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Abstract

Multipath TCP is a recent TCP extension that enables multihomed hosts like
smartphones to send and receive data over multiple interfaces. Despite the
growing interest in this new extension, little is known about its behavior in
real networks. We analyze a five-month trace collected on multipath-tcp.org

using Multipath TCP. This first detailed study of real Multipath TCP traffic
reveals several interesting points about its behavior in the wild. With packets
from thousands of hosts using IPv4 and/or IPv6, we confirm that Multipath
TCP correctly passes through a wide range of Internet paths. We observe long
Multipath TCP connections that benefit from handovers and also connections
composed of subflows having very different round-trip-times. We also analyze
some inefficiencies in the current Multipath TCP implementations and quantify
the importance of reinjections, i.e. the transmission of the same data over two
or more subflows.

Keywords: networking, transport layer, measurement, performance

1. Introduction

The Transmission Control Protocol (TCP) is the dominant transport proto-
col in today’s fixed and wireless networks. The design of TCP dates from the
1970s. Over the years, the protocol and its implementations have significantly
evolved. Although today’s TCP implementations still use the packet format
proposed forty years ago, they include various optimizations [1] that are key in
today’s networks. These optimizations and extensions include TCP congestion
control schemes [2], TCP timestamp option, large windows extensions, improved
round-trip-time estimations and several forms of selective acknowledgements for
better retransmission.

Multipath TCP [3, 4] is the latest significant TCP extension approved by
the Internet Engineering Task Force (IETF). It enables hosts to exchange the
packets that belong to one connection over different interfaces or paths. This is a
major change to TCP that assumes that a connection is identified by the source
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and destination addresses and the source and destination ports. Multipath
TCP breaks this assumption by combining several TCP connections, called
subflows, into a single Multipath TCP connection. Multipath TCP includes
a special congestion control scheme that couples the congestion window among
the different subflows [5].

Several use cases for Multipath TCP have already been identified in the
scientific literature [6]. The initial motivation for Multipath TCP were the mul-
tihomed hosts like today’s smartphones that are equipped with several network
interfaces. Such hosts did not exist when TCP was designed. Users of smart-
phones expect that multiple available interfaces could be used simultaneously
to increase the bandwidth [7] or successively to support mobility [8, 9]. With
regular TCP, this form of resource pooling is not possible since each interface
uses a different IP address. A second use case are the datacenters [10] where
Multipath TCP improves the network utilization with Equal Cost Multipath
(ECMP). A third use case are single-homed but dual-stack hosts that support
IPv4 and IPv6. On such hosts, Multipath TCP can use both network layer
paths simultaneously for increased performance [11].

In September 2013, Apple took the networking community by surprise by
implementing and enabling Multipath TCP on all its iOS devices (including
smartphones and tablets). Within a few months, hundreds of millions of devices
started to use this TCP extension. On iOS, Multipath TCP does not replace
regular TCP. As of this writing, the Multipath TCP API on iOS is not public and
only Apple’s Siri voice recognition application uses Multipath TCP to exchange
small amounts of data with a few servers managed by Apple. Given the difficulty
of implementing a complex protocol like Multipath TCP [12], it can be expected
that other applications will leverage Multipath TCP in the coming years. It is
now included in the latest MacOS releases and there are plans to upstream the
Linux implementation in the official Linux kernel [13].

In this paper, we provide the first detailed analysis of the operation of Mul-
tipath TCP in real networks by analyzing long packet traces collected on a Mul-
tipath TCP server often used by researchers and implementers. More precisely,
this paper provides the following contributions that improve our understanding
of the dynamics of this new protocol.

We first collected a five-month-long packet trace that contains 190,451 Mul-
tipath TCP connections originated from more than 7,000 different hosts across
the Internet. This is the largest publicly available dataset about this new pro-
tocol1. To analyze this long trace, we improve the open-source mptcptrace

software [14] and develop custom scripts. Our analysis reveals various impor-
tant information about the current usage of Multipath TCP. Multipath TCP
works well over many Internet paths and we observe very few fallbacks caused
by middleboxes. Multipath TCP connections can last thousands of seconds or
more and we observe handovers on such connections. From the performance
viewpoint, our analysis reveals that Multipath TCP connections are often com-

1This dataset is available at http://www.multipath-tcp.org/data/COMCOM16
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posed of subflows having very different round-trip-times. We also analyze some
inefficiencies of the current Multipath TCP implementations and study in more
details the reinjections, i.e. the transmissions of the same data over several
paths, and how they affect the performance.

