
CG4SR: Near Optimal Traffic Engineering
for Segment Routing with Column Generation

Mathieu Jadin
ICTEAM, UCLouvain

Belgium
mathieu.jadin@uclouvain.be

Francois Aubry
ICTEAM, UCLouvain

Belgium
f.aubry@uclouvain.be

Pierre Schaus
ICTEAM, UCLouvain

Belgium
pierre.schaus@uclouvain.be

Olivier Bonaventure
ICTEAM, UCLouvain

Belgium
olivier.bonaventure@uclouvain.be

Abstract—Segment Routing (SR) is a powerful tool to solve
traffic engineering in large networks. It enables steering the
traffic along any arbitrary network path while limiting scalability
issues as routers do not need to maintain a global state. Mathe-
matical programming approaches proposed so far for SR either
do not scale well with the size of topology or impose a strong
limit on the number of possible detours (typically at most one).
Moreover they do not support Segment Routing fully by ignoring
the adjacency segments. This paper leverages column generation,
a widely used technique for solving large scale linear programs,
combined with a novel dynamic program for solving the pricing
problem. Our approach reaches near optimal solutions with gap
guarantees by also computing a strong lower-bound tighter than
the multi-commodity flow relaxation. It scales even on large
topologies and exploits the full expressiveness of SR including
adjacency segments. Our experiments compared with existing
traffic engineering techniques on various topologies and demand
matrices demonstrate the advantages of our approach in terms
of scalability, any-time behavior and quality of the solutions.

I. INTRODUCTION

Wide area networks are a key element of our Internet-
centric society. Most of them are managed by Internet Ser-
vice Providers (ISPs) and large entreprises that use them to
interconnect their datacenters. Building and operating these
networks is costly and their owners rely on a variety of
traffic engineering techniques [1], [2] to optimise them. These
techniques range from adjusting link weights based on traffic
patterns [3], using a centralized controller in a Software
Defined Network [4] to using MPLS to control routing paths
[5], [6].

During the last years, networking vendors and network op-
erators have designed [7], [8], implemented [9] and deployed
[10], [11] a new routing architecture called Segment Routing
(SR). Segment Routing is a modern variant of source routing
which can be used in either MPLS or IPv6 networks. In a
nutshell, Segment Routing allows the source of a packet or
the ingress node in a network to easily specify the path that
the packet needs to follow inside the network. This path is
specified as a series of labels (MPLS labels or IPv6 addresses
in a special IPv6 header extension) that are added to each
packet. The added routing flexibility of SR makes it possible to
better utilise the network to its full capacity without incurring
the overhead that one gets by using MPLS as there is no
need to maintain a global state or use specialised signalling

protocols such as LDP or RSVP-TE. We describe Segment
Routing in more details in Section II.

Segment Routing has been designed with various use cases
in mind [12], [13]. In this paper, we focus on the development
of efficient traffic engineering algorithms that leverage the
unique characteristics of Segment Routing. More precisely,
we propose a new scalable approach that relies on column
generation [14]: CG4SR. Moreover it can provide strong
guarantees on the quality of the solutions by computing a
lower-bound that is in most of the cases tighter than the one
obtained with a multi-commodity flow relaxation.

In developing CG4SR, we make the following contributions.
CG framework for SR: We propose the first column

generation framework for solving TE with Segment Routing.
Fully leverage SR: Our solution is able to leverage Segment

Routing to the full extent of its potential as we have full control
over the number of segments that are used and we support both
node and adjacency segments.

Improved lower bound: We improve the lower bound
provided by traditional Multi-Commodity Flow approaches by
up to 15% for TE with Segment Routing.

Min cost path SR-problem: As a by-product of our
solution, we developed a general and efficient algorithm for
computing Segment Routing paths of minimum cost.

The remainder of this paper is organized as follows. In
Section II, we give an overview of Segment Routing and
describe the main traffic engineering techniques that have been
proposed. Then, in Section III, we formalize the traffic engi-
neering problem and propose a column generation formulation
to solve it. In Section IV, we provide efficient algorithms
to solve the subproblems involved in our formulation and a
detailed description of our column generation algorithm. In
Section V, we provide a thorough evaluation of our solution,
comparing it to the state of the art traffic engineering algo-
rithms for Segment Routing.

II. BACKGROUND

Segment Routing [8] allows to add a stack of labels to the IP
header of each packet with the address of each segment. These
labels are used as temporary destination addresses making
the packets follow a set of detours before reaching the final
destination. There are two types of segments: (i) node and
(ii) adjacency segments. Node segments represent a router.

a

c

d

e

f

g

h

i

j

b

c i,b j

c i,b j

c i,b j

c i,b j

unprocessed label

processed label

current label

Fig. 1: Segment Routing illustration. The figure assumes unit
IGP weights.

When a node segment is at the top of the stack, the packet is
routed towards this node using standard shortest path routing.
On the other hand, adjacency segments represent an outgoing
interface on a node. To simplify the explanation, we think of
it as representing a link in the network. Thus, in this case, the
packet is routed to the source of the link via the shortest paths
and then it will be forwarded to the destination of the link
via that specific link. Figure 1 illustrates this process. In this
example, the ingress node is node a and the labels consist of
a node segment representing router c, an adjacency segment
representing link (i, b), and the final destination j. The arrows
represent the shortest paths, having multiple arrows represent
Equal Cost Multi-Path (ECMP). If there is ECMP between
two consecutive segments, that is, several shortest paths exist,
we assume that the load is equally split among them.

