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Abstract. Measuring a path performance according to one or several
metrics, such as delay or bandwidth, is becoming more and more pop-
ular for applications. However, constantly probing the network is not
suitable. To make measurements more scalable, the notion of clustering
has emerged. In this paper, we demonstrate that clustering can limit
the measurement overhead in such a context without loosing too much
accuracy. We first explain that measurement reduction can be observed
when vantage points collaborate and use clustering to estimate path per-
formance. We then show, with real traces, how effective is the overhead
reduction and what is the impact in term of measurement accuracy.
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1 Introduction

During the past decade, we have seen the emergence of a set of applications
requiring more and more quality of service (QoS). For instance, IPTV needs
large bandwidth and delays as low as possible. Further, while previously a con-
tent was located in a single place, it is, nowadays, frequent that this content
is replicated among a set of servers located anywhere on the five continents or
even among the end-users themselves. Perfect examples of this are peer-to-peer
(P2P) applications and FTP mirrors.

Using measurements collected at network vantage points to infer the In-
ternet conditions is an important feature in such a context. Indeed, the path
performance metrics, such as delay, bandwidth, or packet loss, collected by ap-
plications to a potentially large set of destinations might be a good indicator on
which destination to select.

However, constantly probing the network leads to scalability issues. Indeed,
probes injected in the network might burden the traffic. Further, if those probes
come from multiple vantage points, they might appear as being a distributed
denial-of-service attack. As previously mentioned by Cheswick et al., any net-
working measurement system must be engineered very carefully to avoid abuse [1].
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Fig. 1. Illustration of measurements duplication and reduction

There exist several ways for reducing the amount of required measurements.
A first possibility is to modify the probing technique so that it consumes less
resources. Another way is to allow collaboration between probing monitors and
to cluster probe targets. Clustering means aggregating a subset of targets into
the same hat and considering a measurements towards one of the target as being
representative of the whole cluster [2–4].

In this paper, we investigate the second solution (i.e., collaboration and clus-
tering). We deeply explain how measurement reduction can be achieved through
collaboration between vantage points and destination clustering. We also discuss
several metrics that can be used to evaluate the performance of a cluster based
measurements campaign. We further explain that a greater measurement reduc-
tion can be achieved if collaboration between measurement sources is added to
clustering.

In addition, we discuss five clustering techniques that can be used to reduce
the measurements impact. These clustering techniques are based on available
network information.

Based on real data collected, we evaluate these clustering techniques using the
metrics we propose. We show that they are reasonably accurate while allowing
a strong reduction in the amount of required probes.

The remainder of this paper is organized as follows: Sec. 2 provides a theorical
background for measurement reduction through collaboration and clustering;
Sec. 3 discusses five clustering techniques and positions them regarding the state
of the art; Sec. 4 evaluates these clustering techniques and shows how clustering
can reduce the measurement overhead; Finally, Sec. 5 concludes this paper and
discusses future directions.

2 Theoretical Background

2.1 Measurement reduction

Active Internet measurements reduction is a strategic issue when large-scale
measurements are required. Up to now, several solutions have been proposed
for delay measurements [5–7], Internet topology discovery [8, 9], and bandwidth
estimation [10, 11]. However, these techniques, despite their strong advantages



in term of measurement reduction, are complex to deploy and can require to
modify the measurement technique itself.

If keeping the measurement mechanisms intact is a requirement when trying
to reduce the probing impact, two solutions are imaginable: reducing the num-
ber of measurement vantage points (i.e., the sources) and reducing the number
of measurement targets (i.e., the destinations). If both lead to a measurement
reduction, they can also lead to an accuracy loss. A balance must thus be found
between measurement reduction and accuracy.

These two solutions might be implemented through collaboration and clus-
tering. Collaboration can help to reduce the number of sources involved in mea-
surements while clustering is useful to reduce the number of destinations to
probe.

Any two nodes a and b could collaborate if they are topologically close. For
instance, if they both belong to the same campus network. Indeed, if they share
the same first hops, when measuring a destination d, it is very likely that probe
packets will follow, for both a and b, the same path. Or at least, they will share
large path segments. Consequently, the resulting measurement will be very close
and if both nodes act in isolation from each other, they duplicate unnecessarily
their efforts, as illustrated in Fig. 1(a). On the contrary, if a is aware of the
measurements already performed by b to d, then, a no longer needs to measure
d. In other words, collaboration avoids duplication of measurements and thus
reduce the measurement overhead. Collaboration is illustrated in Fig. 1(b). How
measurement sources can collaborate is still an open issue (however, efforts have
been made in the context of Internet topology discovery [8]) we let for further
works.