This paper is organized as follows. We first provide a brief overview of
Multipath TCP and discuss related work in Sec. 2. We describe the dataset
that we have collected in Sec. 3 and our extensions to mptcptrace that enabled
us to process them efficiently in Sec. 4. In Sec. 5, we analyze how the Multipath
TCP connections use their subflows. We discuss in Sec. 6 main lessons that we
learned from this first detailed analysis of Multipath TCP packet trace.

2. Multipath TCP

This section provides a brief introduction to the Multipath TCP protocol [3]
and the key characteristics of its implementation in the Linux kernel. A more
complete introduction to Multipath TCP may be found in [15].

A Multipath TCP connection is a logical association between a client and
a server. To understand the operation of Multipath TCP, let us consider the
simple but common case of a smartphone using WiFi and cellular and a single-
homed server. To request the utilization of Multipath TCP, the smartphone
adds the MP CAPABLE option in the TCP’s SYN segment sent over its cellular
interface. This option contains several flags and a random key [3]. If the server
supports Multipath TCP, it also replies with the MP CAPABLE option in the
SYN+ACK segment. This option also contains a random key chosen by the server.
To cope with middleboxes that could remove the MP CAPABLE option from the
SYN+ACK segment, an MP CAPABLE option containing the two keys is also placed
in the third acknowledgement returned by the client. According to the Mul-
tipath TCP terminology, this initial TCP connection is called a subflow [3].
Thanks to this subflow, the smartphone and the server can exchange data over
the cellular interface. The smartphone or the server must then send some data
over this subflow to verify that the Multipath TCP options placed in data seg-
ments are not modified by middleboxes. Once this first data has been correctly
acknowledged, the subflow is considered to be valid and other subflows can be
created to use different paths.

If the smartphone wants to send data also over its WiFi interface, it sends a
new SYN segment with the MP JOIN option over this interface. This option con-
tains a token derived from the key announced by the server in the MP CAPABLE

option. This token identifies the Multipath TCP connection and allows the
server to attach the new subflow to the existing Multipath TCP connection.
The server replies with an MP JOIN and the subflow is established. The smart-
phone can also inform the server of the other addresses that it uses through the
ADD ADDR option.

At this stage, the Multipath TCP connection is composed of two subflows.
This number of subflows is not fixed. A subflow can stop at any time and other
subflows can be established during the lifetime of the Multipath TCP connec-
tion. Data can be sent over any of the available subflows. To enable the receiver
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to reorder the received data, Multipath TCP relies on two levels of sequence
numbers: the regular TCP sequence number and the Data Sequence Number
(DSN) which corresponds to the application-level bytestream. When data is
sent over a subflow, its DSN is mapped to the regular sequence numbers within
the Data Sequence Signal (DSS) option. The DSS option also contains DSN
acknowledgements. Thanks to this option, the same data can be transmitted
over more than one subflow. This is called a reinjection [4]. A reinjection can
occur if data transmitted over one subflow has not been acknowledged quickly
enough. For example, a smartphone could send some data over its WiFi inter-
face while moving out of reach of the access point. This data will have to be
retransmitted later over the cellular interface to reach the server.

Several independent implementations of Multipath TCP have been written
[12]. Apple’s implementation is the most widely deployed, but it is only used by
one application. The Multipath TCP implementation in the Linux kernel [16]
is the most complete one. It includes several algorithms that are not part of the
protocol specification [3] but influence its performance and the transmission of
packets. There are three main modular components that affect the performance
of the Linux implementation: (i) the path manager, (ii) the congestion control
scheme and (iii) the scheduler.