A. Traffic Engineering for Segment Routing

A simple formulation of the Traffic Engineering (TE) prob-
lem is the Multi-Commodity Flow (MCF) linear programming
formulation [15]. Unfortunately, formulating TE as a MCF has
several drawbacks. First, the formulation uses O(|V |2 · |D|)
variables making it unusable for large topologies. Second, this
formulation is not designed to be used with Segment Routing
and can thus output any set of network paths. In practice,
deployed routers have hardware limitations on the number of
segments that they can forward [16].

In the recent years, a few SR centric approaches for optimis-
ing TE have been proposed [17]–[20]. Complete approaches
to optimize exactly traffic engineering using Segment Routing
are unable to tackle the general problem as they suffer from
the same scaling problem as the MCF formulation mentioned
above. Bhatia et al. propose in [20] a solution addressing
the scalability issue by considering a subset of the possi-
ble Segment Routing paths (sr-paths) with one intermediate
segment only. Trimponias et al. propose to restrict the set
of allowed segments to a subset of the network [21]. Other
researchers have proposed heuristic techniques. Hartert et al.
proposed in DEFO [17], [18] a Large Neighborhood Search
technique combined with Constraint Programming. Later, Gay
et al. proposed in [19] to use standard local search to iteratively
improve the current solution. These heuristic approaches are
rather efficient but provide no way of knowing how far from

the optimal value they end up. Moreover, all the existing
approaches only consider node segments in their formulation.
They are thus not able to fully exploit the flexibility of
Segment Routing with adjacency segments.

III. FORMALIZATION

We model the network as a directed graph G =
(V,E, igp, c) where igp : E → Z+ represents the IGP weights
configured on the links and c : E → Z+ represents the link
capacities. We define the size of G as |G| = |V |+ |E|.

The demands are simply modeled as a set D of triples
(s, t, v) meaning that we have a volume v of traffic to route
from s to t. For a given demand d ∈ D we write s(d) = s,
t(d) = t and v(d) = v.

We model sr-paths as sequences 〈x1, x2, . . . , xn〉 where
each xi is either an element of V , representing a node segment,
or an element of E, representing an adjacency segment. If
xi = (u, v) is an adjacency segment we denote x1i = u
and x2i = v. It is convenient to have a uniform notation
to avoid having to distinguish between node and adjacency
segments later on. For this reason, we also define for a node
segment xi the notations x1i = x2i = xi. We denote the set of
indexes of node segments by node(p) and the set of indices
of adjacency segments by adj (p). Sr-paths actually represent
a subgraph of the network since several shortest paths may
exist between consecutive node segments. More specifically,
SP (x2i−1, x

1
i) represents the set of edges on a shortest path

between nodes x2i−1 and x1i . We denote the set of edges
that belong to the subgraph represented by a sr-path p by
E(p) = adj(p) ∪

(⋃n
i=2 SP (x

2
i−1, x

1
i)
)
.

Some routers support only a limited number of segments in
the packet header [16]. Therefore, our TE algorihms should be
able to limit the number of segments. Adjacency segments are
local segments which can only be parsed by the link origin.
They require to store both the node segment to reach the link
origin and the actual adjacency segment identifying the router
interface. Hence, they cost twice as much as node segments.

The segment cost of a sr-path is thus the number of node
segments plus twice the number of adjacency segments. We
denote the segment cost of a sr-path p from s to t by seg(p) =
|node(p) \ {s}|+ 2 · |adj (p)| and the set of all sr-paths with
segment cost at most k by P(k) = {p | seg(p) ≤ k}. Note
that the source node is not counted as it needs not to be added
to the segment stack.

We say that a sr-path p = 〈x1, . . . , xn〉 is compatible with
a demand d if and only if x11 = s(d) and x2n = t(d). That
is, p starts and ends at the source and destination nodes of d,
respectively. We denote the set of demands compatible with p
by D(p).

When a demand is routed over a sr-path, it is split equally
whenever there is ECMP between two consecutive segments.
As illustrated in Figure 2, the traffic is first sent from node a
to c without any split as there is a single shortest path. Then,
between segments c and i there are three shortest paths, so
the demand is split equally between them. The edge labels
represent the ratio of the demand that will traverse each edge.

a

b

c

d

e

f

g

h

i

j

k

1

1/3

1/3

1/
3

1/3

1/
3

1/3

2/
3

1/
3

1

Fig. 2: Illustration of the split ratio for sr-path 〈a, c, i, j〉. The
figure assumes unit IGP weights.

This motivates the definition of r(x, y, e) which represents
the load generated on edge e per unit of traffic forwarded
on the shortest paths between nodes x and y. If e does not
belong to SP(x, y) then r(x, y, e) = 0. More generally we
define utilisation ratio on an edge for a given sr-path p =
〈x1, . . . , xn〉 as

r(p, e) =

n∑
i=2

r(x2i−1, x
1
i , e) + |{i ∈ adj (p) | xi = e}|.

The first part of the expression evaluates the ratio on e for
the shortest path subgraphs between consecutive segments,
while the second part counts how many times e is used as
an adjacency segment on the sr-path p. This summation is
valid because when an adjacency segment occurs, the full unit
demand is routed through the edge without split.

A. Problem formulation

The Segment Routing Traffic Enginnering (SRTE) problem
is to discover a sr-path p for each demand such that the
worst link utilization (total traffic/capacity) is minimized. This
problem was demonstrated to be NP-hard in [17].