On the other hand, the key idea behind clustering is to aggregate a set of
nodes under the same hat and consider that all nodes within a given hat share
the same arbitrary properties. A Cluster C is defined as a set of nodes sharing
the same properties. Clustering is illustrated in Fig. 1(c).

The basic assumption behind clustering is that all nodes belonging to a given
cluster share the same path performances (i.e., delay, bandwidth, etc). Conse-
quently, measuring a single point within a cluster would be sufficient. The node
that is measured to estimate the cluster path performances is called the Refer-
ence Point. It is thus worth to notice that clustering allows to reduce the number
of measurements as only the reference point has to be measured.

In the remainder of this paper, we only consider one reference point per
cluster.

A given cluster is said popular if any destination within this cluster is often
measured. We evaluate the popularity πC of a given cluster C by counting the
number of sources sending probes towards C.

We can bring together collaboration and clustering by defining SC , the Source
Cluster of C. SC represents the set of sources measuring a given cluster C. Remind
that this makes sense only if all nodes in SC are topologically close. Collaboration
and clustering together allows a greater reduction in probing effort, as depicted



in Fig. 1(d). It is worth to notice that the set of collaborating nodes is a cluster
itself.

We propose a metric for evaluating the measurement reduction: the Measure-
ment Reduction Factor.

Definition 1 (Measurement Reduction Factor). The Measurement Reduc-
tion Factor ρ for clustering technique t on P is:

ρ =

|P| −
∑

Ci∈CP

|RCi
|

|P|
(1)

where P is the set of < s, d > nodes pairs such that s, the source, has to mea-
sure d, the destination. CP is the set of all the clusters on P assuming clustering
technique t. RC is the set of all the reference points of C.

Positive values for ρ means that the measurement reduction technique used
effectively reduces the number of measurements. On the contrary, a negative
value means that more measurements have to be performed than without re-
duction. For instance, if ρ = 0.5, the number of measurements is reduced by
50%.

Finally, note that measurement reduction is achieved on P if it exists a cluster
C such that |SC | > 1 or |C| > 1 or both.

2.2 Clustering Accuracy

In a cluster C, only the reference point is used to predict the destinations per-
formance within C. It would be a matter of concern if measuring a single point
(or a few points) within a cluster leads to a strong measurement accuracy loss.
This section defines how to estimate the accuracy of clustering techniques.

Definition 2 (Prediction Error). For a path performance metric m (delay,
bandwidth, etc), the prediction error between node i and node j is:

eij =
|mij − m̂ij |

mij

(2)

where mij is the measured value for m between i and j and m̂ij its predicted value.

The prediction error gives the error proportion if the performance of a node
is based on the predicted value instead of the directly measured value. The
predicted error is expressed in percentage. Closer to zero the predicted error,
more accurate the measurement prediction. Thus, a value of zero means that
the prediction is perfect, while, for instance, a value of 0.5 means that there is a
difference of 50% between the predicted and the actual value.

For any clustering technique t (see Sec. 3), the predicted metric m̂ij from a
node i to a node j in a cluster C is the metric associated to all nodes within the
cluster.



The measurement error shows how the prediction fits with the reality for a
given node in a cluster. However, it can be interesting to characterize the error
for the whole cluster and not only a particular node within this cluster. For such
an information, statistical tools like mean, percentiles or standard deviation can
be applied on the set of all cluster prediction errors.

3 Clustering Techniques

In this section, we discuss five clustering techniques. These techniques offer the
strong advantage of being very easy to setup as they only require simple informa-
tion already, or easily, available in the network. With these techniques, clusters
are a set of IP prefixes such that a simple longest prefix matching is enough to
determine to which cluster a given IP address belongs.

AS Clustering: clusters are defined based on the Autonomous System (AS)
membership of Internet hosts (e.g., all the nodes of AS 2611 are put in the
same cluster). This is somewhat equivalent to the notion of super-cluster in-
troduced by Krishnamurthy and Wang [12] for modeling the Internet topol-
ogy.