The path manager defines the strategy that is used by the Multipath TCP
stack to create subflows. Two path managers are included in the Linux imple-
mentation: full-mesh and ndiffports. They decide when and how subflows
are created. As of this writing, subflows are only created by the clients. The
server does not attempt to create subflows because the clients are often behind
NATs or firewalls that would block these subflows [12]. The full-mesh path
manager creates a subflow from each address owned by the client to each ad-
dress advertised by the server. These subflows are created at the beginning of
the connection, as soon as the initial subflow has been validated. If the host
learns a new address, e.g., a smartphone attaches to a new WiFi access point,
the full-mesh path manager automatically creates a new subflow over this in-
terface. The ndiffports path manager was designed for single-homed hosts
in datacenters [10]. With this path manager, a Multipath TCP connection is
composed of n subflows that use different source ports. The full-mesh path
manager is the default path manager in the Linux implementation, but some
researchers use the ndiffports path manager.

The second important algorithm is the congestion controller. Several con-
gestion control algorithms have been proposed for Multipath TCP. These con-
gestion control schemes couple the congestion windows of the different subflows
to preserve fairness with the regular TCP congestion control scheme. Four of
them are included in the Linux kernel implementation: LIA [5], OLIA [17],
BALIA [18] and wVegas [19]. LIA is the default congestion control scheme, but
users can opt for other congestion control schemes. Some users have reported
that they used non-coupled congestion control schemes like CUBIC which is the
default congestion control scheme in Linux.

The third important algorithm of the Linux kernel is the packet scheduler
[20]. This algorithm is used every time a data segment needs to be sent. It
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selects, among the active subflows that have an open congestion window, the
subflow that will be used to send the data. The default scheduler tries to send
data over the subflow having the lowest round-trip-time.

2.1. Related work

Various researchers have analyzed the performance of Multipath TCP through
measurements. Raiciu et al. [8] discuss how Multipath TCP can be used to sup-
port mobile devices and provide early measurement results. Pluntke et al. [21]
analyze whether Multipath TCP could reduce energy consumption by using
several interfaces simultaneously. Paasch et al. [9] propose three modes for the
operation of Multipath TCP in wireless networks and describe measurements
of handovers. Chen et al. [22] analyze the performance of Multipath TCP in
WiFi/cellular networks by using bulk transfer applications running on laptops.
Ferlin et al. [23] analyze how Multipath TCP reacts to bufferbloat and propose a
mitigation technique. As of this writing, this mitigation technique has not been
included in the Linux Multipath TCP implementation. Livadariu et al. explore
the performance of Multipath TCP on dual-stack hosts [11] and show that per-
formance over IPv6 and IPv4 paths differ. Ferlin et al. [24] propose a probing
technique to detect low performing paths and evaluate it in wireless networks.
Lim et al. [25] propose a technique to reduce the energy consumption of smart-
phones that are using Multipath TCP and evaluate it experimentally. Williams
et al. analyze in [26] the performance of Multipath TCP on moving vehicles.
Deng et al. [27] compare the performance of single-path TCP over WiFi and
LTE networks with the performance of Multipath TCP on multi-homed devices
by using active measurements and replaying HTTP traffic observed on mobile
applications. Their measurements show that Multipath TCP provides benefits
for long flows but not for short ones. For short flows, they show that the selection
of interface for the initial subflow is important from a performance viewpoint.
Hesmans et al. analyze in [28] a one-week-long subset of the trace that we use in
this paper. In this paper, we use a much larger dataset (5 months), apply new
analyses based on concept of data burst and subflow switch, as well as look at
the amount of data acknowledged on TCP and MPTCP level. This work and its
earlier version [28] are the first ones that collect and analyze a large real-world
Multipath TCP dataset, revealing some new aspects of Multipath TCP traffic.

3. Dataset

Although Multipath TCP is already used by hundreds of millions of Apple
smartphones to support the Siri voice recognition application, our analysis in-
stead focus on the Multipath TCP implementation in the Linux kernel [16]. This
implementation is distributed from multipath-tcp.org and thousands of users
have downloaded and installed it on their computers. We use tcpdump on the
server side to collect all the packets sent and received by multipath-tcp.org.
At the time of writing, one limitation is that we have a single server only with
one interface, but dual IPv4/IPv6 stack is available to clients. In addition to
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providing source code and binaries for the Multipath TCP patch, this host also
supports other web servers, an FTP server and uses an Iperf daemon to enable
researchers and users to perform various tests. We extract from the trace the
packets that correspond to Multipath TCP connections. They are identified by
looking at the utilization of the Multipath TCP options during the three-way
handshake. In the remaining of this section, we provide statistics about our
trace.