We propose a scalable mathematical programming approach
for solving the general SRTE problem with segments up to
cost k also allowing adjacency segments. Our approach relies
on the so-called Column Generation (CG) decomposition
approach [22] for solving huge linear programs. CG introduces
one decision variable per column and defines the objective
function to maximize as a linear combination of those column
variables. For SRTE, columns correspond to candidate sr-
paths that can be selected for each demand. The minimization
of maximum link utilisation is not directly a good fit for a CG
formulation as our experiments showed that it had difficulties
to converge. Therefore we instead solve a close variant of
this problem seeking to assign demands to sr-paths so that
the amount of demand volume routed is maximal without
exceeding the link capacities above a given threshold and later
adapt it to minimize the maximum link utilisation. We call this
problem SRTED.

Considering the whole set of sr-paths P(k) upfront would
not scale as it would require solving a linear program with an
huge number of candidate paths and variables. Therefore a re-
stricted set of sr-paths P ⊆ P(k) is initially considered (called
the columns in the CG framework) and then is iteratively

grown by carefully selecting new candidate paths from P(k)
until we obtain a proof that no matter what new paths would
be added, the solution would not be further improved. The
linear program working on the restricted set of sr-paths P is
called the master problem. Once the master problem is solved
optimally, new interesting paths can be added incrementally
to the restricted set P by solving a sub-problem called the
pricing problem. This pricing problem amounts to discovering
new columns (sr-paths) with negative reduced costs in the
master problem, meaning that if added to the path set, they
could potentially improve the current solution. The process
of interleaving the master problem solving and the pricing
problem continues until the pricing problem fails to discover
negative reduced cost columns. At that point, the master
problem, although working on a restricted set of sr-paths is
proven optimal with respect to every possible path in P(k).
The advantage of CG is thus to solve tight linear program
formulations with an exponential number of variables without
even considering them all explicitly in practice.

The ILP formulation of the SRTED problem which maxi-
mizes the volume of the demands, that are routed through the
set of sr-paths P , depends on three parameters: the sr-path
set P , the demand set D and a capacity factor λ ∈ R+. This
capacity factor is used to control by which factor we allow the
edge capacities to be exceeded. A binary variable is introduced
for each pair of compatible sr-path p and demand d:

xdp =

{
1 if demand d is routed over sr-path p ∈ P
0 otherwise

The ILP is then formally defined as:

SRTED-ILP(P,D,λ)

max
x

∑
p∈P

∑
d∈D(p)

v(d) · xdp

s.t.
∑
p∈P

xdp ≤ 1 ∀d∈D

∑
p∈P

∑
d∈D(p)

r(e, p) · v(d) · xdp ≤ λ·c(e) ∀e∈E

xdp ∈ {0,1} ∀p∈P,
∀d∈D(p)

The objective function seeks to route a maximum demand
volume over the sr-paths P . The first set of constraints ensures
that at most one sr-path is selected for each demand and the
second set of constraints makes sure that the capacity of an
edge is not exceeded by a factor greater than λ. If λ = 1 then
the problem routes the maximum amount of demand volume
without exceeding any link capacities. Our model may thus
discard some demands if the parameter λ is too restrictive.
Discovering the minimal value for λ, such that all the demands
are routed, can be achieved with a dichotomic search on top
of the CG framework as discussed later.

In order to be able to use LP duality theory and ulti-
mately column generation, we consider the LP relaxation of
SRTED-ILP(P,D, λ) which we name SRTED-LP(P,D, λ).
It has the exact same formulation except that the binary
variables xdp are allowed to have fractional values in [0, 1].

It is known that any LP model has a dual problem which can
be obtained by following a systematic procedure [23]. Doing
so, we obtain the following dual problem:

SRTE-DUAL(P,D,λ)

min
y,z

λ ·
∑
e∈E

c(e) · ye +
∑
d∈D

zd

s.t.

zd +
∑

e∈E(p)

r(e, p) · v(d) · ye ≥ v(d) ∀p∈P,

∀d∈D(p)

ye,zd ≥ 0 ∀p∈P,
∀d∈D(p)

To simplify the notations we use the names of the problems
defined above both to refer to the problem itself as well as to
refer to the value of their optimal solution.

As a consequence of the strong duality theorem for linear
programming we have that

SRTED-LP(P,D, λ) = SRTE-DUAL(P,D, λ).

and that whenever we solve SRTED-LP(P,D, λ) we ob-
tain a solution x together with an optimal solution of
SRTE-DUAL(P,D, λ) that we denote by (y, z)x.

The next theorem is at the heart of the pricing problem. It
gives the necessary condition for a sr-path to be considered as
interesting for inclusion in the restricted set P .

Theorem 1. Let P ⊆ P(k), x be an optimal solution
of SRTED-LP(P,D, λ) and (y, z)x the corresponding so-
lution of SRTE-DUAL(P,D, λ). Then, x is optimal for
SRTED-LP(P(k),D, λ) if and only if for all p ∈ P(k), d ∈
D(p),

zd +
∑

e∈E(p)

r(e, p) · v(d) · ye ≥ v(d). (1)

Proof. Suppose that for all p ∈ P(k), d ∈ D
inequality (1) holds. Then this means that (y, z)x is
also an admissible solution of SRTE-DUAL(P(k),D, λ).
Since P ⊆ P(k) we have that SRTE-DUAL(P,D, λ)
is a relaxation of SRTE-DUAL(P(k),D, λ). Therefore
SRTE-DUAL(P,D, λ) ≤ SRTE-DUAL(P(k),D, λ).
Hence, since (y, z) is an admissible solution of both
problems, we have that SRTE-DUAL(P,D, λ) =
SRTE-DUAL(P(k),D, λ). Hence, by strong duality,

SRTED-LP(P,D, λ) = SRTE-DUAL(P,D, λ)
= SRTE-DUAL(P(k),D, λ)
= SRTED-LP(P(k),D, λ).