Geographic Clustering: clusters are defined based on the geographic local-
ization of Internet hosts (e.g., all the nodes near Paris are within the same
cluster).

n-agnostic Clustering: clusters are defined as fixed-length IP prefixes. All the
nodes sharing the same n bits prefix are put in the same cluster. The /24

division proposed by Szymaniak et al. [3] is a particular case of such a tech-
nique (i.e., 24-agnostic clustering).

BGP Clustering: clusters are built according to BGP. Every advertised BGP
prefix refers to a cluster. Each IP address belongs to the cluster with the
longest matched BGP prefix. The clustering in BGP prefixes was firstly
proposed by Krishnamurthy and Wang [4].

n-hybrid Clustering: clusters are built according to BGP prefixes but the
minimum length of the prefixes is fixed to n. When the BGP prefix length
is lower than n bits, it is divided into as many /n as needed instead of the
single prefix length advertised in BGP. n-hybrid Clustering is thus a mix
between BGP and n-agnostic Clustering. To the best of our knowledge, we
are the first to propose this technique.

Except for n-agnostic Clustering, all these clustering techniques rely on a
dataset defining to which cluster an IP address belongs. For Geographical Clus-
tering, the dataset must contain a correspondence between IP addresses and a
geographical position. We believe that the MaxMind database [13] is accurate
enough for most of the applications, even if it has been shown that it is less
accurate (in term of geolocation) than active probing [14]. In the case of AS
Clustering, the dataset consists of a mapping between an Autonomous System
Number (ASN) and an IP prefix. BGP feed, iPlane [15] or Cymru [16] provide
this information. In both BGP and n-hybrid Clustering, IPs are mapped to their



longest matched BGP prefix. To know the advertised BGP prefixes, a BGP feed
is required. It can be obtained directly through a BGP session or a looking glass
(e.g., RIPE). It is worth to notice that BGP Clustering is equivalent to 0-hybrid
Clustering and that, in 32-agnostic, clusters have a cardinality of one.

We propose n-hybrid Clustering to avoid very large prefixes announced by
BGP (e.g., some /8). Indeed, some of them may concern hosts spread all around
the world and, thus, lead to a very low measurement accuracy.

Clustering techniques for reducing the amount of required measurements have
already been extensively studied by the research community. Krishnamurthy
and Wang introduce the BGP Clustering in the context of web caching [4]. In
addition, they propose an adaptive clustering for addresses not classified with
BGP. Unfortunately, their technique is based on reverse DNS and traceroute
which is not suitable as traceroute is intrusive. Instead, we map undefined IP
addresses to an agnostic /n prefix. Szymaniak et al. show that latencies are
globally equivalent within the same /24 prefix on the Internet [3]. Based on
that, Szymaniak et al. suggest to use a /24 cluster division (equivalent to what
we call 24-agnostic Clustering in this paper) to reduce the amount of required
measurement. Finally, Brown proposes to use clustering for optimizing traffic
from a local network to a set of IP addresses put into a given cluster [2]. Based
on measurements to a set of scanpoints (equivalent to our Reference Points), an
entity might decide to choose a particular Internet path for traffic towards the
cluster.

In addition, others proposed techniques for monitoring networks and, possi-
bly, reducing the amount of required measurements while keeping accurate the
measured metrics [17–19, 7, 9]. In particular, Donnet et al. [9] impose a limit on
the number of traceroute monitor that can probe a given destination. This is
done by dividing the traceroute monitors into clusters, each cluster focusing on
a particular portion of the traceroute destinations.

4 Evaluation

4.1 Methodology

Our evaluation relies on two datasets. The first dataset is taken from the Caida’s
Archipelago measurement infrastructure [20], the skitter evolution. Archipelago
collects traceroute and RTT information towards all routed /24. For our study,
we consider data collected in August 2008 by two Archipelago monitors: bcn-es
(Barcelona, Spain) and san-us (San Diego, USA). From these dataset, we extract
only complete traceroutes, i.e., traceroutes terminating at the destination. For
the rest of this paper, this dataset is named Archipelago. For the second dataset,
we collected full NetFlow traffic traces on our campus network. The traces were
collected at the single 1Gbps Internet connection of the campus. A total of 45.4
TB of outgoing traffic has been monitored. However, in this paper, we do not
consider 0 bytes or 0 packets flows and ignore our VPN-like traffic. Thus, after
filtering, the outgoing traffic represents 7.45 TB (i.e., 22.27 Mbps on average).
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Fig. 2. Prediction error applied to RTT

The filtered dataset contains 10,084 different source IP addresses and 36,263,710
destination IP addresses for a total of 60,638,413 different layer-3 flows (i.e., the
number of different <src, dst> IP address pairs). In the following of the paper
this dataset is named NetFlow.