We first analyzed the main characteristics of the Multipath TCP connections
in the dataset, which has been collected during 5 months from November 25th,
2014 to April 29th, 2015. We observed 10300 IP addresses have been used by
our clients, including 7770 IPv4 addresses. While users could be biased toward
MPTCP developers and early adopters, we still observed a very diverse users set
based on their Autonomous Systems (AS). According to the IP-to-ASNumber
database of Team Cymru [29], these client IP addresses correspond to 588 unique
ASes.

We identified 190,451 Multipath TCP connections, which used several des-
tination ports. Most (86.17 %) of the connections used port 80. The remaining
connections were on ports 21 (FTP, 5.33 %), 5001 (Iperf, 1.68 %) and other high
port numbers linked to passive-mode FTP connections and a private HTTP
proxy (port 3128) used for some tests.

Port MPTCP connections % Connections % Traffic volume

20 82 0.04 1.04
21 10158 5.33 0.002
80 164123 86.17 26.80

3128 1215 0.63 0.50
5001 3211 1.68 22.14

Others 11662 6.12 49.52

Table 1: Popular TCP server ports used in the dataset

The observed connections are diverse in terms of both duration and size.
Figure 1 plots the durations of the Multipath TCP connections. We observe that
most of the Multipath TCP connections last in the range of 1 to 100 seconds.
There are only 1.51% of the connections lasting more than 100 seconds.

In terms of connection size, as shown in Fig. 2, we could identify some major
clusters of connections: a group of exactly 2 Bytes (account for 12% of all the
connections), large groups around 1 KByte (account for 15%) and 10 KBytes
(account for 65%), smaller groups around 100 KBytes and 1 MBytes. The
connections containing exactly two bytes are empty connections with one-byte
space for DATA FIN in both directions.

This is expected since today’s web browsers usually pre-open connections
on client side to reduce the latency perceived by users. Web traffic and the
FTP control channel are responsible for the majority of the small connections
which carry around 400 Bytes and 20 KBytes (account for around 80% of all
the connections). The remaining large connections are likely FTP data traffic
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Figure 1: Duration of the Multipath TCP connections

and iperf test transfers.

4. Tracing Multipath TCP

While many software tools are designed to extract information about TCP
connections from a packet trace, such as tcptrace [30] or tstat [31], these tools
do not understand the specificities of Multipath TCP. To analyze our dataset,
we developed and extended the mptcptrace software [14]. The first version of
mptcptrace [14] was designed to process short packet traces.

We have significantly improved mptcptrace implementation to process the
long packet traces that we analyze in this paper. Memory management has
been improved to consume less memory. The tool now recognizes three ways
to finish a connection. First, the DATA FIN has been exchanged from both end
hosts. Second, one of the two end host has sent the FAST CLOSE mptcp option.
Third, no activity of the connection has been detected within the last s seconds,
which can be set as a parameter. Another option has been added to limit the
size of the queue that keeps in memory the mapping between Multipath TCP
(or data-level) sequence numbers and the subflow on which it has been sent
initially. This queue is used to detect reinjections but can become very large if
a connection is long. Moreover, if the queue is long enough, it is unlikely that
mptcptrace will miss any reinjection. The internal structure used to store the
Multipath TCP connections and subflows has also be changed to hash table to
process long traces faster. With real traffic traces, new corners cases have been
detected and are now correctly handled by mptcptrace. We have also added
new statistics in addition to the ones described in [14]. New per-file statistics,
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Figure 2: Traffic volume (in Bytes) carried by each connection

rather than per-connection statistics have also been added to ease the analysis.
Anomalies detected during the analysis are also better reported by mptcptrace.

mptcptrace understands the semantics of the Multipath TCP protocol and
can extract the keys that are exchanged during the establishment of the initial
subflow from the MP CAPABLE option. Thanks to these keys, mptcptrace com-
putes the tokens that identify the Multipath TCP connection on both the client
and the server. With these keys, mptcptrace can link the different subflows
that compose each Multipath TCP connection.