In practice, what this means is that if we solve SRTED-LP
to optimality for a given subset of sr-paths P , demands D and
λ, then we can decide whether this solution is optimal over the
set of all sr-paths P(k) by checking whether there exist some
sr-path p and demand d ∈ D(p) that violate inequality (1).
This amounts to finding a pair (p, d) such that

zd +
∑

e∈E(p)

r(e, p) · v(d) · ye < v(d). (2)

Given (y, z), the Pricing problem is to find a sr-path p ∈
P(k) and a demand d ∈ D such that (2) holds. Note that
solving this problem by iterating over all sr-paths p ∈ P(k)
is unrealistic since |P(k)| = O(|G|k).

Next section introduces an efficient algorithm to solve
the Pricing problem. We show how to integrate it into an
algorithm that solves SRTED-LP(P(k),D, λ).

IV. ALGORITHM

A. Solving the Pricing problem

In order to solve the Pricing problem, we developed a
general Dynamic Programming (DP) algorithm for solving
the following, more general, Segment Routing path finding
problem.

Problem 1. (SR-Min cost path problem)1 Compute a sr-path
of minimum cost between two nodes with a given segment
budget. Let G = (V,E) be a graph. Given two cost functions
csp : V × V → R+ and cadj : E → R+, a constant k and
s, t ∈ V . Find a sr-path p = 〈x1, . . . , xn〉 from s to t such
that seg(p) ≤ k and

c(p) =

n∑
i=2

csp(x
2
i−1, x

1
i) +

∑
i∈adj(p)

cadj(xi)

is minimum. The cost function csp represents the cost of using
the shortest path DAG between any two given nodes and
the cadj represents the cost on the edges used to evaluate
adjacency segments.

In order to solve this problem, let us define the following
DP state space

dp(i, x) = the minimum weight (w.r.t. c) sr-path from
s to x with segment cost at most i.

The solution to the SR-min cost path problem is dp(k, t).
For i = 0 the only possible sr-path of segment cost 0 from
s to any node is 〈s〉. Thus, we have that dp(0, s) = 0 and
dp(0, x) =∞ for x 6= s. For i ≥ 1 it can be shown that

dp(i, x) = min

dp(i− 1, x)

dp(i− 1, y) + csp(y, x) s.t y ∈ V

dp(i− 2, r) + csp(r, z) s.t r ∈ V,
+ cadj(z, x) (z, x) ∈ E

1In addition to solving our Pricing problem, this general problem could
also be used for instance to compute a minimum latency sr-path between two
nodes in a network.

s xy

zr

csp(y, x)dp(i− 1, y)

dp(i− 1, x)

cadj(z, x)

dp(i− 2, r)

csp(r, z)

Fig. 3: Illustration of the dp recurrence

where the third value is only defined for i ≥ 2 (set to ∞)
otherwise.

The intuition behind this recurrence is that there are three
possibilities to reach a node x with a sr-path of segment cost
at most i. These three possibilities are illustrated in Figure 3.
The first way is to simply not use the extra segment and reach
x in the best way using a sr-path of segment cost at most
i − 1. The second possibility is to reach some node y ∈ V
using a sr-path of segment cost at most i−1 and then use one
extra node segment to reach x incurring a cost of csp(y, x).
Finally, we can use a sr-path of cost at most i−2 to any node
r and then append to it an adjacency segment (z, x) where z
is a neighbor of x. Note that nothing prevents r from being
equal to z. In this case it simply means that we append the
adjacency (z, x) to a path that already ends at node z.

Since the values of dp(i, ∗) depend only on dp(i−1, ∗), we
can compute all these values by iterating in increasing order of
i. There are O(k · |V |) states to compute and evaluating each
of them takes O(|V |) so the total complexity of the algorithm
is O(k · |V |2).

We now show how to cast the Pricing problem as the one
of solving one minimum cost sr-path problem per demand.

Let d ∈ D be a demand and (y, z)x be the dual values
corresponding to a primal solution x. Define csp(x, y) =∑
e∈E r(e, x, y) · ye (if x = y we set csp(x, y) = 0) and

cadj(e) = ye. The above dynamic program computes a
minimum cost sr-path p = 〈x1, . . . , xn〉 ∈ P(k) from s(d)
to t(d) with respect to csp and cadj that minimizes

c(p) =

n∑
i=2

csp(x
2
i−1, x

1
i) +

∑
i∈adj (p)

cadj(xi)

=

n∑
i=2

∑
e∈E

r(e, x2i−1, x
1
i) · ye +

∑
i∈adj (p)

yxi

=
∑
e∈E

n∑
i=2

r(e, x2i−1, x
1
i) · ye +

∑
e∈E

n∑
i∈adj (p):xi=e

ye

=
∑
e∈E

(
n∑
i=2

r(e, x2i−1, x
1
i) + |{i ∈ adj (p) | xi = e}|

)
ye

=
∑
e∈E

r(e, p) · ye.