The NetFlow dataset is used to estimate the measurements reduction and
the popularity while the Archipelago dataset permits to estimate the impact
of clustering on performance estimation accuracy. Unfortunately, we have not
found significant datasets that allowed us to estimate measurement accuracy and
reduction at the same time. However, measurements from the bcn-es monitor is
representative of the RTT we see on our campus network. We can thus consider
the two dataset as not completely independent (bcn-es monitor is connected
through the European research network like our campus).

The mapping between IP addresses and announced prefixes was done using
the first BGP table dump of August 2008 retrieved from the University of Oregon
RouteViews project [21]. ASN and IP addresses mapping was done using the
iPlane dataset [15]. Finally, the geographic mapping was achieved using the
MaxMind database [13].

In the following, we limit the n value to {16, 20, 22} for n-agnostic and
n-hybrid.

4.2 Measurement Accuracy

In this section, we evaluate the measurement accuracy of clustering techniques.
We focus on two networking metrics: the round-trip time (RTT) and the number
of hops. We let jitter and bandwidth for further work.

Fig. 2 shows the prediction error (see Def. 2) applied to the RTT for the
five clustering techniques introduced in Sec. 3. Fig. 2(a) focuses on the bcn-es

monitor and Fig. 2(b) on san-us. For each subfigure, there are three plots, the
upper one comparing BGP, Geographic, AS, and 24-agnostic Clustering, the



(a) bcn-es (b) san-us

Fig. 3. Prediction error applied to hop

middle one n-agnostic, and, finally, the below one n-hybrid. The horizontal axis
gives the RTT Error (in %) and the vertical axis the cumulative distribution
form (CDF).

A first observation is that n-hybrid and n-agnostic Clustering perform better
(n-hybrid being the best) than other clustering techniques, most of the measure-
ments having an error less or equal to 50%. More precisely, in 80% of the cases,
the RTT Error is less or equal to roughly 25%. The AS Clustering offers the
worst performance. This is somewhat expected as some ASes are too large to
asses the assumption that any measurement towards the cluster reference point
is representative of the entire cluster. Indeed, an AS can be very large and may
contain smaller entities that are separately administrated. From Fig. 2, we notice
that the RTT Error might be very large, i.e., up to 1,000% for AS Clustering
(not shown on Fig. 2). This is due to inherent limitations of our dataset. Some
traceroute might take a long time to reach the destination and the RTT mea-
sured at this time might not be really representative of the actual “distance”
separating the traceroute monitor and the destination.

Fig. 3 shows the prediction error applied to hop. Again, AS and Geographic
Clustering provides the largest error. This is expected as they span larger areas.
Further, for n-hybrid and n-agnostic, larger the cluster (i.e., smaller the n),
larger the hop error. As for RTT error, n-hybrid provides the best performance.

Fig. 4 shows the prediction variation (the percentiles of all the prediction
errors for a given cluster) applied to RTT (Fig. 4(a)) and to the number of
hops (Fig. 4(b)). The horizontal axis gives the various clustering techniques
while the horizontal axis, in log-scale, gives the prediction variation. Fig. 4 plots
stacked bars. The lowest bar (i.e., the darkest) refers to the 25th percentile of the
prediction variation. The middle bar shows the 50th percentile (i.e., the median),
while the highest bar (i.e., the lighter) gives the 75th percentile.
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Fig. 4. 25th, 50th and 75th percentile of prediction error

Fig. 5. Popularity in the NetFlow dataset Fig. 6. Cluster size distribution

The main lesson learned from Fig. 4(a) is that, whatever the clustering tech-
nique, the RTT variation is low: the median has a maximum of 1.5% for 16-
agnostic (for san-us). However, the situation is a little bit different for hop
variation (Fig. 4(b)). The 75th percentile provides large hop errors, in particular
for the largest clusters, i.e., 16-agnostic, 16-hybrid, BGP, AS, and Geographic
Clustering.