Once the subflows that are associated to one Multipath TCP connection
have been grouped together, mptcptrace produces detailed plots that provide
a graphical representation of the Multipath TCP connection and its subflows.
In contrast with tstat, mptcptrace exploits mainly the contents of the DSS

option instead of the SEQ, ACK and other fields of the TCP header. For example,
mptcptrace can plot the instantaneous throughput at the Multipath TCP level.
It can also plot the evolution of the receive window and the amount of data
that are in flight. mptcptrace also computes global statistics like tstat but at
Multipath TCP level. For example, mptcptrace computes the duration of each
Multipath TCP connection. This is defined to be the delay between the first SYN
that carries the MP CAPABLE option and the last packet sent over this connection,
possibly on another subflow. mptcptrace also computes the fractions of the
bytes that are sent over each subflow and also detects reinjections (i.e. the
transmission of the same data over two or more subflows).
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mptcptrace is publicly available2. In addition, we also rely on a set of
Python scripts that post-process the outputs of tstat, tcptrace and mptcptrace.
These scripts are also publicly available 3 4.

5. Analysis

This section provides the most important results about both behavior and
performance of the protocol, including the interferences caused by middleboxes
(Sec. 5.1), how fast the hosts establish the additional subflows (Sec. 5.2),
the round-trip-time pattern of Multipath TCP paths (Sec. 5.3), how data is
acknowledged at TCP and Multipath TCP level (Sec. 5.4), how data is spread
over different subflows (Sec. 5.5), and the overhead introduced by Multipath
TCP compared to regular TCP (Sec. 5.6 and 5.7).

5.1. Middlebox interference

Multipath TCP was designed to cope with a wide range of middlebox inter-
ferences [3, 32]. If a middlebox interferes too much with the operation of Multi-
path TCP, the connection should fallback to regular TCP. More concretely, if a
middlebox modifies the payload, the mapping between Multipath TCP-level and
subflow-level sequence numbers would likely be invalid and corrupt the trans-
ferred data. Multipath TCP uses its own checksum to detect any modification
of payload, ensuring that the mappings are always correct. If the checksum fails,
the receiver will inform the remote peer, close all but one subflow and switch to
regular TCP.

Among 190,451 Multipath TCP connections, we observe only 125 of them
falling back to regular TCP, which happened with 28 distinct client IP ad-
dresses. These include 91 HTTP connections and 34 FTP connections. The
FTP interference is expected and due to Application Level Gateways running
on NAT boxes which try to “correct” the port number in FTP command to
match with forwarded port number. The HTTP interference appeared only on
the direction from server to client and could have been caused by transparent
proxies deployed in cellular and enterprise networks [33]. The rate of fallbacks
that we observe is lower than that of earlier work [34]. Note that since we collect
data on the server, we cannot detect the removal of the MP CAPABLE option by
a middlebox in the SYN.

5.2. Establishment of the subflows

With Multipath TCP, a host can send data over different subflows. The
number of subflows that a host creates depends on various factors including the
number of interfaces that it has and its path-manager as explained in section 2.
As mentioned earlier, the server has a single interface but with dual IPv4/IPv6

2See https://bitbucket.org/bhesmans/mptcptrace
3See https://github.com/multipath-tcp/mptcp-analysis-scripts
4See https://bitbucket.org/hoang-tranviet/mpmine
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Figure 3: Delay from the creation of MPTCP connection to the establishment of a subflow

stack. Table 2 reports the number of (not necessarily concurrent) subflows per
connection. We see that 61.56% of the connections contain only one subflow.
Among the connections that have at least two subflows, 49% of them originated
from different IP addresses and were likely created by the full-mesh path man-
ager5. The other 51% of the connections originated from a single address, which
would correspond to the ndiffports path manager.

Number of subflows 1 2 more than 2

61.56% 23.3% 15.14%

Table 2: Number of subflows per Multipath TCP connection

The maximum number of subflows per connection is as large as 68. Notice
that this is the number of all subflows during the lifetime, not necessarily active
at the same time, so this is not inconsistent with the fact that the Multipath
TCP implementation in Linux kernel supports only 32 concurrent subflows.
This unexpected large number was probably due to researchers who performed
tests with the monitored server.