Thus, there exists a sr-path p that satisfies inequality (2)

with respect to demand d if and only if c(p) < v(d)−zd

v(d) . This
means that we can solve the Pricing problem by solving the
minimum cost sr-path problem for each demand d. The total
time complexity of this algorithm is O(k ·|D|·|V |2+|V |2 ·|E|)
where the second term represents the cost of precomputing the
cost function csp. This shows that we can solve the pricing
problem in polynomial time.

B. The column generation algorithm

Algorithm 1 describes the column generation algorithm
solving optimally SRTED-LP(P,D, λ). The set P contains
any set of initial paths. We use P = {〈s(d), t(d)〉 | d ∈ D} so
that the algorithm preferably uses IGP shortest paths whenever
possible. The main loop of the algorithm consists in calling the
iterate Algorithm 2 in charge of the path-generation process
until no new interesting path can be generated. By Theorem 1,
the stopping criterion ensures that our solution is optimal for
the global sr-path set P(k). The iterate Algorithm 2 performs
two main steps:

1) Optimizing SRTED-LP(P,D, λ) with an LP solver and
collecting the final dual values (y, z)x (a by-product of
the simplex algorithm).

2) Considering each demand d and computing the mini-
mum cost sr-path p from s(d) to t(d) as described above.
Every minimum cost sr-path p such that c(p) < (v−zd)/
v is added to P ′ that eventually is added to the restricted
path set P .

To ensure that SRTED-LP is solved optimally, we can choose
in step 2 to add any number of paths satisfying c(p) <
(v − zd)/v. At one extreme, one could stop as soon as one
such path is found. The path-finding process is then fast but
with the drawback of possibly increasing substantially the
number of iterations needed to converge. At the opposite
extreme, we could generate for each demand every possible
path satisfying the property (and not only the optimal one).
Doing so would probably reduce the number of iterations but
would increase the computation cost of each. We chose a trade
off by adding up to maxp paths generated at step 2. Those
paths are generated by considering the demands by decreasing
the value of (v(d)−zd)/v(d) in order to maximize our chances
of finding a path satisfying inequality (2).

In our implementation, we use a parallel execution for
the last loop of Algorithm 2. One main worker appends
to a bounded buffer the demands by decreasing value of
(v(d) − zd)/v(d). Consumer workers execute the mincost-
srpath algorithm and add the path to P ′ if the inequality
(2) is satistfied. This provides significant speedup because
no communication between the workers is required during
the mincost-srpath algorithm. We assume that the function
LP-solve solves a linear program and returns a tuple contain-
ing the values for the primal variables, the values of the dual
variables and the value of the objective function.

C. Minimizing the worst link utilization

Traditionally, TE aims at routing a whole set of demands
while minimizing the worst link utilization. There are two

Algorithm 1 colgen (P,D, λ,maxp)

1: while P ′ ← iterate(P,D, λ,maxp) 6= ∅ do
2: P ← P ∪ P ′

3: return LP-solve(SRTED-LP(P,D, λ))

Algorithm 2 iterate (P,D, λ,maxp)

1: x, (y, z)x, vol← LP-solve(SRTED-LP(P,D, λ))
2: for x, y ∈ V do
3: csp(x, y)←

∑
e∈E(〈x,y〉) r(e, x, y) · ye

4: for e ∈ E do
5: cadj(e)← ye

6: P ′ ← ∅
7: for d ∈ D in decreasing order of (v(d)− zd)/v(d) do
8: p← mincost-srpath(s(d), t(d), csp, cadj)
9: if c(p) < (v(d)− δd)/v then

10: P ′ ← P ′ ∪ {p}
11: if |P ′| ≥ maxp then
12: break
13: return P ′

reasons why Algorithm 1 cannot be used directly for solving
this problem:

1) It will select a subset of demands to route under the
constraint of a given maximum overload λ.

2) The decision variables may take fractional value in the
optimal solution to SRTED-LP.

Algorithm 3 CG4SR addresses these two issues by making
use of the colgen Algorithm 1 as a subroutine.

The first issue is addressed by performing a binary search
for the parameter λ ∈ [0, λM] (where λM is a large enough
value) to discover the minimum value for λ such that the full
set of demands is routed. At each step of the binary search,
we check whether all the volume is routed. If so, we decrease
λ, otherwise, we increase it. From one step to the next, the
initial path set provided to Algorithm 1 is the one generated
at the previous step so that Algorithm 1 only needs to perform
a few calls to iterate (Algorithm 2) in practice.

The second issue is addressed by heuristically solving an
ILP problem denoted SRTE-UTIL-ILP to select for each de-
mand one path P while minimizing the worst link utilization.

SRTE-UTIL-ILP
min
λ

λ

s.t.
∑
p∈P

xdp = 1 ∀d∈D

∑
p∈P

∑
d∈D(p)

r(e, p) · v(d) · xdp ≤ λ·c(e) ∀e∈E

xdp ∈ {0,1} ∀p∈P,
∀d∈D(p)

This model is very similar to the SRTED-ILP model. It
changes the objective function to minimize the capacity factor
λ and replaces the inequality in the first set of constraints
with an equality to guarantee that each demand is satisfied. It

Algorithm 3 GC4SR (D, λM , k, ε,maxp)

1: P ← {〈s, t〉 | (s, t, d) ∈ D}
2: , , target-vol← colgen(P,D, λM ,maxp)
3: lb← 0
4: ub← λM

