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ABSTRACT
Multipath routing strategies such as Equal-Cost MultiPath
(ECMP) are widely used in IP and data-center networks.
Most current methods to balance packets over the multiple
next hops toward the destination base their decision on a
hash computed over selected fields of the packet headers.
Because of the non-invertible nature of hash functions, it is
hard to determine the values of those fields so as to make
the packet follow a specific path in the network. However,
several applications might benefit from being able to choose
such a path. Therefore, we propose a novel next-hop se-
lection method based on an invertible function. By encod-
ing the selection of successive routers into common fields of
packet headers, the proposed method enables end hosts to
force their packets to follow a specific path.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Packet-switching networks; C.2.6
[Computer-Communication Networks]: Internetwork-
ing—Routers

General Terms
Algorithms, Management, Performance
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1. INTRODUCTION
Load balancing allows to improve the performance and

the scalability of the Internet by distributing the load evenly
across network links, servers, or other resources, in order to
maximize the throughput, achieve redundant connectivity,
obtain an optimal resource utilization, or avoid congestion.
Different forms of load balancing are deployed at various
layers of the protocol stack. At the network layer, multipath
routing strategies such as ECMP are widely deployed.

Most multipath routers use a hash computed over selected
fields of the packet headers to select a next hop. Because of
the avalanche effect hash functions exhibit, a fair distribu-
tion of the packets over the next hops is ensured even though
the values of their header fields fed to the hash function
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might not vary widely[2]. By carefully selecting these fields,
next-hop selection methods avoid distributing the packets of
a transport-level flow over more than one next hop in order
to prevent packet reordering at the destination.

Due to the design of hash functions, it is hard to find
the values of these fields in order to force a next hop to be
selected at a multipath router. It is even harder to find them
to control the decisions of multiple routers in a row, i.e., to
force a packet to follow a specific path.

Hash-based next-hop selection methods bring two chal-
lenges that could be relieved by letting end hosts possibly
control the selection of next hops at multipath routers.

First, it is hard to monitor paths in multipath networks
to test and verify the performance and quickly detect prob-
lems. The simplest monitoring tool, traceroute, gives erro-
neous measurements [1]. Paris traceroute fixes most of the
problems traceroute experienced with multipath networks,
and is able to discover various paths between the source
and a destination. Unfortunately, its probabilistic approach
causes it to send quite a large amount of probes and leaves
undiscovered paths when path diversity increases.

Second, it is difficult for end hosts to use disjoint paths in
the network to get better performance and resiliency. There
has recently been a growing interest in being able to use
multiple paths in transport protocols. While it was initially
focused on multi-homed hosts, single-homed hosts could also
benefit from multiple paths in the core network. To leverage
on multipath with hash-based next-hop selection methods,
end hosts can barely do better than creating enough flows
in the hope that they will be bound to different paths [3].

For these applications, solutions like source routing or a
shim header with routing information are impractical. Mon-
itoring packets should not be handled differently than reg-
ular packets. Protocol changes should be avoided to keep
compatibility with legacy routers on the path and allow for
incremental deployment.

In this paper, we propose a novel next-hop selection method
that allows to determine the ports to use for a TCP or UDP
flow to choose the path the latter will follow. Compared
to a modulo-N hash, the most deployed next-hop selection
method, the proposed method mainly differs in two points.
First, instead of using a hash function, we use an invertible
function, e.g.., a block cipher. Second, we use a different
part of the output of that function at each router. Notwith-
standing, with ordinary traffic, modulo-N hashes and our
method achieve equally-fair distributions.



2. DESIGN
We propose to apply a function over selected fields of the

packet header – the source and destination IP address, the
protocol identifier, and the source and destination TCP or
UDP ports – to pick one next hop among the multiple avail-
able at each router along the path to the destination. More
precisely, an invertible function F is applied over the source
and destination ports, while the rest is fed to a injective
function H . F and H should exhibit the avalanche effect to
keep the distribution of their output as uniform as possible
even if the input is not. We use block ciphers such as RC5
and KATAN for F , and CRC, as in many implementations
of hash-based methods, for H . The output of both functions
is xor -ed to form a 32-bit value that we call path selector.
Albeit the computed path selector is the same at each router
on the path, routers pick a different part of it according to
the Time-to-Live (TTL) of the packet. This part can serve
as a finger into a table of next hops to select one to relay
the packet. We call it the next-hop selector.

Using this method, the end host can determine the ports
to use to make its flow follow a specific path. The next-hop
selectors of all routers on the path are concatenated into a
32-bit value and sorted according to the initial TTL to form
a path selector. The latter is then xor -ed with the output of
H applied over the source and destination IP addresses, and
the protocol identifier. The inverse function F−1 is applied
over the resulting value. The latter value provides the source
and destination ports to use.

If the end hosts do not have enough knowledge of the
network topology to construct a useful path selector, the
construction could be relegated to a dedicated service. Such
a service could be offered to end hosts by a server that gath-
ers information about the topology, e.g., by listening to link-
state advertisements.

This next-hop selection method can be used to implement
a monitoring tool that deterministically probes any particu-
lar path or all paths between a source and a destination. An-
other example enables hosts using a multipath-aware trans-
port protocol like Multipath TCP [3] to spread flows over
disjoint paths. Indeed, while the destination port of the first
TCP flow can hardly be chosen, the ports of the subflows
are not actually used. They can be freely set in order to
make the subflows take different paths than the first one.

Albeit only the ports are controlled and the lattitude of
choice their 32 bits offer is limited, our analysis of ISP and
data-center networks has shown it should be enough to im-
plement the aforementioned applications in these networks.
We are investigating ways to get more bits to control and
to use them more efficiently. We are also looking at ways to
control the path beyond the network of the packet sender.

3. PRELIMINARY EVALUATION
We implemented the proposed method in a module for the

Click modular router. We implemented the Skip32, RC5,
and KATAN block ciphers as invertible functions. We also
implemented a monitoring tool to validate the ability to con-
trol the path the proposed method offers. Due to space lim-
itation, we are not going to evaluate the tool here.

We then analyze how the proposed method preserves a
fair distribution of packets at each router, compared to a
modulo-2 hash. Therefore, we replay a CAIDA trace [4] of 10
million of packets. Fig. 1 shows the difference in packet dis-

Figure 1: The difference in packet distribution over two
next hops is comparable to the distribution offered by the
modulo-2 hash.

(a) Modulo-3 hash (CRC-16) (b) Proposed method

Figure 2: The packet distribution over three next hops is
similar over time too.

tribution over two next hops for the modulo-2 hash and the
proposed method with RC5. We observe two things. First,
as the maximum difference value never reaches 3%, the dis-
tribution is almost equal. Second, the variation around the
optimum is in most cases smaller than 1%. Fig. 2 shows the
packet distribuition over time over two next hops. Both the
modulo-2 hash and the proposed method slightly fluctuate
within the same tight interval [31%, 36%] and their median is
close to 33,3%. We observe that there is no strong difference
between the two methods.

Thus, the ability to control path offered by the proposed
method does not significantly impact the fairness of the local
packet distribution. Nevertheless, such a fair distribution
might not be preserved if end hosts somehow control the
next-hop selection.
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