Another interesting point is the delay between the establishment of the con-

5We expect that most of the packets in the dataset were generated by Linux clients. Al-
though other implementations exist, they are not usable for regular traffic (e.g., Apple or
Citrix) or not yet mature enough (e.g., FreeBSD). We cannot however infer the version of the
Multipath TCP implementation used by a client from the packet trace.
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nection (i.e. the first subflow) and the establishment of the other subflows. This
metric can be used for two purposes: showing how quickly Multipath TCP uti-
lizes additional subflows, and suggesting handovers. The process to establish
the subflows is called join. With the Linux implementation, path managers try
to set up subflows shortly after the creation of the Multipath TCP connection
and as soon as a new IP address is learned by the client. To quantify this effect,
we plot in Fig. 3 the CDF of the delays between the creation of each Multipath
TCP connection and all the subflows that are linked to it.

We observe that 86% of the additional subflows are established during the
first second of the Multipath TCP connections. Comparing the two lines, we
can see the difference with longer duration. After one minute, most of the
first joins had been done, but there is still 1.79% of all subflows joined after
one minute and 0.22% of that after one hour. These joins happening longly
after the connection establishment suggest that those connections were likely
experiencing a handover.

5.3. Subflows round-trip-time
A subflow is established through a handshaking process, as explained in sec-

tion 2. Thanks to this exchange, the communicating hosts measure the initial
value of the round-trip-time (RTT) for the subflow. For the Linux implemen-
tation, the round-trip-time measurement is an important performance metric
because the default packet scheduler prefers the subflow having the lowest RTT.

10-1 100 101 102 103 104 105
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Figure 4: Difference of average RTT between worst and best subflows from server to clients
of the same Multipath TCP connection (at least 100 KB)

We evaluate the RTTs heterogeneity of Multipath TCP connections. For
this, we first extract from the trace the connections that carry at least 100 KBytes.
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For each connection, we use tcptrace to compute the average round-trip-time
of all the subflows that it contains, and then extract the minimum and the max-
imum of these values. Figure 4 plots the CDF of the average RTT difference
between the fastest and the slowest subflows over all connections. Only 22.6%
of the connections have subflows whose RTT difference is within 10 ms.

We observe as many as 12.5% of the considered connections whose RTTs
differ by more than one second, which might be the result of the bufferbloat
issue. Exceptionally, for some connections, this RTT difference is as high as 22
seconds.

Since the default packet scheduler prefers low RTT subflows, we focus on the
two best subflows of each connection. Figure 5 shows the boxplot of the average
RTT of the second-best subflow in relation with that of the best subflow of the
same Multipath TCP connection. Except the first box depicting the connections
having best subflow’s RTT smaller than 40 ms, the figure shows an observable
difference between the RTT of second-best subflow and RTT of best subflow.
While the median value of second-best subflow’s RTT is not far away from the
best one, the tail values may be pretty high.
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Figure 5: Average RTT of the second-best subflow vs. average RTT of the best subflow of
the same Multipath TCP connection (at least 100 KB)

5.4. Multipath TCP acknowledgements

As explained in Sec. 2, Multipath TCP uses two levels of acknowledgement:
the regular TCP acknowledgements at the subflow level and the cumulative
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Multipath TCP acknowledgements at the connection level. By comparing the
amount of data acknowledged at these two levels, we can infer about the degree
of out-of-order issue as well as the memory footprint pressure in general.

Over the years, TCP has been tuned to pack acknowledgements and min-
imize their overhead [1]. When there are no loss and no reordering, a TCP
receiver should acknowledge every second packet that it receives. We clearly
observe this in Fig. 6 that shows the number of bytes that are acknowledged by
the non-duplicate TCP acknowledgements on Multipath TCP connections with
at least two subflows. This plot is a weighted CDF where the contribution of
each acknowledgement is weighted by the number of bytes that it acknowledges.
A big step at around 2,856 Bytes shows the effect of delayed acknowledgement

feature of TCP hosts which acknowledge every two packets. We observe the TCP
acks that acknowledge one (max. 1428 bytes) or two packet (max. 2856 bytes)
account for as many as 72% of the bytes acknowledgement.

We perform a similar analysis with the Multipath TCP Data acknowledge-
ments. The solid line in Fig. 6 shows the weighted cumulative distribution of
the number of bytes acked per data acknowledgement. Compared with the regu-
lar TCP acknowledgements, the Multipath TCP acknowledgements cover more
bytes. 50.5% of the Data-acks acknowledge two segments of data or less, while
for regular TCP this number is 72%. Furthermore, 9% of the total traffic are ac-
knowledged as data chunks larger than 100 KBytes at MPTCP level, compared
to 4% at TCP level.