5: while |lb− ub| > ε do
6: λ← (lb+ ub)/2
7: x, (y, z)x, vol← colgen(P,D, λ,maxp)
8: if vol ≥ target-vol then
9: ub← λ

10: else
11: lb← λ
12: return ILP-solve(SRTE-UTIL-ILP(P,D))

is guaranteed to be feasible since by initialization of P , it con-
tains at least one path for each demand. Unfortunately it has no
guarantee to solve optimally the worst link utilization problem.
Indeed, P may not contain all the necessary paths to reach op-
timality. Forcing discrete decisions starting heuristically from
the set of columns produced by a column generation process is
a standard approach (see for instance [14]). We can also report
the optimality gap = ILP-solve(SRTE-UTIL-ILP(P,D))− lb
providing a guarantee of how sub-optimal the integer solution
might be. As shown in the experimental section, the solutions
computed by Algorithm 3 are very close to optimality in
practice.

As before, we assume that ILP-solve is a funtion that solved
an integer linear program.

Our framework, similarly to [17], is flexible enough to
accommodate other constraints on the paths by only adapting
the mincost-srpath algorithm. For example, by computing
only paths of segment cost at most k, we implicitely limit the
maximum segment cost of any path in the solution. Other types
of constraints could for instance be a limit on the latency or
forbidden/mandatory intermediate nodes (for service chaining
constraints [24]).

V. EVALUATION

This section describes the results using the column gen-
eration approach described in Algorithm 3 CG4SR. All the
experiments were conducted on available RocketFuel topolo-
gies [25] for reproducibility. Their characteristics are described
in Table I. We use Repetita [26] to run all the other solvers:
DEDO [17], [18], Bhatia [20] and SRLS [19]. We reuse the
demand matrices generated for Repetita [26]. For each topol-
ogy, they generated 5 demand matrices through the gravity
model described in [27]. Demands were normalized so that
MCF can merely force all link loads to be below or equal to
90%. The number of nodes ranges from 80 to 315 and the
number of demands from 7482 to 98910.

All our experiments are easily reproducible2. Our experi-
ments were run on a computer with 32 CPUs at 2.60GHz,
128GB of RAM and Java 1.8 JVM. CG4SR does not actually
need 128GB of RAM but it is able to take advantage of the 32

2The code of our solver is integrated to Repetita [26] which is available at
https://github.com/svissicchio/Repetita

TABLE I: Dataset summary

ID # nodes # links # demands

AS 1221 104 302 10712
AS 1239 315 1944 98910
AS 1755 87 322 7482
AS 3257 161 656 25760
AS 3967 79 294 6162
AS 6461 138 744 18906

CPUs thanks to the multithreading of the pricing computation.
We used the same version of Gurobi [28], v8.0, for all the
solvers.

A. Near optimum evaluation

CG4SR provides a better lower bound for TE over
SR than MCF. Traditionally, the value of an optimal MCF
solution is used as a lower bound for minimum maximum link
utilisation that one can achieve for routing a traffic matrix.
However, as mentioned above, this bound is unrealistic as
MCF is oblivious to SR. Figure 4a studies the quality of the
lower bound provided by CG4SR, SRTED-LP, compared to
MCF. The load predicted by MCF is always of about 90%
because the demand matrices of Repetita [26] were generated
artificially to be at this value. However, CG4SR shows that it
is strictly impossible to escape network congestion for 5 de-
mand matrices. Moreover, the difference between CG4SR and
MCF lower bounds can be as high as 15% in the predicted
maximal load. Increasing the number of segments does not get
CG4SR lower bound much closer to the MCF.

CG4SR provides solutions whose maximum load is
at most 4% more than the optimal solution. We ran
CG4SR without enabling adjacency segments and without time
limit. The experiment was repeated with limits of 2, 4 and 6
segments to observe the impact of the segment limit on the
quality of the solution. Figure 4b shows CDFs of the gap
(in percentage) between the CG4SR upper and lower bounds
on all the 30 instances (i.e., 5 demand matrices for each of
the 6 topologies) and increasing the limit on the number of
segments. This gap is the maximum distance to the actual
optimum. We can see that increasing the limit from 2 to 4
segments impacts the quality of the solution while increasing
the limit from 4 to 6 has little impact. Paths with 4 or 6
segments add more flexibility to SRTE-UTIL-ILP than paths
with 2 segments. We can see that this gap is most of the time
below 1% of the load and at worst 4% of the load if 4 segments
are allowed.

CG4SR is more efficient than Bhatia and MCF. We
compared CG4SR speed to Bhatia, MCF and MCFP. MCFP
is an efficient variant of MCF (described in [26]) that is only
able to compute the optimal objective value of MCF, not the
actual paths comprising the solution. Figure 4c describes how
fast the different solvers can find their best solution. During
these runs, the limit on the number of generated paths at
each column generation iteration, maxp in Algorithm 2, is
fixed to 10. This figure shows a CDF of the execution time
on the different topologies and demand matrices for CG4SR,

Bhatia and MCF. Because Bhatia only allows two segments,
CG4SR is also limited to two segments in this figure. MCF
is the slowest one and it runs out of memory for all the
demand matrices of the largest topology despite the 120GB
available. Bhatia only considers paths that can be expressed
with two segments. This significantly reduces the problem size
and Bhatia can always get an answer. CG4SR can run with
any number of two segments because of the lazy generation of
the paths. And this is so effective than we are actually faster
than Bhatia with a two-segment limit.

