

For a description of OSPF, see J. Moy, OSPF: anatomy of an Internet routing protocol, Addison-Wesley, 1998

ISIS is defined in

R. Callon, Use of OSI IS-IS for Routing in TCP/IP and Dual Environments, RFC1195, Dec. 1990
IP forwarding

- **Usually**
 - Forwarding table contains, for each prefix
 - The prefix
 - The best path (outgoing interface) to reach this prefix

- **Sometimes**
 - Forwarding table contains, for each prefix
 - The prefix
 - N equal cost paths to reach this prefix
 - A first path (outgoing interface) to reach this prefix
 - A second path (outgoing interface) to reach this prefix
 - A third path (outgoing interface) to reach this prefix
 - ...
 - A load balancing mechanism is used to send the IP packets over the N available paths
Load balancing algorithms

- **Simple solution**
 - Round-Robin or variants to dispatch packets on a per packet basis

- **Advantages**
 - easy to implement since number of paths is small
 - traffic will be divided over the equal cost paths on a per packet basis
 - each path will carry the same amount of traffic

- **Drawbacks**
 - two packets from the same TCP connection may be sent on different paths and thus be reordered
 - TCP performance can be affected by reordering

References to load balancing algorithms include:

Z. Caro, Z. Wang, E. Zegura, Performance of Hashing-Based Schemes for Internet Load Balancing, INFOCOM2000,
Load balancing algorithms (2)

- How to perform load balancing without maintaining state for each TCP connection?
- Principle
 - concatenate IP src, IP dest, IP protocol, Src port, and Dest port from the IP packet inside a bit string
 - bitstring = [IP src(IP dest(IP protocol(Src port)Dest port)]
 - compute path = Hash(bitstring) mod P
 - hash function should be easy to implement and should produce very different numbers for close bitstring values
 - candidate hash functions are CRC, checksum, ...
- Advantages
 - all packets from TCP connection sent on same path
 - traffic to a server will be divided over the links
- Drawback
 - does not work well if a few TCP connections carry a large fraction of the total traffic
Summary

- Types of domains
 - Transit domain
 - Stub domain

- Intradomain routing
 - Selects the best route towards each destination based on one metric
 - Static routing
 - Distance vector routing
 - Link-state routing
 - Load balancing methods allow to place several paths in the forwarding table