The difference between the regular TCP acknowledgements and the Data
acknowledgements is caused by the reordering that occurs when data is sent
over several subflows. Since the Data acks are cumulative they can only be
updated once all the previous data have been received from all subflows. If a
subflow with a long round-trip-time is used, it will cause reordering and data
will remain in the reordering queue on the receiver for a long period. Reordering
is less frequent with regular TCP.

5.5. Data distribution

Another important point is the distribution of the data among the available
subflows. Observing Multipath TCP connections that contain two active sub-
flows or more, we see that data can be distributed in very different ways among
the subflows. At one extreme, almost all bytes are sent over a single subflow.
At the other extreme, packets can be distributed in a round-robin fashion.

5.5.1. Bias of data distribution towards initial subflow

A basic question about data distribution is whether the scheduler has bias
towards the initial subflow, like the capture effect mentioned in [35]. For this
purpose, we extract from the the trace all the connections having exactly 2 sub-
flows and compute the percentage of data that has been sent on initial subflow.
Based on the connection size distribution (Fig. 2), we examine on three different
groups of connections: (1) smaller than 50 KBytes, (2) between 50 KBytes and
5 MBytes, and (3) larger than 5 MBytes.
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Figure 6: Weighted CDF of the size of acknowledged data chunks for traffic from server to
clients, from connections having at least two subflows

As shown in Fig. 7, it turns out that the data distribution of two-subflow
connections suggests some interesting points. Looking at the right part of the
graph, there are as many as 29.6% of sub-50KB MPTCP connections which
send all traffic over only the initial subflow. This proportion is smaller for
groups of larger connections (13.8% in group 2 and 6.7% in group 3). Moreover,
there are around 65.5% of the MPTCP connections larger than 5 MB sending
more than half of their traffic over the initial subflow. This bias is even more
significant (76.6%) if we consider the MPTCP connections between 50 KBytes
and 5 MBytes. Interestingly, only a minority (47.5%) of the connections smaller
than 50 KBytes send more traffic over their initial subflow. After checking
these connections in details, we observe that the initial subflow has the RTT
worse than that of second subflow in most cases. Usually, the initial subflow
carries payload while the second subflow is establishing. The RTT of the initial
subflow when carrying payload is likely higher than that of second subflow when
handshaking without payload. Since the Linux’s scheduler prefers subflow with
smallest RTT, traffic would be sent through the second subflow. When the
connection is very small, the scheduler would not switch back to initial subflow
before finishing the transfer.

5.5.2. Subflow switching frequency

To further evaluate how data is spread among the established subflows, we
propose to use the notion of subflow switch and burst. A burst is a series of
consecutive bytes that are sent over a given subflow. The sizes of the bursts sent
by the monitored server are shown in Fig. 8. We observe that most of bursts (
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Figure 7: Ratio of data sent via initial subflow to all data sent via both subflows.

about 90%) are smaller than 10 KBytes.
For a given Multipath TCP connection, a subflow switch is when the sender

changes the subflow to send out data. The number of subflow switches per
MByte data is called subflow switch frequency. By measuring the subflow switch
frequency, we can compare the behavior of connections which have different rates
and durations. A high subflow switch frequency might suggest a connection
that sends the packets in a round-robin fashion among the active subflows. A
low frequency indicates a connection that sends long bursts of data over each
subflow.

Figure 9 provides the CDF of the subflow switch frequency computed over all
Multipath TCP connections that carry at least one MBytes of data and contain
at least two subflows. Each point in the curves corresponds to one Multipath
TCP connection and indicates the number of subflow switches normalized on
its size in bytes. Nearly 15% of the connections do not switch, which means
that they use only one subflow. On the other hand, we observe that 13% of
the connections in this trace have a subflow switching frequency larger than
200 times/MByte. The high subflow switching frequencies are likely the result
of the RTT similarities between different subflows. As mentioned in Sec. 5.2,
half of the connections in this trace used the ndiffports path manager. The
subflows on these connections usually use the same path and thus have almost
the same round-trip-times. Since the default scheduler prefers the lowest-RTT
subflow, the sender switches very frequently between the different subflows.