Figure 4c also shows that the MCFP variant of MCF can
actually compute the optimal value of the MCF quicker than
CG4SR. But, as mentioned above, MCFP only provides the
maximum link utilisation of the MCF formulation but not a
set of paths satisfying it. Hence, in practice, MCFP can only
be used to provide lower bounds which, as we showed in
Figure 4a, are worse than the ones provided by our algorithm.

CG4SR scales better than MCF and Bhatia. Our model
has fewer variables than the MCF and Bhatia formulations.
The size of our model is the number of paths that were
generated. The size of MCF considers how much of each
demand can be placed on each edge. Therefore, the number of
variables is the number of edges multiplied by the number of
demands. Bhatia considers for each demand, one detour (i.e.,
two segments) through a single node of the graph. Its number
of variables is thus the number of nodes multiplied by the
number of demands. We observe that CG4SR is more scalable
because it considers at worst 60 times fewer possibilities than
Bhatia and 200 times fewer than MCF. This explains why
CG4SR is faster than Bhatia and MCF. This difference does
not change significantly when varying the limit on the number
of segments. As can be seen in Figure 5, the number of
generated columns seems to grow linearly with the number of
demands. Given that the restricted path set is initialized with
all the direct paths for every demand, the path-finding process
(Algorithm 2) only creates a limited number of additional
paths to reach optimality. This also explains why the column
generation approach is so efficient in practice, as it only needs
to solve the linear program with a number of variables only
slightly above the number of demands.

B. Any-time behavior

The previous section shows that we can produce quality
solutions with illimited time budget. This section evaluates the
quality of CG4SR solutions over time. We compare CG4SR to
the heuristic approaches DEFO, SRLS and also to Bhatia.

CG4SR finds a good solution even if only allowed to
run for a short amout of time. Figures 6a, 6b and 6c
show, for each of the cited solvers, a CDF of the gap to the
SRTED-LP solution for the cited solvers after, respectively
1 minute, 5 minutes and 10 minutes. During these runs, the
maxp parameter (see Algorithm 2) of CG4SR is fixed to 10.
The limit of segments is set to 6, except for Bhatia which
limits itself to 2. The quality of a solution is the difference
between its current solution and the CG4SR lower bound that

90 95 100 105
Maximum link load (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

MCF
SRTE-LP(P,D,λ) k=2

SRTE-LP(P,D,λ) k=4

SRTE-LP(P,D,λ) k=6

(a) Lower bound

0 2 4 6 8 10
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR k=2

CG4SR k=4

CG4SR k=6

(b) Gap

0 200 400 600 800
Completion time (min)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

Bhatia

MCF

MCFP

(c) Execution time (CG4SR is limited to two
segments)

Fig. 4: Evaluation of MCF, MCFP, Bhatia and CG4SR without time limit

0 50000 100000
Number of demands

0

50000

100000

N
u
m

b
e
r

o
f

co
lu

m
n
s

CG4SR

Fig. 5: Number of generated columns over the size of the
demand matrices

was computed without time limit and with the same limit on
the number of segments.

We see that we are always faster than Bhatia even with
limited time spans. SRLS and DEFO are heuristic approaches
and therefore are able to quickly find good solutions. Figure 6a
shows that CG4SR is already comparable to SRLS and better
than DEFO for half of the instances after 1 minute. We see
that DEFO initially finds better solutions but CG4SR catches
up for most of instances by increasing the timeout in Figure 6b
and Figure 6c. The largest instance is not yet solved after 10
minutes and that explains why DEFO is still better.

CG4SR is more robust than SRLS over different sets
of demands. SRLS produces good results but this solution is
based on local search and can be stuck in a local optimum.
We did not observe it on the demand matrices generated by
the gravity model. Indeed, the demand volumes are generally
much lower than link capacities. This also means that there are
many possible ways to reach good solutions, even if the best
solution is hard to find. The gravity model is a good match to
the traffic engineering problem in ISPs but demand volumes
are likely higher in inter-datacenter communication [4]. This
also means that there are fewer good solutions. We generated
one additional demand matrix for each RocketFuel topology
with a low number of large demands requiring 95% of the
bandwidth available between their source and destination.
Figure 7 shows a CDF of the quality of the solution with

a time limit of 10 minutes and a limit of six segments as in
Figure 6c. These results confirm that SRLS can be worse than
CG4SR when fewer good solutions are available.

C. Adjacency segment benefits

Adjacency segments are important in TE and CG4SR is
the first to use them. CG4SR is the first SR traffic engineering
model to allow adjacency segments. We evaluate the benefits
of adjacency segments on the inter-datacenter network topol-
ogy of OVH in Europe (described in [29]). This topology has
more parallel links than RocketFuel topologies and thus, the
OVH topology can really benefit from adjacency segments.
We do not have access to the link IGP weights and capacities
of OVH. Therefore, for each link bundle we set the capacity
of half of the links to 10Gbps and the other half to 2.5Gbps.
This simulates the link upgrades on the network. For pairs of
nodes with a single link between them, we set the capacity to
be ten times bigger. We fix all IGP weights to 1. Five demand
matrices were generated for the OVH topology with the gravity
model [27].

Figure 8 shows CDFs of the gap (in percentage) between the
CG4SR upper and lower bounds over the demand matrices of
the OVH topology. We do not limit the execution time and we
limit the number of segments to 4. This means that we allow at
most one detour through a specific link because one segment
is needed for the destination and an adjacency segment has
a cost of 2. Even allowing only one link detour halves the
load of the maximally loaded link because it utilizes better
the parallel links of this topology.