To summarize, except in a few extreme cases, clustering provides thus pretty
good measurement accuracy. In particular, this section suggests that n-hybrid
Clustering is the most reasonable choice for a clustering technique deployment.

4.3 Measurement Reduction

In this section, we evaluate the measurement reduction observed on the NetFlow
dataset for the clustering techniques introduced in Sec. 3.



We first determine if measurement reduction can be achieved, on the NetFlow
dataset thanks to the collaboration. On Fig. 5, the horizontal axis, in log-scale,
shows the popularity while the vertical axis gives the CDF.

Fig. 5 shows that 26.1% of the destinations are reached by, at least, 2 dif-
ferent sources. Collaboration will thus reduce measurements for this dataset.
In addition, the top 250 destinations are reached by more than 2,000 different
sources. Theses destinations are the major CDNs and web search engines.

Fig. 6 shows the CDF of the cluster sizes. The plot first shows that, on
our dataset, clusters cover several nodes. Measurement reduction will thus be
observed on our dataset.

Fig. 6 also suggests that the clustering technique influences the cluster size.
For instance, 50% of the clusters cover more than 200 addresses in AS Clustering
while it is the case for less than 10% in BGP or Geographic Clustering. Moreover,
the cluster size is also influenced by the n parameter when applicable. With small
n, prefixes are large and have the possibility to absorb many destinations, the
cluster size being therefore important. As expected, n-hybrid behaves partially
like BGP for small n and like n-agnostic for large n.

Fig. 7. Measurement reduction in the NetFlow dataset

Fig. 7 shows the effective reduction factor with respect to the different cluster-
ing techniques, with or without collaboration. The vertical axis is the reduction
factor while the horizontal axis indicates the clustering techniques. On Fig. 7,
light gray bars show the reduction factor when the nodes are not collaborating.
On the other hand, dark gray bars show the reduction factor when nodes are
collaborating.

32-agnostic and 32-hybrid Clustering (one cluster per destination) from Fig. 7
confirm that collaboration can reduce measurements (by 40% in our dataset).
Light gray bars confirm that clustering can reduce measurements.

Moreover, Fig. 7 shows that, for the same clustering technique, cooperation
always offers better reduction factor than no cooperation or collaboration with-



out clustering. Confirming so that combining collaboration and clustering gives
even better measurements reduction than collaboration or clustering alone.

We also see on Fig. 7 that BGP, AS, and Geographic Clustering offer an
important reduction factor because the number of BGP prefixes, ASes, or loca-
tions is very small compared to the number of different addresses in the NetFlow
dataset.

When considering n-hybrid and n-agnostic Clustering, the reduction factor
is more sensitive to n than the technique itself which is particularly true without
collaboration.

Regarding to what we discussed above, we would suggest to use 20-hybrid
clustering as this technique remains accurate and presents an interesting mea-
surement reduction, even without collaboration. We would suggest not to use
n-agnostic for small values of n as it will not reflect the topology. AS and geo
clustering should be avoided.

In this section, we demonstrated that they effectively reduce the number of
measurements while remaining quite accurate.

5 Conclusion

Measuring the quality of a set of paths, in terms of delay or bandwidth, is
becoming more and more important for applications and services. Indeed, the
resulting measurements could allow the application to select the best location
for the required service or for getting a particular content. However, constantly
monitoring the network through active measurements is not desirable due to
scalability issues.

A solution for rendering measurements more scalable is to consider clustering
and collaboration between measurement sources. Clustering aims at aggregating
a subset of destinations into the same hat and consider that a single (or a few)
measurement towards the cluster is representative of the whole cluster.

In this paper, we first discussed how collaboration and clustering might lead
to a reduction in probing effort. We defined metrics for evaluating the perfor-
mance of any clustering technique. Those metrics evaluates the accuracy of a
prediction based on clustering and the measurement reduction.

Secondly, we explained five different clustering techniques. Those techniques
have the advantage of being very easy to setup, i.e., they do not required strong
calculations. Based on real data collected, we evaluated those techniques with
metrics we introduced. We demonstrated that clustering techniques offer quite
accurate measurement predictions as well as measurements scalability.

In this paper, we only took into account two networking metrics: delay and
the number of hops. Future work should reveal how other network metrics, such
as bandwidth and jitter, are impacted by cluster based measurements.
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