Given that the typical maximum segment size (MSS) is between 1400 and
1500 Bytes, it is unexpected that the switch frequency is larger than 700 times/M-
Byte. By looking at the trace in details, we figured out two main reasons for
this: (1) some connections have MTU smaller than typical value, around 1000
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Bytes or even 500 Bytes, and (2) in some case the scheduler sends small packets
frequently even if the standard MSS is used.

5.6. Unused and underused subflows

A potential imperfection of Multipath TCP is that subflows can be estab-
lished without being used to transport data. Creating subflows that are not
used consumes resources and energy [36, 37] on smartphones since the interface
over which these subflows are established is kept active.

There are three reasons explaining those unused subflows. Firstly, for the
small connections, all data exchange can be finished before new subflows are
fully established. Secondly, the subflow can be established as a backup subflow.
Thirdly, the difference in round-trip-times between the two subflows can be so
large that the subflow with the highest RTT is never selected by the packet
scheduler. Though, we noticed that on the unused additional subflows, 43.15%
show a better RTT with the newly-established subflow. In fact, 75% of the
connections containing such subflows carry less than 1000 bytes, and 95% less
than 20 KBytes.

By immediately creating subflows, the full-mesh path manager is responsi-
ble for some Multipath TCP inefficiencies. An improved path manager [36, 37]
would prevent some of these inefficiencies.

5.7. Reinjection overhead

A reinjection [4], is the retransmission of the same data over two or more
subflows. Reinjections can occur for several reasons: (i) handover, (ii) exces-
sive losses over one subflow or (iii) limited windows due to the Opportunistic
Retransmission and Penalization (ORP) heuristic proposed in [4] and enhanced
in [38].

Multipath TCP reinjections are closely linked with regular TCP retrans-
missions. Since reinjections, by definition, can only occur on connections that
contain at least two subflows, we consider only the connections composed of
at least two subflows and carrying at least one byte. Figure 10 shows the
CDF of the reinjections and retransmissions. The number of retransmitted and
reinjected bytes are normalized with the number of bytes exchanged over the
connection. Since the same data can be sent over several subflows, this fraction
can be larger than 1.0 for connections that carry a small amount of data that
is retransmitted or reinjected.

We observe that reinjections occur but are less frequent than regular TCP
retransmissions. While 25% of the multi-subflow connections do experience
retransmissions, only 4.1% of them experience reinjections. 923 MBytes are
reinjections and 1323 MBytes are retransmissions, out of a total of 113 GBytes
transmitted.

6. Conclusion

TCP is probably one of the most studied networking protocols. Hundreds of
papers have analyzed its performance and behavior in a wide range of conditions.
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TCP connections composed of at least two subflows

All this work has led to various improvements that are used in widely deployed
implementations [1]. Thanks to the utilization of multiple flows, Multipath
TCP brings another dimension to the problem of reliably transmitting data
between two hosts. With regular TCP, a host adapts its transmission rate to
avoid congestion thanks to its congestion control scheme. With Multipath TCP,
when several concurrent subflows are active, the host can spread the data over
different paths. Furthermore, the number of subflows that are associated to a
connection can vary over time.

Our detailed analysis of a five-month-long packet trace has led to several
interesting observations. First, Multipath TCP works correctly over a wide
range of Internet paths. This demonstrates the deployability of the protocol
extension in the global Internet. Second, the trace reveals two different usages of
Multipath TCP. About 86% of the connections are composed of subflows that are
created almost immediately. These connections expect improved performance
from the utilization of several subflows. In the remaining 14% of the connections,
one or more subflows are created more than one second after the initial subflow.
This is likely corresponding to the second use case for Multipath TCP that
enables applications to continue to use existing connections after a handover.
Looking at the round-trip-times of the subflows that Multipath TCP uses, our
analysis reveals that there can be a huge difference between the fastest and
the slowest subflow inside each Multipath TCP connection. This large delay
difference must be taken into account by Multipath TCP implementers who
propose solutions to improve the performance of the protocol.

We have also studied in details how retransmissions and reinjections occur.
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Our analysis reveals that reinjections, i.e. retransmitting data over more than
one subflow, are common but less frequent than regular retransmissions.
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