VI. CONCLUSION

In this paper, we propose CG4SR, a scalable approach that
leverages column generation to efficiently solve the traffic
engineering problem in networks using Segment Routing.
CG4SR enables network operators to exploit both node and
adjacency segments with full control over the maximum
number of segments while existing techniques only support
node segments. Our experiments demonstrate that CG4SR is
faster than previously proposed ILP approaches. Compared to
heuristics, CG4SR provides a tight bound that ensures the near

0 50 100 150 200 250 300
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

CG4SR

Bhatia

DEFO

SRLS

(a) Timeout at 1 minute

0 50 100 150 200 250 300
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

Bhatia

DEFO

SRLS

(b) Timeout at 5 minutes

0 50 100 150 200 250
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

Bhatia

DEFO

SRLS

(c) Timeout at 10 minutes

Fig. 6: Gaps between SRTED-LP(P,D, λ) and Bhatia, DEFO, SRLS or CG4SR. All solvers are limited to 6 segments.

0 200 400 600 800
Gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

SRLS

Fig. 7: Gaps between SRTED-LP and SRLS or CG4SR after
10 min with a limit of 6 segments

0 50 100 150 200
Maximum link load (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CG4SR

CG4SR with adj

Fig. 8: The CG4SR solutions with or without adjacency
segments. The limit of segments is fixed to 4.

optimality of its solution while heuristics are fast but cannot
provide any guarantee.

ACKNOWLEDGEMENTS

This work was supported by the ARC grant 13/18-054
(ARC-SDN) funded by Communaute francaise de Belgique.
M. Jadin is supported by a grant from F.R.S.-FNRS FRIA.

REFERENCES

[1] D. Awduche et al., “Overview and Principles of Internet Traffic Engi-
neering,” RFC 3272, 2002.

[2] N. Wang et al., “An overview of routing optimization for internet traffic
engineering,” IEEE Communications Surveys & Tutorials, 2008.

[3] B. Fortz et al., “Traffic engineering with traditional IP routing protocols,”
IEEE communications Magazine, 2002.

[4] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in ACM SIGCOMM CCR, ACM, 2013.

[5] X. Xiao et al., “Traffic Engineering with MPLS in the Internet,” IEEE
network, 2000.

[6] P. Aukia et al., “RATES: A server for MPLS traffic engineering,” IEEE
Network, 2000.

[7] C. Filsfils et al., “The segment routing architecture,” in GLOBECOM,
IEEE, 2015.

[8] C. Filsfils et al., “Segment Routing Architecture,” RFC 8402, 2018.
[9] C. Filsfils et al., “IPv6 Segment Routing,” in SIGCOMM demo, 2017.

[10] T. Schuller et al., “Traffic engineering using segment routing and
considering requirements of a carrier IP network.,” in Networking, 2017.

[11] J. Davidson, “Simplifying Networks through Segment Routing.”
https://blogs.cisco.com/news/simplifying-networks-through-segment-
routing.

[12] J. Brzozowski et al., “Use Cases for IPv6 Source Packet Routing in
Networking (SPRING),” RFC 8354, 2018.

[13] C. Filsfils et al., “Resiliency Use Cases in Source Packet Routing in
Networking (SPRING) Networks,” RFC 8355, 2018.

[14] J. Desrosiers and M. E. Lübbecke, A Primer in Column Generation.
Boston, MA: Springer US, 2005.

[15] R. K. Ahuja et al., Network Flows: Theory, Algorithms, and Applica-
tions. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[16] J. Tantsura, “The critical role of Maximum SID Depth (MSD) hardware
limitations in Segment Routing ecosystem and how to work around
those,” in NANOG71, 2017.

[17] R. Hartert et al., “A Declarative and Expressive Approach to Control
Forwarding Paths in Carrier-Grade Networks,” SIGCOMM CCR, 2015.

[18] R. Hartert et al., “Solving segment routing problems with hybrid
constraint programming techniques,” in CP, Springer, 2015.

[19] S. Gay et al., “Expect the unexpected: Sub-second optimization for
segment routing,” in IEEE INFOCOM, 2017.

[20] R. Bhatia et al., “Optimized network traffic engineering using segment
routing,” in IEEE INFOCOM, 2015.

[21] G. Trimponias et al., “On traffic engineering with segment routing in
sdn based wans,” arXiv preprint arXiv:1703.05907, 2017.

[22] G. Desaulniers et al., Column generation. Springer Science & Business
Media, 2006.

[23] S. Gass, Linear Programming: Methods and Applications. Dover Books
on Computer Science Series, Dover Publications, 2003.

[24] Y. Zhang et al., “Steering: A software-defined networking for inline
service chaining,” in IEEE ICNP, IEEE, 2013.

[25] N. Spring et al., “Measuring ISP topologies with Rocketfuel,” ACM
SIGCOMM CCR, 2002.

[26] S. Gay et al., “REPETITA: Repeatable Experiments for Perfor-
mance Evaluation of Traffic-Engineering Algorithms,” arXiv preprint
arXiv:1710.08665, 2017.

[27] M. Roughan, “Simplifying the synthesis of Internet traffic matrices,”
ACM SIGCOMM CCR, 2005.

[28] G. O. LLC, “Gurobi optimizer reference manual,” 2018.
[29] F. Aubry et al., “SCMon: Leveraging segment routing to improve

network monitoring,” in IEEE INFOCOM, IEEE, 2016.

